09/30/05 — 09/30/06: RESEARCH AND EDUCATIONAL ACTIVITIES
This year we made progress exploring several baselines with respect to nonlinear modeling. This report contains four sections: fundamentals in nonlinear modeling, new directions in nonlinear modeling, baseline experiments in speaker recognition, and research experience for undergraduates.
Our progress this year was somewhat hampered by an unexpected shift of our research group from the Center for Advanced Vehicular Systems (CAVS) to the Department of Electrical and Computer Engineering. The proposal was originally written assuming we would have access to supercomputing facilities at CAVS. However, new management directions at CAVS, which were supported by the College of Engineering, have not been favorable for the Intelligent Electronic Systems (IES) program, whose research includes this project. Therefore, it became necessary to move the program to the department. Unfortunately, we have few computational resources in the department, and it has been very hard to continue the type of research included in this proposal. We successfully transitioned our lab in Summer’2006, but are still struggling with numerous infrastructure issues, including access to supercomputing facilities.

A. Nonlinear Modeling

Speech recognition systems today exploit the linear acoustic model of speech production and rely on traditional measures of the spectrum based on Fourier transforms [2] [8]
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 \* MERGEFORMAT [13]. These systems suffer from the problem of robustness, as they are sensitive to mismatches in training and evaluation conditions, or dramatic changes in the acoustic environments in which they operate[22]. Research has shown the existence of nonlinear phenomena in speech production, which is not accounted for in the traditional linear model [8]
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 \* MERGEFORMAT [24]. The goal of our work is to identify features in speech that do not rely on traditional measures of the first and second order moments of the signal [22]
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 \* MERGEFORMAT [17]. State-space models can represent dynamical systems where the states of the system, evolve in accordance with a deterministic evolution function, and the measurement function maps the states to the observables [7]. A time series representing an observable of a nonlinear dynamical system contains information that is difficult to capture using conventional tools such as Fourier transform. Hence an alternative characterization of the time series, which enables us to extract as much information as possible from the observed time series, is desired. The path traced by the system’s states as they evolve over time is referred to as a trajectory and the set of points in the state space that are accumulated in the limit as 
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 is called the attractor of the system [1]

 REF _Ref141517674 \n \h 
 \* MERGEFORMAT [3]

 REF _Ref141517691 \n \h 
 \* MERGEFORMAT [15]. Invariants of the system’s attractor are the measures that quantify the topological or geometrical properties of the attractor and are invariant under smooth transformations of the space such as Phase Space Reconstruction [4]
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 \* MERGEFORMAT [14]. These invariants are the natural choice for characterizing the system that generated the observable. These measures have been previously studied in the context of synthesis and analysis [2]
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 \* MERGEFORMAT [28]. We tried to apply these to the speech recognition and speaker recognition. 

Computation of any of these invariants presupposes that we have the full knowledge of the dynamics of the system. However, in practice, we usually have only one time series measurement. In such cases, though finding the exact phase-space of the system is not possible, a pseudo phase-space equivalent to the original phase-space in terms of the system invariants may be constructed. This pseudo phase space is called the Reconstructed Phase Space (RPS) [12]. To reconstruct the phase-space, the inherent dimension of the system is needed. From the Taken’s theorem, the phase-space may be reconstructed by embedding with a dimension
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is the dimension of the system and 
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is the embedding dimension. This is theoretically sufficient bound, which is larger than necessary for practical applications [1]
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A.1 Computing Nonlinear Dynamical Invariants

There are two methods by which the embedding may be achieved: Time Delay and Singular Value Decomposition (SVD) embedding [2]. The simplest method to embed the scalar time series is to use the method of delays. This works by reconstructing the pseudo phase-space from a scalar time series by using the time delayed copies of the original time series. This technique involves using a sliding window of length 
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 through the data to form a series of vectors, stacked row-wise in the matrix. Each row of this matrix is a point in the reconstructed phase-space [12]
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 \* MERGEFORMAT [2]. In time delay embedding, evolution of the system’s states in the original state-space is approximated by a phase-space comprising of time-delayed coordinates. If 
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 represents the time series, the RPS matrix is as shown below in where 
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is the embedding dimension and 
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is the embedding time delay. 
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The optimum time delay 
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 is estimated using the auto mutual information. The first minimum of the auto-mutual information versus the time graph gives the optimum time delay for embedding [1]. The method of delays works fine when the data is noise free, which is rarely the case. If the data is noisy, the result will be a noisy attractor, which in turn results in wrong estimates of the invariants. There fore embedding technique that takes into account the noise in the input time series is needed.

The method of embedding that has been applied to various nonlinear analysis of a scalar time series is the Singular Value Decomposition (SVD) embedding. It works in two stages. In the first stage the original time series is embedded into a higher dimensional space using time delay embedding with a delay of one sample. The dimensionality of this space is referred to as the SVD window size. In the second step the embedded matrix is reduced to a lower dimensional space by linear transformation. The SVD may be applied even when the observed time series is corrupted by noise, which is not the case with time-delay embedding. So, it is expected that the invariants calculated from SVD embedded RPS would be more robust to noise than those estimated from time-delay embedding. For this reason, we restrict our analysis to SVD embedding [2]. Depending on the data, the user may choose which embedding to use. The advantage of the time delay embedding is that it is faster compared to the SVD embedding. 

Although there exists many invariants of a nonlinear dynamical system, research shows that Lyapunov exponents, fractal dimension and correlation entropy are most widely used invariants that characterize the nonlinear dynamical system. Therefore, for our applications we concentrate on estimating these invariants. 

Lyapunov exponents measure the analysis of separation in time of two trajectories with infinitely close initial points. For a system whose evolution is defined by a function
[image: image11.wmf]f

, we need to analyze
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.  To quantify this separation, an assumption that the rate of growth (or decay) of the trajectories is exponential in time is made.  The exponents 
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 are defined as
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, where J is the Jacobian of the system as the point 
[image: image15.wmf]p

 moves around the attractor. The above expression for computing the exponents measures the average divergence (or convergence) of the strange attractor. This is done by following a reference trajectory through time and comparing the divergence of the trajectories that are close by over a portion of attractor cycle. These exponents are invariant characteristics of the system and are called Lyapunov exponents (LEs). There are as many LEs as the dimension of the system. For a dynamical system with bounded attractor, the sum of all the LEs should be less than or equal to zero. Zero exponents indicate that the system is a flow, while the positive ones indicate that the system is chaotic. Therefore, for a system that is chaotic, yet bounded, there exist positive exponents together with negative exponents. The algorithm for the computation of the Lyapunov exponents can be summarized in six steps. 

First, the observed time series is embedded to generate a RPS matrix using either time delay embedding. Second, using the first point as center, a neighborhood matrix is formed where each row is obtained by subtracting a neighbor from the center. Third, the evolution of each neighbor is evaluated and an evolved neighborhood matrix is formed. Fourth, a trajectory matrix is obtained by multiplying the pseudo-inverse of the neighborhood matrix with the evolved neighborhood matrix. Fifth, the LEs are calculated from the eigen values of the trajectory matrix. Finally, evolving the center point through the trajectory averages these exponents. Since direct averaging might create problems, an iterative QR decomposition method called Treppen iteration is preferred. 

For estimating the other two invariants, that is, the correlation dimension and Kolmogorov-Sinai entropy, it is necessary to estimate a quantity called the correlation integral. The correlation integral is as shown:
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The Heaviside function 
[image: image17.wmf])

(

j

i

x

x

r

r

-

-

Q

e

 is equal to unity (zero) if the value inside the brackets is positive (negative). 
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 are the points on the reference trajectory and 
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 is the distance between the two points. The Heaviside function returns unity if the distance between the two points is less than the radius of the hyper sphere
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. In this way, the Heaviside function gets the count of the all the points within the hyper sphere. The computation of the correlation integral involves following a reference trajectory, stopping at each point on this trajectory and counting the number of points in the vicinity of that point within the hyper sphere of radius
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. The cumulative sum of all the points counted is then normalized to give the correlation integral
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. The maximum value of the correlation integral is one, when the radius of the hyper sphere is greater than the attractor diameter, allowing all the points to be counted [3]
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Fractals are objects, which are self-similar at various resolutions. Many definitions of fractal dimension exist. We chose correlation dimension for our applications. The calculation of the other dimensions like the information dimension and box-counting dimension require a prohibitive amount of computation time. The power-law relation between correlation integral of an attractor and the neighborhood radius of the analysis hyper sphere can be used to provide an estimate of the fractal dimension:
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Where D is the correlation dimension and 
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 is the correlation integral. For our applications, we have three implementations for the estimation of the correlation dimension using correlation integral. The three implementations differ in the way the differentiation is done. Depending on the application user might use backward, central or smooth differentiation [2]. 

Another invariant of a nonlinear dynamic system is the Kolmogorov-Sinai entropy. Entropy is a well-known measure to quantify the amount of disorder in the system. This may be immediately estimated from correlation integral as it is the logarithm of the ratios of the correlation integrals for two successive embedding dimensions 
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. Numerically, the Kolmogorov-Sinai entropy can be estimated as the second order Renyi entropy 
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 where D is the fractal dimension of the system’s attractor, d is the embedding dimension and 
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 is the time-delay used for attractor reconstruction. This leads to the relation of KS entropy to the correlation integral as stated above:
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Thus all the three nonlinear dynamical invariants are computed after reconstructing the phase space using the original one-dimensional time series.

A.2 RPS of a Vector Time Series

Computation of the dynamical invariants like the Lyapunov exponents, fractal dimensions etc., assumes that the dynamics of the system are known. Usually the observed scalar time series is projected into a higher dimensional phase space called the Reconstructed Phase Space (RPS). In the conventional nonlinear analysis, the time series being embedded is assumed to be the only observable of the system. In our work, we extend the embedding technique to a system with more than one observable, resulting in a vector time series. Given a vector time series, the RPS of the system’s attractor may be created by stacking time-delayed versions of vectors from data vector. The resultant RPS matrix is as follows:
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Where 
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 represents a row vector of the i’th sample of the vector time series. That is, the dynamics of the pseudo phase-space comprising the time-delayed vectors as coordinates is studied. 

For the case of SVD embedding of a vector time series, first the time delay embedding of the vectors is done to form a matrix in a higher dimensional space. The second step is similar to that of SVD embedding for scalar time series. 

A.3 Pilot Experiments

Our initial experiments were on artificial chaotic systems like the Lorentz and Rossler. This is done so as to test the accuracy of our implementations. The accepted dimensionality of both the systems is three and the Lyapunov exponents for the Lorentz time series were estimated as (+1.37, 0, -22.37) and for Rossler the values were (0.090, 0.00, 9.8). The positive exponents show that the systems are chaotic and the three Lyapunov exponents are for the three dimensions. To make sure the implementations are accurate, the algorithms are tested on sinusoidal signal of frequency 1Hz sampled using a sampling interval of 0.06s. Since the sinusoidal signal is not chaotic, the Lyapunov exponents should not be positive, that is we expect zeros or negative exponents only. The absence of positive exponents indicates that the trajectory is stable. The estimated values of the Lyapunov exponents are (0.00, 0.00, -1.85) proving the accuracy of the algorithms we used. 
Similarly, the correlation dimension and Kolmogorov-Sinai entropy were first tested for accuracy of the implementation on the artificial chaotic systems like the Lorentz and Rossler. The variation in the estimates of the dimension and entropy with the variation in the data size was studied. It was observed that unless the data size was extremely small, the estimates of the dimension and entropy were as expected. Noise performance of all the three algorithms was studied by adding artificially, to the data, noise ranging from 10 dB to –10 dB. Also, for correct estimation of all the invariants, the RPS of the attractor should be correct. The problem with embedding arises when we use time-delay embedding, which requires an optimum choice of time delay. We use mutual information of the time series for the estimation of the optimum time delay. So, for the time-delay embedding to yield correct RPS, the time delay chosen should be correct, that is mutual information should be robust enough to give correct value of the time delay. To test the performance of the mutual information in presence of noise, we artificially added noise to the Lorentz time series. The result is that, there is not much difference in the optimum time delay value with increasing noise. Thus mutual information may be considered for the estimation of the optimum time delay for time-delay embedding.

Once the accuracy of implementations for the estimation of these invariants was studied, our next step was to demonstrate the efficacy of the procedure for vector embedding. For this, we used the Lorentz time series and the accuracy of the Lyapunov exponents was studied. The dimensionality of the Lorentz time series is three and hence there exists three LEs for this system. Using scalar time series embedding, the Lyapunov exponents were estimated as (+1.37, 0.0, -22.37). Experiments on both SVD-based and time delay embedding for scalar and vector embedding were conducted. For scalar embedding experiments, we considered the evolution of one variable of the attractor’s state space as the scalar observable of the system. For vector embedding, we used all the three variables of the state space as a variable observable of the system. The embedding dimension of the attractor was set to three for all experiments. We studied the accuracy of Lyapunov exponents as a function of various parameters like the SVD window size, number of neighbors and the evolution step size. 

We analyzed the performance of Lyapunov spectra estimation for scalar and vector embedding as a function of the data-size. For the experiments, 30,000 points from the Lorentz attractor that were generated by solving the three differential equations of the Lorentz system using Runge-Kutta method for numerical integration were used. An integration time step of 0.001 sec was used and the sampling rate was set to 100 Hz. The Lorentz system of equations is a tightly coupled system, meaning, there is high degree of correlation between the three variables of the system. Many practical systems that produce vector time series do not exhibit this property.  To see how the vector embedding works for both correlated and uncorrelated components, we used both correlated and uncorrelated Lorentz time series for our experiments. The uncorrelated time series is achieved using Principal Component Analysis (PCA). The covariance matrix of the three variables in the Lorentz system is estimated and a transformation matrix that decorrelates the vector series using an eigen decomposition of the covariance matrix is computed. After the transformation, we have a set of three variables. Since this is a smooth transformation, we expect all the characteristic invariants including the Lyapunov exponents to remain unaltered. 

The comparison of the accuracy of Lyapunov spectra estimates from the uncorrelated vector time series with that of a conventional vector time series of the Lorentz system is made. From our experiments it was clear that the size of the data set is approximately 2,000 samples for vector embedding, while scalar embedding needs at least 8,000 samples for accurate estimation of the invariants. This indicates that the vector embedding performs better when the available time series is short. Next, the variation in accuracy of the Lyapunov spectra of Lorentz series with various parameters was studied. It was observed that in clean conditions both the scalar and vector embedding provide reliable estimates of invariants and the variation of the parameters did not vary the invariants much.  Accurate estimates were obtained at SVD window size 15 and the number of neighbors 20.
Next the variation in accuracy in presence of noise was studied. The results were similar at a noise level of 10 dB. Accurate estimates were obtained at SVD window size of 50 and number of neighbors 50. The variation in the parameters follows the intuition that to estimate the dynamical invariants from a noisy trajectory, it becomes necessary to use larger neighborhood to measure the local dynamics accurately. A larger SVD window size removes the effects of noise. At lower SNR, the results from vector embedding and scalar embedding are very similar. It was observed that de-correlating the stream does not affect the Lyapunov spectra estimates of the system. 

A.4 Experiments on Speech Data
Our next step was to extend the experiments on artificial data sets to speech. We attempted to extract various nonlinear dynamical invariants of the underlying attractor from the observed acoustic utterances. We collected artificially elongated pronunciations of several vowels and consonants from 4 male and 3 female speakers. Each speaker produced sustained sounds, which is 4 seconds long for three vowels (/aa/, /ae/, /eh/), two nasals (/m/, /n/) and three fricatives (/f/, /sh/, /z/) at a sampling rate of 22,050 Hz. As this is our first attempt to apply nonlinear algorithms to speech, we wanted to avoid artifacts introduced by coarticulation. The acoustic data from each phoneme is embedded into a reconstructed phase, using time delay embedding with a delay of 10 samples. We chose time delay embedding in this case, as the data we collected was noise free. The delay of 10 samples was selected from the first local minimum of the auto-mutual information vs. delay curve averaged across all phones. The embedding dimension was chosen 5 after observing the plots of Lyapunov spectra vs. embedding dimension over a range of embedding dimensions. 
We observed that the estimates of the Lyapunov spectra at the embedding dimension covered most of the phones. We experimentally found that the optimal values for the nearest neighbors to be 30, the evolution step size to be 5 and the number of sub-groups of neighbors 15. For Kolmogorov- Sinai entropy, an embedding dimension of 15 was used. As a measure of discrimination information between two statistical models representing dynamical information, we chose Kullback-Leibler divergence measure. We measured the invariants for each phoneme using a sliding window, and built an accumulated statistical model over each such utterance. The discrimination information between a pair of models 
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provides a symmetric divergence measure between two populations 
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 and 
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. We use 
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as a metric for quantifying the amount of discrimination information across dynamical invariants from different phonetic classes. 

For these experiments we chose a window size of 1,500 samples. We varied the neighborhood radius and studied the variation in the estimated value of the fractal dimension. We observe clearly a scaling region where the dimension estimate is unaffected by variation in the neighborhood radius for vowels and nasals. Such a region was absent in the case of fricatives. It was also observed that the estimate of the fractal dimension is not sensitive to variations in embedding dimension from 5 through 8 for vowels and nasals while the dimension estimate increases consistently with increase in embedding dimension for fricatives. 
A similar trend was observed even for Kolmogorov entropy. Vowels and nasals have entropy estimate that stabilize at an embedding dimension of approximately 15. For fricatives, consistent increase in the estimates of the entropy was observed. This behavior, along with the variation in dimension estimates, reaffirms the conventional belief that unvoiced fricatives can be modeled using the combination of a noisy source and linear constant coefficient digital filter. If a time series were generated from an IID stochastic process, an increase in embedding dimension adds to the randomness in the reconstructed phase space resulting in consistently increasing estimates of fractal dimension and attractor entropy. 
Lyapunov exponents could not be validated for fricatives, which is consistent with our observations using fractal dimension and Kolmogorov entropy estimates. We plotted Lyapunov spectra as a function of various embedding dimensions. It is observed that the positive exponent converges to a stable value at an embedding dimension of 5. Alternate technique for estimating appropriate dimension from a time series is the method of false nearest neighbors. If the minimum embedding dimension of a time series is
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-dimensional delay space the reconstructed attractor is similar to the original phase space in terms of system invariants and topological properties. As reconstruction is a smooth transformation, the neighborhoods of the points are mapped onto neighborhoods again.
But, when the embedding dimension
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, the topological structure of the reconstructed phase space is no longer preserved. Points are projected onto neighborhoods of other points which wouldn’t be so in higher dimensions. These points are called false nearest neighbors. Therefore, the attractor is embedded in successively increasing dimensions and each time the difference of the distance between the two points and the distance when the embedding dimension is one less than the current is computed. When the difference in distance is below a threshold, that dimension value is considered the correct value for embedding dimension.

Using a sliding window of length 36ms, invariants are extracted. The KL-divergence plots indicated separation between statistical models generated using correlation entropy, Lyapunov exponents and correlation dimension extracted from utterances of all speakers. It was observed that the discrimination information of all these features is high between vowels and fricatives and fricatives and nasals. The separation between nasal and vowel sounds is small. 

Now that the discriminability between various classes of phonemes is proved, our next step is to try and exploit this to improve the performance of speech recognition and speaker recognition system using the nonlinear invariants, correlation dimension, Lyapunov exponents and correlation entropy as features in addition to standard Mel-Frequency Cepstral Coefficients (MFCC) features. The speech recognition or speaker recognition systems perform well when the input is noise free. The performance degradation is very high in real-time when the system is required to perform in noisy conditions. The goal of our current work is to improve the performance of the recognition systems in presence of noise. We expect an improvement in performance of the systems with these invariants as additional features. We are using AURORA and NIST for our speech recognition and speaker recognition experiments respectively. As a first step, we decided not to use the delta features. Therefore 13 MFCC features are used. To these 13 features, one invariant at a time will be added to see the improvement in performance due to that particular feature. That is 14 features will be used for the first set of experiments. Based on the results of these experiments, various combinations of these invariants will be used for the future experiments. Our current experiments with Lyapunov exponents as invariants are giving positive results for speaker recognition experiments. The same is expected for speech recognition experiments. 
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B. New Directions in Nonlinear Modeling

Current speech recognition front-ends are essentially based on tools from linear systems. Typically they employ a linear prediction scheme or Fourier transform [1] to capture information in the speech signal. Though the past decade has seen several minor improvements to the overall system, there has been no significant advancement in performance of the system. Over the years, it has become increasingly clear that linear models fail to capture all the important information in the speech signal.  Any breakthroughs in the future of speech recognition systems lie in the realm of nonlinear system modeling.

It is a well-known fact that speech segments are sometimes noise-like, sometimes almost periodic, while at other times it is a combination of noise and periodicity [1]. This fact is the basis for the linear-prediction based speech coders and recognizers. In such systems, the speech production mechanism is modeled as a linear filter driven by either a stochastic or a periodic impulse train. However, it is common knowledge that the same system exhibiting both noise-like and periodic behavior is typical of nonlinear systems operating at various levels of system parameters [2]. This leads us to conjecture that the speech signal is the outcome of the same nonlinear system but with varying parameters.

Unfortunately, modeling nonlinear systems is a very difficult task. Linear models are popular mainly because they are simple enough to gain a complete understanding of the system and easy to compute. On the other hand, neither can one hope to gain a complete understanding of nonlinear systems nor is it easy to do the required computations for such systems. Why is this disparity between linear and nonlinear systems? Why is there not some equivalent of linear prediction for nonlinear systems that is as straightforward and easy to compute?

There are several answers to these questions. First, a famous saying goes that “all linear systems are similar, but every nonlinear system is nonlinear in its own way” [3]. In fact, we can think of linear systems as belonging to a very small class of nonlinear systems. Second, we may not even have closed-form expressions that make analytically tractable inferences to be made from the model. Third, the nonlinearity can lead to global attractor structures that have very different local properties. Moreover, even if we know the system model, the extreme sensitivity to initial conditions (the famous “Butterfly Effect”) can blow up even small errors and render any computations unreliable.

Yet, in spite of their complexities, some nonlinear systems have been very efficiently used in the past. A very good example is the phase-locked loop (PLL) [4]. It is a closed-loop feedback device that is very simple to construct and has found a large range of applications in communications and control, mainly for its ability to track and lock on to specific signals with great stability, accuracy and speed. However, typical of nonlinear systems, it is extremely hard to apply analytical techniques to understand its behavior. This is, in a way, very encouraging because it shows that it is possible to apply nonlinear models to some problems even if we do not understand all the intricacies of the system.

B.1 Nonlinear Dynamical Systems: Some Preliminaries

Our task in this project is to find and apply novel nonlinear modeling approaches in speech recognition. Towards achieving this, we first worked on developing a sufficiently deep understanding of nonlinear dynamical systems, both at an intuitive and a mathematical level. The following is a brief description of some important concepts in the study of nonlinear systems.

B.1.1 Phase Space Reconstruction

A nonlinear system lives in a (phase-) space with several degrees of freedom. When we measure a signal from such a system, we are actually projecting this phase-space onto one of its axis or onto a transformation line in the phase space. To gain an understanding of the system from the scalar signal we have to first reconstruct the phase space [5]. This mapping from the signal onto the phase-space is called embedding. For a stationary signal, phase space reconstruction leads us to the system attractor. For quasi-stationary signals, we can imagine the reconstructed phase space as if we are in one attractor for some time, before we pass into another attractor through a transient orbit.

The simplest method to embed scalar data is the method of delays [5]. In this method, the pseudo phase-space is reconstructed from a scalar time series, by using delayed copies of the original time series as components of the RPS. It involves sliding a window of length m through the data to form a series of vectors, stacked row-wise in the matrix. Each row of this matrix is a point in the reconstructed phase-space. Letting 
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 represent the time series, the reconstructed phase space (RPS) is represented as:
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where m is the embedding dimension and
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is the embedding delay. Taken’s theorem [5]
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[6] provides a suitable value for the embedding dimension,
[image: image48.wmf]m

. The first minima of the auto-mutual information versus delay plot of the time series is a safe choice for embedding delay [6]. Another method to reconstruct phase-space is to use SVD (singular value decomposition) embedding [7].
B.2 Dynamical Invariants

In spite of the complexity exhibited by a nonlinear system, there are several invariants associated with it that are robust to (even nonlinear) transformations, as long as they are smooth – transformations which mathematicians call diffeomorphisms [5]. In the following, three commonly used invariants are briefly described.

B.2.1 Lyapunov Exponents (LEs)

The analysis of separation in time of two trajectories with infinitely close initial points is measured by Lyapunov exponents [5]. For a system whose evolution function is defined by a function f, we need to analyze
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To quantify this separation, we assume that the rate of growth (or decay) of the separation between the trajectories is exponential in time. Hence we define the exponents,
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where, J is the Jacobian of the system as the point p moves around the attractor. These exponents are invariant characteristics of the system and are called Lyapunov exponents, and are calculated by applying the above equation to the points on the reconstructed attractor. The exponents read from a reconstructed attractor measure the rate of separation of nearby trajectories averaged over the entire attractor.

B.2.2 Fractal Dimension

Fractals are objects which are self-similar at various resolutions [8]. Self-similarity in a geometrical structure is a strong signature of a fractal object. Correlation dimension [6] is a popular choice for numerically estimating the fractal dimension of the attractor. The power-law relation between the correlation integral of an attractor and the neighborhood radius of the analysis hyper-sphere can be used to provide an estimate of the fractal dimension:
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where 
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is a point on the attractor (which has N such points). The correlation integral is essentially a measure of the number of points within a neighborhood of radius
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, averaged over the entire attractor.

B.2.3 Kolmogorov-Sinai Entropy

Entropy is a well-known measure used to quantify the amount of disorder in a system [9]. It has also been associated with the amount of information stored in general probability distributions. 

Numerically, the Kolmogorov entropy can be estimated as the second order Renyi entropy (
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) and can be related to the correlation integral of the reconstructed attractor [6] as:
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where D is the fractal dimension of the system’s attractor, d is the embedding dimension and
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is the time-delay used for attractor reconstruction. This leads to the relation
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B.3 Examples of Nonlinear Systems

To gain an understanding of some of the dynamical system concepts like fixed points, periodic orbits and chaotic attractors, we did simulations of some well-known nonlinear systems.

B.3.1 [image: image103.emf] 
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Logistic Map

One of the simplest systems that show chaotic behavior is a discrete dynamical system known as the logistic map [2]. It is defined by the following simple iteration:
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Even this simple nonlinear map shows a variety of interesting dynamics from fixed points and limit cycles to chaotic orbits through a series of bifurcations (see Figure 1).

B.3.2 Lorentz System

The Lorentz system of differential equations is one of the simplest of continuous-time nonlinear systems that exhibits chaotic behavior [7]. It consists of three parameters, whose standard values are 
[image: image62.wmf]0

.

16

=

s

, 
[image: image63.wmf]0

.

40

=

r

, and 
[image: image64.wmf]0

.

4

=

b

. Figure 2 shows a chaotic attractor for this system along with the reconstructed phase space embedded from the 
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-coordinate using SVD embedding.

B.4 Computation of Dynamical Invariants

B.4.1 Flowchart for the Computation of LEs

Figure 3 shows the flowchart for estimating the Lyapunov spectra from a time series [7]. As the flowchart depicts, there are several parameters of the algorithm that affect the accuracy of the estimates.

B.4.2 Optimization of Parameters for LE Estimation

Experiments were done to tune the parameters of the LE estimation algorithm for optimal results (see [10] for details). To demonstrate the accuracy of our implementation, two chaotic systems - Lorentz and Rossler, are considered. The standard Lorentz system parameters as mentioned above were used. For the Rossler system [11] the parameters are a = 0.15, b = 0.2, c = 10. The accepted dimensionality of both the systems is three and the Lyapunov exponents for the Lorentz and Rossler systems with the given parameters can be calculated numerically and were found to be (+1.37, 0, -22.37) and (0.090, 0.00, -9.8), respectively. 
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To gain confidence about the accuracy of our algorithmic implementation, we also tested it on a sinusoidal signal of frequency 1 Hz sampled using a sampling interval of 0.06s. Since a sinusoidal signal generates a periodic attractor (a circle), it is expected to have zero and negative exponents only. The absence of positive exponents indicates that the trajectory is stable and never diverges during its evolution. The presence of a negative exponent indicates the tendency of the system attractor to pull any trajectory divergence towards the basin of attraction. Previously reported exponents [12] for this sinusoid are (0.00, 0.00, -1.85). 

Figure 4 illustrates Lyapunov spectra estimates of Lorentz time series (with and without noise) as a function of two parameters – SVD window size and number of nearest neighbors. The SNR for the noisy series was set to 10dB. When varying SVD window size, the number of neighbors was fixed at 15 for the clean series and at 50 for the noisy series. When varying number of neighbors, the SVD window size was fixed at 15 for the clean series and at 50 for the noisy series. In all cases, the evolution step was fixed at 8 samples.
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As can be seen from the figure, estimates of the positive and zero exponents from the clean series converge to the expected values. Also note that estimates of these exponents for noisy series converge for an SVD window size greater than 60 samples and for number of nearest neighbors greater than 50. However, the variation of the negative exponents in all cases does not follow any trend. This does not harm most nonlinear analyses because only positive exponents are used for the characterization of chaos. Similar results were also obtained with the Rossler and the sine signal.

B.4.3 Computation of Correlation Dimension and Entropy

In the following we present some issues in the implementation of the other two invariants, correlation dimension and Kolmogorov-Sinai entropy. For estimating these two invariants, it is necessary to estimate a quantity called the correlation integral [6]. The correlation integral is computed using the following expression:
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The Heaviside function 
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 is equal to unity (zero) if the value inside the brackets is positive (negative). 
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 are the points on the reference trajectory and 
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 represents the Euclidean distance between the two points. The Heaviside function returns unity if the distance between the two points is less than the radius of the hyper sphere
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. In this way, the Heaviside function gets the count of the all the points within the hyper sphere. The computation of the correlation integral involves following a reference trajectory, stopping at each point on this trajectory and counting the number of points in the vicinity of that point within the hyper sphere of radius
[image: image73.wmf]e

. The cumulative sum of all the points counted is then normalized to give the correlation integral
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C

. The maximum value of the correlation integral is one, when the radius of the hyper sphere is greater than the attractor diameter, allowing all the points to be counted. To avoid temporal correlations in the time series from producing an underestimated dimension, we use Theiler’s correction for estimating the correlation integral.

Nonlinear dynamical systems, typically have attractors which have fractional dimensions, i. e., they are fractals. These objects are self-similar at various resolutions. Many definitions of fractal dimension exist. We chose correlation dimension for our applications. The calculation of the other dimensions like the information dimension and box-counting dimension require a prohibitive amount of computation time [6]. The power-law relation between correlation integral of an attractor and the neighborhood radius of the analysis hyper-sphere can be used to provide an estimate of the fractal dimension. We have three implementations for the estimation of the correlation dimension using correlation integral. The three implementations differ in the way the differentiation is done. Depending on the application, user might use backward, central or smooth differentiation, with linear or log spacing of 
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Another important invariant of a nonlinear dynamic system is the Kolmogorov-Sinai entropy. Entropy is a well-known measure to quantify the amount of disorder in the system. This may be immediately estimated from correlation integral as it is the logarithm of the ratios of the correlation integrals for two successive embedding dimensions 
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. In a practical situation, the values of
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are restricted by the resolution of the attractor and the length of the time series [6].

B.5 RPS from a Vector Time Series

In a conventional nonlinear analysis, the time series being embedded is a single observable of the system [7]. In this work, we extended the embedding technique to a system with more than one observable, resulting in a vector time series
[image: image80.wmf]x
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. Given a vector time series, a reconstructed phase space of the system’s attractor can be created by stacking time delayed versions of vectors from the data vector stream. The corresponding embedding is defined by the equation:
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Here,
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represents a row vector of the 
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 sample of the vector-time series. In other words, we study the dynamics in a pseudo state space comprised of time-delayed vectors as coordinates. We can extend this to a more general formulation, where the embedding dimension and time delay is different for each component of the vector observable.

To demonstrate the efficacy of the procedure for vector embedding, we consider the accuracy of Lyapunov exponents on the Lorentz system of differential equations with the standard parameters. We performed experiments on both SVD-based scalar and vector embedding. For scalar embedding experiments, we considered the evolution of one variable of the attractor’s state space as the scalar observable of the system. For vector embedding experiments, we used all the three variables of the state space as a vector observable of the system. The final embedding dimension of the attractor was set to three for all experiments. We studied the accuracy of Lyapunov exponent estimates as a function of various parameters, i.e., SVD window size, number of neighbors and the evolve step size.

We analyzed the performance of Lyapunov spectra estimation for scalar and vector embedding as a function of the size of the data set. For all other experiments reported in this paper, we used 30,000 data points from the Lorentz attractor, which were generated by solving the Lorentz system of differential equations using Runge-Kutta numerical integration. An integration time step of 0.001 sec was used and the sampling rate was set to 100 Hz, as described in [11].

The Lorentz system of equations is a tightly coupled system, i.e., there is a high degree of correlation between the three variables of the system. On the other hand, many practical systems that produce vector time series do not exhibit this property. As an example, consider a vector stream comprised of cepstral features of a speech signal. In this vector stream, each component represents spectral information from a different frequency band.

Further, various transformations employed in the generation of cepstral features are designed to produce uncorrelated components. To see how vector embedding compares for coupled and decoupled systems, we also experiment on uncorrelated Lorentz time series. This is achieved using the method of Principal Component Analysis (PCA) [13]. We estimate the covariance matrix of the three variables in the Lorentz system and compute the transformation matrix that decorrelates the vector series using an eigen- decomposition of the covariance matrix. After transformation, we have a set of three uncorrelated variables. Since this is a smooth transformation, we expect all characteristic invariants including Lyapunov exponents to remain unaltered under the transformation. We compare the accuracy of Lyapunov spectra estimates from this uncorrelated vector time series with that of a conventional vector time series of the Lorentz system.

The estimates of Lyapunov spectra obtained from both scalar and vector embedding of a Lorentz time series as a function of the length of the series are shown in Figure 5. From this figure, it is clear that vector embedding provides reliable estimates (i.e., close to their theoretically expected value) even when the size of the data set is approximately 2,000 samples. On the other hand, scalar embedding needs at least 8,000 samples for an accurate estimate of the Lyapunov spectra. This indicates that vector embedding provides accurate reconstruction of the system’s attractor from a short time series.
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Also experiments similar to the scalar embedding parameter tuning (see section B) were carried out with vector embedding, which yielded similar results. Fig. 6 illustrates the Lyapunov spectra estimates of the Lorenz vector time series before and after removing linear correlations among the components of the vector stream. As expected, it is clear from the figure that de-correlating the stream does not affect the Lyapunov spectra estimates of the system. Although we embedded the vector time series to a final embedding dimension of three, we only report the first two exponents of the spectra (the third exponent is a negative quantity, irrelevant to the analysis of exponential divergence of nearby trajectories).

B.6 Nonlinear Dynamical Invariants for Speech Recognition
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In this work, we attempt to extract various nonlinear dynamical invariants of the underlying attractor from the observed acoustic utterances (see [14] for details). We collected artificially elongated pronunciations of several vowels and consonants from 4 male and 3 female speakers. Each speaker produced sustained sounds (4 seconds long) for three vowels (/aa/, /ae/, /eh/), two nasals (/m/, /n/) and three fricatives (/f/, /sh/, /z/). The data was sampled at 22,050 Hz. For this preliminary study, we wanted to avoid artifacts introduced by coarticulation [1]

 REF _Ref141433430 \r \h 
[7].

The acoustic data from each phoneme is embedded into a reconstructed phase space using time delay embedding with a delay of 10 samples. This delay was selected as the first local minimum of the auto-mutual information vs. delay curve averaged across all phones. 

The choice of an embedding dimension of 5 was made after observing the plots of the Lyapunov spectra vs. embedding dimension over a range of embedding dimensions, and noting that the   estimates   of the Lyapunov spectra converge at an embedding dimension of 5 for most phones. To estimate the Lyapunov spectra from speech data, we used the algorithm described in [7]. We experimentally found the optimal (varying the parameters and choosing the value at which we obtain convergence of the largest Lyapunov exponent) number of nearest neighbors [image: image109.jpg]25
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to be 30, the evolution step size to be 5, and the number of sub-groups of neighbors as 15. A more detailed explanation of these parameters can be found in [7]. 

For estimates of Kolmogorov entropy, an embedding dimension of 15 was used. For reliable entropy estimates, a high embedding dimension must be used.

As a measure of discrimination information between two statistical models representing dynamical information, we chose the Kullback-Leibler divergence measure [13]
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[15]. We measured invariants for each phoneme using a sliding window, and built an accumulated statistical model over each such utterance. The discrimination information between a pair of models
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provides a symmetric divergence measure between two populations
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, from an information theoretic perspective.  We use
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as the metric for quantifying the amount of discrimination information across dynamical invariants extracted from different broad phonetic classes.
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Figure 7 (a-i) shows the three dynamical invariants extracted from various phones using a variety of analysis parameters. For these experiments, we chose a window size of 1,500 samples. For the set of plots (a) through (c) we vary the value of the neighborhood radius (epsilon) and study the variation in estimated fractal dimension with this parameter. We observe a clear scaling region (where the dimension estimate is unaffected by variations in the neighborhood radius) for vowels and nasals (at epsilon ~ 0.75).  Such a scaling region is not present in dimension estimates from fricatives. Also note that the estimate of fractal dimension for vowels and nasals is not sensitive to variations in embedding dimension from 5 through 8. However, the dimension estimate for fricatives increases consistently with an increase in the embedding dimension.

A similar trend is observed for plots (d) through (f), representing the Kolmogorov entropy estimates as a function of the embedding dimension. Once again, vowels and nasals have entropy estimates that stabilize at an embedding dimension of approximately 15. The entropy estimates for fricatives increase consistently with the embedding dimension. This behavior, along with the variation in dimension estimates with embedding dimension, reaffirms the conventional belief that unvoiced fricatives can be modeled using the combination of a noisy source and linear constant coefficient digital filter. If a time series were generated from an IID stochastic process, an increase in the embedding dimension adds to the randomness in the reconstructed phase space of this series, and hence leads to consistently increasing estimates of fractal dimension and attractor entropy. In [16], estimates of Lyapunov exponents could not be validated for fricatives, which is consistent with our observations using fractal dimension and Kolmogorov entropy estimates.

Plots (g) through (i) depict the Lyapunov spectra as a function of various embedding dimensions. Note that the positive exponent converges to a stable value at an embedding dimension of 5. Another technique for estimating the appropriate embedding dimension from a time series is the method of false nearest neighbors [6].
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Figure 8 depicts the KL-divergence measure between phone models formed using the nonlinear dynamical invariants as features. The equation above has a closed-form expression for normal distributions with different mean vectors and covariance matrices, which is what we used for estimating these divergence measures. We used a sliding window of length 36 ms to extract the invariants. The plots in this figure indicate the separation between statistical models generated using correlation entropy, Lyapunov exponents and correlation dimension extracted from utterances of all seven speakers. Note that the discrimination information of these features is high between vowels and fricatives and nasals and fricatives. The separation between nasals and vowel sounds is small. 

Recently we have been running speech and speaker recognition experiments (on AURORA and NIST databases respectively,) by adding the maximal LE as an additional feature along with the standard 13-D static MFCC coefficients. We did not use the dynamic MFCC features (which are typically used to capture the long-term structure in speech) because we believe that the maximal LE would store this information more compactly. Results with preliminary experiments for tuning the parameters of LE estimation algorithm for optimal speaker recognition performance are shown in Table 1. Two criteria, min-DCF (minimum detection cost function) and EER (equal error rate), were used as performance measures for recognition [17]. In the the table the optimal parameter value(s) are highlighted.
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Our next immediate task is to concatenate the other two invariants, correlation dimension and entropy, as additional features, and compare the recognition results with that of our basline (MFCC features-only) system.

B.7 Future Plans

A major issue in automatic speech recognition is the problem of robustness. In spite of the complexity exhibited by a nonlinear system, the several invariants associated with it are robust to transformations. These invariants can be very important in speech recognition because they may be much more robust to variations in microphone and channel conditions than conventional features.

Among the most important of the system invariants are the Lyapunov exponents, correlation dimension (a fractal dimension) and correlation entropy. One major drawback of the use of these numerical invariants in classification is that they are more or less only indicators of how chaotic a system is, rather than uniquely identifying the system. Two attractors having very different characteristics may still have the same Lyapunov exponent. In such a case, the classifier would regard both the systems as identical.

One invariant of the system that is often overlooked in classification is the attractor itself. Unlike the numerical invariants, the attractor has all the information required for characterizing a system [5]. Two systems that have the same attractor structure are essentially identical. An issue with using the attractor as invariant is to develop an efficient way to represent its structure that would enable us to perform pattern classication for speech/speaker recognition. There have been some attempts previously in this direction [18].

Our main goal for this year will be to find good representations of the reconstructed phase space of the speech signal. In particular we will be looking into modeling the attractor structures using Markov models. A Markov model consists of several states, with each state having some probability of transitioning to another state, along with an emission probability (typically modeled using a mixture of Gaussians) of producing a particular output value. When the states are hidden, i.e., abstract with no physical interpretation attached with them, the models are also called Hidden-Markov Models (HMMs). These have been successfully applied in speech/speaker recognition systems to probabilistically model the MFCC coefficients.

In the present context too, we believe that HMMs would be ideal candidates for modeling invariant attractor structures. From a study of ergodic theory of chaos, recurrent orbits are commonly found in chaotic attractors. A chaotic trajectory can sometimes be thought to comprise of several unstable periodic trajectories. The trajectory stays in some part of phase-space or about a particular periodic orbit for sometime before it transits into another region in the phase-space or near another unstable periodic orbit. Each such region or periodic orbit in the phase space may be represented by one state of the HMM and the transition between the regions or periodic orbits can be represented by the transition probabilities of the Markov chain. A mixture of Gaussians would then represent the probability distribution for each region or for each periodic orbit.

Our work will also involve seeking ways to tune this model for task-specific applications – speech recognition or speaker recognition. For instance, while the use of pitch-related information might be useful in speaker recognition applications, it could be a hindrance in speaker-independent speech recognition. When building the attractor, pitch information also gets embedded in the phase-space. A possible solution for speech recognition applications is to remove pitch-related information from the speech signal before reconstructing the phase space. However, pitch detection and removal is itself not an easy problem and we propose to find reasonable methods to cope up with this issue.
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C. A Baseline Speaker Recognition System
Speaker recognition is devided into two fundamental tasks, identification and verification. Since identification is to determine who is speaking from a group of known speakers, it is refered to as closed-set identification. In contrast, the verification is called as open-set verification because it distinguishs claimed speaker from a group of unknown speakers [1]. Over the past several years, Hidden Markov Models (HMMs) with Gaussian Mixture Models (GMMs) are the main stream of speaker recgnition technology. The success of HMM is due to its ability to provide an concrete statistical structure for modeling speech variation using a Markov process that can be represented as a state machine. The temporal evolution of speech is modeled by an underlying Markov process. The probability distribution associated with each state in an HMM models the variability which occurs in speech across speakers or even different speech contexts [2].
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There are two kinds of modeling technique in speaker verification system, distinctive and generative models. In generative models, one speaker is treated independently from the other. For each speaker, a model of the true probability densities is constructed from the sample data [3]. To verify some test input vectors, simply choose the model with the greater likelihood given the test input. Discriminative classifers are trained to minimise the error on some samples of data. Alternatively, a discriminative classifier models only the boundary between classes and ignores the flctuations within each class. In this point of view, HMM can be classified as generative method and Support Vector Machine as discriminative method. Generative recognition systems perform very well on closed-loop tests but performance degrades significantly on open-loop tests [2]. HMM-based speech recognition system stays an representation of speech signal and do not give discriminative model. This means that HMMs lack the generalization ability when the testing data are not known. And , it assumes the distribution as gaussian. 

One of the alternative methods to overcome these problems is Support Vector Machines (SVMs). Support vector machine (SVM) is a new classification technique developed by Dr. Vapnik and his colleagues [4]. It has a good generalization ability which is achieved by optimal hyperplane with maximum margin between two classes. In many applications, the theory of SVM has been shown to provide higher performance than traditional learning machines and has been introduced as powerful tools for solving classification problems [5]. Due to these advantages, SVM has been applied to many classification or recognition fields, such as text categorization, object recognition, speaker verification [8], and face detection in images. The support vector paradigm is based upon structural risk minimization (SRM) in which the learning process is posed as one of optimizing some risk function. The optimal learning machine is the one whose free parameters are set such that the risk is minimized [4].  

However, SVMs still have two problems. First, while sparse, the size of the SVM models (number of non-zero weights) tends to scale linearly with the quantity of training data. Second, the SVMs are binary classifiers. We require a probabilistic classification which reflects the amount of uncertainty in our predictions [4]. In speech recognition this is an important disadvantage since there is significant overlap in the feature space which can not be modeled by a yes/no decision boundary. Thus, we require a probabilistic classification which reflects the amount of uncertainty in our predictions. The essence of an Relevance Vector Machine (RVM) is a fully probabilistic model with an automatic relevance determination prior over each model parameter [4].
C.1 Hidden Markov Models

The choice of modeling technique is heavily dependent on the type of speech to be used, the ease of training and updating, and storage and computation considerstation. Since Hidden Markov Models are the basic technique in speech processing, we need to fully understand this concepts for the future improvement. HMMs are a kind of stochastic model which can be formulated as measuring the likelihood of an observation given the speaker model. In conventional Markov models, each state corresponds to a deterministically observable event. Thus, the output of such sources in any given state is not random and lacks the flexibility needed here. In an HMM, the observations are a probabilistic function of the state, i.e., the model is a doubly embedded stochastic process where the underlying stochastic process is not directly observable (it is hidden) [11]. The HMM is a finite-state machine, where a pdf (or feature vector stochastic model) is associated with each state (the main underlying model). The states are connected by a transition network, where the state transition probabilities are 
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 The probability that a sequence of speech frames was generated by this model is found by using Baum-Welch decoding. The likelihood is the score for L frames of input speech given the model [10]
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Let 
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 be the conditional density function of the observation score 
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generated by speakers other than the claimed speaker (imposter), and likewise 
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 for the claimed speaker. If the true conditional score densities for the claimed speaker and the other speakers are known, then the Bayes test with equal misclassification costs for speaker A is based upon the likelihood ratio for the speaker A [10],
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C.2 Principles of Support Vector Machines (SVM)
The idea of Support Vector Machines (SVMs) is resulted from structural risk minization principle in statistical learining theory. SVMs make decision surface based on a process of discrimination and have good generalization ability which surpasses HMM and neural networks. There are two key points in SVM. One is the use of kernel function, which maps original input space into a high dimensional feature space. The other one is its dual representation of optimization problem. We can transform the primal into a dual by simply setting to zero the derivatives of the Lagrangian with respect to the primal variables, and substituting the relations so obtained back into the Lagrangian, hence removing the dependence on the primal variable. The use of dual representation in SVM not only allows us to work in high dimensional feature space, but also paves the way for algorithmic technique derived from optimization theory. After original input space transformed into high dimensional feature space, the optimal hyperplane is determined by only few data points that are called support vectors (SVs).
Consider the training sample, 
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where x is a set of input feature vectors, and y is the class labels for the feature vectors. Let w is the normal to the decision boundary, the task is to find some optimal separating hyperplane defined by 
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where b is the distance of the hyperplane from the origin. The set of vectors is said to be optimally separated by hyperplane if it is separated without error and the distance between the closet vector to the hyperplane is maximal. Once the hyperplane is obtained and introducing a slack variable 
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 as a flexible accomodation, all training examples satisfy the following inequality
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The above equation can be expressed as a single inequality,
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[image: image114.emf]The training points which satisfies the equality in above equation are called support vectors. The points satisfying the inequality (2) lie in H1 plane, and the points satisfying the inequality (3) lie in H2 plane. The distance between H1 and H2 plane is the margin of SVMs. 

For ideal cases, there are no points between H1 and H2, and the points are linearly seperable. However, in real world applications, there are often the cases which involve non-seperable data. This is why SVMs adopt kernel function which maps low input space into high dimensional space. Though this enables the problem to be seperated by linear decision, it is still suffered from computational overhead. There have been many studies to reduce this inefficiency. We use Sequential Minimal Optimization (SMO) algorithm which eliminates the complex quadratic optimizers by breaking down the problem to solving a two-point optimization. 

C.3 SVM based Speaker Verification System
In HMM/GMM baseline system, we build an imposter model and speaker model from feature vectors. The SVM training procedure can combine these two models into one speaker model, and then comprise a decision boundary by finding a group of vectors. If the number of vectors are small, we can get a clear criterion for discrimination. The front end step extracts features from the raw speech data. The features must capture the temporal progressions and acoustic variations. The most commonly used features are mel frequency cepstral coefficients (MFCCs). The MFCCs serve as inputs to the classifier [8]. In the HMM/GMM baseline system, HMM can model the word sequences and GMM can model the emission distribution at each state in the Markov chain. 
The situation in the SVM baseline is different. In SVM baseline system, we need two classes of data, in-class and out-of-class. In-class data is from the speaker which we want to model and out-of-class data are generated from all speakers excluding the speaker whose data is used as in-class. Then the models should be built for each speaker. When the test utterance enters into the system, it is checked with claimed speaker model based on the distance from the hyperplane.

C.4 [image: image115.emf]Experiments

The experiment was conducted using NIST 2003 speaker recognition evaluation data on both HMM and SVM systems. The development data set consisted of 60 utterances for training and 78 utterances for testing. The length of all utterances in the development data set was roughly 2 minutes. The conventional 39 MFCC feature vectors are firstl used on both systems. Delta coefficients wre not used. A simple flow is summarizd in Figure 4.  

[image: image116.emf]The HMM baseline system used 16-mixture Gaussians for the underlying classifier since any linear combination of normally distributed random variables is again normal. An impostor model was trained on all the utterances in the development training set while the speaker models were built using the corresponding speaker utterance and 16-mixture Gaussians [8]. During testing, a likelihood ratio was computed between the speaker model and the impostor model. The likelihood ratio was defined as:
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where “x” is the input test vector.

C.5 HMM/GMM Baseline Experiment
The first attempt of HMM baseline system suffered from environment changes in the past years. After fixing this problem, every speaker model and imposter model are generated from 39 MFCC feature vectors. The performance was slightly improved than the past production system (Fig 3).
In order to see the effect of delta coefficient in MFCC features, the next experiment was conducted by 13 MFCCs. The performance between 13 and 39 dimensional feature vector is very similar on the DET plot. However, the 13 dimensional feature vector has slightly lower Min DCF value. Since this means we can use 13 MFCCs for future experiments, we can proceed to add nonlinear invariant features. There are three invariants in our front end system. First, we added Lyapunov invariants to the MFCC feature vectors. Several parameters requiring tuning. This experiment is still in progress.
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SVM Baseline Experiment
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SVM baseline system requires in-class and out-of class data for every speaker in the training set. The in-class data for training contained the entire feature set from the speaker utterance. The out-of-class data for training contrained randomly picked features from all the remaining speakers in the training data set. The size of out-of-class was fixed twice the number of in-clsss data. Though this does not contain all the information required to represent the true out-of-class distribution, this approximation was necessary to make the SVM training computationally feasible. Hence, it has to be kept in mind that the performance of this system is based on classifiers that were exposed to only a small subset of data during training [8]. The kernel parameter and the penalty value need to be tuned because these values seriously affect system performance. We get the best result when kernel parameter is 0.019 and penalty value is 50. [image: image119.jpg]Lyapunov Spectra
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We compare the results from the SVM based system with HMM based system in Figures 6-8 and Tables 1-4.
	Evolve step
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Min DCF
	0.206
	0.205
	0.193
	0.206
	0.2
	0.222
	0.183
	0.186
	0.199
	0.204

	EER
	0.24
	0.24
	0.28
	0.24
	0.24
	0.24
	0.28
	0.28
	0.24
	0.24


Table 1. Min DCF and EER for different evolve steps in the Lyapunov exponent computation.
	# Neighbor
	10
	13
	16
	19
	22
	25
	28
	31
	34
	37

	Min DCF
	0.203
	0.207
	0.207
	0.194
	0.2
	0.191
	0.204
	0.206
	0.207
	0.229

	EER
	0.248
	0.28
	0.28
	0.28
	0.28
	0.28
	0.28
	0.28
	0.28
	0.28


Table 2. Min DCF and EER for a variety of numbers of neighbors with fixed numbers of subgroups (10) in the Lyapunov exponent.
	Embedding dimension
	3
	4
	5
	6
	7

	Min DCF
	0.2017
	0.2042
	0.1942
	0.1925
	0.23167

	EER
	0.244
	0.248
	0.28
	0.253
	0.28


Table 3. Min DCF and EER when different embedding dimensions are used (with a fixed number of subgroups (10), number of neighbors (22), number of evolve step (7)).
	Window size(ms)
	10
	15
	20
	25
	30
	35
	40
	45
	50
	55

	Min DCF
	0.231
	0.22
	0.194
	0.216
	0.203
	0.203
	0.205
	0.205
	0.184
	0.183

	EER
	0.28
	0.28
	0.24
	0.24
	0.25
	0.28
	0.28
	0.29
	0.28
	0.28


Table 4. Min DCF and EER for a different window size with fixed number of subgroups (10), number of neighbors (25) and number of evolve steps (7) in Lyapunov exponent.
C.7 Future Directions
Speaker recognition can be improved if feature extraction can be improved. Until now, we mostly depend on the spectral methods which extract features that measure short-term variability. The levels of information for speaker recognition constitute 6 layers, from spectral to semantic [10]. One tangible approach is to consider prosodic features such as stress, accent and intonation. The easiest way to estimate them is by means of pitch, energy, and duration information. Energy and pitch can be used in a similar way than short-term characteristics of the previous level with a GMM model. Although these features by its own do not provide as good results as spectral features, some improvement can be achieved combining both kinds of features [10]. Since prosodic information is less affected by the transmissiion channel than the spectral information, it can improve the robustness of the system. Therefore, the prosodic feature is a potential candidate to be used as a complement of the spectral information in applications where the microphone can change or the transmissioin channel is different from the one used in the training phase [10]. Features at higher levels of the hierarchy are difficult to extract.
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The next step is to find an appropriate container which models feature vectors. Though HMM with GMM systems has been widely used in the speech community, it appears to have reached its capacity. Several alternatives are being explored in this project. We still need to improve the way we combine features in these new methods. 
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D. RESEARCH EXPERIENCE FOR UNDERGRADUATES ACTIVITIES

Many thrusts of development were delegated to undergraduates this year: (1) adding another nonlinear statistical modeling technique to our Java-based Pattern Recognition applet, (2) developing a language model grammar conversion suite, (3) refining existing software tools improving Natural Language Processing support, and (4) aiding in migration of laboratory to a new location.

Our Java-based applet is an excellent tool for teaching the fundamentals of pattern recognition.  It is a graphical user interface that allows the user to create input data points on a 2-dimensional graph and test a variety of popular pattern recognition algorithms.  Both pattern classification and signal tracking methods are the focus of the applet.  The newest addition is the signal tracking algorithm, Unscented Kalman Filter.  It is a variation of the Kalman filter already featured in the applet.  In addition, time-based signals, such as the Lorentz signal, can be generated upon user request.  Development of the additions started with a Matlab implementation, then were put into the Java-based applet, and finally implemented in our C++ IFC repository.

Another component to our REU program involves grammar transformation tools.  Previous advancements to our grammar transformation capabilities included the addition of XML Speech Recognition  Grammar Specification (SRGS), JSpeech Grammar Format (JSGF), and inter-communication between the two formats using ISIP Hierarchical DiGraph (IHD).  Much work has been done to complete the language model grammar conversion suite.  Two more industry standard formats, Bachus-Naur form (BNF) and Augmented BNF (ABNF), were integrated into our software suite.  Now we have the ability to convert among languages with varying grammar formats.

With the development of new grammar conversion suite existing tools needed refinement.  Tools such as ISIP Network Converter and ISIP Network Builder were adapted to become compatible with all the features of the developed software suite.  Another tool ISIP Transform Builder needed refinement due to changes in the latest major Java release (1.5).

Due to many inconveniences hindering our progression in speech software development our computing laboratory has migrated to the university’s Electrical and Computer Engineering Department and its disk space.  The website, which houses all documentation of years of work, was needed modifications on each page due to the nature of the ECE disks not being able to process Server Side Includes (SSI).  We adopted Hypertext Preprocessor (PHP) to handle many requests.  A perl script was developed to make these and other minor changes to each of our pages.  At a time of migration innovations to our environment can be made more easily.  Our central repository, home of our IFC C++ implementations, was converted from a CVS repository to a Subversion repository.  The additional capabilities of Subversion will help us maintain our high level of software development.  It is important to use the latest and most innovative tools in order to stay competitive in the world of research.

09/30/04 — 09/30/05: RESEARCH AND EDUCATIONAL ACTIVITIES

The overall goal of this IIS project was to create a new class of speaker recognition and verification systems based on nonlinear statistical models. Compelling evidence has been presented in recent years demonstrating that nonlinear statistical models can approach the performance of context-dependent phonetic models with almost a two order of magnitude reduction in complexity. Nonlinear dynamics provide a framework in which we can develop parsimonious statistical models that overcome many of the limitations of current hidden Markov model based techniques. We specifically propose the following:

· extend the traditional supervised-learning HMM paradigm to support a chaotic acoustic model that incorporates a nonlinear statistical model of observation vectors;

· evaluate the impact of this model on text independent speaker verification applications;

· outline extensions of these nonlinear statistical models to the acoustic and language modeling components of the conversational speech recognition problem.

Major accomplishments in the first year of this project include a book chapter contribution that provides an overview of the impact kernel theory and other nonlinear techniques have had on all aspects of the speech recognition problem, augmentation of our Java-based pattern recognition applet with a new time series analysis approach based on particle filtering, and release of a wide variety of core technologies to estimate nonlinear parameters of a time series. These accomplishments are described in more detail in the following sections.

E. Nonlinear Time Series Estimation
Particle filtering is a sequential Monte-Carlo simulation for nonlinear and non-Gaussian state space modeling [1],[2]. It is an attempt to integrate the Bayesian models and state-space representations that is based on te principles of a Parzen windowing approach to estimating statistics from data. Particle filtering has enjoyed some success in speech enhancement applications. Particle filtering is also closely related to Kalman filtering.

In the first year of this project, we implemented three forms of filtering: Particle filtering, Kalman filtering, and the unscented Kalman filtering. Within the generic framework of sequential importance sampling (SIS) algorithm a specific variant of particle filtering algorithm – sampling and importance Resampling (SIR) was implemented [3],[4]. The speech state space model is assumed to be Gaussian and the state space parameters are estimated using the modified Yule-Walker equations. A comparative analysis of the results from Kalman filtering approach and particle filtering approach is underway.
Lyapunov exponents are an indicator of the sensitive dependence to initial conditions for a dynamical system. Lyapunov exponents indicate the rate of divergence or convergence and thus the stability of the dynamical system. Lyapunov spectrum is also an indicator of the dimensions of the dynamical system.

For a time series data, Lyapunov spectrum estimation was implemented using the singular value decomposition based time-delay embedding [5]-[7]. The method reconstructs the phase space for the unknown dimensions. Lyapunov exponents can represent the chaotic behavior of the dynamical system. Experiments were carried on the simulated Lorenz time data series to check the effect of change in embedding dimension, window size, and evolution steps. The results are in agreement with the expected results.
A speech signal [8] demonstrates a low dimensional chaotic behavior. The Lyapunov spectrum of a chaotic time series was determined by first reconstructing a pseudo-phase space from the time series and then using this phase-space to estimate the local dynamics around the attractor. Phase space reconstruction was achieved using both the time delay embedding method and the singular value decomposition (SVD) method. Both these methods operate by constructing a multi-dimensional space from a one-dimensional time series. To extract the local dynamics at a point around the attractor, the tangent map was calculated by examining how the neighboring points evolve with time. By performing a QR-decomposition on the tangent map at each point, the local Lyapunov exponents were evaluated from the diagonal elements of the matrix. The global Lyapunov exponents were then obtained by averaging the local exponents over all the points. We are investigating the dimensionality of the feature stream associated with a speech recognition system.
F. Kalman Filtering
Kalman filtering is a popular tool in the research community for estimating non-stationary processes when it is possible to model the system dynamics by linear behavior and Gaussian statistics [11].  Previously, Kalman filters have been applied for speech enhancement applications when the corrupting process was additive white Gaussian noise [12]. We now have a working implementation of the Kalman filter and plan to use it in our feature extraction front-end for robust speech recognition.  It is hoped that use of the Kalman filter as a non-stationary process estimator will enable us to recover clean features from noisy observations and will increase noise robustness of our baseline recognition system. 

In a speech recognition setup, the normally assumed inter-frame independence need not be necessarily observed. A state-space representation allows us to capture inter-frame correlations by modeling dependencies between successive observed feature vectors. Hence it is anticipated that the recursive filtering provided by Kalman filters will lead to better estimates of the clean signal since the algorithm uses all past observations to give the filtered output (intuitively similar to Auto Regressive filtering). Further, since Kalman filters are capable of modeling time-varying system behavior (the general formulation of Kalman filters allows the system matrices in the state variable model to be functions of time), we feel that they should potentially be useful in filtering applications when the dynamic model of the system is changing with time.
Kalman filters are optimal linear filters when the statistics of the state-space are modeled by Gaussian pdfs. However, when the system dynamics exhibit nonlinear behavior or non-Gaussian statistics, the recursive Kalman filtering process must be modified to accommodate for the nonlinear behavior. Previously, the extended Kalman filter (EKF) has been employed [11] in extending the recursive Kalman filtering algorithm to nonlinear systems by linearizing the nonlinear state space model and then propagating Gaussian statistics through this linearized model. A significant concern with this approach is that violation of the local linearity assumption will lead to unstable filters. 

As an alternative, unscented Kalman filters use properties of the unscented transform to extend the idea of recursive Kalman filtering to nonlinear systems without linearizing the state-space model. The unscented transform[13] is a method for accurately determining the statistics of a random variable which undergoes a nonlinear transformation. This is a novel technique which can capture the first two moments of data in the transformed space by a deterministically chosen set of points in the domain space. We can use this idea to propagate Gaussian statistics through a nonlinear state-space model[14] and use the standard algorithmic formulation of Kalman filters to obtain the filtered estimates. We believe that this implementation will give us flexibility in our system modeling for recursive filtering, and we need not have to restrict our pre-processing setup to a linear (or linearized) model.
G. Baseline Speaker Recognition and Verification Systems
We have regenerated our baseline results for text independent speaker verification using the NIST 2001 dataset and a new version of our public domain speech recognition software that will be released in October 2005. We ported this techology to the Mississippi State University supercomputing cluster and developed a program that simplifies job submission and tracking on the cluster. This program has been integrated into our public domain ASR software and will be part of our upcoming release. This program simplifies running several parallel experiments hence increases the productivity by eliminating the task of creating separate scripts for every job. This is especially useful for running experiments on resource intensive tasks such as support vector machines (SVMs), relevance vector machines (RVMs) and other nonlinear modeling techniques that are currently being developed in the lab.

We also designed the experimental setup for SVM and RVM-based speaker verification system. Since we pioneered the use of SVMs for speech recognition in a previous NSF project, SVMs have become extremely popular in speaker recognition. However, the community has not yet understood and accepted our RVM technology. We have tested our implementation of SVMs using the ISIP Foundation Clases (IFCs) on a speaker verification task and observed an improvement over the baseline GMM based system that is consistent with the literature. We made changes to the SVM and RVM code base in the production system in order to build a powerful discriminative training system that could be used for speech recognition and speaker recognition. We refined a utility that will learn the relevance vectors from data [15], and are in the process of testing this new technology on the same NIST 2001 data set.
Once we have these baselines in order, we will proceed in two directions. First, we need to update the data sets to the latest NIST evaluation sets (2005). Second, we can then insert our nonlinear modeling technology because this software is already integrated into the ISIP IFCs.
We also developed a utility to compute word-posteriors from word-graphs[16]. This utility was written in Perl and can be downloaded from our website[17]. This utility is useful for annotating one-best output with word-posteriors that could be used as confidence scores and hence help in reducing word error rates. This is tool could be used on our word-graphs or HTK format word graphs – including those generated by Bolt Beranek and Newman (BBN). This utility can also perform lattice word error rate computation and confusion network generation. The ultimate goal for building such a utility is to reduce the word error rates. It can be used on lattices built from different types of acoustic models, and will be a useful tool for generating publishable baselines using our nonlinear techniques.

H. Research Experience for Undergraduates (REU)
There were two components to our REU project this year: (1) adding nonlinear statistical modeling techniques to our Java-based Pattern Recognition applet, and (2) enhancing our ability to convert and transform between different grammar formats. Both projects made significant progress over Summer’2005, and will contribute software to our planned software release in October 2005.

Our Java-based applet is an excellent mechansim for teaching the fundamentals of pattern recognition to undergraduates and entry-level graduate students. It allows users to create data sets and to process them through a variety of popular patttern recognition techniques, and to compare the results both in terms of error rate and decision surfaces. The visualization capabilities are particularly important as they help students develop intuition about how these algorithms behave on difficult data sets. The preloaded data sets available in the applet allow users to easily replicate many classic problems. Example output from the applet is shown in Figure 1. The applet now has three time series analysis techniques: linear prediction, Kalman filtering, and Particle filtering. In addition to supporting education and training, the applet has been used to understand how these algorithms behave on special data sets as we construct the baseline implementations. Our typical development cycle starts in Matlab, proceeds to the Java-based applet, and then concludes with a C++ IFC-based implementation. 
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The second component of our REU program involves grammar transformations. In the past year, there have been tremendous advances in our grammar transformation capabilities.  Most prominent is the addition of XML Speech Recognition Grammar Specification (SRGS) [18] to the formats supported by our system.  Such support requires the transparent conversion of a Chomsky Type-2 context-free grammar to a Type-3 regular grammar; a nontrivial task.  This conversion allows our software to process XML-SRGS language models with a finite-state automaton instead of the more complex push-down automaton normally required to recognize Type-2 grammars.  Also implemented was the corresponding backwards conversion from Type-3 grammar to Type-2 grammar.
This addition complements our previously implemented support for another grammar format, the JSpeech Grammar Format (JSGF).  We now have the ability to convert between these two industry standards via our internal format, ISIP Hierarchical DiGraph (IHD).  Theoretically, this is a conversion from a context-free grammar specification to a different context-free grammar specification through an intermediary regular grammar.  Although this intermediary grammar lacks the descriptive power of a context-free grammar, our conversion process ensures preservation of grammar meaning during this state through redundancy.  To verify the equivalence of these grammar specifications, we ran a series of parallel speech training and recognition experiments in both XML-SRGS and JSGF [19]; we concluded that the differences in grammar specification did not affect the accuracy of speech recognition.  

With the escalating deployment of speech applications and the widespread adoption of XML as a data encapsulation format, it is important to understand these transformations.  Although theoretical investigations into these techniques have been conducted, little is known concerning the practical details of implementation; we plan to rectify this situation [20].  Also, by providing these conversion utilities in the public domain, we hope to increase comprehension of said transformations by the community and pave the way for future web applications.

I. Other Issues
The first year of this project started slowly due to a combination of unforeseen events. Several high quality Ph.D. candidates that were recruited for this project failed to obtain visas in Fall’2004 and Spring’2005. Hence, the project was understaffed through much of 2004 and early 2005. This problem was rectified in Fall’2005, as we had our best recruiting year in a long time. The project is now fully staffed with four quality Ph.D. students and one M.S. student, and is rapidly making progress.

Also, the PIs decision to take an sabbatical (IPA) with DoD, one of the sponsors of the first year of this work, also impacted our project. We have established suitable management infrastructure to minimize the impact of this transition, and the PI has been able to contribute to the project remotely.

We expect the second year of the project to result in two significant outcomes: generation of comprehensive speaker recognition and verification benchmarks and publication in first-tier journals and conferences.
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Figure 3. An algorithm to compute Lyapunov spectra from a scalar time series � REF _Ref141433430 \r \h ��[7]�
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Figure 1. A fixed point and a period-2 attractor of a Logistic map
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Figure 2. The attractor structure of the Lorentz system in the original and reconstructed state-space.
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Figure � SEQ Figure \* ARABIC �1�. A screenshot of the new particle filtering component in our Java-based Pattern Recognition applet. This contribution was developed as part of our REU extension to this project.





�Figure 4. Lyapunov exponents from a time series generated from a Lorentz system
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Figure 5 – Lyapunov Exponents from a scalar and a vector (clean) time series as a function of the data-size length
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Figure 6 – Lyapunov Exponents from a scalar and a vector time series as a function of the number of neighbors after PCA, SNR = 10 dB
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         Figure 7: Correlation Dimension (a through c), Kolmogorov Entropy (d through f), and Lyapunov Spectra                     		 (g through i) estimates for a vowel, a nasal and a fricative.
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Figure 8: KL Divergence Measure across various phonemes, using the three dynamical invariants.














Evolve step�
1�
2�
3�
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5�
6�
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�
Min DCF�
0.206�
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# Neighbor�
10�
13�
16�
19�
22�
25�
28�
31�
34�
37�
�
Min DCF�
0.203�
0.207�
0.207�
0.194�
0.2�
0.191�
0.204�
0.206�
0.207�
0.229�
�
EER�
0.248�
0.28�
0.28�
0.28�
0.28�
0.28�
0.28�
0.28�
0.28�
0.28�
�
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Table 1. Results of parameter tuning experments for LE estimation for optimal speaker recognition performance
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Figure 1. Basic blocks of speaker verification system
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Figure 2. Soft margin classifier
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Figure 3. Basic blocks of speaker verification system
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Figure 4. Simple MFCC feature extraction
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Figure 5. DET plot of current and past systems
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Figure 6. DET plot for 39 and 13 dimensional feature vector
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Figure 7. DET plot for various values of the RBF kernel parameter � EMBED Equation.DSMT4  ���
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Figure 8. A comparision of HMM and SVM system performance
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Figure 9. Levels of information for speaker recognition
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