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Project Participants

Senior Personnel
Name: Picone, Joseph
Worked for morethan 160 Hours:  Yes
Contribution to Project:
improved spontaneous speech recognition performance using Support
Vector Machines
Name: Ostendorf, Mari
Worked for morethan 160 Hours:  No
Contribution to Project:
integrating prosodic information in parsing spoken language
Name: Charniak, Eugene
Worked for morethan 160 Hours:  Yes
Contribution to Project:
integration of parsing in theretrieval of
spoken documents
Name: Jelinek, Frederick
Worked for morethan 160 Hours:  Yes
Contribution to Project:

Name: Johnson, Mark
Worked for morethan 160 Hours: Yes
Contribution to Project:

integration of parsing in theretrieval of
spoken documents

Name: Khudanpur, Sanjeev

Worked for morethan 160 Hours:  Yes
Contribution to Project:

incorporating uncertainty in parsing to
handle speech recognition errors

Name: Byrne, William

Worked for morethan 160 Hours:  No
Contribution to Project:

incorporating uncertainty in parsing to
handle speech recognition errorsyti

Name: Hoffman, Thomas

Worked for morethan 160 Hours:  No

Contribution to Project:

enhancing information retrieval of spoken documents through the
use of prosodic and other non-segmental information
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Post-doc

Graduate Student

Name: Hamaker, Jonathan
Worked for morethan 160 Hours: Yes
Contribution to Project:

improve recognition performance of spontaneous speech using Support

Vector Machines

Name: Xu, Peng
Worked for morethan 160 Hours:  Yes
Contribution to Project:

Name: Emami, Ahmad
Worked for morethan 160 Hours: Yes
Contribution to Project:

Name: Shafran, |zhak

Worked for morethan 160 Hours:  Yes
Contribution to Project:

Research on spectral correlates of prosody and disfluencies

Name: Weinschenk, Jeff

Worked for morethan 160 Hours:  Yes
Contribution to Project:

Research on prosody and parsing

Name: Jelinek, Bohumir

Worked for morethan 160 Hours:  Yes
Contribution to Project:

Mr. Jelinek has been devel oping improved ways to apply
Support Vector Machines (SVMs) to speech recognition
by using more exhaustive search techniques.

Name: Cai, Lijuan

Worked for morethan 160 Hours:  Yes
Contribution to Project:

Learning and exploiting statistical models of lexical semantics

for robust question-answering information retrival

Name: Alphonso, Issac

Worked for morethan 160 Hours:  Yes
Contribution to Project:

Improved our EM-based training procedures.
Name: Parihar, Naveen

Worked for morethan 160 Hours: Yes
Contribution to Project:
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Integrated our SVYM and RVM technology into our standard software distribution and produced a toolkit that made it easy to

replicate our benchmarks.

Name: Huang, Kaihua
Worked for morethan 160 Hours:  Yes
Contribution to Project:
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Re-engineered our pattern recognition Java applet and added SVMs and RVMs as new algorithm choices. Thiswill greatly
enhance the distribution of this technology and make our results much more accessible.

Name: Juranich, Steve

Worked for morethan 160 Hours:  Yes

Contribution to Project:

Name: Altun, Yasemin
Worked for morethan 160 Hours: Yes
Contribution to Project:

conducted research into discriminative learning techniques
for label sequences

Under graduate Student

Technician, Programmer
Name: Damon, Lee
Worked for morethan 160 Hours: No
Contribution to Project:
computer systems administration

Other Participant
Name: Carmichael, Lesley
Worked for morethan 160 Hours:  Yes
Contribution to Project:
Prosodic labeling

Resear ch Experience for Undergraduates
Name: Sesser, Jim
Worked for morethan 160 Hours:  No
Contribution to Project:
Web site maintenance and web programming.

Years of schooling completed:  Freshman
Home Institution: Same as Research Site
Home Institution if Other:
Home Institution Highest Degree Granted(in fields supported by NSF): Doctoral Degree
Fiscal year (s) REU Participant supported: 2003 2002
REU Funding: REU supplement
Name: Duncan, Dhruva
Worked for morethan 160 Hours: No
Contribution to Project:
Enhanced the functionality of our speech recognizer to support the develop of real-time demos of our research results.

Y ear s of schooling completed:  Freshman

Home Institution: Same as Research Site

Home Institution if Other:

Home Institution Highest Degree Granted(in fields supported by NSF): Doctoral Degree
Fiscal year (s) REU Participant supported: 2003 2002

REU Funding: REU supplement
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Name: Lewis, Ronald

Worked for morethan 160 Hours:  Yes

Contribution to Project:

Web programming and Java applet support (with Kaihua Huang).

Y ear s of schooling completed:  Junior
Home Institution: Same as Research Site
Home Institution if Other:
Home Institution Highest Degree Granted(in fields supported by NSF): Doctoral Degree
Fiscal year (s) REU Participant supported: 2003 2002
REU Funding: REU supplement
Name: May, Daniel
Worked for morethan 160 Hours:  Yes
Contribution to Project:
Developed atutorial that demonstrates how users can replicate our research results using our software distribution.

Y ears of schooling completed:  Freshman
Home Institution: Same as Research Site
Home Institution if Other:
Home Institution Highest Degree Granted(in fields supported by NSF): Doctoral Degree
Fiscal year (s) REU Participant supported: 2003 2002
REU Funding: REU supplement
Name: Avritt, Alston
Worked for morethan 160 Hours:  No
Contribution to Project:
Trained to run and document recognition experiments.

Years of schooling completed:  Sophomore
Home Institution: Same as Research Site
Home Ingtitution if Other:
Home Institution Highest Degree Granted(in fields supported by NSF): Doctoral Degree
Fiscal year (s) REU Participant supported: 2003 2002
REU Funding: REU supplement
Name: McMahon, Jerry
Worked for morethan 160 Hours:  Yes
Contribution to Project:
Developing and documenting a toolkit to run experiments that replicate our research results.

Y ear s of schooling completed:  Junior

Home Institution: Same as Research Site

Home Institution if Other:

Home Institution Highest Degree Granted(in fields supported by NSF): Doctoral Degree
Fiscal year (s) REU Participant supported: 2003 2002

REU Funding: REU supplement

Organizational Partners

Other Collaboratorsor Contacts

Michael Tipping, Microsoft (U.K.): consultations on convergence
issuesin hisiterative solution for finding relevance vectors.

Joachim Kohler, IMK, Fraunhofer (Germany): discussions of applications
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of our public domain software and RV M technology to information
extraction for digital libraries.

Philip Loizou, University of Texas at Dallas (U.S.): pilot experiments on robust speech recognition using risk minimization approaches
Malcah Y aeger-Dror, University of Arizona (U.S.): use of risk minimization techniques for accent classification

Patti Price, PPrice Consulting (U.S.): use of risk minimization techniques for accent classification

Activitiesand Findings

Resear ch and Education Activities: (See PDF version submitted by Pl at the end of the report)

- Interaction of Speech and Parsing: investigated the way in which
language phenomena which are very common in speech, but relatively
rare in the formal text that parsing technology typically deals
with, effects the parsing process.

- Lattice Generation Technology: developed lattice cutting techniques
that transforms traditional word lattices into a series of segment
sets that contain confusable words and phrases, thereby simplifying
the search process during rescoring.

- Prosody and Parsing: devel oped categorical prosodic break |abels,
building on linguistic notions of minor and major prosodic phrases
and the hesitation phenomena.

- Relevance Vector Machines: developed new reestimation techniques to
make this approach feasible for large-scal e system evaluations.

- Investigated the use of a parsing model as alanguage model

- Developed a hybrid speech recognition system that integrates
arelevance vector machine for acoustic modeling.

- Investigated the development of an enhanced version of the Penn
Treebank for supporting our research into prosody.

- Conducted a one-day project review at Johns Hopkins University
at which we discussed approaches to parsing, modeling of prosody,
and spontaneous speech recognition.

- Neural probabilistic language modeling

- Neural probabilistic structured language modeling

- Combinatorial categorical grammar in the structured language model

- Discriminative learning for sequence segmentation problems and
label sequence problems

- Robust text categorization based on automatically extracted
semantic features.

- Analysis of spectral cuesto prosodic structure

- Analysis of the interaction between prosodic and syntactic structure
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- Recognizing prosodic structure

- Recognizing sentence boundaries and disfluency interruption points

Findings:

- Language phenomena that are common in speech but not in text, such
asfilled pauses, appear not to make parsing easier, asinitially
conjectured.

- Verified that aneural network approach to language modeling can
result in a perplexity reduction.

- Confirmed that that punctuation and repair points are
correlated with prosodic breaks and hesitations. Silences alone
(though useful) are not areliable predictor of prosodic phrases.

- Demonstrated that the Relevance Vector Machine approach can result
in improved performance and decreased complexity as compared to
traditional HMM and Support Vector Machines approaches. Further
refinements to the training process are needed to make this
technology practical.

- Two immedidate-head |anguage models significantly reduce perplexity
as compared to trigram and previous state-of-the-art grammar-based
language models.

- Support vector machines provide a modest improvement over
conventional HMM techniques on atask consisting of letters and
numbers spoken over the telephone.

- Developed a boosting algorithm for label sequence learning and
investigated the use of several aternative objectives for the
label sequence learning problem.

- Proposed a novel algorithm that combines Support Vector Machine
learning with Hidden Markov Models, resulting in a powerful
learning architecture that combines the high classification
accuracy of large margin methods, with the flexibility of kernels,
and the efficiency of dynamic programming.

- Used prosodically labeled data as a feature in HMM decision tree
clustering to investigate whether prosody might be useful in
acoustic modeling and whether spectral cues might be useful for
prosody recognition. Preliminary results suggest that spectral
cues are useful for discriminating between fluent and disfluent
pauses.

- Investigated different aspects of parse structure to determine
what features are the best predictors of prosodic structure, with
the assumption that these would be the best targets for using
prosody to improve parsing. The depth of the left constituent is
the most important feature of those investigated.

- Reduced perplexity by 25% and improved WER on pilot ASR experiments
using a neural network-based language modeling approach

- Combined categorial grammar integrated into a structured language
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model gave the best resultsto date for perplexity compared to
previous neural network and traditional language modeling approaches

Training and Development:

Members of the team with expertise in speech recognition (JHU,
Washington, MS State) have received training on modern approaches to parsing.

Members of the team with expertise in parsing (Brown) have received
training on speech recognition and search.

Outreach Activities:

Journal Publications

E. Charniak, "Immediate-Head Parsing for Language Models’, Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics, p. 1, vol. 1, (2001). Published

S. Kumar and W. Byrne, "Risk Based L attice Cutting for Segmental Minimum Bayes-Risk Decoding", Proceedings of the International
Conference on Spoken Language Processing, p. 1, val. , (2002). Published

S. Geman and M. Johnson, "Dynamic programming for parsing and estimation of stochastic unification-based grammars’, Proceedings of the
40th Annual Meeting of the Association for  Computational Linguistics, p., vol., (). Accepted

M. Johnson, "A simple pattern-matching algorithm for recovering empty nodes and their antecedents’, Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, p. , vol., (). Accepted

M. Ostendorf, I. Shafran, S. Shattuck-Hufnagel, B. Byrne and
L. Carmichagl, "A prosodically |abeled database of spontaneous speech”, Proceedings of the ISCA Workshop on Prosody in Speech
Recognition and Understanding, p. 119, vol. , (2001). Published

A. Ganapathiraju, J. Hamaker and J. Picone, " Continuous Speech Recognition Using Support Vector Machines', Computer Speech and
Language, p., vol., (). Submitted

A. Ganapathiraju, J. Hamaker, and J. Picone, "Advancesin Hybrid SYM/HMM Speech Recognition”, Proceedings of the International
Conference of Spoken Language Processing, p. , vol., (). rejected, to be resubmitted to another conference

J. Hamaker, J. Picone, and A. Ganapathiragju, "A Sparse Modeling Approach to Speech Recognition Based on Relevance
Vector Machines', Proceedings of the International Conference on Spoken Language Processing, p. , vol., (). Accepted

J. Hamaker and J. Picone, "Advances in Speech Recognition Using Sparse Bayesian Methods', | EEE Transactions on Speech and Audio
Processing, p., vol., (). Submitted

V. Godl, S. Kumar, and W. Byrne, "Segmental minimum Bayes-risk decoding for automatic speech recognition
", IEEE Transactions on Speech and Audio Processing, p. , vol., (). Submitted

Ciprian Chelba and Peng Xu, "Richer syntactic dependencies for structured language modeling"”, Proceedings of the Automatic Speech
Recognition and Understanding Workshop, p. 1, val. , (2001). Published

Peng Xu, Ciprian Chelba, and Frederick Jelinek, "A study on richer syntactic dependencies for stuctured language modeling", Proceedings of
the 40th Annual Meeting of the ACL, p. 191, val. , (2002). Published

Ahmad Emami, Peng Xu and Frederick Jelinek, "Using a connectionist model in a syntactical based language model”, Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing, p. , vol. , (2003). Accepted
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Ahmad Emami, "Improving a Connectionist Based Syntactical Language Model", Proceedings of the European Conference on Speech
Technology, p. , vol. , (2003). Submitted

Michele Gregory, Mark Johnson and Eugene Charniak
, "Prosody Does Not Help Parsing, At Least Not For Us
", Proceedings of the North American Association for Computational Linguistics, p. , vol. , (2003). Submitted

Y asemin Altun, Thomas Hofmann, and Mark Johnson, "Discriminative Learning for Label Sequences via Boosting", Advancesin Neural
Information Processing Systems, p. , vol. , (2003). Accepted

Thomas Hofmann and Y asemin Altun, "Large Margin Methods for Label Sequence Learning", Proceedings of the European Conference on
Speech Technology, p. , voal. , (2003). Accepted

Y asemin Altun, loannis Tsochantaridis and Thomas Hofmann, "Hidden Markov Support Vector Machines', International Conference on
Machine Learning
, p- , vol., (2003). Submitted

Lijuan Cai and Thomas Hofmann, "Text Categorization by Boosting Automatically Extracted Concepts', ACM Information Retrieval
Conference
, p. , vol., (2003). Submitted

Books or Other One-time Publications

Web/Internet Site

URL(s):

http://www.isip.msstate.edu/projects/nsf_itr
Description:

Thisweb siteis used to disseminate information about
the project, including publications, presentations,
software, and data.

Other Specific Products

Product Type: Software (or netware)
Product Description:

The ISIP public domain speech recognition toolkit, developed under partial funding from a previous NSF grant, provides an easy to use state of
the art speech recognition system that has been designed to facilitate rapid evaluation of new research. This software has been in release for
over four years now.

In this project, we have extended this software to include libraries that implement our research into support vector machines and relevance

vector machines. We have also extended our basic decoder to support an alternate search algorithm based on stack decoding, that is required by
the new support vector machine technology.

Sharing Information:
All ISIP software is freely available on the Internet at the following URL :

http://www.isip.msstate.edu/projects/speech

This software is unrestricted, and can be used for both research and commercial development. There is currently an active user base of over 150
sites, and several companies are using our software as a reference implementation for their products.

Product Type: Software (or netware)
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Product Description:

A pattern recognition Java applet that demonstrates the basic
concepts of Support Vector Machines and Relevance Vector Machines.

Sharing Information:
It is available from the I SIP web site at:

http://www.isip.msstate.edu/proj ects/speech/software/demonstrations/appl ets/util/pattern_recognition/current/index.html

Contributions
Contributionswithin Discipline:

- provided increased mativation for integrating parsing technology
into speech recognition systems.

- demonstrated the viability of risk mininzation techniquesin speech
recognition at the acoustic modeling level.

- increased the feasibility of RVM training by two orders of
magnitude using a combination of intelligent data selection
(e.g., chunking) and incremental training.

- developed a prosodically labeled corpus of conversational speech.

Contributionsto Other Disciplines:

Contributionsto Human Resour ce Development:

This year, through the REU supplement, we were able to expose four very capable undergraduates to speech recognition research. One of these
will pursue his co-op experiencein this area and plans to continue graduate studiesin this area.

Over the past three years, 10 graduate students have been trained in speech and language technology.
Contributionsto Resour ces for Resear ch and Education:

- developed new iterative estimation techniques that improve the
convergence of our relevance vector machine technology. This has
been incorporated into our toolkit.

- Added a stack search algorithm to our search library to extend the
functionality of our public domain toolkit.

- integrated the relevance vector machine and support vector machine
toolsinto our public domain speech recognition system, whichiis
widely used in research and education. Two annual training
workshops are held based on this software.

- developed an enhance on-line tutorial on how to use our recognition
toolkit.

- developed a Java appl et that can be used to demonstrate fundamental
concepts in risk minimization, and can be used to compare this
technique to other techniques.

Contributions Beyond Science and Engineering:

Special Requirements

Special reporting requirements: None

Page 9 of 10



Changein Objectivesor Scope: None
Unobligated funds: lessthan 20 percent of current funds
Animal, Human Subjects, Biohazards. None

Categoriesfor which nothing isreported:

Organizational Partners

Activities and Findings: Any Outreach Activities

Any Book

Contributions: To Any Other Disciplines

Contributions: To Any Beyond Science and Engineering
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08/15/02 — 08/14/03: RESEARCH AND EDUCATIONAL ACTIVITIES

In the third year of this project, we focused our effortsin four areas:

* Interaction of Speech and Parsing: investigated the use of prosody information within the
framework of probabilistic parsing; developed new approaches to discriminative learning for
sequence segmentation problems; investigated text categorization based on automatically extracted
semantic features.

» Language Modeling Technology: developed neural network approaches to probabilistic language
models;

» Prosody and Parsing: analyzed spectral cues to prosodic structure and the interaction between
prosodic and syntactic structure.

» Relevance Vector Machines: focused on the creation of algorithms for kernel-based discriminative
modeling that scale up to very large data sets.

These developments are described in more detail in the sections below. A project meeting will be
held during Summer’ 03 to coordinate the work on this project.

A. Laboratory for Linguistic Information Processing, Brown University

This year, our primary focus was the investigation of the use of prosody information within the
framework of probabilistic parsing. We treated prosody much like punctuation in written text, i.e.
as if it were separate “words.” Unfortunately, as opposed to punctuation, we were not able to
obtain any benefit from the prosody markers. The results were robust over alarge number of trials
in which the specifics of the markings were varied.

In the information retrieval component of our research, we explored two research problems:
(i) discriminative learning for sequence segmentation problems and label sequence problems and
(it) robust text categorization based on automatically extracted semantic features.

Learning from observation sequencesis afundamental problem in machine learning. One facet of
the problem generalizes supervised classification by predicting label sequences instead of
individual class labels. The latter is also known as label sequence learning. It subsumes problems
like segmenting observation sequences and annotating observation sequences. The potential
applications are widespread, most interesting in the context of the current project is the
application for named entity classification and information extraction to support information
retrieval. We have made two major contributions to this problem. First, we have developed a
boosting algorithm for label sequence learning and investigated the use of several alternative
objectives for the label sequence learning problem [1]. Secondly, we have proposed a novel
algorithm that combines Support Vector Machine learning with Hidden Markov Models [2,3],
resulting in a powerful learning architecture that combines the high classification accuracy of
large margin methods, with the flexibility of kernels, and the efficiency of dynamic programming.
Experimental comparisons for named entity classification and part-of-speech tagging have proved
the competitiveness of our approach compared to state-of-the-art techniques like conditional
random fields.

In order to improve the accuracy and robustness of term based text categorization we have
investigated the use of semantic features in addition to simple term based features [4]. The
semantic features are domain-specific and are automatically extracted from a document collection
without the need for a thesaurus or any other linguistic resource. We have employed a technique
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called probabilistic Latent Semantic Analysis (pLSA) to that extend. Experimental results show
consistent and significant improvements with respect to various performance measures (such as
accuracy, average precision, precision-recall breakeven, etc.) compared to purely term-based
methods.

B. Center for Language and Speech Processing, Johns Hopkins University

The biggest obstacle |anguage modeling research hasto overcomeisthe ‘ curse of dimensionality.
If we want to have amodel which is capable of assigning scores (probabilities) to long sequences
of words, given vocabulary sizes on the order of tens of thousands of words, the model will have
far too many parameters to be reliably estimated even with the largest corpora available. Our
approach is two-fold: (1) transforming the problem into a smooth continuous domain where any
seen event in the training corpus will contribute to the estimation of the probabilities of its unseen
neighbors, (2) developing a combinatory categorical grammar (CCG) as a natural enrichment of
the syntactical labels in the structured language model (SLM). We briefly describe progress in
each of these areas.

N-gram language models are the most commonly used models in speech recognition systems.
Despite their naive underlying assumption, N-gram models perform surprisingly well. However,
they suffer from severe data sparseness, and are intrinsically unable to use long contexts for
prediction. In the SLM [11], long contexts are used for prediction by means of building partial
syntactical parses on the prefix word strings and using information extracted from these partial
parses.

There has been promising work in using distributional representations of words and neural
networks for language modeling [12]. One great advantage of this approach is its ability to fight
data sparseness. The model size grows only sub-linearly with the number of predicting features
used. The SLM is made of three components. a predictor which predicts the next word, a tagger
which tags the newly predicted word, and a constructor which builds partial parses for the newly
extended word string. The neural network approach, on the other hand, uses a feature vector
which is associated with each token in some given input vocabulary. The input to the network isa
single vector that is a concatenation of the feature vectors of the items in the history. The neural
network then computes the (conditional) distribution over all tokens in the output vocabulary
given the input described above.

The neural network approach has been successful at reducing the perplexity on the UPENN
section of the Wall Street Journal task from 132 (our previous baseline SLM result) to 117. The
latter result uses three previous head plus the first opposite head [13] along with a 5-gram backoff
model. We have also investigated re-ranking the output of a speech recognizer on the WSJ task
using the neural network-based SLM (NN-SLM). WER was reduced from 13.2 to 12.4 by
interpolating a lattice output and rescoring using the 5-gram based SLM. We believe these
preliminary results are promising, and can be improved by full embedded training of the NN-
SLM.

The combinatory categorical grammar (CCG) is a wide-coverage parsing technigue that has the
potential benefit of a more constrained grammar and simple semantically transparent capture of
extraction and coordination [14]. CCG grammars have much larger category sets than standard
Penn Treebank grammars that we used in our previous SLM studies[15,16]. For example, CCGs
distinguish between many classes of verbs with different subcategorization frames. As a result of
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simple unary and binary combinatory schemata such as function application and composition,
CCG has asmaller and less overgenerating grammar than standard PCFGs.

Our interest in using CCGs in SLM lies in the fact that CCG categories can serve as a natural
enrichment of the syntactic information of alexical item or a constituent in the parse tree. Since
CCG categories are context dependent, we will have a context dependent enrichment of the
syntactic heads, as opposed to uniform enrichment in previous studies. We investigated the
perplexity performance of the CCG style SLM on the UPenn Treebank data. The CCG-SLM
reduced perplexity from 166 to 147, a 15.1% reduction. We then investigated its impact on N-best
rescoring of aWSJ task and found it provided no significant reduction in WER.

There are many issues that need further investigation to accurately assess the CCG-SLM
performance on a recognition task. For example, we currently use linear interpolation as the
smoothing method in all models. This is not likely to be the optimal choice for the CCG-SLM
because of the large number of categories we are using. We plan to investigate other alternatives
for smoothing such as history clustering and maximum entropy.

C. Signal, Speech, and Language Interpretation Lab, University of Washington

This year, we used prosodicaly labeled data as a feature in HMM decision tree clustering to
investigate whether prosody might be useful in acoustic modeling and whether spectral cues
might be useful for prosody recognition. Preliminary results suggest that spectral cues are useful
for discriminating between fluent and disfluent pauses.

We also analyzed the interaction between prosodic and syntactic structure. We investigated
different aspects of parse structure to determine what features are the best predictors of prosodic
structure, with the assumption that these would be the best targets for using prosody to improve
parsing. The depth of the left constituent is the most important feature of those investigated.

We continued investigating recognition of prosodic structure given acoustic cues and/or syntactic
cues using known word transcriptions and simple decision tree classifiers. For a 4-class
recognition problem, we achieved 79% correct with prosodic cues aone, and 89% correct when
parse features are added. Since very high results are obtained with the combined features, and
there is much more syntactically annotated data than prosodically labeled data, we are currently
investigating training prosody recognition modules using only partially labeled data.

Finally, we experimented with recognition of sentence boundaries and disfluency interruption
points. We have begun experiments in recognizing sentence boundaries, incompl ete sentences and
disfluency interruption points using prosodic and word class (POS) cues. So far, we have good
results for detecting sentences, but interruptions and incompl ete sentences are much less frequent
and hence not well modeled. One problem is that there are word boundaries that could
(theoretically and because of acoustic correlates) be marked as interruption points (e.g. before a
filled pause) which were not marked with the current labeling convention. The next step is to
assess performance with arevised disfluency labeling system.

D. Institute for Signal and Information Processing, Mississippi State University
The work at Mississippi State University this year has focused on the creation of algorithms for

kernel-based discriminative modeling that scale up to very large data sets. At the close of the last
fiscal year, we had developed a hybrid relevance vector machine (RVM) recognition system
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which addressed the major limitations in our hybrid support vector machine (SVM) system
described in[5,6]. The Relevance Vector Machine (RVM) [7] attempts to overcome the
deficiencies of the SVM by incorporating a probabilistic model directly into the classifier rather
than using a large margin classifier [7]. The principle attraction of the RVM is that it delivers
comparable performance as an SVM, but uses much fewer parameters. It is also much more
computationally efficient during testing as described in Table 1.

Aswith SVMs, the processto train an RVM classifier is computationally expensive even for small
problems. For the RVM, the training procedure uses an iterative reduction process. That is,
initially each vector of the system is allocated one parameter. As the procedure continues, vectors
are pruned from the model when they are found to be irrelevant with respect to the remaining
parameters. Integral to this iterative reestimation process is the computation of the inverse
Hessian matrix. This operation requires the inversion of an MxM Hessian matrix where M is
initially set to the size of training set. For larger training sets (on the order of afew thousand), this
computation is prohibitive both in time and memory. In fact, initially in thiswork we were unable

to operate on data sets larger than afew thousand training examples.

This year, we have focused on methods to overcome the training size limitation with the RVM.
Our first attempt was to implement a constructive training approach recently defined by Tipping
and Faul [8]. In this algorithm the model begins with only asingle parameter specified. All others
areimplicitly pruned. Parameters are then added to the system in a constructive fashion while still
satisfying the original optimization function. We are able to add a good bit more training data to
our system — on the order of 10 thousand examples— in training. However, care must be taken
to insure convergence rates are reasonable. We have found that the model will often oscillate
between afew local optima leading to slow convergence or even an inability to converge.

Despite our ability to increase the overall training size by approximately one order of magnitude,
this iterative procedure does not completely solve the problem. For even larger problems as are
typical in speech recognition, the full design matrix (or kernel matrix), will not fit in memory. We
can still use the constructive approach but it requires the repeated recalculation of the full design
matrix and is, again, prohibitive — now in time rather than memory. We have spent considerable
effort thisfiscal year researching alternatives to the constructive approach of Tipping and Faul that
can overcome this problem. We have developed automatic data selection methods that allow one
to determine which training vectors are most likely to contribute to the final model.

Each of the data selection methods follow the same essential algorithm demonstrated in Figure 1.

Word Avg # Training . ,

Approach Error Rate | Parameters Time Testing Time
SVM: RBF Kernels 15.5% 994 3 hours 1.5 hours
RVM: RBF Kernels 14.8% 72 5 days 5 minutes

Table 1. Performance comparison of SVMs and RVMs on Alphadigit recognition data. The RVMs yield a
large reduction in the parameter count while attaining superior performance. However, this performance
comes with a large up-front cost in training.
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A seed model is trained from a small (but reasonably-sized) data set. This model is then used to
probe the remaining training vectors. Some measure is used to determine which of the remaining
candidate training vectors are most appropriate to add to the training set. Training is then repeated
with the candidate vectors added to the model pool. Either the constructive training approach or
the iterative pruning approach to training can be used at this point so long as the model remains
suitably small.

What differentiates the data selection methods we have examined is the criteria used to measure
the “goodness’ of the candidate vectors. Our first selection criteria is drawn from Faul and
Tipping [9]. The marginal log-likelihood of the data can be written as:

L(o) = —%[N|092TC+ log|C| + tTC1t] (1)

where C isdefined in terms of the model parametersand t are the training targets of the system.
Tipping and Faul define the incremental, predicted, change in the log-likelihood function due to
the addition of a training parameter. Our method uses that incremental change as the selection
criterion. Those vectors that have a maximal predicted change, given the current model, are
chosen to be candidates for the next model.

The second selection criteria used follows the work of MacKay [10]. The mean margina

Converged? Yes
No
Candidate
Data Select Candidate
Data
v v
Final Model

o

Figure 1. Flow graph for data selection methods. The criteria for candidate selection differentiates the
different methods.
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information gain of t; at point x; when x; isadded to the model is given by
1
'éA'OgG)% (2)

where 62 can be computed directly from the current model parameters. The goal, then, would be

to find those vectors which maximize (2). There is an analogous, but more complex, function for
choosing a set of data that produces a joint maximum. These techniques have each increased the
training capacity of the RVM approach by two orders of magnitude. We are still in the process of
evaluating the properties of these. Particularly, we are interested in their convergence properties
and their effect on word error rate in the recognizer.
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08/15/01 — 08/14/02: RESEARCH AND EDUCATIONAL ACTIVITIES

In the second year of this project, we focused our efforts in four areas:

* Interaction of Speech and Parsing: investigated the way in which language phenomena which are
very common in speech, but relatively rare in the formal text that parsing technology typically deals
with, effects the parsing process.

» Lattice Generation Technology: developed lattice cutting techniques that transforms traditional
word lattices into a series of segment sets that contain confusable words and phrases, thereby
simplifying the search process during rescoring.

» Prosody and Parsing: developed categorical prosodic break labels, building on linguistic notions of
minor and major prosodic phrases and the hesitation phenomena.

» Relevance Vector Machines: developed new reestimation techniques to make this approach
feasible for large-scale system evaluations.

These developments are described in more detail in the sections bel ow.

A project meeting was held at Brown University on June 13, 2002 to coordinate the work on this
project. All organizations involved in this project were present at this meeting. Our next joint
project meeting is planned for early June 2003.

A. Laboratory for Linguistic Information Processing, Brown University

One of the research activities this last year on the interaction between speech and parsing was an
investigation into the way in which language phenomena which are very common in speech, but
relatively rare in the formal text that parsing technology typically deals with, effects the parsing
process. In particular, both “filled pauses’ (“ums’ and “ahs’) and parentheticals (“you know”) are
common in speech, but not text. Previous work in the area has shown that both tend to occur more
readily at clause boundaries than elsewhere in sentences, leading to the conjecture that rather than
making parsing more difficult, they might make things easier. Unfortunately, some recent
experiments at Brown, to be presented at the 2002 Conference on Empirical Methods in Natural
Language Processing (EMNLP) seem to suggest that this is not the case. A standard statistical
parser was trained on text with and without such phenomena, and its performance was measured.
It seems that filled pauses make parsing harder, parentheticals make parsing harder, and both
together make it harder still. This goes against the prevailing expectations, and some recent
suggestions by the prosody researchers within this project are going to be followed up upon in an
effort to refine this result. In particular there is some evidence that “ah” and “um” might behave
differently in thisregard, and it might be worth distinguishing the two, something not done in this
last year’s experiments.

B. Center for Language and Speech Processing, Johns Hopkins University

CLSP concentrated on three activities this year: lattice cutting, neural probabilistic language
modeling, and the impact of richer syntactic dependencies on the performance of the structured
language model.

B.1 Lattice Cutting
CL SP has provided lattices for use in devel oping parsers automatically transcribe speech. Lattices
were generated on the RT-02 (Rich Transcription 2002 Evaluation) development test set using a
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conversational speech ASR system trained on the SWITCHBOARD corpus. These were provided
in determinized acoustic score form, in that the language model scores used in generating the
lattices were removed so that only the acoustic score of each individua word hypotheses
remained. These were determinized using the AT& T FSM toolkit so that each lattice is compact
and easy to search using any left-to-right language model.

A segmented version of these lattices were also produced using lattice cutting techniques
developed at CLSP. Lattice cutting pinches word lattices so that |attices are transformed to ook
like a series of segment sets that confusable words and phrases. Lattice rescoring is changed from
searching over entire sentences found in the original lattice to resolving the small number of
confused words and phrases in the segment sets. A research avenue to explore is whether parsers
can be modified to search over these smaller, more constrained sets.

B.2 Neural Probabilistic Language Modeling

The problem of language modeling research for ASR is essentially the problem of sparseness of
data. Conventionally, it has been treated by smoothing of various kinds and lately by utilization of
sentence structure. However, Bengio and his associates [1] have come up with a novel approach
based on artificial neural networks (ANNSs). We have confirmed their results by independent
experimentation, as shown in Table 1.

Perplexity experiments were carried out on the Brown corpus and the UPenn section of the WSJ
corpus. We will next (a) ascertain the ASR error rate effects obtainable from these improvements
(b) apply the approach to improving components (i.e., the predictor) of a structural language
model.

B.3 The Impact Richer Syntax Dependencies on the Structured Language Model

We studied the impact of richer syntactic dependencies on the performance of the structured
language model (SLM) along two dimensions. perplexity (PPL) and word-error-rate (WER,
N-best rescoring).

Under the equivalence classification in the SLM, the conditional information available to the SLM
model components is made up of the two most-recent exposed heads consisting of two NT tags
and two headwords. In an attempt to extend the syntactic dependencies beyond this level, we
enriched the non-terminal tag of a
node in the binarized parse tree with

the NT tag of the parent node (PA), c Neural

or the NT tag of the child node from SSLPSZ? Baseline Nefvlﬁk Combined
which the headword is not being

percolated (OP), or we added the NT Brown 366 257 N/A
tag of the third most-recent exposed

head to the history of the UPenn 141 157 121

CONSTRUCTOR component (h-2).

Without interpolating with the
3-gram, the opposite (OP) scheme
performed the best, reducing the PPL
of the baseline SLM by almost 5%

Table 1. A comparison of a neural network (NN) based
language modeling technique to traditional methods. The
baselines 3-gram interpolated and 5-gram Knesser-Ney
interpolated respectively. For the combined case, the NN
model was interpolated with the baseline using a constant
weight of 0.5023.
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relative. When the SLM is interpolated with the 3-gram, the h-2+oppositet+parent scheme
performed the best, reducing the PPL of the baseline SLM by 3.2%.

The h-2+opposite scheme achieved the best WER result, with a 0.4% absol ute reduction over the
performance of the opposite scheme. Overall, the enriched SLM achieves 10% relative reduction
in WER over the 3-gram model baseline result. This scheme outperformed the 3-gram used to
generate the lattices and N-best lists, without interpolating it with the 3-gram model.

We will continue to study additional changes in the SLM parametrization schemes.
C. Signal, Speech, and Language Interpretation Lab, University of Washington

Prosody can be thought of as the “punctuation” in spoken language, particularly the indicators of
phrasing and emphasis in speech. Most theories of prosody have a symbolic (phonological)
representation for these events, but a relatively flat structure. In English, for example, two levels
of prosodic phrases are usually distinguished: intermediate (minor) and intonational (major)
phrases [2]. While there is evidence that both phrase-level emphasis (or, prominence) and
prosodic phrases provide information for syntactic disambiguation [7], the most important cue
seems to be phrase structure. The acoustic correlates of prosody are continuous-valued, including
fundamental frequency (FO), energy, and duration cues. Particularly at phrase boundaries, cues
include significant falls or rises in fundamental frequency accompanied by word-final duration
lengthening, energy drops and optionally a silent pause.

C.1 Data Annotation and Development

The usefulness of speech databases for statistical analysis is substantially increased when the
database is labeled for arange of linguistic phenomena, providing the opportunity to improve our
understanding of the factors governing systematic suprasegmental and segmental variation in
word forms. Prosodic labels and phonetic alignments are available for some read speech corpora,
but only a few limited samples of spontaneous conversational speech have been prosodically
labeled. To fill this gap, substantial samples of the Switchboard corpus of spontaneous telephone
guality dialogs were labeled using a simplification of the ToBl system for transcribing pitch
accents, boundary tones and prosodic constituent structure [6]. The aim was to cover phenomena
that would be most useful for automatic transcription and linguistic analysis of conversationa
speech. This effort was initiated under another research grant, but completed with partial support
from thisNSF ITR grant.

The corpus is based on about 4.7 hours of hand-labeled conversational speech (excluding silence
and noise) from 63 conversations of the Switchboard corpus and 1 conversation from the
CallHome corpus. The orthographic transcriptions are time-aligned to the waveform using
segmentations available from Mississippi State University (http://www.isip.msstate.edu/projects/
switchboard/index.html) and a large vocabulary speech recognition system developed at the JHU
Center for Language and Speech Processing for the 1997 Language Engineering Summer
Workshop (www.clsp.jhu.edu/ws97) [3]. All conversations were analyzed using a high quality
pitch tracker [9] to obtain FO contours, then post-processed to eliminate errors due to crosstalk.
The prosody transcription system included: i) breaks (0-4), which indicate the depth of the
boundary after each word; ii) phrase prominence (none, *, *?); and iii) tones, which indicate
syllable prominence and tonal boundary markers. It also provides a way to deal with the
disfluencies that are common in spontaneous conversational speech (a p diacritic associated with
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the prosodic break), and to indicate labeller uncertainty about a particular transcription. The
annotation does not include accent tones, primarily to reduce transcription costs and because we
hypothesized that the phrase tones would be relevant to dialog act representations which may be
relevant for question-answering.

C.2 PROSODY AND PARSING

Our approach is to integrating prosody in parsing is to use categorical prosodic break labels,
building on linguistic notions of minor and major prosodic phrases and the hesitation phenomena.
An important reason for using categorical units rather than the acoustic correlates themselves is
that the intermediate representation simplifies training with high-level (sparse) structures. Just as
most ASR systems use a small inventory of phones as an intermediate level between words and
acoustic feature to have robust word models (especially for unseen words), the prosodic breaks
are also useful as a mechanism for generalizing the large number of continuous-valued acoustic
features to different parse structures. In addition, the low-dimensional discrete representation is
well suited to integration with current parsing frameworks, either as added “words” or as features
on words. This approach is currently somewhat controversial because of the high cost of prosodic
labeling, and to some extent because of the association with a particular linguistic theory. The the
specific subset of labels used in this work, though founded in the ToBI system, collapse some of
the detail of the system to simply represent minor and maor phrases and disfluencies, so in fact
the categories are relatively theory neutral (and language independent). Furthermore, a key
objective of this work is to overcome the cost of prosodic labeling by using bootstrapping
techniques.

Specifically, asmall set of labeled datais used to train an automatic prosody annotation algorithm
that has both text and acoustic cues. These cues are used in combination to automatically label the
rest of the Switchboard data, and then new (separate) prosody-parse and prosody-acoustic models
are designed for the final system, building on EM or co-training techniques. An aternative
approach, as in [4], is to assign categorical “prosodic” labels defined in terms of syntactic
structure and presence of a pause, without reference to human perception, and automatically learn
the association of other prosodic cues with these labels. While this approach has been very
successful in parsing speech from human-computer dialogs, we expect that it will be problematic
for Switchboard because of the longer utterance and potential confusion between fluent and
disfluent pauses.

The automatic prosody annotation effort is described further in the next section; here we briefly
outline the key research issues for designing and integrating the different model components for
the parsing application. Building on the two-stage approach introduced in [10], the planned
architecture involves prosodic break detection and generation of an augmented word
transcription, followed by detection of edit points and disfluent regions, and finally parsing. Key
research issues include whether the prosodic breaks should be treated as “words’ or as features on
words, whether disfluencies should be represented as an independent component, and how to
represent uncertainty of the prosodic classifier.

C.3 AUTOMATIC LABELING OF PROSODIC STRUCTURE

An important part of the past year’'s effort was devel opment of a prosodic labeling system in order
to increase the effective training data, and for analysis of the dependence between prosodic and
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parse structures in conversational speech. Experiments were conducted on the Switchboard
corpus, specifically the prosodically annotated subset described previously. We used decision tree
classifiers with a combination of acoustic, punctuation, parse, and disfluency cues. In thisinitial
study, the only acoustic cue was silence duration; work with FO, energy and duration cues isin
progress. The punctuation, parse and disfluency cues were taken from the annotations available
from the Linguistic Data Consortium, aligned to the word transcriptions as described above.
Speaker turn and incomplete sentence markers were among these cues. The disfluency file
included repair points as well as markers of filled pauses and coordinating conjunctions used in
utterance initial position. The parse features included right-to-left and left-to-right relative depth,
part-of-speech, label of the left and right syntactic constituents, and parenthetical markers.

The baseline system assigns the most likely class (default word boundary) in all cases except for
assigning a major phrase boundary at pause locations. This strategy gives 74% accuracy. Using
disfluency, parse features and silence duration features improves performance to 86% accuracy.
The most important features are punctuation, silence duration, disfluency edit point markers, |eft-
to-right depth of the parse tree, and part-of-speech tags. The tree was quite simple (8 nodes). We
anticipate further performance gains with the use of duration lengthening and intonation cues.

From analysis of the resulting tree, we find that punctuation and repair points are correlated with
prosodic breaks and hesitations, as expected. Silences alone (though useful) are not a reliable
predictor of prosodic phrases, since there are many prosodic phrases that do not occur at silences
and because silences are frequently associated with hesitations. The depth (or possibly the length)
of the left constituent is a useful predictor, but labels of the neighboring constituents do not.
Further investigation of representations of syntactic constituent labels is ongoing, since other
studies have shown association of clause boundaries (e.g. constituent labels) with major prosodic
breaks. We find that minor phrase boundaries are never predicted by the decision trees designed in
these experiments. Although thisis not entirely surprising, since minor phrases are rare, we think
that it may be possible to distinguish these structures given duration lengthening and/or intonation
cues, in which case analysis of the full Switchboard corpus could show some relationship between
minor phrases and particular syntactic constituents.

C.4 PROSODY AND ACOUSTIC MODELING

Most research on the use of prosody in automatic speech processing has focused on FO, energy
and duration correlates to prosodic structure. However, there is evidence from long standing
acoustic, articulatory and perceptual studies of speech suggesting that there are spectral correlates
as well. For that reason, we conducted an analysis of our prosodically labeled conversational
speech data using acoustic parameters and clustering techniques that are standard in speech
recognition. We found that prosodic factors are associated with acoustic differences that can be
learned in standard speech recognition systems. Both prosodic phrase structure and phrasal
prominence seem to provide distinguishing cues, with some phones being affected much more
than others (as one would expect from the linguistics literature). We hypothesized that we would
find that constituent onsets were important at all levels (syllable, word and prosodic phrase).
Instead, we found that onset is more important for syllables, but constituent-final position is more
important at higher levels. Prosodic prominence had asmaller affect than phrase structure in terms
of increasing likelihood of the training data, but seemed to result in more separable models when
it did play arole. Finaly, we found evidence that segmental cues can help distinguish fluent from
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disfluent phrase boundaries, in that segments associated with these categories are frequently
placed in different clusters. These differences can be leveraged in a “multiple pronunciation”
acoustic model to aid in detecting fluent vs. disfluent prosodic boundaries, though additional
prosodic cues are necessary to separate these from unmarked word boundaries. A limitation of
this work was that it was based on hand-labeled data, and therefore did not take advantage of the
full training data set needed for designing a state-of-the-art recognition system. However, with our
recent developments in prosodic annotation, we will be able to assess the usefulness on a much
larger corpusin the future.

D. Institute for Signal and Information Processing, Mississippi State University

The work at Mississippi State University this year has centered on extending last year’s progress
in acoustic modeling robustness through kernel-based discriminative modeling. At the close of the
last fiscal year, we had devel oped a hybrid speech recognition system that combined the temporal
modeling benefits of hidden Markov models (HMMs) and the discriminative modeling
capabilities of the support vector machine (SVM) paradigm. This hybrid system used a segmental
modeling approach to phone classification, building a set of one-vs-al binary classifiers. To
integrate the SVM into the HMM framework, a sigmoidal posterior probability function was used
to convert the SVM distances to probabilities. From this work, we identified two major limitations
of the hybrid HMM/SVM framework that have become the core of this year’s work:

 HMM-derived segmentations: In the hybrid system, the SVM is dependent on the HMM core to
provide good segmentations. It would be preferable to have the SVM determine for itself an optimal
segmentation and hypothesis set.

» Ad-hoc probability estimator: The sigmoid posterior estimate incorporated into the hybrid HMM/
SVM system was found to be ineffectual — a follow-up experiment indicated that simply using a step
function yielded only a negligible loss in accuracy. The relevance vector machine (RVM), a
completely probabilistic model that retains many of the discrimination and sparsity properties of the
SVM, was identified as a potential solution to this problem.

Aninitial method for removing the dependency of the SVM on the HMM segmentations was built
upon a time-synchronous Viterbi decoder. The SVM in this system is presented with all possible
phone segmentations for all possible hypotheses. It scores those according to the one-vs-all binary
classifiers, and the search process chooses the best sequence of words given those scores.
However, in this framework, we found that the computational resources required were too large.
To achieve a reasonable resource requirement, pruning thresholds needed to be tuned to the point
where overpruning frequently occurred. This resulted in search errors and very poor word error
rates. For instance, on an alphadigits task where state-of-the-art error rates are in the range of 10-
15%, the SVM system could only achieve 85% error.

An analysis of the search paths at runtime indicated that the problem was in the combined use of
synchronous Viterbi search and segmental models. The segmental models require that a complete
phone segment be hypothesized before the phone is actually hypothesized and scored. This results
in alarge number of hypotheses that exist in the same model at the same time but which can not
be compared for pruning purposes. In other words, Viterbi pruning can not be carried out at the
sub-phone level. Contrast this to standard HMM systems where the predominate pruning is the
Viterbi pruning carried out a the sub-phone level. A potential solution to this problem is the
implementation of a stack-based decoding approach. With the removal of the time-synchrony
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Average Average .
Classifier Ezg Parameter Classifier Era:'?er Parar%. :Il'-ﬁz 'I-'rien?é
Count Count
SVM 35.0% 828 SVM | 16.4% | 257 12 30
hour min
RVM 30.3% 12.6
RVM 16.2% 12 1 month | 1 min

Table 2. Comparison of SVM and RVM
classifiers on Deterding vowel data. Each
classifier type was trained as a set of 11 1-vs-
all classifiers. The best performance reported
thus far on this data is 30.4% using a speaker
adaptation scheme called Separable Mixture
Models.

Table 3. Comparison of SVM and RVM classifiers on
alphadigit recognition tasks. Both systems used a
segmental hybrid architecture. Note that the RVM has
over an order of magnitude fewer parameters but
requires significantly longer to train. A reduced training
set of 2000 segments was used.

limitation, phone hypotheses can be pursued and pruned without the accumulation of many non-
viable hypotheses.

A second line of research pursued this year was replacement of the SVM by an RVM model. The
RVM is a Bayesian model which takes the same form as the SYM model and provides a fully
probabilistic alternative to the SVMs which use the ad-hoc sigmoid posterior estimate. The RVMs
have been found to provide generalization performance on par with SYMs while typically using
nearly an order of magnitude fewer parameters as indicated for a vowel classification task in
Table 2. Sparseness of the model is automatic using MacKay’s automatic relevance determination
methods.

Our initial attempts to incorporate the RVM technology used an approach identical to the hybrid
HMM/SVM system. A set of one-vs-all RVM phone classifiers were trained on segmental data.
Unlike the SVM, there was no need for a posterior estimator function since the RVM is, itself, a
posterior estimator. As with SVMs, the process to train an RVM classifier is computationally
expensive even for small problems.

For the RVM, though, the

. o 3 - Error Average
computational complexity is O(M?) in Classifier | 7 | Parameter
run-time and O(M?) memory, where Count

M is the number of basis functions
and is initially set to the size of the
training corpus. Thus, our initial
attempts were limited to relatively
small training sets as indicated in
Tables3 and 4. Since our aim is to
replace the HMM emission
distribution by an RVM, the RVM
would be exposed to every frame of
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SVM 40.8% 1213

RVM 41.2% 178

Table 4.. Comparison of SVM and RVM classifiers on
alphadigit recognition tasks. Both systems used a
segmental hybrid architecture. Note that the RVM has
over an order of magnitude fewer parameters but requires
significantly longer to train. A reduced training set of 2000
segments was used.
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datain the training corpus. For even small speech corporathe number of framesin the training set
is on the order of 10°. The usual RVM traini ng methods are, thus, rendered impractical.

We are currently researching a number of alternative training schemes. Most of these incorporate
a reduced set methodology where the optimization problem is solved for a small portion of the
training data. The solution for that portion is then used to select other interesting portions of the
training set that need to be examined. Eventually, an optimum on the entire training set is
achieved through the optimization of many smaller sets.

The results of the HMM/SVM hybrid system indicate a need to automatically incorporate
segmentation variation into the training process. HMMs offer a principled approach to this
problem via the EM-based Baum-Welch algorithm. Our continued research aims to create a
similar algorithm for training HMM/RVM systems. The RVM will replace the Gaussian as the
frame-level emission distribution in the HMM state. Iterative reestimation formulae which
describe cycles of Baum-Welch statistical accumulation (the expectation step) followed by
Bayesian RVM training (maximization step) will be derived. In building this training algorithm
we must address issues of iterative and monotonic convergence and stopping criteria. Similar
work that has been developed for connectionist HMM/ANN systems will serve as reference.
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08/15/00 — 08/14/01: RESEARCH AND EDUCATIONAL ACTIVITIES

In the first year of this project, we focused our efforts in two core areas.

» Parsing Technology: intimately coupling parsing technology with speech recognition technology
and evaluating performance on conversational speech.

» Risk Minimization in Acoustic Modeling: developed a new acoustical modeling framework based
on the principle of risk minimization using relevance vector machines; developed baseline
recognition results for a related approach based on support vector machines.

We aso began work on the integration of prosodic information into speech recognition and
parsing. We developed a format for interfacing prosody output with our parser. We reviewed and
cleaned up transcriptions of a prosodically labeled subset of the Switchboard corpus. We also
discussed strategies for incorporating prosody into the search process in speech recognition.

A project kickoff meeting was held at Johns Hopkins University in June to coordinate the work on
this project. All organizations involved in this project were present at this meeting. Discussions
focused on three major topics: parsing, integration of prosody, and the devel opment of resources
to support this research. Plans were developed to begin evaluating the impact of parsing using a
lattice rescoring approach, and to investigate the resources required to develop a time-aligned
version of the Penn Treebank corpus that will be used for prosodic modeling. Other topics of
discussion included some preliminary results on a hybrid speech recognition system using
Support Vector Machines. Our next joint project meeting is planned for early June 2002.

E. Parsing Technology

We have begun research into applying parsing technology to speech. While our ultimate goal isto
intimately couple parsing technology with speech recognition technology, clearly afirst stepisto
demonstrate that current parsing technology isin fact compatible with the kind of language that
occurs in naturally-occurring speech, and demonstrating that current parsing technology can do a
reasonable job of parsing speech transcripts is an important first step. State-of-the-art statistical
parsers are invariably trained on Treebank training data, and the recent release of a treebanked
portion of the Switchboard corpus by the LDC permitted us to train such a parser on spoken
language transcripts. We have two papers that have already appeared in prestigious conferences,
and one new result which we expect to submit to a 2002 conference. Charniak and Johnson [10]
investigated the performance of state-of-the-art parser technology when applied to speech
transcripts. Current parsing technology has been primarily developed using written material;
indeed, the best high-performance statistical parsers available today are based on Wall Street
Journal newspaper texts, and it was an open question whether this technology is applicable to
spoken language.

Transcribed speech differs from edited written text in that it contains disfluencies of various kinds.
The two major types of disfluencies we considered in this work are interjections (e.g., “ugh”),
parentheticals (e.g., “Sam s, | think, insane”) and speech repairs (e.g., “I told my brother, ugh, my
sister 1I'd be late”). Interjections are extremely easy to recognize using standard part-of-speech
tagging techniques, and there has been speculation in the literature that interjections provide
valuable clues to phrase boundaries (we describe empirical an evaluation of this hypothesis
below). Written text also contains parentheticals, and these do not seem to cause current parsing
technology any particular problems. However, in a pilot experiment we determined our standard
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statistical parser, even when trained from a Switchboard speech transcript treebank that identifies
speech repairs, fails to identify any speech repairs in the test corpus. This is not too surprising,
since modern statistical parsers function by modeling the tree-structured head-to-head
dependencies in a normal natural language sentence, but speech repairs do not seem to be
included in such dependencies. Charniak and Johnson [10] present a simple architecture for
parsing transcribed speech in which an edited-word detector first removes such words from the
sentence string, and then a standard statistical parser trained on transcribed speech parses the
remaining words. The edit detector achieves a misclassification rate on edited words of 2.2%.
(The NUL L-model, which marks everything as not edited, has an error rate of 5.9 %.) To evaluate
our parsing results we introduce a new evaluation metric, the purpose of which is to make
evaluation of a parse tree relatively indifferent to the exact tree position of EDITED nodes. By
this metric the parser achieves 85.3\% precision and 86.5\% recall; results which are comparable
with the best written text parsing results of just afew years ago.

In[11], we investigated the use of our parsing model as a language model. Language models, of
course, are used in speech recognition systems to distinguish between likely and unlikely word
strings proposed by the speech recognizer’s acoustic model. Most speech recognition systems use
the very simple trigram language model, but recently there has been increased interest in using
parsing for this task. However, the previous parsers used for this purpose have not performed
parsing tasks at state-of-the-art levels. Thisis because the researchers assumed that any language
model would have to work in a strict left-to-right fashion. Unfortunately, the best statistical
parsers are “immediate-head” parser — our name for a parser that conditions all events below a
constituent ¢ upon the head of c. Because the head of a constituent may appear in the middie or at
the end (e.g., the head of a noun-phrase is typically the right-most noun) immediate head parsers
cannot work in a strict left-to-right fashion. However the reasons for preferring strict-left-to-right
are not iron-clad and we were interested in determining if better parsing performance of
immediate-head parsers would lead to a better language model. In the paper we presented two
immediate-head language models. The perplexity for both of these models significantly improve
upon the trigram model base-line aswell as the best previous grammar-based |anguage model. For
the better of our two models these improvements are 24% and 14% respectively. We a so found
evidence that suggests that improvement of the underlying parser should significantly improve the
model’s perplexity. Since these models do not use prosodic information that most assume should
help in parsing, we believe that even in the near term thereis alot of potential for improvement in
immediate-head language models. Finally we note that this paper received the “ Best Paper” award
at ACL2001.

We now turn to our current research in the area of parsing speech data. As reported above, it is
widely believed that punctuation, interjections and parentheticals all provide useful cuesto phrase
boundaries, and therefore their presence ought to improve parser performance. Previous
experimentation with written texts had shown that removing punctuation from written texts
decreases parser performance significantly, and indeed, finding prosodic cues that convey much
the same information as punctuation is one of the goals of our future research. However, as a
preliminary step we decided to empirically evaluate the usefulness of punctuation, interjections
and parentheticals in parsing of speech transcripts. Our method of evaluation is to selectively
remove each of these in turn from the training corpus, and then evaluate the accuracy of the
parser’s recovery of linguistically important structural details from a version of the test corpus
from which the same elements were removed. Together with Donald Engel (a student at Brown),
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Charniak and Johnson are systematically investigating the effect that punctuation, interjections
and parethenticals have on parsing speech transcripts. As expected from the written text studies,
punctuation supplies useful information for parsing spoken language transcripts, i.e.,
systematically removing punctuation from the training and test corpora reduces parse quality.
However, contrary to the accepted wisdom, interjections and parenthetical seem not to supply
useful information for parsing spoken language transcripts, i.e., systematically removing either of
these elements improves parse quality, at least for our current parser. At this stage we can only
speculate as to why; perhaps parentheticals are integrated into the rest of the sentence involving a
structure different to the head-to-head dependency structure used in the parser, and perhaps
interjections interrupt the sequences of dependencies tracked by the parser, in effect splitting the
parser’sinternal state structure and leading to sparse data problems.

One of the central goals of this project is to integrate natural language parsing (which has been
largely developed with respect to written texts) with speech recognition. As described above, we
have demonstrated that parsing technology can be successfully applied to speech transcripts, and
we have shown that the kinds of syntactic structures posited by a statistical parser can form the
basis for a high-performance language model. These results suggest that a combined speech
recognition/parsing system should perform extremely well. There is still a substantial amount of
engineering and scientific work to be performed before we have achieved that integration.
Currently we are investigating just what the interface between the speech recognition and parsing
components should be in a combined system. It turns out that the basic data structures in each
component — lattices in speech recognition, charts in parsing— are in principle quite
compatible; theoretically at least one could imagine running a parser in parallel with an acoustic
model (i.e., the parser would be the language model). Thisisabold and attractive architecture, but
we suspect that at the current stage it isimpractical; the number of word hypotheses would simply
overwhelm the parser. We are thus investigating ways of pruning the hypothesis space (perhaps by

Figure 1. An SVM balances the ability to model a particular training set with generalization to other data. A
feature of this machine is an ability to gracefully trade-off knowledge about the training data and the
probability of error for unseen data. SVMs have proven to be very successful on several tasks including
handwriting recognition, speaker identification, and vowel classification. SVMs have the ability to learn
nonlinear decision regions using principles of discrimination. No assumptions about the underlying
distributions are made — no parametric forms are used to build the decision surfaces.
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SVM HMM
phone pair | misclassification | misclassification

rate rate

f <=>4dl 14.6 131
r<=>| 11.9 17.8
s<=>gdil 375 42.4
S<=>7 9.7 17.8
t<=>p 8.7 18.1
t<=>d 9.6 22.2

Table 1. A summary of performance of an SVM-
based hybrid system on the most common phone

confusions for Alphadigits. In some cases, the
reduction in error rate is over 50%.

AUGUST 15, 2003

using a standard trigram language model) and
of compacting the set of hypotheses (perhaps
by using sausages instead of lattices); probably
some combination of the two will turn out to be
viable.

Other speech/parsing work we anticipate for
this coming year will include looking at
features that have been found to improve
trigram language models that are not included
in our language models to see if, as one might
anticipate, they improve our parsing language
models as well. This would include word
clustering, caching, and smply training on
more data (This last is not as easy for parsing
models as we do not have more hand-parsed
data, and thus would have to use machine-

parsed data.) We also hope to start work on the integration of prosody with parsing, though thisis
amore ambitious project.

F. Risk Minimization in Acoustic Modeling

An important goal in making speech recognition technology more pervasive is to improve the
robustness of the acoustic models. Language models, for example, tend to port across domains
much better than acoustic models. Learning paradigms for language models can fairly easily
extract the domain-independent information, and don’t have to deal with difficult problems such
as the separation of the underlying speech spectrum from channel and ambient conditions.
Though one might argue that even language models are susceptible to overtraining and a lack of
generalization, the degree to which this corrupts system performance in a new domain is much
less severe. Acoustic models often require extensive training or adaptation, and this, in turn,
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Figure 2. An overview of a hybrid HMM/SVM system being developed to improve the robustness of a
speech recognition system.

BROWN/JHU/UWASH/MS STATE

PAGE 19 NSF ITR: AWARD 0085940



INFORMATION ACCESS TO SPOKEN DOCUMENTS AUGUST 15, 2003

requires the development of extensive application-specific data collection. The net effect is that
the cost of developing new applicationsis very high.

A guiding principle we have in acoustic modeling is that of Occam’s Razor: a model that makes
less assumptions about the data will prove to be more robust. Further, we believe that we must
gracefully mix representation and discrimination in our models. Intelligent machine learning
seems to be a crucial issue as acoustic models can easily learn details of the acoustic channel from
the training data, making them less portable to new applications where the channel, microphone,
or ambient environment are different. A promising new framework for machine learning in which
a balance between generalization and discrimination can be struck is based on the principle of risk
minimization [12], and is known as a Support Vector Machine [13]. A summary of the benefits of
the SVM approach is shown in Figure 1.

The goal in the first year of this project was to explore these models in the context of a realistic
LVCSR task. Our primary focus has been kernel-based methods, which include two important
related techniques: the Support Vector Machine(SVM) and the Relevance Vector
Machine (RVM) [14]. On preliminary experiments involving phone classification, SVMs
performed significantly better than HMMs[15]. These results are summarized in Table 1. For the
six most confused phone pairs of an Alphadigit task, SVMs nearly halved the error rate, which is
asignificant reduction for this type of experiment.

Our initial experiments were constructed using a hybrid HMM/SVM system as shown in Figure 2.
In this system, we generate N-best lists using a conventional HMM speech recognizer. We then
use the same system to generate time alignments. The segments identified in these time
alignments are then rescored using likelihoods generated by SVM phone classifiers. The standard
Gaussian statistical models are replaced with discrimination-based SVM models.

One problem in constructing this system was how to map distances computed by the SVM
classifier to posterior probabilities, which are needed by the HMM speech recognition system
(more precisely, the Viterbi search engine used in the HMM-based speech recognition system). A
typical solution to this problem that has been used extensively in the neural network literatureisto
fit a sigmoid function to the distribution of distances. However, we have recently observed that
this process tends to overestimate confidence in classification. We are revisiting this issue in
subsequent research described below.

We have also had to overcome a number of other mundane but important problems related to the
recognition system to make these experiments possible. Because of the computational complexity
of the approach, we also needed to develop an iterative training scheme in which we build
classifiers on small subsets of the data and combine these classifiers (rather than training across
the larger data set). We use an approach known as “chunking” [16,17] which has been shown to
provide good convergence while significantly reducing computational requirements.

The SVM system overal delivered a 1% absolute (10% relative) reduction in word error
rate (WER) on the Alphadigits task described above, reducing the absolute error rate from 12% to
11%. Such a small improvement is somewhat discouraging given the computational complexity
of this approach. We believe a major limitation of this system is the dependence on the
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HMM-based N-best lists and segmentations. Hence, we are developing approaches in which the
SVM-based classifier isintegrated into the training process.

A natural way to do thisis to modify the concept of an SVM to incorporate probabilistic models
directly. The Relevance Vector Machine (RVM) [14] attempts to overcome the deficiencies of the
SVM by incorporating a probabilistic model directly into the classifier rather than using a large
margin classifier [14]. The principle attraction of the RVM s that it delivers comparable
performance as an SVM, but uses much fewer parameters. It is also much more computationally
efficient.

A major challenge in incorporating RVM models directly into the recognition training processis
the development of practical and efficient closed-loop training techniques based on EM principles
that demonstrate good convergence properties. Many of these discrimination-based techniques
involve some form of nonlinear optimization that is unwieldy and prone to divergence problems.
We are currently developing the RVM optimization process in a Baum-Welch training framework
so that the parameters of these models can be estimated in a closed-loop process on large amounts
of data. We expect to complete thiswork in early fall of 2001.

Finally, the software being developed on this part of the project is being implemented within our
public domain speech recognition system [18]. Pieces of this system will be included in our
upcoming release. The core of the system consists of two new classes, SupportVectorMachine and
RelevanceVectorMachine, that are part of our pattern recognition classes. We also expect to
release an application note shortly describing the use of the core pattern recognition engine, and
will release the hybrid system by the end of 2001. We also expect to have completed large-scale
pilot experiments on spontaneous speech data at that time.
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