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Abstract

This paper presents a novel discriminative
learning technique for label sequences based
on a combination of two of the most success-
ful learning algorithms, Support Vector Ma-
chines and Hidden Markov Models which we
call Hidden Markov Support Vector Machine
(HM-SVM). The proposed architecture han-
dles dependencies between neighboring labels
using highly efficient Viterbi decoding. In
contrast to standard HMM training, how-
ever, the learning procedure is discrimina-
tive and is based on a maximum/soft mar-
gin criterion. Compared to previous methods
like Conditional Random Fields, Maximum
Entropy Markov Models and label sequence
boosting, HM-SVMs have a number of advan-
tages. Most notably, it is possible to learn
non-linear discriminant functions via kernel
functions. At the same time HM-SVMs share
the key advantages with other discriminative
methods, in particular the capability to deal
with overlapping features. Application ar-
eas for the presented technique range from
natural language processing and information
extraction to computational biology. We re-
port experimental evaluations on three differ-
ent tasks: named entity recognition, part-of-
speech tagging, and protein secondary struc-
ture prediction. The results demonstrate the
competitiveness of the proposed approach.

1. Introduction

Learning from observation sequences is a fundamental
problem in machine learning. One facet of the problem
generalizes supervised classification by predicting label
sequences instead of individual class labels. The latter
is also known as label sequence learning. It subsumes
problems like segmenting observation sequences, an-
notating observation sequences, and recovering under-

lying discrete sources. The potential applications are
widespread, ranging from natural language processing
and speech recognition to computational biology and
system identification.

Up to now, the predominant formalism for modeling
and predicting label sequences has been based on Hid-
den Markov Models (HMMs) and variations thereof.
HMMs model sequential dependencies by treating the
label sequence as a Markov chain. This avoids di-
rect dependencies between subsequent observations
and leads to an efficient dynamic programming for-
mulation for inference and learning. Yet, despite their
success, HMMs have at least three major limitations.
(i) They are typically trained in a non-discriminative
manner. (ii) The conditional independence assump-
tions are often too restrictive. And (iii) they are based
on explicit feature representations and lack the power
of kernel-based methods.

In this paper, we propose an architecture for learning
label sequences which combines HMMs with Support
Vector Machines (SVMs) in an innovative way. This
novel architecture is called Hidden Markov SVM (HM-
SVM). HM-SVMs address all of the above shortcom-
ings, while retaining some of the key advantages of
HMMs, namely the Markov chain dependency struc-
ture between labels and an efficient dynamic program-
ming formulation. Our work continues a recent line
of research that includes Maximum Entropy Markov
Models (MEMMs) [7, 10], Conditional Random Fields
(CRFs) [6], perceptron re-ranking [2, 3] and label se-
quence boosting [1]. The basic commonality between
HM-SVMs and these methods is their discriminative
approach to modelling and the fact that they can ac-
count for overlapping features, which means that la-
bels can depend directly on features of past or future
observations. The two crucial ingredients added by
HM-SVMs are the maximum margin principle and a
kernel-centric approach to learning non-linear discrim-
inant functions, two properties inherited from SVMs.



2. Input-Output Mappings via Joint
Feature Functions

Before focusing on the label learning problem, let us
outline a more general framework for learning map-
pings to discrete output spaces of which the proposed
HM-SVM method is a special case [4]. This framework
subsumes a number of problems such as binary clas-
sification, multiclass classification, multi-label classi-
fication, classification with class taxonomies and last
but not least, label sequence learning.

The general approach we pursue is to learn a discrimi-
nant function F' : X x Y — R over input/output pairs
and to maximize this function over the response vari-
able to make a prediction. Hence, the general form for

fis
f(x) = arg ryrlgF(x, y)- 1)

In particular, we are interested in a setting, where F'
is linear in some combined feature representation of
inputs and outputs ®(x,y), i.e.

F(x,y;w) = (w, ®(x,y)) . 2)

Moreover, we would like to apply kernel functions to
avoid performing an explicit mapping ® when this
may become intractable, thus leveraging the theory
of kernel-based learning. This is possible due to the
linearity of the function F', if we have a kernel K over
the joint input/output space such that

K((x,5),(%,5)) = (®(x,y), 2(x,5)) 3)

and whenever the optimal function F has a dual
representation in terms of an expansion F(x,y) =
> oK ((%i,¥:), (x,y)) over some finite set of sam-
ples (X1,¥1);--- (Xm; ¥m)-

The key idea of this approach is to extract features not
only from the input pattern as in binary classification,
but jointly from input-output pairs. The compatibility
of an input x and an output y may depend on a par-
ticular property of x in conjunction with a particular
property of y. This is especially relevant, if y is not
simply an atomic label, but has an internal structure
that can itself be described by certain features. These
features in turn may interact in non-trivial ways with
certain properties of the input patterns, which is the
main difference between our approach and the work
presented in [11].

3. Hidden Markov Chain Discriminants

Learning label sequences is a generalization of the
standard supervised classification problem. Formally,

the goal is to learn a mapping f from observation se-
quences x = (z!,z2,...,zt,...) to label sequences y =
(v, 92, ...,y ...), where each label takes values from
some label set ¥, i.e. y* € ¥. Since for a given observa-
tion sequence x, we only consider label sequences y of
the same (fixed) length, the admissible range is effec-
tively finite for every x. The availability of a training
set of labeled sequences X = {(x;,y;) : ¢ =1,...,n}
to learn the mapping f from data is assumed.

In order to apply the above joint feature mapping
framework to label sequence learning, we define the
output space ) to comsist of all possible label se-
quences. Inspired by HMMs, we propose to define two
types of features for the feature mapping @ in Eq. (2).
The first type of features combine attributes or input
features 9 (z°) € R, r = 1,...,d extracted from some
observation pattern z° with an indicator function for
the label yt,

re = Iy' = ol (2%). (4)

Here [[Q)] denotes the indicator function for the pred-
icate ().

To illustrate this point, we discuss a concrete example
from part-of-speech tagging: 1,(z°) may denote the
input feature of a specific word like ’rain’ occurring in
the s-th position in a sentence, while [y¢ = o] may
encode whether or not the ¢-th word is a noun or not.
st =1 would then indicate the conjunction of these
two predicates, a sequence for which the s-th word
is ’rain’ (= r) and in which the t-th word has been
labeled as a noun (= o). Notice that in general, ¥,
may not be binary, but real-valued and so may ¢3¢ .

The second types of features we consider deal with
inter-label dependencies

b7 =y = o ny' =1]. (5)

In terms of these features, a (partial) feature map
®(x,y;t) at position ¢ can be defined by selecting ap-
propriate subsets of the features {¢2! } and {¢% }. For
example, an HMM only uses input-label features of
the type ¢! and label-label features LY reflect-
ing the (first order) Markov property of the chain. In
the case of HM-SVMs we maintain the latter restric-
tion (although it can trivially be generalized to higher
order Markov chains), but we also include features ¢2¢ ,
where s # t, for example, s =t—1lors=t+1 or
larger windows around ¢. In the simplest case, a fea-
ture map ®(x,y;t) can then be specified by defining a
feature representation of input patterns ¥ and by se-

lecting an appropriate window size.! All the features

'Of course, many generalizations are possible, for ex-



extracted at location ¢ are simply stacked together to
form ®(x,y;t). Finally this feature map is extended
to sequences (x,y) of length T in an additive manner
as follows

T

o(x,y) = Y 3(x,y;t). (6)

t=1

Notice that as long as the label-label interactions are
restricted to nearest-neighbor dependencies the maxi-
mization in Eq. (1) can be carried out efficiently with
the help of Viterbi decoding. We will present further
details in the next section.

In order to better understand the definition of the
feature mapping &, it is revealing to rewrite the in-
ner product between feature vectors for different se-
quences,

(3(x,y),8(%,5)) = ;W‘l =77 Ay =]
+ ;ﬂys = 7' k(*,2") (7)
where
k(z*,3") = (T(2"), ¥(z)) . (8)

Hence the similarity between two sequences depends
on the number of common two-label fragments as well
as the inner product between the feature representa-
tion of patterns with common label.

4. Hidden Markov Perceptron Learning

We will first focus on an on-line learning approach to
label sequence learning, which generalizes perceptron
learning and was first propose in the context of natural
language processing in [3].

In a nutshell, this algorithm works as follows. In an
on-line fashion, pattern sequences x; are presented
and the optimal decoding f(x;) is computed. This
amounts to Viterbi decoding in order to produce the
most ’likely’, i.e. highest scored, label sequence y. If
the predicted label sequence is correct ¥ = y;, no
update is performed. Otherwise, the weight vector
w is updated based on the difference vector AP =
®(x;,y;) — ®(xi,¥), namely wme¥  wold + AP,

In order to avoid an explicit evaluation of the fea-
ture map as well as a direct (i.e. primal) represen-
tation of the discriminant function, we would like to

ample, one may extract different input features dependent
of the relative distance |t — s| in the chain.

derive an equivalent dual formulation of the percep-
tron algorithm. Notice that in the standard percep-
tron learning case, ®(x,1) = —®(x,—1), so that it
is sufficient to store those training patterns that have
been used during a weight update. In the label se-
quence perceptron algorithm, one also needs to store
the incorrectly decoded sequence (which we call neg-
ative pseudo-example) (x;, f(x;)). More precisely, one
only needs to store how the decoded f(x;) differs from
the correct y;, which typically results in a more com-
pact representation.

The dual formulation of the discriminant function with
kernel K is as follows. One maintains a set of dual
parameters «;(y) such that

F(X7 Y) = Z Z sz(}_’)K((X“S’), (Xa Y)) . (9)

%

Once an update is necessary for training sequence
(xi,y:) and incorrectly decoded ¥, one simply incre-
ments a;(y;) and decrements a;(§) by one. Of course,
as a practical matter of implementation one will only
represent those a;(y) which are non-zero. Notice that
this requires to keep track of the a values themselves
as well as the pairs (x;,y) for which a;(y) < 0.

The above formulation is valid for any kernel function
on label sequences. In the case of nearest neighbor
label interactions, one can make use of the additivity
of the sequence feature map in Eq. (7) to come up
with a more efficient scheme. Decomposing F' into two
contributions, F(x,y) = F1(x,y) + F5>(x,y), where

Fi(x,y) =Y plo,m)Y [y =0 Ay’ =7]. (10)

with

plo,7) = Zai(i) Y =ongt =7 (1)

and where

E(x,y) = Z[Iys = 0] Z Z,B(i,t,a)k(azs,mﬁ) .
8,0 7 t

with

Bli,t,0) = Y Iy* = ol aily) (12)

In summary, one needs to keep track of how often each
label pair incorrectly appeared in a decoded sequence
and how often the label of a particular observation
z{ was incorrectly decoded. The advantage of using
the representation via p(o,7) and B(i,t,0) is that it
is independent of the number of incorrect sequences y
and can be updated very efficiently.



In order to perform the Viterbi decoding, we have to
compute the transition cost matrix and the observa-
tion cost matrix H; for the i-th sequence. The latter
is given by

H7 =3 B0, t, 0)k(xs, ) (13)
ot

The coefficients of the transition matrix are simply
given by the values p(o, 7).

Algorithm 1 Dual perceptron algorithm for learning
via joint feature functions.

1: initialize all a;(y) =0

2: repeat
3:  for all training patterns x; do
4: compute ¥; = argmaxycy F(x;,y), where

() =325 2y ai(0E(( ), (%4,5))

5: if y; # y; then

6: a;i(y;) < a;(y;) +1
T a;i(¥:) < ai(y:) — 1
8: end if

9: end for

10: until no more errors

In order to prove the convergence of this algorithm,
it suffices to apply [2, Theorem 1] which is a simple
generalization of Novikoff’s theorem.

Theorem 1 Given a training set (x;,y;), ¢ =1,...,n
and for each training label a set of candidate labels
Vi CY —{yi}. If there exists a weight vector w such
that ||w|| =1 and

(Wa(p(Xth)) - <Wa (I)(XhY)) > Y fOT' all ye y@

then the number of update steps performed by the above
perceptron algorithm is bounded from above by %2‘,
where R = max; ||®(x;,y)|| fory € Y; U{y:}.

5. Hidden Markov Support Vector
Machine

Our goal in this section is to derive a maximum mar-
gin formulation for the joint kernel learning setting.
We generalize the notion of a separation margin, by
defining the margin of a training example with respect
to a discriminant function, F', as:

v = F(xi,y;) — max F(x;,y) . (14)

Y#Yi

Then the maximum margin problem can be defined
as finding a weight vector w that maximizes min; ;.
Obviously, like in the standard setting of maximum

margin classification with binary labels, one has to ei-
ther restrict the norm of w (e.g. ||[w]|| = 1), or to fix the
functional margin (min;~y; > 1). The latter results in
the following optimization problem with a quadratic
objective

1
min §||W||2 (15)
s.t. F(x;,y;) —max F(x;,y) > 1, Vi (16)
Y#Yi

Each non-linear constraint in Eq. (16) can be replaced
by an equivalent set of linear constraints,

F(x,y4)

Let us further rewrite these constraints by introducing
an additional threshold §; for every example, which
yields

—F(x;,y)>1,Viand Vy #y;  (17)

2i(y) (F(xi,y) +0:) > (18)

1
2
with the definition z;(y) = 1, if y = y; and z;(y) =
—1, otherwise.

Proposition 1 For any discriminant function F, F
fulfills the constraints in Eq. (17) for an example
(xi,¥:) if and only if there exists 6; € R such that
F fulfills the constraints in Eq. (18).

Proof:
If F fulfills Eq. (17) then define 6; = —1(F(x;,yi) +
maxy .y, F(x;,y)). Hence

N | =

1
F(xi,y:) +6; = §(F(Xi7)’i) —max F(x;,y)) >
Y#Yi

Similarly for'y #y;,

1 1
F(xi,y) +6; :F(Xi:Y)_éF(Xi;Yz’)_§;g?§ F(xi,y')
1 1

Conversely if there is exists a threshold 0;, then
1 1

The formulation with the thresholds ensures that only
the relative distances between different labels of the
same example matter, not the distances between differ-
ent examples. We introduce the functions z; to stress
that we have basically obtained a binary classification
problem, where (x;,y;) take the role of positive exam-
ples and (x;,y) for y # y; take the role of |Y| — 1
negative pseudo-examples. The only difference to bi-
nary classification is that the bias can be adjusted for



each ’group’ sharing the same pattern x;. Hence there
is some additional interaction among pseudo-examples
created from the same example (x;,y;).

Following the standard procedure, we derive the dual
formulation of this quadratic program. Straightfor-
ward calculation shows that the Lagrangian dual is
given by

max W(a) =3 3" S ai(y)a; ()2:(3)% (ks (7,9)

Ly 5,y
+>ai(y) (19)
(57
s.t. a;(y) >0, Vi=1,...,n, Vye)y
Z zz(Y)al(Y) = 07V7/ =1...,n
yey

where k;;(y,¥) = K((xi,¥),(x;,¥)). Notice that
the equality constraints, which generalize the standard
constraints for binary classification SVMs (3°, yio; =
0), result from the optimality conditions for the thresh-
olds 6;. In particular, this implies that a;(y) = 0, if
a;(y;) =0, i.e. only if the positive example (x;,y;) is
a support vector, will there be corresponding support
vectors created from negative pseudo-examples.

6. Optimization Algorithm for
HM-SVM

Although it is one of our fundamental assumptions
that a complete enumeration of the possible label set )
is intractable, the actual solution might be extremely
sparse, since we expect that only very few negative
pseudo-examples (which is possibly a very small sub-
set of ) will become support vectors. Then, the main
challenge in terms of computational efficiency is to de-
sign a computational scheme that exploits the antici-
pated sparseness of the solution.

Since the constraints only couple Lagrange parameters
for the same training example, we propose to optimize
W iteratively, at each iteration optimizing over the
subspace spanned by all a;(y) for a fixed i. Obvi-
ously, by repeatedly cycling through the data set and
optimizing over {a;(y) : y € Y}, one defines a coor-
dinate ascent optimization procedure that converges
towards the correct solution, provided the problem is
feasible (i.e., the training data is linearly separable).
We prove this proposition by making use of the follow-
ing two Lemmas.

Lemma 1 Assume o is a solution of the Lagrangian
dual problem in Eq. (19), then o (y) = 0 for oll pairs
(xi,y) for which F(x;,y;0*) < maxgy, F(x;,y;0*).

Proof by contradiction:
Define F(x;;a) = maxyy, F(x;,yi;a), then the op-
timal threshold needs to fulfill 07 = —(F(x;,yi;*) +

F(x;;a*))/2. Hence if'y is a label sequences such that
F(x;,y;a*) < F(x;;a*) then

—F(xi,y;0*) = 0] > —F(x;;0") — 0} =

1 - 1

5 (F(xiyisa®) = F(xiza®)) > o
Together with the assumption of(y) > 0 this
contradicts the KKT complementary condition

of (y)(F(xi,y;0) + 6 + 3) =0.

Lemma 2 Define a matriz D((x;,y),(x;,¥)) =
2i(y)zj(¥)kij (¥, ¥), then o/ Dei(y) = zi(y)F(xi,y),
where e;(y) refers to the canonical basis vector corre-
sponding to the dimension of a;(y).

Proof:

o'Dei(y) = Zz'(y)Zaj(Y')Zj(Y')ki,j(y,y')

zi(y)F(xi,y) .-

We use a working set approach to optimize over the
i-th subspace that adds at most one negative pseudo-
example to the working set at a time. We define an
objective for the i-th subspace by

Wiais{ej = j #i}) (20)
which we propose to maximize over the arguments «;

while keeping all other «;’s fixed. Adopting the proof
presented in [9], we prove the following result:

Proposition 2 Assume a working set S C Y with
yi € S is given and that a solution for the working set
has been obtained, i.e. a;(y) with y € S mazimize the
objective W; subject to the constraints that a;(y) =0
forally & S. If there exists a negative pseudo-example
(xi,¥) withy & S such that —F(x;,y) — 6; < %, then
adding § to the working set S' = SU{y} and optimiz-
ing over S’ subject to a;(y) =0 fory & S" will yield
a strict improvement of the objective function.

Proof:

Case I: If the training example (X;,y;) is not a sup-
port vector (yet), then all a;(y) in the working set will
be zero, since a;(yi) = >, ai(y) = 0. Consider
a; = a; + de;(y;) + dei(y), for some § > 0. Then, the
difference in cost function can be written as:

Wilais{ay : j # i}) — Wilou; {a; 1 j #i})

= (Jei(yi) + dei(y:))'1 — &' D(deily:) + dei(¥:))
—%(561'(}’1') + de;(¥:))' D(de;(yi) + dei(ys))
26 — & (F(xi,y:) — F(x3,¥:)) —O(6%) > 6—0(67)



since F(x;,y;) — F(x;,¥:) < 1. By choosing 0§ small
enough we can make § — O(62) > 0.

Case II: If the training example is a support vector,
ai(y;) > 0 then there has to be a negative pseudo-
example § with a;(§y) > 0. Consider a; = a; +
dei(¥:) — dei(y:)-

Wilau; {a; : j #i}) — (az,{a] J#1i})
= (0ei(y)—dei(y )) D(bei(y)—dei(y ))—0(52)
= 6(F(x;,¥) — F(Xi;)_’)) - 0(8%)

Hence we have to show that F(x;,¥)—F(x;,¥) > € >0
independent of 6. From the KKT conditions we know
that —F(x;,y) — 0; = %, while our assumptwn was
that —F(x;,y) —6; < . Settmg e=1+6;+ F(x;,y)
concludes the proof.

The above proposition justifies the optimization proce-
dure for the coordinate ascent over the i-th subspace,
described in Algorithm 2.

Algorithm 2 Working set optimization for HM-
SVMs.

1S« {y,’}, a; =0

2: loop

3:  compute ¥ = argmaxyy, F(x;,y;a)

4 if F(x,,yz,a)—F(xz,y,a) > 1 then
5 return o;

6: else

7: S+ SuU{y}

8: a; + optimize W; over S
9: end if

10: fory e S do

11: if a;(y) =0 then

12: S« S—{y}

13: end if

14: end for

15: end loop

7. Soft Margin HM-SVM

In the non-separable case, one may also want to intro-
duce slack variables to allow margin violations. First,
we investigate the case of Lo penalties.

Pp e (21)

s.t. 2i(y)((w, ®(x;,y)) +0;) > 1 =&
&E>0 Vi=1,...,n, Vye)

1
minimize §||w||2

Notice that we only introduce a single slack variable
per training data point and not per pseudo-example,

since we want to penalize the strongest margin viola-
tion per sequence.

By solving the Lagrangian function for &;, we get
1
= =Y (22)
y
which gives us the following penalty term:

—252 CZZa, y)oi(y (23)

iy

Similar to the SVM case, this term can be absorbed
into the kernel which is effectively changed to

Ko((xi,y), (xi,¥) = K((xi,¥),(xi,¥)) (24)
1 !
+62i(y)zi ")

and KC((xiay)a (Xjay,)) = K((Xi7 y)7 (xjayl)) for i 75

j-
Using the more common L; penalty, one gets the fol-
lowing optimization problem

. 1
min §||W||2 + CZ& (25)

st zi(y)((w, @(x;,y)) +60:) > 1§,
Vi=1,...,n, Vyey

& >0

Again the slack variable ¢; is shared across all the
negative pseudo-examples generated. The Lagrangian
function for this case is

Sl + Z(o - )6
- Zal ) [zi(y

with non-negativity constraints on the dual variables
pi > 0 and «;(y) > 0. Differentiating w.r.t. & gives:

Z ai(y)
y
The box constraints on the a;(y) thus take the follow-
ing form

0<ai(y), and Y ai(y) <C. (28)
yey

(F(xi,y) +0:) — 1+ £](26)

=C—-pi<C (27)

In addition, the KKT conditions imply that when-
ever § > 0, then >y a;(y) = C which means that

ai(Yi) = Dy, @ () 0/2

Hence, one can use the same working set approach
proposed in Algorithm 2 with different constraints in
the quadratic optimization in step 8.



Named Entity Classification
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Figure 1. Test error of NER task over a window of size 3
using 5-fold cross validation.

8. Applications and Experiments
8.1. Named Entity Classification

Named Entity Recognition (NER) is an information
extraction problem which deals with finding phrases
containing person, location and organization names,
as well as temporal and number expressions. Each
entry is annotated with the type of its expression and
its position in the expression, i.e. the beginning or the
continuation of the expression.

We generated a sub-corpus consisting of 300 sentences
from the Spanish news wire article corpus which was
provided for the Special Session of CoNLL2002 on
NER. The expression types in this corpus are limited
to person names, organizations, locations and miscel-
laneous names, resulting in a total of |X| = 9 different
labels.

All input features are simple binary features. Most
features are indicator functions for a word occurring
within a fixed size window centered on the word being
labeled. In addition there are features that do not only
encode the identity of the word, but also more detailed
properties (e.g. spelling features). Notice that these
features are combined with particular label indicator
functions in the joint feature map framework. Some
example features are: “Is the previous word ‘Mr.” and
the current tag ‘Person-Beginning’?”, “Does the next
word end with a dot, and is the current tag ‘Non-
name’?”, and “Is the previous tag ‘Non-name’ and
the current tag ‘Location-Intermediate’ ?”.

We compared the performance of HMMs and CRFs
with the HM-Perceptron and the HM-SVM with L,-
penalties. Overlapping features with a window of size
3 were used in all experiments. Although in a genera-
tive model like an HMM, overlapping features violate
the model, we observed that HMMSs using the overlap-
ping features described above outperformed ordinary

Part-of-Speech Tagging
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Figure 2. Test error of POS task over a window of size 3
using 5-fold cross validation.

HMMs. For this reason, we only report the results
of HMMs with overlapping features. The CRFs have
been optimized using a conjugate gradient method
which has been reportedly outperformed other tech-
niques for minimizing the CRF loss function [8]. Since
optimizing log-loss functions (as is done in CRFs) may
result in overfitting, especially with noisy data, we
have followed the suggestion of [5] and used a regu-
larized cost function. We refer to this CRF variant as
CRF-B.

The results summarized in Figure 1 demonstrate the
competitiveness of HM-SVMs. As expected, CRFs
perform better than the HM-Perceptron algorithm
(HM-PCQ), since CRFs use the derivative of the log-
loss function at every step, whereas the Perceptron
algorithm uses only an approximation of it (cf. [2]).
HM-SVMs achieve the best results, which validates
our approach of explicitly maximizing a soft margin
criterion.

8.2. Part-Of-Speech Tagging

We extracted a corpus consisting of 300 sentences from
the Penn TreeBank corpus for the Part-Of-Speech
(POS) tagging experiments. The features and experi-
mental setup is similar to the NER experiments. The
total number of function tags was |X| = 45. Fig-
ure 2 summarizes the experimental results obtained on
this task. Qualitatively the behavior of the different
optimization methods is comparable to the NER ex-
periments. All discriminative methods clearly outper-
form HMMs, with HM-SVMs outperforming the other
methods.

8.3. Protein Secondary Structure Prediction

Protein secondary-structure prediction is an important
step towards solving one of the most challenging prob-
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Figure 3. Test error obtained on the RS126 data sets using
7-fold cross validation.

lems in molecular biology: the protein folding prob-
lem. Simplifying the 3-D problem by projecting the
complex structure to a sequence, the task is to classify

segments of an aminoacid sequence as heliz (H), sheet
(E) or coil (C).

We used the RS126 data set, which consists of 126 pro-
teins, sequences over an alphabet of size 20. We rep-
resented each protein in an orthogonal representation
by converting the 20-valued feature at each residue
(i.e. the identity of the amino acid) into 20 binary fea-
tures, of which exactly one has a value of 1 at a time.

We performed experiments using polynomial kernels
of varying degree and different window sizes. The re-
ported results are for a window of size 11 and second
order features, implemented via a polynomial kernel
in the HM-Perceptron and HM-SVM case. Figure 3
summarizes our results. Again, HM-SVMs obtain the
lowest error rate.

9. Conclusion

We presented HM-SVMs, a novel discriminative learn-
ing technique for the label sequence learning problem.
This method combines the advantages of maximum
margin classifier and kernels with the elegance and ef-
ficiency of HMMs. Our experiments prove the compet-
itiveness of HM-SVMs in terms of the achieved error
rate on three benchmark data sets. HM-SVMs have
several advantages over other methods, including the
possibility of using a larger number and more expres-
sive features. We are currently addressing the numer-
ical and scalability issues to be able to perform larger
scale experiments.
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