ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

08/15/01 — 10/31/02: RESEARCH AND EDUCATIONAL ACTIVITIES
In the fourth year of this project, we focused our efforts on two activities:

» Production System Release : completed a release of the system that contains all necessary core
speech recognition functionality. We developed new approaches to cross-word decoding and
parameter estimation that simplify the complexity of the system. We also developed several user
interface tools to aid in configuration of the system.

» On-line Documentation : overhauled our on-line tutorial to reflect our experiences in supporting this
software. We now provide step-by-step instructions starting with configuration and installation that
should allow most users to learn about the technology in a self-paced manner.

We also continued activities in the areas central to the overall research program:

» Foundation classes : added many algorithms at the higher levels of the class hierarchies to support
a modular speech recognition system. This makes our recognition system perhaps the most flexible
engine publicly available.

» Workshops : hosted a software design review in January 2002, and a one-week training workshop in
May’'02. Our on-line resources, including lab experiments, were significantly enhanced.

» Software engineering : Streamlined our support activities and improved the ease of use of our
distribution and verification procedures. We also upgraded our support of Linux and now perform
much more detailed regression tests before a release. All such testing has been completely
automated.

Overall, this year we saw a significant shift from academic support to industrial support. Because
our software is now stable and mature, and widely known for being an important baseline system,
industry has become much more interested in its use. We have been involved in several trials with
leading speech technology companies, and have successfully convinced them that our system
achieves state of the art performance when comparing similar configurations. We have also
educated them on how to run leading industry-standard benchmarks.

A. Retrospective

It is hard to underestimate the impact this research program has had on our laboratory, the
Institute for Signal and Information Processing (ISIP). In many ways, | feel the success of this lab
is a good justification for programs such as CARE. The original goal of the CARE program was
to build lasting infrastructure to support research with strong experimental needs. Today, ISIP is
well-known throughout the world for providing state-of-the-art speech recognition technology
and educational materials. At the beginning of this program, we were virtually unknown outside
the inner circle of the speech research community.

It is often said that imitation is the most sincere form of flattery. Another extremely important way

to benchmark the success of our program is to examine what has happened in the open source
movement since this program was started. For many years, the speech recognition community
was dominated by a small number of research groups with proprietary systems. Research progress
was slow and expensive. Even when we originally proposed the open source concept in the late
1980’s, and then again in the mid-1990’s, we were repeatedly refuted by arguments that for-profit
software was adequate and was not limiting access to the field.

Since this project was started in 1998, several major speech recognition sites have followed with
open source releases. These include well-established sites such as Cambridge University (HTK),

MISSISSIPPI STATE UNIVERSITY PAGE 1 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

Carnegie-Mellon (SPHINX), MIT (Galaxy), University of Colorado Boulder (PHOENIX/CU-
Communicator), and SRI (Decipher/SRILM). Whether these releases would have happened
naturally, or were prompted in part by the well-publicized launch of this program, will remain a
mystery. Nevertheless, it is clear that more speech recognition technology exists in the public
domain than ever before and that the technology is more accessible to smaller organizations.

Our system, however, still remains the only unencumbered system. It is the only system which
can be exploited commercially without licensing fees. It does not come with any licensing
restrictions. It does not even carry any form of GPL [1] license. We do include a licensing
statement in the distribution that states:

Institute for Signal and Information Processing
Mississippi State University

LICENSE AGREEMENT

This software is distributed without any restrictions.
You may copy, distribute, or modify this software as you see fit.

This package is provided “as is” and without any express or
implied warranties, including, without limitation, the implied
warranties of merchantability and fitness for a particular purpose.

This was requested by several corporate entities whose lawyers felt uncomfortable downloading
software without some from of a license statement.

It is not surprising, therefore, that this year we have enjoyed more industrial interest than ever
before. We had extensive interactions with several significant speech recognition companies (e.g.,
Nuance Communications and Intervoice). Both are conducting internal evaluations of our
technology, and used our technology to bring up new applications within their research groups.
Another company, Lexia, sent an engineer to our lab for one week to develop a prototype of a
child reading aid that uses speech recognition, and to assess the feasibility of the project given the
current state of the technology. Other laboratories that received support attention included MITRE
and DoD. We even have had European partners, such as the Fraunhofer IMK Research Institute,
develop extensive systems based on our technology.

In addition to these types of activities, an important milestone was reached in 2002 when the
Aurora Large Vocabulary evaluations [2-5] were conducted using our software. This was an
excellent opportunity to increase our visibility on an international scale and to demonstrate the
relevance of this technology to state of the art problems in this field. In the Aurora evaluation,
several sites competed for the rites to a next generation standard for front end processing for
cellular telephone applications. The Aurora Working Group is a sub-group under the auspices of
the European Telecommunications Standards Institute (ETSI). The work performed in this
collaboration will be presented in a special session at the European speech technology conference
(EUROSPEECH) in September 2003.

In addition to these milestones, a significant body of work has been developed to support the
annual workshops funded by this research project. These workshops were originally planned to
introduce a small number of people in a very focused manner to the technology. Due to strong

MISSISSIPPI STATE UNIVERSITY PAGE 2 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

demand for these workshops, we decided to double the size of the workshops by leveraging a new
training facility that became available at Mississippi State. Over the three years we held the
workshops, over 100 people were trained on our software. (In fact, in January 2003 we recently
held a remote version of this workshop in Dallas, Texas, which represented our first attempt at
hosting the workshop off-site.) All lecture notes, lab exercises, etc. are available on-line. This
material has become an invaluable body of training and support literature.

Another unique feature about our technology is the availability of on-line resources such as our
speech recognition tutorial [6]. This tutorial starts with the basics of downloading and installing
the software, and then proceeds step-by-step to teach users about recognition, training and
language modeling. It concludes with a chapter on how to build state of the art systems. What is
most unique about this tutorial is that all data, configuration files, etc. are available on-line.
Hence, users are shown what commands to execute, and then are provided with the expected
outcomes from these experiments, making it easy to debug problems along the way. No
recognition technology available on the Internet includes such a tutorial. It is a good example of
how the CARE program has provided a unique opportunity to disseminate such resources.

Finally, a good measure of the success of a public domain software effort is the extent to which
others have contributed to the core software base. We have had several such contributions in
recent years, including code (often unacknowledged by the providers request) from private and
government labs such as MITRE and DoD, and a port of the system to Windows contributed from
Ralph Edrich at the University of Applied Sciences in Germany. We have also incorporated
numerous low-level code modules contributed from various sources into the system. In these
cases, as we expected, we served as system integrators and refactored this code according to our
software engineering standards. We have several users within DoD and academia working with
our extensive C++ libraries and underlying code structure to create new applications and
capabilities. Hence, our software infrastructure and web site are fulfilling the original mission of
the CARE program to develop advanced experimental research resources. We now describe some
of these capabilities in detail.

B. Speech Recognition Toolkit

The general design philosophy for our speech recognition toolkit is discussed in prior project
reports and publications [7]. In this section, we focus on a few key features of this system that
differentiate it from other publicly available systems. We also discuss the rationale behind this
design. We begin with a discussion of the core decoder.

Time-synchronous Viterbi beam search [8] has been the dominant search strategy for continuous
speech recognition systems for the past 20 years. Search [9] is a good example of an algorithm
that is conceptually simple, but extremely hard to implement in a general way in practice. Worse
yet, the slightest inefficiencies in search can result in a system that cannot solve large-scale
problems. Most search implementations are restricted to one approach (e.g., time-synchronous
Viterbi search) and cannot be separated from the statistical modeling approach (e.g., HMM).
Further, the search structure is commonly limited to three levels (e.g., word, phone, and state).
The goals for the design of our generalized decoder were:

an arbitrary number of independent levels;
long-span context-dependent models at any level;
lexical tree expansion at any level;

posterior symbol probabilities at any level.

MISSISSIPPI STATE UNIVERSITY PAGE 3 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

We also designed our system to provide alternate algorithm choices for statistical modeling at
each state, acoustic modeling via a collection of states, and language modeling via finite state
machines. In fact, our decoder is designed to support recognition for applications beyond speech
and audio streams. and currently supports multiple search algorithms using a common
programming interface.

A generalized hierarchical search space [10] that must be implemented in a typical speech
recognition system is shown in Figure 1. In such a search space, each level can be conceptually
considered as the same. Phrases, words or phones are simply symbols at different levels. Each
level contains a list of symbol§; and a list of graph&;.., where.i is the index of the level, is

the index of the symbol anHl is the index of the graph. Each graph has at least two dummy
vertices, the start vertex and the terminal vertex both indicating the start and the end points of the
graph in a search space.

The lower level graplG;, (such asG;, with RUN andWALK) is the expansion of the symbol
Si.1.n (such asSy, with VP) at the level above. This relationship connects all the levels together,

realizing the entire search space. There are two exceptions for such a symbol-graph expansion.
First, at the highest level, only one graph can exist. This graph is calleddster grammaiit is

a map for the decoder to iterate through the entire search space. Second, at the lowest level, each
symbol represents an underlying statistical model. These symbols can not be expanded into a
sub-graph. Observations probabilities will be evaluated when the search process reaches these
symbols.

The search begins from the start vertex of thaster grammarthe starting point of the search
process. The traces, indicating search paths from one vertex to another, first propagate from the
top level to the lowest level, where the observation probabilities of the each frame of data are
evaluated. Then the traces propagate forward from the lowest level. Whenever a trace reaches the
terminal vertex of a graph, it propagates up. The decoder drives this up and down process for
every frame until the end of an utterance. The hypotheses will then be retrieved by traversing
backwards through the traces.

Lexical trees, also referred to as prefix
trees, are required so that we can model
transitions between words (or any symbol
at any level) more accurately. The particular {7~
acoustic unit chosen at a boundary can

depend on the first sound in the next word. Gy;
The process of searching for an optimal

Level O

must consider all possible next symbols.

The basic idea of lexical tree expansion is Level3

.. 7/ 7/
to collapse pronunciation models of 0 O . 0 O .
different words by sharing the same
beginning phonemes. The use of a Iecha]l:igure 1. A representation of a generalized hierarchical

tree significantly reduces the search SPaC&arch space for a recognition system consisting of
and search effort [8]. Based on the idea ofour levels of knowledge: phrases (sentences), words

sharing the common prefix, we extend thddictionary), phonemes (pronunciations) and states
(acoustics).

MISSISSIPPI STATE UNIVERSITY PAGE 4 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

prefix tree representation to any level in the search hierarchy. If users set the decoder to expand a
lexical tree at level, the symbols of level will be expand to their corresponding sub-graphs at
level i+1 and the common prefix of these symbols will be shared, resulting in a tree-structured
search.

Context-dependent phone models, defined as a model which depends on preceding and following
sounds, are generally more accurate than context-independent phone models, since the former can
capture coarticulatory effects. In our decoder, the concept of a context-dependent model can be
used at any level. If a symbd; is context-dependent then the underlying model is determined

dynamically via it's neighboring symbols. This generalized implementation imposes no
restrictions on the length of context and the number of levels using context. Similarly, N-gram
models are extended to N-symbol models. The symbol can be a phrase, a word or a phone,
depending on the level at which it is used. The decoder doesn't restrict the order of the N-symbol
model. Therefore, users can apply arbitrarily long time-span language or acoustic models to meet
the needs of their applications.

The virtue of this approach is that speech recognition research can be performed by simply
manipulating a hierarchy of these networks. We have developed a tool, called Network

Builder [11], that allows users to create and manipulate these networks using a graphical user
interface. A detailed tutorial on this tool is available from our web site.

Another feature of our system is that we have developed several useful generalizations of hidden
Markov model (HMM) training. Our acoustic trainer is a supervised learning machine that
estimates the parameters of the acoustic models given the speech data and transcriptions. We
support both Baum-Welch and Viterbi reestimation of model parameters for mixtures of arbitrary
statistical models. In addition to standard features of HMM trainers such as state-tying and
mixture splitting, additional requirements for our software design included:

* arbitrarily long context-dependent models at any level;
« parallel processing approaches to training;
» network training for enhanced pronunciation modeling.

The HMM trainer we implemented is based on a hierarchical search space described previously.
Most STT systems contain three levels of information: the language model (word graph or N-
gram), the pronunciation model (lexicon) and the state level (HMM topology for each phone).
The motivation to develop a trainer with no restrictions on the number of levels was to further
support research into nature language processing, which often involves more than three levels of
representation, and uses many diverse knowledge sources.

In most HMM-based systems, a phonetic transcription is required as input to the parameter
reestimation process. This transcription is derived at automatically and iterated upon as the
recognition system improves. Silence must also be hypothesized between each word model, since
we don’'t know where in the utterance silence actually occurred. In essence, the trainer decides on
the optimal alignment of the hypothesized transcription as part of the training process.

Our network trainer, which is depicted in Figure 2, alleviates the need for a phonetic transcription.
Instead, it is capable of hypothesizing all possible expansions of a symbol list, and performing
parameter reestimation across this expanded network. The benefits are twofold: we remove the
dependency on an intermediate transcription, and we can inherently train statistical pronunciation
models. This data-driven approach often results in better performance.

MISSISSIPPI STATE UNIVERSITY PAGE 5 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

Level 0 transcription Many existing systems are limited to
|THE [t BOY |—’M’ALK|\ simple left to right topologies for their
_______________________________________ acoustic models, thereby restricting the

Mi»@».».».».—» type of research that can be performed with

such a system. Our trainer imposes no

Level 1 [a)/” pronunciation constraints on the topology of any model in

Figure 2. A graph that depicts a representation of e hierarchical structure. In the training

multiple pronunciations in network training. Transition =~ PrOCESS, mOdels at the top Of_ the hier_arChy
probabilites between phones (Level 1) are are dynamically expanded to its constituent

automatically reestimated using Baum-Welch training. models at the lower level, forming a single

network. The reestimation algorithm (e.g.,
Baum-Welch) operates at all levels and updates parameters related to the transitions and the states
simultaneously. Hence, language modeling training is implicit.

Finally, our toolkit uses database formats for all file input and output. Though cumbersome at
first, this is an extremely important step in eliminating support problems and aborted recognition
experiments. Utterance transcriptions, which are required for training, are represented using an
AnnotationGraph format [12] that has recently become popular in our research community. This
graph format allows a hierarchical representation of information in the transcription. One
transcription can contain many types of information, including time-alignment information. Users
access this information in a variety of ways, including numeric indices for levels and text labels
for specific transcription information.

Audio files are also referenced via an audio file database, implemented in a class named
AudioDatabaseThis allows an experiment to be conducted by simply supplying the recognizer
with a list of utterance ids. Standard experiments can be easily replicated from simply a list of
utterance ids. The order of the list is not an issue, whereas in many other systems the input must
be a synchronized list of transcriptions and audio files. Use of these databases is a good example
of how our system has been designed to minimize support effort and to be self-diagnostic. Our
goal is that a bad experimental setup can be self-diagnosed before the experiment has
accumulated appreciable run-time. Linking transcriptions and audio files via a database, and using
structured data as input (e.g., AnnotationGraph), represent major steps towards achieving this
goal.

C. Educational and Tutorial Resources

A significant effort was made in the last year of this project to enhance our on-line educational
resources. In Section E, we will describe the workshop component of this activity, which also
serves as our Outreach activity. Here, we will focus on on-line documentation, which comes in
two forms: software manual pages [13] and tutorials [14].

Our software includes on-line html-based web pages. This was a bold experiment started early in
this four-year project in an effort to make the software documentation portable and available to
web users simultaneously with the actual software installation. Implementation required a rather
novel approach using cookies so that users and software developers could easily transition
between their private enlistment (stored on a local disk) and the released version of the software
(stored in a network-based resource and used by those requiring a stable working environment). In
our development environment, a developer can view man pages through their private enlistment,
while users of the software view the released versions of the web pages. All this is done without

MISSISSIPPI STATE UNIVERSITY PAGE 6 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

having to make any changes to the URLSs loaded into the html pages via the use of a cookie (that
facilitates the path resolution for the web page). It would be a disaster if the developer had to
change URLs on a web page before release.

Our web pages have a uniform structure discussed in previous reports. They are organized into an
ontology that begins with differentiating between utilities (such as the recognition program) and
classes (our foundation classes), and continues to branch out from their in a hierarchical fashion
that mirrors the organization of the software on disk. Two examples are provided below that show
a typical introductory page [15], shown in Figure 3, that contains an overview of a library (e.qg.,
Algorithms), and an actual class manual page [16], shown in Figure 4, which describes many
details about a specific class (e.g., Energy).

|

Fis Edi Waw On Comenmiovios

‘i -4-‘“1’“ *m piip Jfwes. daip mastsbs sdefprajecis fepsschs sl bvsrs fdccusantaticon ! dﬂ"ﬁlhﬂ
Ehell:
i e |:||:||-:_ nl r||-r'l.... dNaln o
T e : e e et].||||r| I'I||:I
TLTE clissas — piiitian — scrigis — spasch — sasch — vp
Flalprdin

ALLORITHMS
LBy Nommn: Eb_idge o
Iweraduction:

The dilgrrihx daprmp sxowre) s ephoraei pa e bor dapial ngral pes o e g (TP kxrisons ©orp eech neesprizs. Thee Riruy corsmen
ey o denrda thar wri naed w b H:ﬂdmmuﬁgnqrﬂm‘r- mrasdanl e wed rabiai - thh =iTas 04 IpaRch
ezl o Py b el s the welis mged w0 o et s Theie damies b chin boos dagpeed i s peey rpes of b TGP
rupaarth asd eSaranas

Bvary dury 1r dungued 1 ropport: orabrpls algeydrr sl ol The i o tasn dsmer o b

sindditil by dedsira thie sppregaians dbfacrie med rpleasatires wd thio e b f thi LaE s nlll.:-‘

keelims cmpaks iaorlasin sy, ek seisorlevie tngei. algscitlscaks. ceer_Tore cscf_twpd » mor_rmr_ToEE, 1

The Fdvfale Wil d iy & ¥ecli’ SRR 61 SWRET Erefece o2 G0 ksl vl
Tha Algerehs diprae b bisn M ed oo mmppen & @mu ni kb O LE e, ey trasnton Hmkiel chim allowd aldgerslon s 1s b
pmdiiled W dunplp desaring o (bt inimg Uhe Waldmp Eniks jrmpled m b b |'|l HETLIT l.lln: l.l] H". upidrilpin

ey reesasn | AP wheliw daresbed on the chae seead Al porrbe s et vha g erras oeld Edsidp Accha cors ol
il Wil b b el)

baklins applpivdcboms cobpo, <dari PectEr? clrmalioedder s Dgot)
s ol e R, o o k- by Wi B Sl poiwhiCote & oo vf kot that b thie dirads of thie e dans Tygeh i ek
L EE T

Bl dorarwint idon geign i i Abprinidon dars cotams o il doteon g ol sl oo sl mpliernistions dagguiied o dmi dam. For
sannph, conmdirda radle boreke Coieeen s 00 Te ks deiaenan niowd o Sun didi ven will via e ket

Hagm et pmt

1
wgaribad: | | egdemmiatal s L e H Ml Trpas Do Wyt :rqlulu
s L
2 [t FREANIE P 2
LTI} FACTTHEED ATEEWA RICPAL |TCHELATIN | B l jauiaE - b Baliap
Coxa [——)))
S AL FArTTHeER | FREES FEARE RICNAL | DOMBERLATHIN | Bk l i faim-d i
- B L Fili-§ la
= " REFLECTHS | 2 i
i s AT S LY PRI RN TR CTHEN ;
[———— L TR NN T TR
1 WELY ¥
AP
L AU | DT FRANE 5 L
e i, AL il SNPAL [(TMREELATION | B L walnim = iij BIkEp
ol Rl L
Prado
Fafirr i T el s
s FHAME 3 : il
dng e RS | USFRCTIHEEL) ST SHiNAL |
e[I3 L ki DAl i
&l et el

Figure 3. An example of a man page representing the introduction to a C++ library (e.g., Algorithms).

MISSISSIPPI STATE UNIVERSITY

PAGE 7

NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

Manual pages are an excellent example of what differentiates the results of this CARE project
from most other speech research related software developments (in the sense that we can develop
resources not normally justifiable in a typical research or spare time project). Our manual pages
contain a description of the class (often including relevant theory), a quick start example, a
description of all data and methods included in the class, and a couple of detailed examples that
show how to use the class in a standalone fashion.

More importantly, all code is linked into the man page. When you click on a method, it takes you
to the code for that method. Our code is written in a well-documented easy to read format. An
emphasis has been placed on keeping the code simple and easy to understand — we refer to this

Fle Bl Wew G0 Coimisundaiod I"ll
F| d'ﬁ:ﬁnrh J.i.mi:m: ;I:".p"ﬂ'l 230p. mawiaks i!‘:.lpl:I1l|:'.l.';l-l:|‘.l'ld|‘l:l‘irl.‘w-rﬂlh:lt:ln:ﬂl' ; dﬂ'hh“ ﬁ
A0GLINIE 'r'!""'nULn A
mese Tt Do et TR A "I'I':’ Wy h.
n"""':h_ riassrs — imilliga — sorigis — spaech — spach — up
M — TR — Juich shard — - — consisrls — wreor

paiecied — equined — cliEapeciic — p-hil—-l:l'rph- rariE

o : Exvmpy bl Alportm Basn

|'|:l:;ll'.ll.-.l.
Frbram era——
Al Bias -+ [ELigx | Eils b g teblaf Lik s imare_mrvmoens L _algs a
._ . I_ T _r e iy Eneog. B
ey ERigF I ALIPITHE & I RO U DEF ALESCTHE, IEFLINEETPTICNE Lhj Jiesslitlid © DX _SDLEEIFTATIES Elrak dimerh

BEelaEn uficEmn trar h.r
hl:-ll:dr\- llll]ru:l;ll |. l-ﬂ" i algeriibm]
P

Apick wari:
EWITR 47
sprtarrlapt mEiL"y, §, 1"
O« Bpsiarf [nah wwbpud

- L i s Ll s £« TEERTETT

< DL FTEEL, Sgak)
Fire
FibrerBial il
:.r d . " N .'hb.ul;r dhaar o cand w oo th ey Wl pree o 5 ngeal :mp:-d:umn:ulur\uulkldww e i ldes asd ceeen. ke EETEy
Lapfoiallan o drral
¥
} L Pabwrar and B Scbbar, Dy Srovrm g o f Sanch Somalr. Prasam - Bl Erggheers nd Shifn, Flow ooy, LEA op. 11, 194
i:\-. e, T Peccs, Sheginl Bl didag Taskbog il b 3k Facopenaa JEXN Procdegs, vl BL e 3, pp 1215- 1347, Seeark s 10961
Fiflnimes
Fpucmm T ik owrestdy Fopf wrs et abpinhon drediodd S10 aied FILTER. Thetsi v ik dbod b d i e vl Rl Fmind] il i ek e Gppoinnel 4l
ALET S 18] rfhraneed Sorir mdtng 18 sl HRE botk papder @ asipearsy Tha crpenecraces chieran bor b algertas chicrd 5U0h1 alasg wad the
Windue woadabdin scalmg apfiorm . o ihires bilow
Bigped Prsainaiing T i
s | Depas I ;
= i [T SFR P PRt . Sk Pt Tt | Bt T Lojmating. :P-.l-l.-h-.l..
" el M IEMTITY |FRAME_IKTIRNAL | CENERD | ENIAGY | E E £ i e
£ ! -
T - 1
— LR Y] L) |PHAME INTTHNAL | PSRN | IDNIGY | F = by 'L'. i i'u-n.-
b dacm |
S (TR o (rEasE eS| cevrer | ey | F 2y | T 2Tl il_ﬂ-
Hix Eiu H -
Hr e |
LR FOATER |FRAME INTERNLL | CENERR ERERGY | F = < }-_ v ial | Mo
|
. 1
|
Bkl L A EE |FRAME INTERRAL | D R | F = g %l'.... i'\.ﬂ-
i |

| s w2

Figure 4. An example of a man page for a class (e.g., Energy). All documentation is html-based.

MISSISSIPPI STATE UNIVERSITY PAGE 8 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

as self-documenting code. Hence, perhaps the most valuable part of a man page are the links it
contains to the software. We developed tools to support this, including a simple perl script that
parses the code and returns only the requested function from a file. The result is that the code is
displayed automatically on a web page, providing a seamless integration between documentation
and code. As part of a release, we include documentation that can be viewed on a user’s local
machine with or without the software distribution.

In addition to the on-line documentation, a major effort was spent this year expanding our on-line
recognition tutorial [6]. This is a very detailed step-by-step tutorial that teaches users about all
aspects of speech recognition. A copy of the front page from this tutorial is shown in Figure 5.
There are seven sections: installation, data preparation, feature extraction, recognition, acoustic
modeling, language modeling, and comprehensive examples. An appendix and glossary are also
provided. The information presented in this tutorial reflects our four years of on-line support. We
have tried to focus on examples that reflect the common problems our customer support. For
example, the installation and data preparation sections both were created from our experience that
90% of the work in running a speech recognition system involves getting the software and data in
place to run experiments.

Each section in this tutorial begins with an introduction describing the salient theoretical

background for the technology discussed, and then continues with examples. For each example,
specific command lines are given to execute a task. All files required to set up the experiment are
provided, along with links to the expected output. Hence, users can diagnose their own problems,
and know what to expect for an outcome. We also often point out common mistakes and address

Yaou are here; Fundamentals £ Production / Tutorials ¢ Software £ Home

Fundamentals of Speech Recognition:
A Tutorial Based on a Public Domain C++ Toolkit

Takble of Contents
Introduction

What's New

1. Installation
1.1 Dwerview
1.2 Using CWS Rernotely
1.3 Using CVS Locally
1.4 Tar Distributions
1.5 Compilation
1.6 Testing
1.7 Command Synopsis

4. Recognition
4.1 Owverwiew
4 2 Metwork Decoding
4.3 Scoring
4 4 Forced Alignment
45 M-Best Generation
4 6 Word Graph Generation
4.7 Command Synopsis

7. Comprehensive Examples
7.1 DOwverwiew
7.2 TIDiggits
7.3 Alphadigits
7.4 Resource Management
7.5 Wall Street Journal
76 Switchboard
7.7 Command Synopsis

2. Data Preparation
2.1 Owverwiew
2.2 Fle Conversion
2.3 Downsampling
2.4 Auxiliary Fesources
2.5 Command Synopsis

5. Acoustic Modeling
5.1 Owerwiew
5.2 Metwork Builder
5.3 Waord Models
5.4 Cl Phone Maodels
5.5 Word Internal CD Models

Appendix
A Lecture Motes
B. &JF: Speech Analysis
C. CMU: Hephaestus
[r. HTK: Hidden karkoy bodel Toolkit

E. MIST: Comman Evaluations

5.6 Crogs—‘ord CD Maodels

F. DGl HLT Survey

5.7 Parallel Training
5.8 Command Synopsis

G. SDK: Speech Development Kit

3. Feature Extraction
3.1 Owerwiew
3.2 Signal Flow Graphs
3.3 Rapid Prototyping
3.4 Transforming Input Signals
35 MFCC Example
36 Components
3.7 Command Synopsis

6. Language Modeling
B.1 Owverwiew
5.2 Metwork Decoding
6.3 M-Gram Modeling
6.4 Metwork Builder
6.5 Parameter Files
6.6 Examples
6.7 Command Synopsis

Glossarny

fsupport f Site bap f Contact s £ ISP Home

Figure 5. A screenshot from the front page of our on-line tutorial. Detailed instructions are supplied for
everything from installation to complete LVCSR application development.

MISSISSIPPI STATE UNIVERSITY PAGE 9 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

anticipated questions, again all a result of our extensive experience with customer support. We
hope that this tutorial will eventually become part of a speech recognition textbook, and will be
used in graduate level coursework. We plan to use this tutorial in our graduate-level speech
recognition course scheduled for Spring’04.

D. Java Applets

One of the original unique features of our proposed research program in 1998 at the project’s
inception was the demonstration of some advanced educational capabilities in Java [17]. Over the
course of this project, we have developed two novel Java-based capabilities: a remote job
submission facility [18] that allows users to submit speech recognition jobs over the Internet to
our servers, and applets [19,20] that demonstrate fundamental machine learning concepts. Our
applets are accessible from a single page on our speech web site [21].

The page shown in Figure 6 consolidates all of our on-line demonstrations. These are organized
into four categories: Java applets which are described below, the Job Submission demo which has
been described extensively in previous reports, audio demos which are designed to familiarize
readers with some fundamental concepts about speech recognition and perception, and interactive
tools which allow users to step through the recognition process in a debugging-type mode.

As documented previously, the Java programming language continues to be a support nightmare
since there are significant changes in the language from one version to the next. Our applets have
recently been upgraded to support Java 1.4, and this appears to be a much more stable and better
supported version of the language. Nevertheless, we still have problems with robustness and
unpredictable behavior forcing applications to spontaneously crash or hang — requiring the
application to be restarted. Our job submission demo makes use of a new web server technology
(Apache’s Tomcat server) which facilitates remote connections to a server, but is still suffering

You are here: Demonstrations / Software £ Home

Demonstrations
Java Applets

Job Submission

Interactive Java applications that

demonstrate the usefulness and cabilities
of our software. Included are demos for
Caonvolution, Cwnamic Time -Yarping,
Filter Design, Pattern Recognition,
FaleiZera Analysis of Linear Systems, and
a Spectrum Analysis tool.

A callection of audio demos that contain
audio—enhanced web pages that
demonstrate various interesting
phenomena related to speech production
and perception. Included are demos for
speech recagnition units and transcription
challenges.

A Speech Recognition Experiment Server
that lets vou select from industry —standard
evaluation tasks or upload your own data.
“iou can alzo view the results over the weh,

and compare your results to a local
implementation.

Our interactive tools section includes a Tel-Tk
bazed graphical demo of the trace projectaor
speech recognition system. Also included is
our DARPA Communicator dema in which a

| Tcl=Tk hased graphical interface serves as a

frant end far the decoder.

Hote: All applets on our web site now reguire 2 Java plug-in that supports Jawa 2 code. This is necessary w0 we can bring

state-of —the—art Java features to you which are not currently supported by browser vendaors such as Metscape. You can find the
appropriate plug-in at hitpodjavasun.comndoroduetsiolugin, We have generated a list of steps necessary for installing the plug—in in a Unix
enviranment. For additional information or help with your installation please contact helpi@isip mestate edu.

£ Support £ Site Map £ Caontact Us £ 15IP Home

Figure 6. A screenshot from our web page that consolidates all of our on-line demonstrations.

MISSISSIPPI STATE UNIVERSITY

PAGE 10

NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

from robustness problems.

Throughout the course of this project, we have developed and enhanced six Java applets that
demonstrate concepts ranging from convolution to pattern recognition. These applets can be split
into two categories: digital signal processing (DSP) and machine learning. The DSP applets
include convolution, digital filter design, pole/zero analysis and spectrum analysis. The machine
learning applets include dynamic time-warping and pattern recognition. A screenshot from the
Java Applets page is shown in Figure 7.

The Pattern Recognition applet is a good example of what has been accomplished with these
applets. This applet allows users to define custom data sets, or to choose from an inventory of
classic data sets, and then to apply different pattern recognition techniques to the data. Users can
choose from conventional techniques such as Principle Components Analysis and K-MEANS
clustering, or more advanced algorithms Linear Discriminant Analysis. In Spring’03, we are
adding two new techniques, Support Vector Machines and Relevance Vector Machines, which are
considered on the leading edge of machine learning technology.

This applet allows users to explore how these algorithms work. Step by step instructions showing
intermediate calculations are shown in a dialog panel on the applet. Users can step through the
algorithms, or run them to completion. Decision surfaces and classification results are presented
as well. Users can also apply different algorithms to the same data sets to see how the results vary
as a function of the algorithm. This applet has been highly successful and extremely stable. We
plan to continue evolving this applet to support new research into machine learning techniques.
We are in the process of releasing a new version of the applet that includes a completely
reengineered control structure to make it simpler to add new algorithms.

You are here: Applets / Demonstrations / Software / Home
Java Applets

Convolution: an interactive and animated Pattem Recognition: a wisual introduction
demaonstration of corvolution for linear, ~ 5 i | to the woarld of statistical pattern

tirne —itvvariant systerns. This applet can be — | recognition. This tool presents the

uzed to solve homework problems and to view ;i fundarnental algorithms that are used to
the creation of a solution step by step. The == classify data. It allows users to create data
USEr CAN programm ranges and even create — == sets, classify them, and compare several
customn signals. P—— classification schemes simultaneously

Dynamic Time -Warping: learn how dynamic Pole/ZFero Analysis of Linear Systems: a
programming is applied to the problern of - tool which visually relates the location of
tirne —warping and comparing a speech signal poles and zeros in the s-plane and z-plane
to a recognition model. This applet to the system response. Provides for direct
incorporates acoustic distance measures and ranipulation of the pole and zero locations,
allows you to mix and match models and ahalysis of the systern frequency and
speech data. - impulse responses, and a three dimensional
= view of the polefzera interaction.

Whm'S-NQ\‘\' Filter Design; a hands—on approach to Spectrum Analysis; a tool providing
exploring digital filter design from a s ; interactive spectral analysis of user —defined

parameter —driven perspective. This applet i signals. This toal pravides insight into

incorporates many standard filter design > Fourier techniques and effects of

. 1 algorithms alang with user —defined filter windowing.
’ parameters manipulation. | i

Help ¢ Support ¢ Site kMap 7 Contact Us 7 15IP Home
Figure 7. A screenshot from our Java Applets page that consolidates all of our applets. Our flagship applet

is the pattern recognition applet, which demonstrates advanced concepts such as linear discriminant
analysis and support vector machines.

MISSISSIPPI STATE UNIVERSITY PAGE 11 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

E. Workshops

The last major category of effort which we describe here is our workshops. For the past three
years of the research project, we have hosted two annual workshops. In January, we host a two-
day software design review focused on industrial partners and technologists. In May, we host a
one-week training workshop focused on graduate students. These workshops have been described
in previous years of this report. Here we focus on a summary of some key issues related to this
type of activity, as well as some unique capabilities introduced in the last year of this project.

Participation in these workshops has been consistent. We originally planned for a dozen
participants, but ended up hosting about twice that number. Our single largest group of
participants, as expected, has been entry-level graduate students. Most have been from small
research groups wanting to get started in this area. Hence, we have fulfilled our goal of increasing
access for research groups not coupled into mainstream speech recognition research. Several of
these students have maintained a long-term collaboration, representing MIT, Georgia Tech, and
University of California at San Diego. The latter has been the most serious level of collaboration,
resulting in a proposed joint research project with the student, who is now a new faculty member
starting a career in academia at Federal University of Para in Brazil. The plan is for his group to
continue development of new features for recognition system, including maximum mutual
information estimation (MMIE) training [22], under funding from a joint program between the
Brazilian government and NSF.

Our interactions with MIT have included participation of one of their graduate students, and
transfer of knowledge of how to develop conversational speech systems. Their interest in this case
was more focused on procedures and data rather than direct use of our software (since they have
their own technology). Our interactions with Georgia Tech have been with a small research group
attempting to look at more fundamental signal processing and pattern recognition research. We
were able to help them reach a point where their research could be easily and efficiently added to
our system, and evaluated on a state of the art benchmark. We have also developed relationships
with a number of other US institutions and European institutions that resulted in some level of
collaborative research and/or proposal writing.

Over the course of the three years we have hosted these workshops, we have been pleasantly
surprised by the level of industrial involvement. In the third year, due largely to the bad economy
and hi-tech downturn, participation of industry was down a bit. Nevertheless, we have seen
approximately 50% of our participants come from the industrial and government laboratory
sectors. In fact, in past years we had to limit the attendance of industrial partners to reserve
enough space for graduate students. Industrial participants are typically extremely motivated to
transfer this technology into their laboratories.

We also established a goal from the inception of the program to solicit underrepresented
institutions. Each year, we have had one participant from such an institution, which was well
below our target. In the first year of the program, we solicited over 100 underrepresented
institutions by email. In subsequent years, we sent personalized letters and followed up by email.
We also aggressively contacted underrepresented universities within our state because we have
on-going relationships with some faculty at these institutions. Unfortunately, the success rate of
this approach was not impressive. We attribute this to a lack of qualified graduate students at these
institutions interested in speech research, and, as one participant explained to us, an intimidation
factor (*would they be competitive at a place doing significant research”). In retrospect, | think

MISSISSIPPI STATE UNIVERSITY PAGE 12 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

increasing underrepresented participation requires a more active research collaboration first, so
that interested students can be gradually introduced to the topic area. Our experience with North
Carolina AT&T (formerly an HBCU), which is involved in a DARPA speech research program,
seems to support this conclusion though our sample size is obviously small. | suspect face to face
meetings at these universities prior to the workshops would help also.

Our workshops have enabled us to develop an impressive body of speech recognition educational
material on the web. All lecture notes and laboratory exercises are available on-line at [23,24].
The one-week training workshop is structured according to the schedule shown below in Figure 8.
Morning lectures focus on theory and theoretical aspects of implementation issues. Afternoon
sessions focus on hands-on self-paced laboratories.

It is interesting to note how our experience with these workshops has evolved our teaching style.
In the beginning, we implemented a “leave no one behind” strategy in which we tried to keep the
entire class on the same page in a lock-step fashion. However, since the participants have a diverse
set of skills and interests, this quickly became unmanageable since some users were unfamiliar
with basic Unix operating system issues. Within a short time, people were skipping an assignment
or not finishing things. The range of users attending the workshop was surprising. In the latter
years of the workshop, we designed the labs to be much more self-paced, and provided solutions
and intermediate results so failure on one part of a lab would not impede progress on the next part.
Our feedback collected at the end of the workshop verified our intuitions that this was a more
successful approach even though it meant some of the participants would not work all laboratories
to their completion.

beasurements

08:30 - 10:00 § 4.1: Signal Processing Statstical Modeling Joe Picone
Typical Implementations

10:00 - 10:30 EREAEK
Algorithins and Fecipes

10:30 - 12:00 § 5.1: Transformations Front-End Cveniew Hualin Gao
A Graphical User Interface

TUESDAY 12:00-13:30 LUNCH (SELF-FAY)
MAY 14 Generaung Features

1330 - 1500 § 5.2 Evaluations Eunning Evaluations Hualin Gao
Adding Mew Algoathms

1500 - 15:30 EREAEK
Euilding Digit Recognizers

1530 - 1700 ¢ 53 TIDIGITE Evalnating Mew Front-Ends Hualin Gao
Picone’s $20 Challenge

18:00 - 21:00 SPORTS NIGHT

Figure 8. An overview of the agenda for a typical day (signal processing) in our one-week summer
workshop. Morning lectures are followed by afternoon laboratories.

MISSISSIPPI STATE UNIVERSITY PAGE 13 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

F. Summary and Future Work

The original goal of the CARE program was to build lasting infrastructure to support research
with strong experimental needs. We have presented over the past four years a significant amount
of evidence that ISIP has achieved this goal in the area of speech recognition. Our web site and
commitment to education and resource development is unparalleled in the community. We now
have a highly flexible and modular speech recognition system in release, and are constantly
adding features to it.

It is important to reflect upon our successes and failures over the course of this project. For
example, | believe we have done a good job of software development and customer support. On
the other hand, our vision for Java-based tools has been a struggle to implement. Our
programmers have grappled with Java language problems from day one, and have not been
productive in that programming environment. The development of high quality documentation,
which is essential to any such research program, has also been a major struggle, and much harder
to achieve than we expected. It requires staff who are fluent in the technology and interested in the
software engineering side of the research. Such people are hard to find. Reliance on students for
technical documentation has been a problem.

Over the next year, we plan to continue making substantial improvements to our software. Two
important features that need to be added are maximum likelihood linear regression [25] and
maximum mutual information estimation [22]. A first pass of an MLLR implementation has been
completed but not released yet. An MMIE implementation is planned using a collaboration with
Federal University of Para in Brazil. We are also continuing work to make the system more
efficient, and will release a new version of the system that is 5x faster shortly. Finally, we are
exploring the integration of speech and natural language processing in two new research projects,
and hope to begin adding capabilities to support dialog systems to our software.

G. REFERENCES

[1] “GNU General Public License,” Free Software Foundation, Inc., 59 Temple Place —
Suite 330, Boston, MA 02111, USA (sktp://www.gnu.org/copyleft/gpl.htinl

[2] N. Parihar, J. Picone, D. Pearce, and H.G. Hirsch, “An Analysis of the Aurora Large
Vocabulary Evaluation,” submitted to the European Conference on Speech Communication
and Technology, Geneva, Switzerland, September 2003.

[3] “ETSI ES 201 108 v1.1.2 Distributed Speech Recognition; Front-end Feature Extraction
Algorithm; Compression AlgorithmETS| April 2000.

[4] D.Pearce, “Overview of Evaluation Criteria for Advanced Distributed Speech
Recognition,” ETSI STQ-Aurora DSR Working Group, October 16, 2001.

[5] N. Parihar and J. Picone, “DSR Front End LVCSR Evaluation,” AU/384/02, Aurora
Working Group, Dec. 200({tp://www.isip.msstate.edu/projects/aurpra

[6] J.Picone, “Fundamentals of Speech Recognition: A Tutorial Based on a Public Domain
C++ Toolkit,” Institute for Signal and Information Processing, Mississippi State University,

MISSISSIPPI STATE UNIVERSITY PAGE 14 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Mississippi State, Mississippi, USA, June 2001 (b&p://www.isip.msstate.edu/projects/
speech/software/tutorials/production/fundamentals/current/

J. Picone, “Internet Accessible Speech Technology,” National Science Foundation, May 25,
2001 (sedttp://www.isip.msstate.edu/publications/reports/nsf_care/3001/

N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary
Conversational Speech RecognitiofZEE Signal Processing Magazineol. 16, no. 5,
pp. 84-107, September 1999.

K. Huang and J. Picone, “Internet-Accessible Speech Recognition Technology,” presented
at the IEEE Midwest Symposium on Circuits and Systems, Tulsa, Oklahoma, USA,
August 2002.

B. Jelinek, F. Zheng, N. Parihar, J. Hamaker, and J. Picone, “Generalized Hierarchical
Search in the ISIP ASR SystenFtoceedings of the Thirty-Fifth Asilomar Conference on
Signals, Systems, and Computersl. 2, pp. 1553-1556, Pacific Grove, California, USA,
November 2001.

K. Huang and J. Picone, “Network Builder — An LVCSR Configuration Tool,” Institute for
Signal and Information Processing, Mississippi State University, Mississippi State,
Mississippi, USA, March 2003 (selttp://www.isip.msstate.edu/projects/speech/software/
tutorials/monthly/2003_03/

I. Alphonso and J. Picone, “"Annotation Graphs,” Institute for Signal and Information
Processing, Mississippi State University, Mississippi State, Mississippi, USA, March 2003
(seehttp://www.isip.msstate.edu/projects/speech/software/tutorials/monthly/2002 09/

“Documentation,” Institute for Signal and Information Processing, Mississippi State
University, Mississippi State, Mississippi, USA, March 2003 (sebttp://
www.isip.msstate.edu/projects/speech/software/documenjation/

“Software: On-line Tutorials and Courses,” Institute for Signal and Information Processing,
Mississippi State University, Mississippi State, Mississippi, USA, March 2003H&pe/
www.isip.msstate.edu/projects/speech/software/tutoyials/

“Introduction to Algorithms,” Institute for Signal and Information Processing, Mississippi
State University, Mississippi State, Mississippi, USA, March 2003 (da&p://
www.isip.msstate.edu/projects/speech/software/documentation/clags/algo/

“Algorithm: Energy,” Institute for Signal and Information Processing, Mississippi State
University, Mississippi State, Mississippi, USA, March 2003 (sebttp://
www.isip.msstate.edu/projects/speech/software/documentation/class/algo/Energy/

“Convolution,” Institute for Signal and Information Processing, Mississippi State
University, Mississippi State, Mississippi, USA, March 2003 (k#&p://www.isip.msstate.

MISSISSIPPI STATE UNIVERSITY PAGE 15 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

edu/projects/speech/software/demonstrations/applets/util/convolution/ciurent/

“Remote Job Submission,” Institute for Signal and Information Processing, Mississippi
State University, Mississippi State, Mississippi, USA, March 2003 (s //www.isip.
msstate.edu:8080/isip/jsa/index)sp

J. Shaffer, J. Hamaker and J. Picone, “Visualization of Signal Processing Concepts,”
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processingpp. 1853-1856, Seattle, Washington, USA, May 1998. ICASSP paper no. 2

“Java Applets,” Institute for Signal and Information Processing, Mississippi State
University, Mississippi State, Mississippi, USA, March 2003 (k&e://www.isip.msstate.
edu/projects/speech/software/demonstrations/applets/

“Java Applets: Pattern Recognition,” Institute for Signal and Information Processing,
Mississippi State University, Mississippi State, Mississippi, USA, March 2003H&pg/
www.isip.msstate.edu/projects/speech/software/demonstrations/applets/util/
pattern_recognition/current/

P.C. Woodland and D.dv¥ey, “Large Scale MMIE Training for Conversational Telephone
Speech RecognitionProceedings of the Speech Transcription WorksHogpllege Park,
Maryland, USA, May 2000.

“Speech Recognition System Design Review,” Institute for Signal and Information
Processing, Mississippi State University, Mississippi State, Mississippi, USA, January 2002
(seehttp://www.isip.msstate.edu/conferences/s)sdr/

“Speech Recognition System Training Workshop,” Institute for Signal and Information
Processing, Mississippi State University, Mississippi State, Mississippi, USA, March 2003
(seehttp://www.isip.msstate.edu/conferences/systw

C. J. Leggetter, and P. C. Woodland, “Flexible Speaker Adaptation Using Maximum
Likelihood Linear RegressionProceedings of the ARPA Spoken Language Technology
Workshop Barton Creek, Texas, USA, February 1995.

MISSISSIPPI STATE UNIVERSITY PAGE 16 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

08/15/00 — 08/14/01: RESEARCH AND EDUCATIONAL ACTIVITIES

In the third year of this project, we focused our efforts in two core areas:

» Java Applets : overhauled our Java interfaces to use servlet technology, and launched two new
applications: feature extraction and recognition.

» Production System Release : completed two alpha releases of a new version of the production
system that greatly enhance its flexibility and functionality. Extended the interface to support more
diverse file formats (both input and output). Integrated our front end application building software.

We also continued activities in the areas central to the overall research program:

» Foundation classes : added many algorithms at both the math and signal processing layers of the
system. Introduced classes to handle general statistical pattern recognition. Revamped many of the
underlying classes to make better use of templates and templatized functions.

» Workshops : hosted a software design review in January 2001, and two one-week training
workshops held in May (‘00 and ‘01). An impressive collection of on-line resources related to these
workshops is publicly available.

» Software engineering : upgraded our software development process to use a hew problem-tracking
tool that was written specifically to deal with bug life-cycle issues. Streamlined our support activities
and improved the ease of use of our distribution and verification procedures.

The workshops continue to be extremely successful as demand has far surpassed our original
estimates for enrollment (and taxed our facilities). We have seen a dramatic increase in the
number of commercial users of the recognition system. In fact, some of our most active users are
now commercial users. On-line support has improved, but still remains a challenge given the wide
range of experience levels from the users.

A. Java Applets

A key component of our CARE project is the development and operation of an Internet-based job
submission facility [1]. This web site allows users to experience speech technology through an
easy-to-use web interface that does not require installation of local software. The main reason for
this is that the infrastructure required to run a speech recognition experiment can be considerable
both in terms of computing resources and intellectual resources (language models, dictionaries,
etc.). One important goal for the third year of the project was to bring on-line a large number of
PC-based compute servers to serve as the computational engines for this applet, and to make these
machines available through this job submission facility.

We have created this facility, and have a large number of servers available for users [2], as shown
in Figure 1. These machines have dual-Pentium processors (typically, 600 MHz or faster), large
memories (typically 1 GByte), and run the Sun Solaris operating system. Jobs are distributed
amongst them by some simple load balancing software that attempts to maintain a reasonable job
load on each machine. Our web server handles the initial interactions and job distribution.

As part of our goal to enhance this applet, we embraced the Java servlet technology [3] — a new
extension of the Java language designed to make it much easier to pass data to/from a user’s
browser. Given our needs to do fairly sophisticated client/server communications, and our
concerns about security, we needed a more powerful interface than that provided by languages
such as html or cgi. Servlet technology, though quite new, has been embraced by web server
technology providers such as Apache, and will become an important industry-wide standard

MISSISSIPPI STATE UNIVERSITY PAGE 17 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

100% T, T T T T T T T e e e e e 00
===

100%, T—— 100%,
T 5% o TE%
- S0%

S0%

25% - 25%

0% 0%

o006 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

Figure 1. A view of the ISIP remote job processing facility. The machines shown in the bottom row,
numbered 200 — 216 are available for remote jobs submitted through the Java applet. These machines
represent various generations of dual Pentium processors ranging in speed from 333 MHz to 800 MHz,
with a maximum of 1G of memory. The Sun Solaris operating system is used on all machines.

component of a web server. We spent time this year learning this programming paradigm, and
reshaping our existing job submission applet to make use of its features. Previously, we used
Java’'s Remote Method Invocation (RMI) protocol, and found it wasn'’t sufficiently powerful.
Servlet technology is now being used in several places on our web site.

The new job submission applet [1] has a dramatically improved interface, as shown in Figure 2. In
this version, users select the type of experiment desired from the front page, and then traverse
subsequent pages to configure and run the experiment. Users can edit parameters, listen to data,
configure the particular data sets to be analyzed, or even upload their own files. Servlet
technology has been indispensable to making all this work in a seamless interface. The only
downside is that the current version of the servlet compliant server (an interim release by Sun) is a
bit slow and lacks robustness. However, an official release of a servlet compatible server by
Apache is expected to resolve most of these problems.

The new version of the applet supports two important applications: feature extraction and speech
recognition. Feature extraction was introduced as a dedicated application because this task has
been one of our most common support problems. Inexperienced users often have trouble settling
details such as byte-ordering, sampled data encodings, compression, etc. Hence, we provide users
an ability to process standard files, such as the DARPA Switchboard Corpus, or to upload their
own files. The latter feature allows users to compare their local installations to our reference
implementations on their own data. It also allows us to efficiently interact with them on their
specific problems since we can both view (and modify) the same experiment. The interface for the
feature extraction mode of the applet is shown in Figure 3.

MISSISSIPPI STATE UNIVERSITY PAGE 18 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

[#] Metscape: Internet-fAccessible Speech Recognition Experiment Serwver]
File Edit Yiew Go Communicator He: gz |
A |
Internet-Accessible Speech Recognition Experiment Server
Welcome to the Institute for Sighal and Information CPU Activity For ISIP’s Compute Server Cluster
Processing’s Internet-accessible speech recognition
experiment server. The goal of this application is to teach 100% [T T r r r r r r r ™ 100%
you about speech recognition technology by making it easy d J : : : : : : : :
faor you 1o run comples experiments. From here you can TR RN I T
process data selected fram incustry —standard evaluation : 0 ' : ' : ' : ' :
tasks ar upload your own data. You can view the results BN BN
over the web, and compare your results to alocal D% !] ! : ! : ! : ! : Sk
implementation. %ou can also run the system in a wariety of .] :] :] :] :
modes to learn details about the technology. 23% ":".":"":"":‘"':‘"':‘"':‘"':‘"':" 23%
All software vou will use in this demo is available in the 0% ; : ; ; ; ; ; ; ; 0%
public damain from aur web site. See public domain speech 002 003 006 200 201 202 203 204 205 204
recognition software for more details about this project.
Whether you are looking for software, demonstrations, or 100% [T : . : . : . : . ™1 100%
tutarials, you should find it somewhere on our site. Use our : : : : : : : : : :
search ending to gquickly find things. If wau can't find bl IR AT SR L IS T T SR I L I TP
something, send ernail to helpiEisio.] i : i : i] i]]
To begin, select the type of experiment vou want to run, S __E-___E-___E-___E-_"E""E""E""E""E""E" 0%
and then click "Go!". . ! ! ! ! ! ! ! ! !
25% e hatiees oo s oSl ietlis oSty mharbohes oshalahs ey 25% i
Feature Extraction | Gu:u!| I s s s s s s s s | (0
207 208 209 210 211 212 213 214 215 216
]
- q T LY
= e A8 %aep @ 2

Figure 2. The front page of the remote job submission applet is shown. On the right, users can view the
CPU activity of the servers that are accessible. On the left panel, users select the type of experiment.
Subsequent menus allow configuration of this experiment and monitoring of the job. All results and
intermediate calculations are accessible from the web. Users are emailed when the job completes.

The second application we have introduced is an upgraded version of our recognition decoding
applet. This application again allows users to perform recognition on a standard set of prestored
utterances, or to upload their own utterances. The main page of this portion of the applet is shown
in Figure 4. At this stage, users essentially are selecting a set of models to be used for recognition.
Parameters for the recognizer can be modified in subsequent menus. Results are returned in the
form of a URL that allows the user to access an experiment directory on our servers. The
recognition applet was introduced for the first time at SRSTW’01, and was well-received.

B. Production System Release

The prototype system [4], which is a fully functional speech recognition system, has been in
release for over two years as a proof of concept of basic algorithm ideas. It has been used in
several formal speech recognition evaluations [5-7], and delivers state of the art performance. In
the third year of this project, we have focused on delivering a new version of this system, which
we refer to as the production system, that is built on top of our powerful foundation classes. We
have made two releases of this version of the system and solicited user feedback on desired

functionality. We have also begun running experiments with this system and benchmarking its
performance relative to the prototype system.

MISSISSIPPI STATE UNIVERSITY PAGE 19 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

Your experiment (D is DO0DE13. Data Sets: Parameters:
Choose your parameters and data sets from the User-Defined i MFCC - | Edit...l
chioices to the right. %ou can upload your own datain

a 16-hit linear raw file format {little Endiandintel byte _ .
format using the User—Defined selection. Upload User-Defined Data:
Alternately, you can select files from our server using
the list boxes below . When you are ready to run the

experiment enter your email address and click Skart i
Experiment. Your email address is used to inform you Enter Email Address:
of the status of your experiment.

.t

Brnwse...l Llplnadl

‘ Start Experiment'

s

Files Listing: Selected Files:

il

<- fdatabases available from our server -= Hame <- helow are the files you have selected -=
A

switchhboard

alphadigits T—

F &

Del

Clear

i

Figure 3. The feature extraction page allows users to select files from existing databases, or upload their
own files. The parameters for the front end can be configured by selecting Edit button in the upper right of
the menu. Users can browse their local filesystems when selecting files to upload.

TiDigits

The TIDigits corpus consists of more than 25 thousand digit sequences spoken
by aver 300 men, women, and children. The data was collected in a quiet studio
environment and digitized at 20 kHz. Howewver, most experiments begin by
downsampling the data to & kHz.

AlphaDigits

The Alphadigit corpus is a collection of about 75,000 examnples from 3,031
talkers saying strings of letters and digits over the telephone. The data was
recarded directly off of a digital T1 phone line without digital -to-analog or
analog -to-digital conversion at the recording end. An SkHz sampling rate was
uzed.

Resource Management e e e S e
The Resource Management corpus consists of prompted queries in wvery low | - “ '* W “*—ﬂ
background noise conditions. The prompts were chosen from a limited grammar.

Fecarding was carried out using a headset microphone and simultaneously
digitized at 20 kHz. Each recording session was then downsampled to 16 kHz. “List locations and speeds for submarines
that are in ‘West Persian sea.”

Switchboard i o ' MEEe I
The Switchboard corpus consists of spontaneous conversations averaging 6 o m—.—‘**—-_._.
minutes in length. Owver S00 speakers of both sexes from every major dislect of | " ’

American English are represented. The data is a digital version of speech signals s Al
collected directly from the telephone network over T1 lines by automatic “What are your mzin] music interests? "
switching software.

Figure 4. An excerpt from the interface to the speech recognition evaluation applet. This page allows users
to select data and run a recognition experiment. Most parameters for the recognizer can be configured
from subsequent pages.

MISSISSIPPI STATE UNIVERSITY PAGE 20 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

The production system is built from a hierarchy of software modules implemented in C++ that
provide a wide variety of generic mathematical and data structure-oriented operations.
Collectively, these modules are know as the ISIP Foundation Classes (IFCs) [8]. The hierarchy is
shown in Figure 5. At the highest level, the production system employs a class called
Speech Recognizer, that accepts signal data as input and produces output such as a transcription.
This class in turn invokes a pattern recognition class, HiddenMarkovModel, to perform a
particular type of speech recognition. These two levels of the system are highlighted in Figure 6.

The Hidden Markov Model class is built upon a powerful search library that implements a
dynamic programming-based hierarchical search [9]. This search algorithm has been under
development for several years, and provides an ability to emulate a wide variety of approaches to
speech recognition through a user-defined hierarchy of state machines. It also mixes network
decoding and N-gram decoding in a novel way that will support an interesting mixture of
knowledge sources in a single probabilistic format. The alpha release currently only supports
context-independent models and network decoding.

The production decoder reads the decoding process configuration from a parameter file specified
as a command line option. This parameter file is in Signal Object File (Sof) format. The
parameter file contains a full front-end and hidden Markov model (HMM) specification. The
HMM specification contains an algorithm and implementation field, the number of levels in the
search hierarchy, the model file location and a desired output description. Beam width values can
be also specified. A typical parameter file is provided in Figure 7.

Speech Recognition (/asr):
Pattern Recognition (/pr):
Search Algorithms (/search):
Signal Processing (/sp):
Statistics (/stat)
Algorithms (/algo):
Multimedia (/mmedia):
Shell Interactions (/shell)
Data Structures (/dstr):
Numeric (/numeric):
Math(/scalar/vector/matrx):

Input/Output/Files (/io):

System-Level (/system)

Figure 5. The ISIP Foundation Classes (IFCs) represent a hierarchy of software modules designed to
make implementation and modification of complex systems straightforward. New to this release is the
numeric library, which implements some standard mathematical functions.

MISSISSIPPI STATE UNIVERSITY PAGE 21 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

LEVEL 0: /asr LEVEL 1: /pr
Speech Recognizer Hidden Markov Model
Classes [Image Recognizer, [Neural Network,
Music Recognizer] Mixture of Experts]
Algorithms HMM, NN, NLP VITERBI, BAUM-WELCH

 opens log file « determines the processing mode
. loads models (decode or train)

(algorithm-specific) e creates supervision grammar for

i training
* loops over files

e creates language model for

* executes a compute decoding

Features method for a file
(algorithm-specific) « handles model initialization

 performs core frame-based
statistical modeling computations

 loops over a file and processes
each frame

Figure 6. An expanded view of the functionality provided in the top two levels of the production system. It
is here that the system branches on fundamental pattern recognition approaches. Such flexibility is one
thing that makes the ISIP very unique amongst existing speech recognition systems.

The decoder output configuration can be modified from the command line. We follow a rule that a
command line option always overrides any option read from the parameter file. An input file list
can be specified from the command line. The three output modes that can be specified from the
command line are: single file (FILE), output file list (LIST), and input list transformation
(TRANSFORM). The format given below specifies the output mode from the command line:

e -output_mode <FILE, LIST, TRANSFORM>: output mode specification can either be a file, a list or a
transformed input list

Examples of typical command lines are shown below:

(1) isip_recognize filel.raw file2.raw -p param.sof -output_mode FILE -output_file hypothesis.out
(2) isip_recognize filel.raw file2.raw -p param.sof -output_mode LIST -output_list out_list.sof
(3) isip_recognize filel.raw -p param.sof -output_mode TRANSFORM -output_dir output -dir_pres 3

In (1), the FILE mode outputs all hypotheses to the single output file specified bgutput_file
command line option. The output hypotheses are written to thdypethesis.outin (2), LIST

mode generates one hypothesis per output file. The list of these output files is specified by the
output_listoption. The fileout_list.sofcontains the locations of output files.

In (3), the TRANSFORM mode outputs hypotheses to e subdirectory inside the existing
output directory specified by theutput_dir N is specified by thedir_pres_levecommand line
option. TheN subdirectories are formed as same as the correspohdimgut subdirectories. For
example, if the input file is irisip/data/examplétest/boyg/bg_1190039a.raywthe output will
be placed in the fildoutpuftest/boy/bfpg_1190039a.sofin this caseN is 3. Here the sub-
directory structurétest/boy/bgis preserved.

MISSISSIPPI STATE UNIVERSITY PAGE 22 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

/@ Sof v1.0 @ \\

This is the parameters file for the production system

@ FrontEnd 0 @

name = "AudioFrontEnd";

audio ={
byte_order = BIG_ENDIAN;
num_channels = 1;

h

frame_duration = 0.01;

target = "BASE&D&A";

output_mode = "SOF_FEATURES_TEXT";

@ Algorithm 1 @

name = "WINDOW",

algorithm = RECTANGULAR;
duration = 0.025; alignment = LEFT;

@ Algorithm 2 @
name = "ENERGY",
implementation = LOG;

@ Algorithm 17 @
name = CoefficientLabel;
variable = "BASE&D&A";

@ DiGraph<Long>0 @
weighted = true;
vertices =

{0, {O}},

{1, {13},

{2, {23},

arcs =
{0, 1, 0},
{0, 2, 0},
{1, 3, 0},

@ HiddenMarkovModel 0 @

algorithm = "DECODE";

implementation = "VITERBI";

num_levels = 3;

model_file = "$ISIP_DEVEL/doc/examples/data/models/tidigit_preview.sof";
output_mode = "FILE";

output_file = "hypotheses_302010.out";

beam width at the 2-nd level
@ beam 20 @

value = 300;

beam width at the 1-st level
@beam 10@

Kvalue = 200; //

Figure 7. An example of the Sof version of the recognizer parameter file. This format is temporary and
comprises a representation of the core information. More flexible formats supported by generalized parsers
will be available soon.

MISSISSIPPI STATE UNIVERSITY PAGE 23 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

Additional facilities accessible by the command line specification are:
 -help: displays a help message,

» -verbose <NONE, BRIEF, DETAILED, ALL>: specifies the different verbosity levels about the
decoding process,

« -verify. verification mode flag - no decoding is done in this mode. This mode verifies the availability
and format of all required input files. It also generates output files.

« -log_file report.text: system generates the log file instead of printing information about the decoding
process to console,

» -debug_level <NONE, BRIEF, DETAILED, ALL>: debugging information level - specifies the amount
of debugging information generated by the system.

These modes have been provided to facilitate debugging and to minimize the number of user
configuration errors. Verify mode is particularly important because time-consuming runs can be
tested before a large amount of time is invested in an experiment. This mode is modeled after the
Unix “make” facility.

Performance of the production system is comparable to the prototype system, which is extremely
encouraging given the increased overhead of the production system (due to its flexibility). It is
hard to directly compare these results to the prototype system since there are significant
differences between the two. For example, the production system does feature extraction
internally while the prototype system does feature extraction with a separate utility. Nevertheless,
we can note that the production system is only about 50% slower than the prototype system on
decoding of TIDigits, which is very respectable given the flexibility of the system. Further, the
production system is much more efficient in terms of memory use than the prototype, because the
prototype system in network decoding is not able to effectively prune state-level histories. The
prototype system requires at least an order of magnitude more memory for most conditions.

C. Foundation Classes

An overview of the structure of the foundation classes is shown in Figure 5. This year we have
focused on higher-level libraries such as Search and Pattern Recognition, which are integral parts
of the new version of the recognition system. In the process of developing these, we made
significant modifications to our Algorithm classes, which are the core the signal processing
components of the system. These modifications, in turn, allowed us to significantly simplify some
of our supporting tools, such as the TransformBuilder show in Figure 8.

In the process of advancing the higher levels of the system, we have also been able to simplify
lower levels of the system using some newer features of C++. In an effort to consolidate the
features of C++ we are dependent upon, we developed an on-line tutorial of aspects of C++ that
we find extremely important and useful [10]. This tutorial leads users through the syntax, provides
examples linked to actual ISIP code, and references sections from a definitive reference textbook
in C++ [11] for further reading. This tutorial has been a very useful instructional aide for our
undergraduate student programmers, and was actually authored by one of our undergraduates.

Through a combination of newer features of the language that are now supported by the compilers
we use (GNU/EGCS gcc), and some novel code generation techniques implemented in Make
files, we have been able to dramatically reduce the code size of our lower level classes by relying

MISSISSIPPI STATE UNIVERSITY PAGE 24 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH...

File Edit Data algorithms Special

Help

S8M

-‘-‘-‘-‘-‘\‘-‘-‘-‘-""‘N-.

WM

L
=
m

EME

CEP

WM

MAs

CON

Chl

Chl

CON

' Bas

| »

-

1]

| ¥

Figure 8. An example of a front end created using our

OCTOBER 31, 2002

on the make process to generate data-
specific versions of the class. This has

made maintenance and support of

these classes much easier, and made
the entire Math class package much

more elegant.

We had also been struggling recently
with the extensibility of the Algorithm
classes in terms of issues such as
operation of these classes on abstract
data types. For example, some classes,
such as those that perform linear
prediction analysis, can operate on
several types of data (e.g., signals,
autocorrelation coefficients, and
prediction coefficients), can produce
different types of outputs (filters,
temporal sequences, frequency domain
representations, etc.), and can use
different algorithms to perform such an
analysis. Our most recent attempt at
supporting this type of functionality
uses explicitly defined input and output
data types[12], and appears to be
sufficiently flexible. We are now able
to prototype a wide range of front ends
using the tool shown to the left in
Figure 8, and to implement them using
our generic signal processing tool
isip_transform

These components are now integrated
into the speech recognition system as
well. The recognition system is

capable of performing recognition on a
variety of input streams, including

sampled data files, industry-standard
audio formats, and feature vectors. The

interface building tool. Users can flow chart algorithms and

generate the required code automatically. latter format is extremely important

because it allows non-speech
recognition users to use this technology for other pattern recognition applications. The integrated
front end also allows users to generate derived feature vectors, such as derivatives of features,
inside the recognizer, rather than storing these in external files. Considerations such as these result
in significant disk space savings, and improve ease of use of the system.

MISSISSIPPI STATE UNIVERSITY PAGE 25 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

D. Workshops

In January 2001, we hosted our second annual design review workshop [15]. Attendance for this
workshop tends to be light, and included 14 participants representing 6 universities and
5 industrial sites. The primary functions of this workshop are to review our software design and to
solicit the community for input on new features. The workshop is a two-day event that includes a
half-day of training. A complete archive of the workshop, including presentation slides, is
available on-line at the workshop web site [15].

Feedback from this workshop was generally positive. Some examples are shown below in
Figure 9. Several good suggestions flowed from this workshop, including a need to place a greater
emphasis on reproducible benchmarks. The signal processing software and foundation classes
continue to be an attractive component of the system, which is probably more an indication of the
type of people attending the workshop (engineers vs. computer scientists) than the relative
success of a particular component of the system.

Our second workshop, which is a major focus of this research program, is a one-week training
workshop geared towards entry-level graduate students pursuing research into speech. Last year,
when | submitted this report, it was prior to holding our first summer workshop. This year, |
delayed the submission of this report until after we hosted our second workshop. We now have
had two very successful summer workshops, and are in a position to comment on the effectiveness
of this forum. Of course, all materials related to these workshops, including lecture notes and lab
exercises are on-line at the respective web sites for these workshops [13-16]. Feedback for the two

K.SW engr. was cool. but i think you should have focused less on that and more on the SW design (h
the Production SR. of course that’'s from a SW Engr. perspective...

...l don’t think my current research effort would be at all feasible if | didn’t have the ISIP system to build
on. I'm very pleased to have it available. The workshop helped me get a better understanding of how
the system is put together and the constraints under which it has been / is being built. | would have liked
to have spent more time on the IFCs, though. ...

...Workshop was very informative. | was really impressed with how well your students conducted each
session of the workshop. Now, relating to the SRSD, as a novice in this area, | felt well informed and
gained an enormous amount of knowledge about the system...

...It is very interesting to see the evolution of the ISIP system over the past few months. A lot of work
was done to improve the functionalities and the reusability of the classes...

...Congratulations for a very well organized workshop. | found it informative, helpful and enlightening.
Although | have used the ISIP recognizer before, now | have a much better understanding of it overall...

...I thought the workshop was very informative! All of the speakers were very knowledgeable and ex-
tremely helpful! Looking forward to using the software at our site....

...Good workshop. Excellent effort. We all anxiously await the production system. | would like to see
{nore about the class hierarchy and learn where to find classes/methods in the source tree... /

Figure 9. Samples of feedback from SRSDR’01. The second year of this workshop was a much more
efficient and effective operation.

MISSISSIPPI STATE UNIVERSITY PAGE 26 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

summer workshops is also available on-line at [17,18]. This year, we even broadcast live images
from the workshop using our web camera.

The format for the second summer workshop followed closely the format for the first workshop
(half-day lectures and half-day labs). However, we made significant changes to the laboratories
this year based on the feedback from last year’s workshop. Labs this year were much more self-
paced and open-ended, and required active participation from the users. From the feedback this
year, it is clear the lab sessions were vastly more successful. On the other hand, we did have some
problems with some mechanics related to downloads and installation of code. Based on past
experiences, we felt it was a good idea to have every participant download and install code.
Unfortunately, 24 simultaneous downloads from our servers taxed the network and took longer
than expected. Participants felt this was unproductive time. We need to reevaluate our process for
educating users about the finer points of installation and configuration.

Participation in the summer workshop this year was dominated by industry relative to last year.
SRSTW’00 included 18 participants from universities and 4 participants from industry.
SRSTW’01 included 9 participants from universities and 15 from industry. This skew occurred
despite heavy marketing of the workshop to graduate students through various forms of electronic
announcements. One possible explanation is that our system has matured to a point where it is
attracting significant industry interest. There is, of course, truth to this as a number of participants
this year explicitly discussed our interest in such commercial endeavors, and we know of several
companies developing products around pieces of the system.

On the other hand, it is clear that we aren't quite as successful as we had hoped in meeting our
goal of increasing the graduate student population in speech. To do this, we need to increase the
number of graduate students attending the summer training workshop. Discussions with students
who attended this workshop seem to indicate we need to do a better job advertising the workshop
to graduate students. What the best forum is to reach them remains a question. This year we sent
email messages to the department heads at the top-100 universities in the country, as well as 100
historically black institutions (HBCUs) with engineering to computer science programs (in
addition to posting to all relevant newsgroup, web sites, and community-wide mailing lists).
Apparently, these messages targeted at department heads are not getting forwarded to the
students. We need a better approach to reaching students. We are considering surface mailing
printed announcements.

E. Software Engineering

If there is one statement in this report that rings true, it is the following: “With every release of our
system, we accumulate more experience with the challenges of supporting research software in a
Unix environment, where things tend to be less standardized.” Last year, we took major steps
forward by introducing two key technologies into our software process: a formal report tracking
system and automatic configuration during installation. Both had profound impacts on our ability
to improve the quality of our software and the efficiency with which we worked. However, the
report tracking software proved to have to major drawbacks: slow response time for a large
database due to inefficient code, and no comprehension of the bug tracking and resolution process
in the basic interface.

Hence, we embarked on an effort to develop a simple, highly-customized bug tracking tool known
as Varmint [19]. Before doing so, we evaluated several industry-wide packages, and carefully

MISSISSIPPI STATE UNIVERSITY PAGE 27 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

analyzed successful processes used in leading software companies (such as Microsoft, where
several of our students worked as interns in Summer’00). Once we determined that none of the
existing tools met our needs (and that many companies use expensive commercial packages or
proprietary internal packages), we had two undergraduate programmers develop a tool. This tool
is now publicly available as part of our software distribution, and has been successfully ported to
at least two other groups within our university.

A screenshot of the tool is shown in Figure 10. This tool maintains bugs using a one database per
project format. The primary screen, shown in the background in Figure 10, displays all current
bugs and their status. Users can program their own queries using SQL-like commands (“Show me
all the open bugs in the current release.”). Bugs can be sorted in many modes. Perhaps the most
important view of the bug list is the view of all open bugs for the current release. It is part of our

| File Edit Wiew Action Query Help
Ciuary
5 =] g_l ¥ = El
Creatnd [Hodified Skatt Wum | flaen | pri i Sew ! Qwner s Te

aoon—_. :a—-_ 0 | it H g duncan AudioFile read fwriba with pipes

N~ |-, 0 =0 ik H [duncan Wrike 3 Bicrsnh class for bi-drechoral graph a

Juncan (FifmbiZs Ofe dé-sdnn o Cfed Laaph Class

Azzign Rafre=h

Figure 10. Screenshots from our bug tracking software tool known as Varmint. This tool is written in Tk/Tcl
for portability and uses a database tool (such as Oracle or mySQL) as a back-end. Its main virtue is that it
is customized to support tracking and resolution of a bug involving multiple programmers, and yet does this
with a minimum of operating system infrastructure. The net result is a tool that is fast, efficient, easy to use,
and equally important, easy to install.

MISSISSIPPI STATE UNIVERSITY PAGE 28 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

software development process to resolve all bugs before making a release. This tool has been
invaluable for managing open bugs, and for helping our student programmers to maintain a clear
vision for their priorities (a time management issue).

Like all good software, the Varmint tool has found its way into many other aspects of our project
management. We now organize all request management in our lab, including support requests
from help@isip and web site maintenance, using this tool. The ability to track and manage this
diverse set of needs from a single tool has proven to be invaluable.

F. REFERENCES

[1] K.Huang and J. Picone, “Internet-Accessible Speech Recognition Experiment Server,”
http://www.isip.msstate.edu/projects/speech/experimeMsssissippi State University,
Mississippi State, Mississippi, USA, May 2001.

[2] K.Huang and J. Picone, “ISIP CPU Load Statistichftp://www.isip.msstate.edu/data/
statistics/cpu_staisMississippi State University, Mississippi State, Mississippi, USA,
May 2001.

[3] J. HunterJava Servlet Programming’Reilly and Associates, Cambridge, Massachusetts,
USA, 1998.

[4] J. Hamaker, R. Duncan, N. Parihar, and J. Picone, “A Public Domain Speech
Recognition System, http://www.isip.msstate.edu/projects/speech/software/asr/
download/asrMississippi State University, Mississippi State, Mississippi, USA,
May 2001.

[5] R. Sundaram, A. Ganapathiraju, J. Hamaker and J. Picone, “ISIP 2000 Conversational
Speech Evaluation System,” Speech Transcription Workshop, College Park, Maryland,
USA, May 2000.

[6] B. George, B. Necioglu, J. Picone, G. Shuttic, and R. Sundaram, “The 2000 NRL
Evaluation for Recognition of Speech in Noisy Environments,” presented at the SPINE
Workshop, Naval Research Laboratory, Alexandria, Virginia, USA, October, 2000. SPINE

[7] R. Sundaram, J. Hamaker, and J. Picone, “TWISTER: The ISIP 2001 Conversational
Speech Evaluation System,” Proceedings of the Speech Transcription Workshop, Linthicum
Heights, Maryland, USA, May 2001.

[8] R.Duncan and J.Picone, “The ISIP Foundation Classkg&g://www.isip.msstate.edu/
projects/speech/software/asr/download/ftississippi State University, Mississippi
State, Mississippi, USA, May 2001.

[9] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary

Conversational Speech Recognition,” IEEE Signal Processing Magazine, vol. 16, no. 5, pp.
84-107, September 1999.

MISSISSIPPI STATE UNIVERSITY PAGE 29 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. Langley and J. Picone, “Practical C++ ISIP-Styldfp://www.isip.msstate.edu/projects/
speech/education/tutorials/c++ Institute for Signal and Information Processing,
Mississippi State University, Mississippi State, Mississippi, USA, August 2000.

S. Lippman and J. Lajoie, C++ Primer, Third Edition, Addison Wesley, Reading,
Massachusetts, USA, 1998, ISBN: 0-201-82470-1.

S. Srivastava, R.Duncan, and J.Picone, “The Algorithm Classebttp://
www.isip.msstate.edu/projects/speech/education/tutorials/isip_env/classlakiute for
Signal and Information Processing, Mississippi State University, Mississippi State,
Mississippi, USA, May 2001.

J. Picone, “Speech Recognition System Design Revielitp://www.isip.msstate.edu/
conferences/srsdrQQnstitute for Signal and Information Processing, Mississippi State
University, Mississippi, USA, January 2000.

J. Picone, “Speech Recognition System Training Workshlogy://www.isip.msstate.edu/
conferences/srstwQ0nstitute for Signal and Information Processing, Mississippi State
University, Mississippi, USA, May 2000.

J. Picone, “Speech Recognition System Design Revieuitp://www.isip.msstate.edu/
conferences/srsdrQlinstitute for Signal and Information Processing, Mississippi State
University, Mississippi, USA, January 2001.

J. Picone, “Speech Recognition System Training Workshlogy://www.isip.msstate.edu/
conferences/srstwQlinstitute for Signal and Information Processing, Mississippi State
University, Mississippi, USA, May 2001.

K. Muir and J. Picone, “SRSTW’'00 FeedbacHittp://www.isip.msstate.edu/conferences/
srstw00/misc/feedback/feedback.htrristitute for Signal and Information Processing,
Mississippi State University, Mississippi, USA, May 2000.

J. Langley and J. Picone, “SRSTW’01 Feedbadktp://www.isip.msstate.edu/conferences/
srstw01/misc/feedback/feedback.htrmistitute for Signal and Information Processing,
Mississippi State University, Mississippi, USA, May 2001.

R. Duncan, R. King, and J. Picone, “Varmint: A Bug Tracking and Resolution Tool”,
http://www.isip.msstate.edu/projects/speech/education/tutorials/isip_env/util/devel/
varmint Institute for Signal and Information Processing, Mississippi State University,
Mississippi, USA, May 2001.

MISSISSIPPI STATE UNIVERSITY PAGE 30 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

08/15/99 — 08/14/00: RESEARCH AND EDUCATIONAL ACTIVITIES

In the second year of this project, we focused our efforts in five major areas:

» Production System Release : the first release of the production speech recognition system, based
on our modular libraries, is scheduled for July 1.

» Hosted two workshops : a software design review held in January 2000, and a one-week training
workshop held in May 2000.

» Software engineering : upgraded our distribution to use the autoconf facility, added an automated
report tracking system to our on-line support, created a multi-platform support facility.

» Foundation classes : added algorithms and other signal processing building blocks, introduced
classes to handle acoustic models, search algorithms, and knowledge sources, and released a front-
end that allows arbitrary algorithms to be implemented using a graphical user interface.

» Java Applets : enhanced our pattern recognition applet with several important new features,
including generation of arbitrary data sets, clustering, and visualization of decision surfaces.

The workshops appear to be extremely successful as demand has far surpassed our original
estimates for enrollment (and taxed our facilities). The number of serious users of the recognition
system is continually growing. It is becoming a challenge to provide same-day response to most
support requests, particularly given the wide range of experience levels from the users.

A. Production System Release

An overview of a typical speech recognition system is shown in Figure 1. There are three main
components to this system: signal processi~~
language modeling, and search. We have
a prototype system in release now for o\ Speech
one year. This system was recently evalua @
as part of DoD’s yearly evaluatio

cycle [1]— an important step towarc Acoustic
gaining wider acceptance of the system a Front-End
state of the art system. We are now near
the first major release of our productic
system that is built from the ISIP foundatic
classes. We currently have many of the ci
pieces implemented, including the sigr
processing section (described later), acou
modeling, and a prototype hierarchical sea
engine that was demonstrated at «
January workshop. Language modeli

Acoustic Models
P(A/W)

Y%

classes are currently under development . Language E:> Search
nearing completion. Integration of the: Model p(W)

classes into a system has begun, anc

expected to be completed by mid-summer. Q
Novel aspects of this system include Recognized
generalized hierarchical search engil _ Utterance

shown in Figure 2, and a flexible approach
Figure 1. A typical speech recognition system.

MISSISSIPPI STATE UNIVERSITY PAGE 31 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

signal processing that allows new algorithms to be implemented using a CASE-based approach
involving a graphical user interface. The search engine is crucial to this system, in that it is by far
the most complex and unwieldy component. A clean implementation that provides users
reasonable programming hooks into all levels of the process is very important. The generalized
approach below still requires significant work with respect to efficiency and memory resources.
We are using the prototype system currently in release to develop these details, and then
transferring that knowledge into the production system.

Pieces of the production system, particularly the foundation classes, have been in release since
November 1999. The most current versions of the code are also available from our anonymous
CVS server. The foundation classes are slowly stabilizing as we add more upper-level
functionality and expose more bugs. The C++ language definition and implementation has
recently begun to stabilize, making many things possible using the latest version of the
compilation tools. This in turn has allowed us to change several aspects of our class designs. We
believe we have reached convergence on most major aspects of the system design, and now plan
to remain backwardly compatible with subsequent releases. We have also developed tools to
automatically convert data formats between the prototype and production systems, thereby
allowing users to leverage features of both systems while the latter is under development.

B. Outreach Via Workshops

Level 0
Backpointer= MULL
sScore=1.0
7410 . (Sentence| T0 =< history ={Sentence}
b Level=0
Level 1

Backpointer=To
MP-0 T1 = 3core=1.0
- g =9 History = {NP-0, Sentence}

1.0 Level=1

Level 2]

Backpointer=T1

1.0 the | o _ Score=1.0
{—- o | 2= History={the, NP-0, Sentence}

Level=2

Level 3 l Backpointer= T2
10 dh |13 = score=1.0
(- 3 = 9 History = {th, the, NP-0, Sentence}
hd Level=3
Backpointer = T3 Level 4

T4 Score=1.0

= ; - 10 dh 1
History ={dh_1,dh, the, HP-0, Sentence} ga—p
Level=4

Figure 2. An overview of a generalized search engine that allows users to implement speech recognition
systems as a hierarchy of knowledge sources.

MISSISSIPPI STATE UNIVERSITY PAGE 32 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

In January 2000, we hosted our first annual design review workshop. The primary function of this
workshop was to review our software design. A second important goal was to solicit the
community for input on new features. We arranged this workshop to be a two-day event. The first
day was devoted to an overview of the system, including demos, and general discussion. The
second day consisted of a training session where we walked users through our on-line tutorial. A
complete archive of the workshop, including presentation slides, is available on-line at the
workshop web site [2]. Participants received notebooks containing handouts of the lecture notes,
as well as a CDROM containing all software and instructional materials used at the workshop.

Attendance at this workshop was slightly lower than expected: 9 participants from several foreign
countries (China, Finland, Korea), government agencies (FBI, DoD), and industrial sites (IBM,
MITRE, Lincoln Labs). This was partially due to the time at which the workshop was
held (January 5) and concerns about residual Y2K problems. Nevertheless, it was a very
productive workshop in that users were able to build an entire large vocabulary continuous speech
recognition (LVCSR) system during the training session, and left feeling very good about the
software. Several collaborations resulted from the workshop, including invited talks at IBM, a
collaboration with Georgia Tech on the classroom of the future [3], and potential collaborations
with MITRE on various DoD-related speech recognition applications.

Feedback from this workshop was generally positive. Some examples are shown in Figure 3. We
were particularly interested in thoughts about the summer workshop, and action items for the
following year. A summary of the discussion about future plans is available [4] on the web. Given
the diverse group of participants, it was hard to form a consensus on the priorities of these items.
However, generally speaking, there were no surprises relative to our current plans.

In May 2000, we will offer our first extended training workshop [5], which is geared towards
entry-level graduate students. Travel funds are provided to encourage graduate students from
underrepresented institutions to attend. The program [6] for this week-long workshop combines
morning lectures on theory with afternoon laboratories focused on skill-building. The morning
lectures are split into two parts: fundamental theory and applications to speech recognition
(explanations of how the theory is actually implemented in a system). The laboratories involve
skill-building projects ranging from basic recognition foundation class programming to
conversational speech recognition system development. Participants literally leave the workshop
with a toolkit to run some of today’s important research tasks, and should be able to make
programming-level modifications to the system.

Twenty-four participants, including 18 graduate students, will attend the first workshop. Nineteen
institutions from seven countries are represented, including by design a broad range of U.S.
universities. Established research groups such as MIT, Rutgers and University of Colorado at
Boulder are represented. Underrepresented universities such as North Carolina A&T are also
participating. Further, universities less prominent in speech recognition research, such as
University of Houston, University of Denver, and Old Dominion University, are represented by
graduate students early in their Ph.D. programs. Hence, we are well along towards our goal of
increasing access to speech technology by incorporating underrepresented groups. In fact,
workshop enrollment was three times what was originally expected, and our acceptance rate was
approximately 66% of the applicants.

We plan to broadcast live still images from this workshop on the conference web site [5] this year
using a networked camera. Next year, we will attempt a live Internet broadcast using facilities

MISSISSIPPI STATE UNIVERSITY PAGE 33 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

1. Things I liked: Clearly structured presentation of the system. Presentations covered most aspects of
the system. Code-testing (e.g. the diagnose() function) was stressed. Demo. Instrumental in inspiring con-
fidence in the system.

2. Things that need improvement: In the demo, most of my time was spent typing in long pathnames. |
suggest writing a (one-line) shell script for each step, and simply allowing the user to read the pathnames.

3. Things in a summer training workshop: Make a list of use-scenarios (e.g. word-lattice-construction;
lattice-rescoring; 1-pass decoding; viterbi-training; EM; segmentation; alignment; speaker adaptation;
system-extension with new acoustic models like SVMs, etc.) and go over how to do each one.

4. Things to do differently: | would spend a bit more time on some of the tougher algorithmic issues, e.g.
how exactly right-word extensions work for cross-word context dependence, and what happens if you
want to look (say) 5 phones to the right. And when traces are extended, presumably there are some cir-
cumstances where two traces can be merged; how exactly is this handled? Basically, I'd like to get a
more explicit sense of what the toughest issues were, and how the system handles them. Perhaps a
1/2 hour on this.

Overall, | thought it was an excellent review.

1. Things you liked about the workshop:

The workshop went well, and met my goals:

a. get to know the ISIP group to facilitate collaboration
b. get the software up and running

c. get a feel for where the project is going

d. articulate my needs

2. Things that need improvement: Hmmm, having trouble thinking of practical changes....
Maybe a tutorial on “current issues in speech recognition”

3. Things you would like to see in the summer training workshop: | plan to send students not experienced
in speech recognition, so tutorials would be useful.

4. Things you would like to see us do differently for the design review:
see 2.

| appreciate it very much that | had the opportunity to come to MSU to learn automatic speech recognition
(asr). | have done survey on the availability of asr software which | can apply LDC DARPA-TIMIT data
(on cd-rom) for training an asr system. But | did not have any one until | talked Mr. Dave Graff of LDC who
suggested that | talked to you.

The hospitality you extended to me is sincerely appreciated. | have done some paper-reading on speech
recognition years ago. But this is the first time | am trying to use it for data systems. The need at my or-
ganization is speaker-independent asr.

Most of the telephone data is conversational, | will try to work on Switchboard-type of data, hopefully in
the summer.

| tended to think that it would be a nice thing for a user if the input and modules can be simplified. | am an
engineer at my job; the real end-users may not be engineers.

Figure 3. Examples of feedback collected from SRSDR’00. Comments about topics for the extended
summer workshop we extremely helpful and have been incorporated into the program.

MISSISSIPPI STATE UNIVERSITY PAGE 34 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

available at MS State (at no charge to the project). All materials developed for the workshop,
including laboratory exercises, will be posted on the web site. We have already had several
requests for these materials from people who cannot attend the workshop.

C. Software Engineering

With every release of our system, we accumulate more experience with the challenges of
supporting research software in a Unix environment, where things tend to be less standardized.
With the addition of a full-time software engineer this year, we were able to address these issues
in a much more powerful manner. One of the most popular distribution mechanisms for software
in Unix is an automatic configuration system developed by the GNU organization. This system,
known by various names such as configure and autoconf, automatically searches the system
during installation for required software packages, and configures software accordingly. A typical
installation procedure consists of the following sequence of commands:

* tar xvf isip_proto_v5.3.tar unpacks the software distribution

* cd isip_proto_v5.3: enters top-level directory

« configure --prefix=/usr/locall/isip configures the software and sets the installation directory
* make compiles and links the software

» make install installs the software

This deceptively simple procedure has taken years of refinement for Unix systems, and involves
locating many important tools (gcc, perl, Tk/tcl, shells, etc.), and deciding how best to build the
software given the local system’s capabilities. In recent years, installation using this approach has
become fairly smooth under a multitude of Unix systems.

The overhead cost in adopting this form of installation procedure is high. The tools to do this are
not trivial. This year, we finally mastered this software and incorporated this facility into our
releases of the prototype system. This should resolve most support issues we have dealt with
involving system incompatibilities, and definitely minimizes the effort required by users to install
the system (since everything is automatic). Migrating our previous installation procedure required
a major overhaul, but was clearly well worth the effort.

As mentioned previously, support activities are requiring an increasing amount of time. Hence, it
became clear that we needed to install a formal method of support request tracking. We have
installed a public domain system called RT — Request Tracker [7]. This is a powerful system that
has most of the standard features included in such packages: ticket numbers, time-stamping of
requests, automatic acknowledgements, queues, and resolution tracking. RT is popular,
particularly within our university. We are able to leverage other installations on campus, and enjoy
excellent technical support on the package from other campus organizations. RT has been
extremely useful in managing our support line. For example, we are now able to generate
automated reports on the timeliness of our service. Any email to our support line,
help@isip.msstate.edu, is automatically routed to the RT system and acknowledged. Our goal is
to provide a reasonable response to each request within a 24 hour period when support staff are
on-site. Our software engineering staff position manages this system as part of his job
responsibilities.

A third step we have taken to improve the quality of our distributions involves the development of
a multi-platform and multi-OS environment to check releases for compilation and run-time
problems. We purchased a Pentium workstation and installed multiple operating systems: Sun

MISSISSIPPI STATE UNIVERSITY PAGE 35 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

Solaris x86, Windows NT, and Linux. We also have Sun Sparc Solaris machines in our lab.

Further, we recently acquired an IBM AIX machine as a donation from IBM. These machines are

used to check every release before it is actually made available to the public. Though we tend to
be very methodical in our debugging and validation methods, we have found instances where
software will pass validation runs on all but one of the operating systems. Such problems are
subtle and rarely flagged by compilers (even though we use a common compiler across all
machines). Though such multi-platform checks are time-consuming, they are necessary if one
wants to avoid problems. Linux support, in particular, has recently become a critical requirement.

Along similar lines, we have also recently acquired professional strength code development tools
for Unix. Previously, we have been relying on a public domain code checker — dmalloc.
Unfortunately, software of the complexity we are developing breaks most public domain tools.
Such tools are not able to properly diagnose and isolate problems. Hence, we now have access to
two professional quality development tools offered by Rational Software. Even these tools do not
catch 100% of the problems observed in our code, primarily due to the complications that arise
from the use of many levels of C++ templates. However, such tools are often able to help us
resolve problems in minutes rather than hours, and have greatly increased productivity.

Using these tools, we were able to isolate and fix a number of memory bugs in our current
releases. Some of these were quite subtle and took hours of run-time to reproduce. However, our
current releases are now free of all known memory bugs, and are vastly improved over previous
releases. The software has been checked on a much wider range of tasks as well.

D. Foundation Classes

The foundation classes, upon which all higher-level software is built, continue to grow in terms of
their breadth and depth. We currently support the following libraries in our class hierarchy:

system (i.e., Console, MemoryManager)
input/output (i.e., Signal Object File, Sof Parser)
math (i.e., Scalars, Vectors, and Matrices)
data structures (i.e., Linked Lists, Hash Tables)
shell (i.e., CommandLine, Filename)
multimedia (AudioFile)

statistics (GaussianModel, StatisticalModel)
algorithms (Cepstrum, Linear Prediction)
signal processing (FrontEnd, Features)

pattern recognition (PCA, LDA)

automatic speech recognition (Recognizer).

This year, we have focused on higher-level libraries such as Statistics, which provides statistical
models for each state in our acoustic models, and Data Structures, which provides graph objects
used in the search engine.

Our recent focus has been the development of the signal processing portion of the system. An
overview of the tool we have developed to provide users an easy way to build signal processing
systems is shown in Figure 4. The users have at their disposal any of the tools available in our
Algorithms library. For example, an industry-standard front-end uses a Fourier Transform

operation, a Cepstrum calculation, time derivatives of feature vectors, and a special type of
normalization algorithm. Each of these modules is available as a class under the Algorithms
library. Each class has a special set of methods that interface to the application builder, known as

MISSISSIPPI STATE UNIVERSITY PAGE 36 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

Inputs Recipe Pool Outputs

AudioFile @
(SAMPLED_DATA)

@ @ Features \
Features Z
>

o /

Figure 4. An overview of a CASE-based tool that implements signal processing algorithms using a
GUI-oriented tool. Users essentially flow-chart an algorithm as a graph of recipes. The system
automatically schedules operations to implement the desired algorithm.

the Transform class (the corresponding utility is isip_transform).

Our Transform class combines the user’s algorithm specifications by building a graph depicting
the sequence of algorithms to be applied to the signal, as shown above in Figure 4. Such block
diagram type approaches to signal processing have been popular for a number of years in signal
processing. Transform is a very powerful class in that it allows users to mask, combine, and
postprocess measurements of the signal in arbitrary ways. Since the internal structure of this class
is somewhat complicated, a graphical user interface is essential. Rather than have users edit a
parameter file containing information about the algorithms and their interconnections, users can
manipulate this representation using graphical tool. We decided to implement this in Java to make
it as portable as possible. Our first release of this tool will coincide with the summer workshop.

We have also made significant progress towards the development of the production recognition
system by implementing statistical modeling aspects of the system. The decoder portion of a
speech recognition system can be regarded as a hierarchy of graphs [8]. The leaf nodes of the
lowest level of this hierarchy are states in a hidden Markov model. Our StatisticalModel class
implements a generalized state, which can be an arbitrary mixture of distributions — Gaussians,
Exponentials, Laplacians, etc. Mixtures of Gaussian distributions are most popular in speech
recognition today; exponential models are becoming increasingly popular for some aspects of the
problem (they are rooted in maximum entropy theory).

We have begun tying these together to build a full-fledged recognition system. We have also
created conversion utilities that transform outputs of the prototype system into formats accepted
by the new system. This is an important capability since it allows us to interface the two systems
and maintain some level of backward compatibility. It also makes the development cycle more
efficient, since we can incrementally test isolated components of the new system on large enough
tasks to expose subtle bugs.

E. Java Applets

As we described in our last report, the first year of the java programming phase of our project
focused on stabilizing our approach to Java. Since the language was undergoing dramatic

MISSISSIPPI STATE UNIVERSITY PAGE 37 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

changes, it was hard to modularize our applet development. The net result was that progress was
slow. Fortunately, in the second year of this effort, Java has stabilized considerably, and we have
been able to push ahead on using Java in our development environment. We have also had time to
expand the capabilities of our existing applets.

A good example of this is our pattern recognition applet. This year, we were able to greatly
enhance its educational value by augmenting basic capabilities with more visualization. An
example of this is shown in Figure 5. Users can specify the parameters of a Gaussian distribution,
and can view the support regions for these distributions in the original data space (along with the
resulting decision regions). In Figure 6, we show two new data sets that were added by one of our
sophomore undergraduate programmers. These data sets pose interesting challenges for
classification algorithms since they are not linearly separable (they can’'t be separated by decision
regions formed by hyperplanes). We have plans to include algorithms that can handle such data —
for example, an algorithm based on support vector machines which is currently under
development in our research group. The pattern recognition applet was used extensively in our
Fundamentals of Speech Recognition course this semester.

Another novel feature added to this applet was the ability to classify the data using two popular
clustering algorithms — KMEANS and Linde-Buzo-Gray (LBG). These algorithms iteratively
reestimate cluster centers, and form decision regions based on nearest neighbor calculation with
respect to these cluster centers. A Java applet is an ideal forum in which to learn about such
algorithms because you can see the decision regions evolve with each iteration. This is
demonstrated in Figure 7. Users select the number of clusters they want to use, and the number of
iterations to be performed, and can then step through each iteration of the algorithm.
Classification results are displayed in the description box to the right. In Spring ‘01, we plan to
use this applet extensively in a pattern recognition course.

We have also begun implementation of several new applets. One which we are very excited about
is an applet that helps students visualize search algorithms. This was motivated by a visit to
MS State’s 3D immersive visualization environment known as the COVE during the January
design review, and viewing a demo where one walks along the edge of a mountain. We are
attempting to create such a visualization of the search space during recognition using standard
Java components (as opposed to some of the experimental virtual reality engines that are not quite
standard yet). Further, we are developing a basic digital signal processing applet demonstrating
the sampling process for signals. This is intended to be used in our undergraduate Signals and
Systems course. Most of this work is being carried out by our undergraduate programmers, and
represents a nice, non-critical path in which they can contribute to our research program.

Finally, we have begun some collaborations with Georgia Institute of Technology and MS State’s
College of Engineering to use our job submission applet to do audio indexing of classroom
lectures. This application was presented at a recent Internet 2 conference [3], and is an application
enabled by the vast bandwidth potential of Internet 2. It will become more feasible when we
expand our compute serving resources in the third year of this project. In this application, audio
from a lecture is shipped to our system for automatic transcription via recognition, and
time-alignment. The results are then transferred back to a database which can be searched by
students (“Show me all the lectures about Fourier Transform.”). While we are in the early stages
of the development of this capability, it is a good example of the burgeoning interest in audio
indexing and audio mining.

MISSISSIPPI STATE UNIVERSITY PAGE 38 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

File Edit Classes Pattems Algorthms YWiew Go Helg

It Displary: Process Description:

1 ‘ot 20 Class Dependent Principal C:DmpunemT
oo e 1. Displaying the arginal data.
2. Computing the means and covans
*!i. PR tean for class O —-1.02, 1.07
MR Mean for class 1; 0.98, -0.93
’ ’ Covarance mathx for class O
-2.0 20 011 00
0o 012
Transfommation matrhx for class O
-2.08 003
004 288
-2.0 Covarance mathx for class 1.
011 00
0o 012
Transfomation matrhx for class 1.
-2.86 -072
Qyy 207
Displaying the support regions.
3. Computing the decision regions b
Fesults for class O
Total number of samples: 200
Misclassified samples: 0 |
Classification emor. 0.0% B

= L
-2.0 A 0%,

Qutput Displasy:

2.0

2.0

Support Regions

Figure 5. An example of enhanced visualization capabilities in our pattern recognition applet. We now
allow users to specify the parameters of Gaussian distributed data through dialog boxes. In the case
above, two Gaussian distributions were generated with means of [-1,1] and [1,-1] respectively. Principal
Components Analysis (PCA) was chosen as the classification algorithm. Step-by-step output from the PCA
approach is shown in the scrolling box on the right. Once the means and covariances are computed in
Step 2, the support regions for the distributions are displayed in the lower left. These are crucial to
understanding how algorithms such as PCA transform data. Other enhancements to this applet include the
addition of new clustering algorithms, and an interactive status bar (lower right) that provides feedback for
users when time-consuming operations are being performed.

MISSISSIPPI STATE UNIVERSITY PAGE 39 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH...

Pattems | Algorithms ey [NAUL Display.

It Displas:

OCTOBER 31, 2002

01 Choose ky Cwh
) Gaussian

21 Twid SauUssian
21 Four Gaussian

2 Overlapping Gaussian

) Two Ellipses

) Four Ellipses

1 Rotated Ellipses
) Toroidal

® in and Yang

Figure 6. Two new data sets that pose challenging problems for classification algorithms have been added
by one of our undergraduate programmers.

:1* 1 1“ “"I
=g AT Sy
21 "mﬁﬁ.” : 20
R P
LI
-20
Output Display:

2.0
4 ‘ a1 4 a1
fl ‘4 I : ‘4 f‘ 4y]
) !‘3‘1‘:“") 3-:':“1"
4 Ll L i 1 L] Sl I N I
R IR ¥ e - 4 4 IR "t i
20 ¢ [e 20 2000 AR 20
T R
14 ‘:“ 11: 1l ‘:"
-2 -20
Cutput Display: Cutput Display:

Figure 7. An example of a clustering algorithm in which users see the decision regions evolve.

MISSISSIPPI STATE U

NIVERSITY

PAGE 40

NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

[1]

2]

[3]

[4]

[5]

[6]

[7]
[8]

F. REFERENCES

R. Sundaram, A. Ganapathiraju, J. Hamaker and J. Picone, “ISIP Public Domain LVCSR
System,” to be presented at the Speech Transcription Workshop, The University of
Maryland University College, College Park, Maryland, USA, May 2000.

J. Picone and W.C. Chapman, “Speech Recognition System Design Revigw;/
www.isip.msstate.edu/conferences/srsdiEsissippi State University, Mississippi State,
Mississippi, USA, January 2000.

J. Picone, C. Atkeson and I. Alphonso, “Harnessing High Bandwidth: Applications in
Speech Recognition,” presented at the Spring 2000, Internet2 Member Meeting,
Washington, DC, USA, March 2000.

J. Picone, “Summary of SRSDR’00,http://www.isip.msstate.edu/conferences/srsdr00/
technical_program/session_08/index.htidlississippi State University, Mississippi State,
Mississippi, USA, May 2000.

J. Picone, “Speech Recognition System Training Workshbgig://www.isip.msstate.edu/
conferences/srstwQMississippi State University, Mississippi State, Mississippi, USA,
January 2000.

J. Picone, “Workshop Program,’http://www.isip.msstate.edu/conferences/srstw00/html/
program.htm| Mississippi State University, Mississippi State, Mississippi, USA,
May 2000.

J. Vincent, “Request Trackeltittp://www.fsck.com/projects/riMarch 2000.

N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary
Conversational Speech RecognitiolEE Signal Processing Magazineol. 16, no. 5, pp.
84-107, September 1999.

MISSISSIPPI STATE UNIVERSITY PAGE 41 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

08/15/98 — 08/14/99: RESEARCH AND EDUCATIONAL ACTIVITIES
In the first year of this project, we focused our efforts in three major areas:

» Core Technology : extensions of the speech recognition system required to enhance its appeal to
our customer base (driven by customer feedback);

» Foundation Classes : building blocks such as vectors, matrices, and data structures that simplify
and standardize the development of higher-level classes;

* Web-Based Information :a comprehensive and informative web site that constitutes a central point
of contact for everything related to the project.

We have seen interest in the project grow as evidenced by the fact our mailing list has grown to
150 participants, and we have received several serious inquiries about collaborations based on our
system (one of which resulted in participation in a joint NSF/EU proposal [1]). Major milestones
for the first year of the project included the release of a fully functional speech recognition system
(including feature extraction and training), and the development of a remote job submission
capability that lets users submit jobs to our system over the Internet.

A. Core Technology

State-of-the-art speech recognition technology is the foundation upon which this project is built.
We must not loose site of the importance of this core technology to this project. This technology is
being developed in a parallel effort funded by the Department of Defense. The system has
improved dramatically since the start of our NSF project in August’98. We briefly review the
enhancements made to the system in the first year of this project, and then discuss the impact this
has made on our efforts within this project. Next, we describe some enhancements made to the
system to broaden its appeal to our customer base, and review some initial attempts at cross-
platform portability.

A.1l. System Status

In the past year, three important capabilities have been added to the speech recognition system we
have been developing: feature extraction, word graph generation, and Hidden Markov
Model (HMM) training. Feature extraction is the process by which the speech signal is converted
to a sequence of vectors that serve as input to the recognition system (a continuous density HMM
system). This is often called the front-end. Our approach was to initially replicate an industry-
standard front-end consisting of mel-spaced cepstral features [8] and their first and second-order
derivatives. This is one step that allows users to duplicate results obtained with other commercial
and proprietary systems. This capability was delivered as part of a general front-end capability
summarized in Figure 1.

A second key feature added to the system was the ability to generate word graphs. Speech
recognition experiments are time-consuming primarily because of the large language models used
in decoding portion [8] of a system (these large language models are desirable because they
maximize performance). Hence, to save time on subsequent experiments, a word graph is
constructed that represents most plausible, or highly probable, hypotheses that can be generated
by this network. This graph is then rescored with new acoustic or language models depending on
the nature of the research. This network can be quickly rescored — a process that often runs at

MISSISSIPPI STATE UNIVERSITY PAGE 42 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

least ten times faster than the process required to generate the network. Because of these time
savings, word graph rescoring is an extremely popular method of doing speech research for
conversational speech recognition, and is therefore a modality that must be supported for a system
to be widely accepted.

This feature was added to the system in early 1999, and required significant changes to the way
the decoder manages the search process. Fortunately, the current implementation represents a vast
improvement in the architecture and performance of the system [8]. Though it took longer than
expected to add this feature to the system (we struggled with this for 6 months), the final
implementation is extremely clean and efficient, and will have a positive impact on subsequent
generations of the system. The system now supports more decoding modes than any
commercially available system, and more than most proprietary systems as well.

A third essential feature that was added to the system this year was HMM training [11]. This
essentially provided closure on the speech recognition system in that users are now able to build
real systems from scratch (previously, one had to borrow some component from the system from
another source). We first implemented an algorithm known as Viterbi decoding, in which only the
best state sequence through a network is considered. This is an elegant algorithm in that it is
efficient, fast, and consistent with a formal languages view of the speech recognition problem.
This allowed us to develop the proper control structures and code infrastructure quickly. Once this
was complete, we added Baum-Welch training [12], which is more popular in state-of-the-art
systems.

The current system is described in great detail in an upcoming publication [8]. This is one of the
first such publications to provide a tutorial on the details of search algorithms, and is being
published in a journal that emphasizes education of entry-level graduate students in signal
processing. It is our hope that the time spent on this publication will pay off as more researchers
are made aware of the availability of this system and project. Our system is also represented at an
upcoming major speech conference [13] that will include a panel discussion on the merits of
public domain speech technology.

A.2. System Enhancements

In any such project intended to develop public domain code, it is important to adapt to the
changing needs of your user community. In the past few years, several major sites in speech
research have shifted to the use of features based on an algorithm known as perceptual linear
prediction [14]. This technique in some cases has been shown to deliver small improvements in
performance. It is an important feature to include if such sites are attempting to replicate their best
systems with our public domain system. We completed an initial implementation of this algorithm
this year, and are in the process of integrating it into our front-end architecture. A summary of this
approach is shown in Figure 2.

Another feature that was requested by several sites this year was the ability to switch language
models in the middle of the recognition process. This feature is useful for two reasons: (1) it

enables the development of command and control applications that switch between sub-grammars
depending on what words are recognized (context-senstitive language models or menus); (2) it
allows the recognition system to dynamically recurse through language models at runtime, rather
than compile all language models into one big network. The first point impacts the development

of voice-driven menu systems and real-time demonstrations. As a word or phrase is recognized, a

MISSISSIPPI STATE UNIVERSITY PAGE 43 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

new language model can be loaded, providing a small set of words or phrases as the next choice.
This is the strategy used by most systems that allow you to accelerate your desktop menus with
voice commands.

A second, and equally compelling reason to consider this feature, is the development of systems
that consist of a hierarchy of grammars (for example, sentences in terms of words, words in terms
of syllables, syllables in terms of phones, etc.). Many existing systems will compile such a system
into one large network. While this is sometimes attractive for efficiency reasons, for research
flexibility it is often better to process this hierarchy of networks at runtime (“on the fly”). This
allows users to change one small module of the system (for example, allowing a word to be
represented multiple ways) without recompiling the entire system.

Implementation of this capability requires use of an approach called “caching.” The system must
only activate those portions of the network that represent active words, or words used in the recent
past, and leave the remainder of the language model stored on disk. Fortunately, by implementing
this strategy, we can handle much larger language models, such as those used in the broadcast
news [15] and audio data mining research fields. Since there is currently a shift towards such
applications in various research communities including NSF and DARPA, we feel it is important

to provide a solution to this problem. Broadcast news language models tend to be large (because
they are dealing with lots of words that occur infrequently) and cannot be managed in memory as

a single unit. Our conversational speech recognition system could not handle such a large
language model due to the number of bigram entries contained in this model.

In addition to these algorithmic enhancements, several supporting tools were developed to
facilitate language modeling. These include a grammar compiler that accepts regular expressions
as input and outputs a finite state machine description used by our system, and a grammar
compaction algorithm that reduces the size of a word graph without compromising performance.
We also developed several display utilities [16] that allow users to look at speech data and analyze
its frequency content. We have interacted with several industrial sites on the development of these
tools. In fact, one commercial site is making extensive use of this tool in a production data
collection capacity, and hired one of our undergraduate programmers for the summer to customize
this tool to better suite their unique needs.

A.3. Cross-Platform Portability

We have begun to address issues related to portability across different computing platforms. Our
plan remains to develop code under the Solaris operating system on two platforms — Sun Sparc
and Intel PC (Solaris x86). Within these environments, we use a common compiler, gcc, provided
by the Free Software Foundation (GNU). This compiler is supported across a wide range of
platforms, including Microsoft Windows’9X and Windows NT. Since an ANSI standard for C++
has only recently been adopted, and most implementations of C++ are still not compatible (this
likely will continue for a few years even after the adoption of the standard), using a common
compiler across all platforms is the best way to guarantee portability. Currently, we periodically
release a Windows version by porting the GNU environment to Windows, and compiling the code
under gcc and the bash shell. This vastly simplifies the Windows porting effort.

Perhaps the fastest growing user population for our system is the Linux community. Fortunately,
the backbone of the Linux system is GNU software and the gcc compiler in particular. In fact,
GNU recently turned over development of its compiler, gcc, to an organization known as

MISSISSIPPI STATE UNIVERSITY PAGE 44 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

EGCS [17], which is a collection of free software advocates who have been informally developing
compiler extensions to gcc for years. EGCS is responsible for all subsequent releases of gcc (the
two have effectively merged) and is the compiler delivered on most production releases of the
Linux operating system (RedHat for example). Hence, conformance to gcc standards covers a
large portion of both the Windows and Unix markets, yet minimizes portability issues.

However, the Linux version of gcc distributed by EGCS currently lags the Sun Solaris version in
one important dimension: wide character support. One of the founding principles of our system is
that languages be handled in native format using Unicode character encoding. The current ANSI
C/C++ standards support a wide character encoding with a collection of new functions. These
must be supported by a runtime library, which Sun Solaris provides, but production releases of
Linux do not. Hence, the current release of our code will not compile under Linux. We expect this
problem to be resolved within the next three months. It doesn’t make sense to provide an interim
work around, because anything we do will be quickly obsoleted. It is expected EGCS will do a
much better job in the future of tracking standards in C++.

B. Foundation Classes

The most critical part of the first year of this project was to lay the proper foundation upon which
all other software can be written. This is perhaps the most difficult part of any technology-specific
project — balancing the efficiency and simplicity of the target application with extensibility and
flexibility needed by future research. We believe this is the major strength of our project — the
environment is object-oriented from the ground up and designed to be neutral to any particular
algorithmic approach. Fortunately, we have been able to leverage preexisting code developed for a
much less ambitious project [18] involving speech recognition. However, most of this code
needed revamping based on the changes in the C++ language definition and gcc compiler
capabilities.

The hierarchy of classes is shown in Figure 18. Our goal in the first year of this project was to
deliver everything through the DSP libraries, which we refer to as the ISIP foundation
classes (IFCs). In the second year of the project, we begin the “Great Convergence” as we rewrite
the speech recognition system using these IFCs. We expect this task to be completed by the end of
1999. This latter version of the system we will be the basis for our training workshops which will
begin in the summer of 2000.

B.1 Integral Types

At the bottom of our class pyramid is a header file that defines all low-level data types available to
the user. These are known and the integral types, and in many ways mirrors the syntax of the C
programming language. Our current integral types file is shown in Figure 4. This deceptively
simple file was the result of much hand-wringing about two competing design philosophies. The
C programming language was designed to be somewhat architecture independent. For example,
the datatype “int” could be 16-bits long on one machine, and 32-bits long on another. A C
program written properly would work on both machines regardless of the specific
implementation. On the other hand, in signal processing, we often need access to specific data
types. For example, speech signals are stored as 16-bit integers, and need to be represented as
such in C. The problem in C is that a 16-bit integer doesn't really exist. Instead, you can use a
“short int” and must assume that an integer is 32 bits long.

MISSISSIPPI STATE UNIVERSITY PAGE 45 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

There is a growing movement within the C++ community to support data types such as int32 for a
32-bit integer. In fact, Microsoft seems to be leaning this way with its Visual C++. The integral
types file shown in Figure 4 represents a synthesis of the two approaches. Programmers used to
constructs such as “long” have these available. However, the scalar classes, to be discussed later,
are defined to be specific sizes, and hence use the size-specific data types. In the future, as
architectures and compilers expand to 64-bits and 128-bits, our code will be backwardly
compatible with no modifications, because the types are tied to a specific number of bytes. By
providing new types, such as “double double” or “long long,” we can also accommodate the new
wider formats.

B.2. System and 1/O Classes

Our goal in the design of our system is to abstract the user from details of the operating system.
The system library serves this function by encapsulating all operating system specific activities,
such as file /0O and character string processing. Both libraries represent a significant improvement
over the previous implementation of this environment [18]. The System library supports low-level
operations such as file management (opening, closing, reading, writing), character processing
(Unicode support), error handling and error notification. All of these require interacting with
operating system-specific C functions, and hence must be centralized and abstracted from
user-level code.

The 1/0 library contains a novel approach to file formats. All files in our environment are
represented as Signal Object Files (Sof) [18]. Sof alleviates the need for users to read and write
data manually (formatting of data tends to be one of the most time-consuming aspects of speech
research). All objects know how to read/write from/to an Sof file. In fact, higher-level objects just
recurse through their hierarchy of objects for 1/0. Sof is simply a smart indexing scheme that
keeps track of what objects are stored in a file. It allows multiple instances of an object (a String
object can be written several times to the file), and handles ASCII or binary files transparently. It
is also machine-independent in that users need not worry about byte-ordering or floating point
representations across platforms — this is handled automatically within Sof.

A centralized data storage strategy is essential in speech research, and other data-intensive
research areas as well. There is nothing speech-specific about Sof. Sophisticated database
management strategies have yet to provide a clean solution for researchers, so the tendency has
been to use proprietary formats or unstructured formats (ASCII). Most database packages don’t
want to deal with byte-formatted, such as an MPEG audio or video stream, and don't allow partial
I/O of these types of data (retrieve only the middle three seconds of this audio file). There are
some public domain file formats being supported within the community [19], but these do not
interface well to C++ and have certain limitations in terms of the flexibility (only one instance of

an object can be written to a file). Sof is an important part of our overall strategy to ease the
programming burden of our users.

B.3 Math Classes

As shown in Figure 3, the next step up from our low-level IFCs are the math classes. This is
actually the first level we expect application developers to interact with — users should not use
the system classes directly, and should only use the 1/O classes for programming 1/O into new
class definitions. The math classes consist of scalars, vectors, and matrices. Their implementation

MISSISSIPPI STATE UNIVERSITY PAGE 46 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

follows that of the C++ Standard Template Libraries (STL), with two important exceptions. Our
types are allowed to be size-specific. For example, a Long is always a 32-bit integer, a VectorLong
is always a vector of 32-bit integers, etc. This gives the programmer complete control of data
sizes. Also, our matrix class is a vector of vectors, where each vector can have a different
dimension. This costs very little in overhead, and makes the matrix class much more useful as a
container class.

We began implementing the math classes with a simple strategy that did not rely on templates.
This was mainly due to a legacy of gcc not supporting a useful model of templates. Gcec was based
on an inclusion model in which all code related to a template had to be included in the header file.
Obviously, for the system of the scale we are talking about, this is impractical. Fortunately, with
the release of version 2.8.X of the gcc compiler, appropriate hooks have been provided to allow
source and header files to be separated for template definitions. A header file for a template
version of a scalar class is shown in Figure 5. Our benchmarks on code implemented with and
without headers seems to show that the template approach is every bit as efficient as the non-
template version, and requires much less time to compile. It is a win-win situation thus far. This is
summarized in Table 1 below.

Description Non-Template Template

Scalar Long:

executable (kB) 564 566

memory usage (kB) 1484 1484

runtime (ms) 10.9 ms 11.4 ms

compilation time (secs) 31.8 18.6
VectorLong:

executable (kB) 708 713

memory usage (kB) 1592 1596

runtime (ms) 12.9 13.1

compilation time (secs) 76.8 66.1
MatrixLong:

executable (kB) 4590 4605

memory usage (kB) 1640K 1648K

runtime (ms) 17.6 17.9

compilation time (secs) 99.4 76.9

Table 1. A comparison of template and non-template implementations of the math classes.
Templates appear to finally be competitive with traditional code.

In the first year of this project, we have completed implementation of the math classes based on
our new template approach. This was somewhat of a paradigm shift for us, and hence required
some additional training of our programmers. This approach will pay great dividends when we
move to higher-level libraries such as data structures, where one expects a template capability.
With templates, user can build generic lists, hash tables, etc. of whatever object they desire. This
is an extremely important capability for C++ programming. The only drawback of our approach is
that the template implementation is specific to gcc, since there no clear standard for how to
implement templates in the ANSI C++ specification. We continually monitor standards activities
to see how we can improve our portability.

MISSISSIPPI STATE UNIVERSITY PAGE 47 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

B.4 Concurrent Versions System (CVS) and Anonymous CVS Servers

One of the interesting aspects of our project is that truly concurrent development is being done by
a large number of programmers (between six and eight people work on the system continuously).
This places great stress on most non-commercial software management systems. Commercial
packages, on the other hand, are expensive (typically $1K per seat) and hamper our ability to do
concurrent development in a distributed fashion as we describe below. Hence, we spent some time
this year converting our software management environment from the popular revision control
system (RCS) [20] to a state-of-the-art package called Concurrent Versions System (CVS) [20].

CVS allows multiple users to check out the same code, make revisions, and check it back in. The
tool automatically merges the code to produce what it thinks is the correct version. CVS also
allows you to manage utilities, classes, libraries, etc., all within the same framework. It allows
users to check out an entire software tree as a single unit, rather than manage this as individual
files as is done in RCS. Unfortunately, this is not as simple as it sounds, and there is a steep
learning curve for CVS. Hence, we spent some time developing wrappers for common CVS
functions so that users were protected from the details of CVS [22]. This is important because
CVS is unwieldy at times, and can corrupt files if not used carefully. However, we are now
routinely using it in production, with satisfactory results.

One of the strongest arguments for using CVS is the capability it has for doing distributed
software development. We have implemented an anonymous CVS server that functions much like
an ftp server. Users can log into this server, and grab a snapshot of the code currently under
development, and do concurrent development if necessary. This is a fairly new capability
introduced into CVS in the last year, and is being used by several public domain software
projects. In our case, it is an extremely useful capability because it allows users to update a
portion of the environment as we make incremental changes, rather than download the entire
environment each time we make a small change. Since our final environment will be large, the
anonymous CVS distribution strategy allows users to maintain a current copy of the environment
without repeatedly doing massive downloads. It also offers the potential for others to contribute to
the environment. An on-line [23] tutorial on how to use our anonymous CVS server is available
on the web.

B.5 Software Quality Control

Maintaining quality software releases in a rapidly developing environment is always a challenge,
especially when dealing with student programmers. In fact, this is one reason we will add a staff
member to the project next year. We have been continually refining our software quality control
process. Three important facilities were added to our environment to enhance our process. First,
we adopted a public domain memory checking system known as dmalloc as a routine part of our
software development cycle. Dmalloc checks for memory leaks and other such programmer
errors. Though not an industrial strength product (such as Pure Software’s Purify), dmalloc runs
on all our supported platforms and does a good job of catching memory problems. It has made a
big difference in the quality of our code. Typical released code that used to have two or three
memory problems per class now are released with virtually no defects.

A second important step we have taken to improve the quality of our software is to introduce a
diagnostic method in each class. As a programmer implements a class, a diagnose method is

MISSISSIPPI STATE UNIVERSITY PAGE 48 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

provided that exercises all methods in the class, and produces predetermined output. We have
integrated this into our make facility as well: “make diagnose” automatically generates a test
program that uses this method. This facility, coupled with dmalloc, allows the programmer to do a
fairly complete test and verification of the class before it is released.

Finally, we have instituted a web-based checkilist facility that programmers use to make sure they
complete all steps required of a release. As a programmer works through a class, the checklist is
updated with each major step. The checklist includes items such as initial design, design review,

implementation, diagnostics, debugging, dmalloc, documentation, cross-platform check, and

release. Pertinent information, such as the programmer’s name and date of completion, are
automatically generated and stored in database. Everything is done via the web and an SQL
database interface, which makes it extremely easy for the project manager to track progress.

C. Web-Based Information

Dissemination of information via the web is a critical part of this project. We have overhauled our
web site to showcase this project and to make information more readily accessible to our users.
The URL for the project is:

http://www.isip.msstate.edu/projects/speech

This web site contains some novel features that are described below.
C.1. Project Web Site

We have designed and implemented a uniform look and feel for the web site, as shown in
Figure 6. The hierarchy is designed to make it easy for users to access the software, educational
resources, and on-line job submission facility. Most of the web pages are implemented using
server-side includes that provide a uniform look and feel for all pages. We have also implemented
a search capability using a public domain SQL database package. Records in this database are
currently entered manually using a web-based interface. Our attempts at generating the database
automatically produces unacceptable results (personal AltaVista was the best tool we looked at,
but does not exist as a Unix package currently).

We have made it easy for people to contact us for support by providing a single point of email
contact: help@isip.msstate.edu. We typically have been able to respond in less than one hour to
most requests for help, though traffic has been fairly light thus far. Incoming requests to help are
reviewed by the project manager and assigned to the appropriate student worker for resolution.

We have also added a facility for archival of all mail messages sent to our project-specific email
alias: asr@isip.msstate.edu. The URL for this archivehiwp://www.isip.msstate.edu/data/
mailing_lists Any message to this list is archived and added to the web page by a process that
runs nightly using mail processing tool (Monarch) that generates a threaded display. This archive
has proven to be extremely useful when new members join the list. Eventually, we will add an
FAQ to the web site to complement the information in the mailing list archives.

We also automatically track downloads of our software. The statistics on who is downloading our
software can be viewed at the following URL: http://www.isip.msstate.edu/data/statistics/web.
This page tracks hits on a user-specified set of web pages, allowing us to do a thorough analysis of
who is accessing our web pages and downloading our software.

MISSISSIPPI STATE UNIVERSITY PAGE 49 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

C.2. Documentation

We have begun building on-line documentation for our foundation classes. An example of this
documentation [24] is shown in Figure 7. To the left, we have the entire class index in a scrollable
window. To the right, we have the documentation for a particular class. Each major heading, such
as “MAIN,” has an overview of the library or set of libraries. The classes are grouped by their
position in the hierarchy. Eventually, we will need to supply a search engine for random access to
these pages.

Each individual web page is organized similar to a Unix man page, with the appopriate
modifications to account for the fact that these are classes instead of library functions. The source
code for the class is directly linked to the web page, making it easy for users to study the source
code and the documentation simultaneously. The pages are structured as follows:

Section Description Links Provided
Name class name class header file
Synopsis broad overview of the class N/A
Quick Start a working example N/A
Description brief description of the goals we had in | N/A
designing the class
Dependencies other classes included in the header corresponding classes on which
files and required for compilation this class is dependent
Public Methods user interface (also shows methods source code for each method
required for all classes)
Public Constants | constants available for general use N/A
Protected Data information for programmers on the class header file
internal data
Private Methods methods used internally in the class source code for each method
Examples simple examples how to use the code N/A
Notes other information relevant to users and | N/A
programmers

Table 2. An overview of the information contained in a typical page documenting a class.

Pages for utilities, applications, and toolkits will follow the same format. A searchable database is
also under development to support random access to these pages.

C.3. Educational Java Applets

We have made a strategic commitment to developing Java applications because of Java’s inherent
portability. However, this has been a mixed blessing because the Java language and associated
toolkits are constantly changing. On top of that, each release of Java seems to have serious bugs
that get in the way of developing robust applications. The net effect is that our programming

efficiency in Java has been quite low, and our progress on educational applets has been hampered

MISSISSIPPI STATE UNIVERSITY PAGE 50 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

by these problems. Java’s lack of portability seems to be an industry-wide problem at the moment.

There are two strategic issues with Java programming. First, there is the GUI, or application
interface. Java previously provided the Abstract Window Toolkit (AWT) as its standard interface.
We developed a number of applications around this interface [25]. Unfortunately, this interface
was recently obsoleted, and replaced with Swing [26]. We spent time this year training our Java
programmers on the Swing interface, and porting our existing applications to this new interface.
Swing is still somewhat buggy and working around these bugs has been a time-consuming
process. We have, however, managed to release several new applets under Swing. An example of
one such applet, which teaches the principles of digital filter design, is shown in Figure 8. We
would like all our applets to have a common interface. Hence, some amount of retooling of
existing applets was necessary.

To make matters worse, Netscape’s latest releases of its browser are not fully compliant with
Swing. Netscape recently seems to consistently lag Sun Microsystems on support of Java. Hence,
users must download a plug-in from Sun to get true Java and Swing compliance. This appears to
be the best solution at the moment, Netscape’s commitment to retooling its browser appears to be
guestionable. We provide installation instructions on our web site [27] for how to download the
package and install it in several different configurations. More importantly, we have also
programmed our applets to probe the user’s browser, detect this plug-in is missing, and prompt the
user with a message indicating what to do to download the plug-in.

Despite our Java retooling problems, we have been able to develop two new applets. The first is
the digital filtering applet mentioned previously, and shown in Figure 8. In this applet, a user can
design a filter using several predefined algorithms involving well-known filter prototypes. The
user can also draw a desired frequency response, and let the applet design the corresponding filter.
The applet provides details on the actual design, including filter coefficients, frequency and phase
response, and a pole/zero analysis. This applet is targeted towards split-level DSP courses, and
undergraduate signals and systems classes.

A second applet involves demonstration of fundamental concepts in pattern classification. Users
can select prestored data sets that highlight the differences between common classification
schemes such as principle components analysis, linear discriminant analysis, and Euclidean
distance. Users can also optionally enter their own data sets. Classifiers can then be trained on this
data, and the results depicted in terms of classification regions. This applet demonstrates several
statistical normalization principles used in signal to feature vector conversion process in speech
recognition. It will be useful for graduate courses in pattern recognition, speech recognition, and
digital signal processing. It has not been formally released because there are several Java
problems with the user interface. We expect this applet to be released in the first quarter of the
second year of this project.

We have also begun building a much more ambitious demo that is essentially a port of our Tk/Tcl
demonstration of the search algorithm used in the recognizer. This demo has been available for
some time as part of the recognition toolkit. It requires the Tk/Tcl toolkit on the platform running
the demo, as well as a port of the recognizer. We have demonstrated this application on Windows
as well as Unix machines. Our approach in Java was to port the C++ code for the recognizer, and
retool the interface. Unfortunately, this turned out to be a much more ambitious effort than
planned, for some of the reasons described above. Hence, we decided to better learn how to
implement more straightforward applets in Swing first. In the second year of this project, we will

MISSISSIPPI STATE UNIVERSITY PAGE 51 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

return to the problem of providing a Java-based graphical tutorial of how a speech recognition
search engine works.

C.4. Remote Job Submission

One of the truly unique capabilities that we added to the web site this year was the ability to
submit a speech recognition job over the Internet to our servers. The interface for this facility is
shown in Figure 9. The page can be reached by clicking on experiments on the project main page,
or directly from the following URL:http://www.isip.msstate.edu/projects/experimefite page
contains a CPU monitor on the upper left that shows the status of our compute servers, a dialog
box on the bottom that is used to interact with the user, and windows to the right that provide
status on active jobs and access to the results produced by the job. After a job is submitted, users
can view the results on-line via a URL, or have the results transferred via email.

The current implementation is an initial prototype that will be refined in the coming year. It is
certainly not robust and not as graphical as we would like. There are two important features
included in the current system. First, users can run a canned experiment and obtain detailed
information about how the recognizer analyzed the data. This is useful for comparing
performance, replicating well-known results, or learning how the algorithm processes data.
Second, users can supply their own audio file via a URL. This is useful if you want to compare the
performance of several systems on the same data. Eventually, we will provide more support for
editing data graphically, and interacting with parameters of the models. For the moment, most
interactions are done via text boxes, and only a limited set of parameters can be modified.

D. Summary

The first year of this project has been productive in the much of the groundwork to support the
subsequent years of the project has laid. From a human resources standpoint, the funding from
this project has allowed the recruitment, training and development of four promising
undergraduate students (two of whom plan to pursue graduate degrees in our department under
ISIP’s direction), two M.S. students (who plan to continue for a Ph.D.), and one Ph.D. student. All
but one of these students will remain on this project until its conclusion. In addition to making
fundamental contributions to the project in the first year, all have been trained on our strict
software engineering paradigm. Since this project has strong synergy with a related project
focusing on core technology development, we are able to leverage many resources and much
infrastructure from that project. One of our most senior graduate students has transitioned from
the core technology project to this project, and will manage technical aspects of this project in the
second year.

The second year of the program provides for a professional staff position to manage the routine
operations of the project, particularly support and web site development. We have recruited a
senior engineer for this position. This individual has an MS in Computer Science, and over
20 years of experience in software engineering and computing systems in both industry and
academia. For the past several years, he has been the computer systems administrator for another
college on campus. Prior to that, he has operated a small consulting company that developed
business management software for hospitals. Since he is already a university employee, he has
begun interacting with our group on a volunteer basis so that he can familiarize himself with our
operation.

MISSISSIPPI STATE UNIVERSITY PAGE 52 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

This staff position has three primary duties: quality control, web site development, and support.
He will directly supervise the students working on the project, and be responsible for software
releases, bug fixes, and updates. A near-term goal is to implement the GNU configure [28]
distribution paradigm into our system, so that our software will automatically configure itself
upon installation. A secondary immediate goal will be to implement problem-tracking software so
that all messages to our help line will receive proper prioritization and attention.

The second year of this project is a pivotal year in that we will hold our first set of workshops. In
January 2000, we will hold a one-day industrial forum in which we conduct a formal design
review of the system, and solicit feedback from the participants on desired enhancements for the
coming year. This workshop is tentatively scheduled for January 6-7. We hope to have a mixture
of senior professionals from industry and academia (with more of an emphasis on industrial
participation). The program will most likely consist of a half-day of design reviews and demos,
followed by a half-day of discussion about recommended enhancements to the system. We expect
to develop a clear plan of action from this meeting in an attempt to focus our development towards
things of interest to the general community.

Our first summer workshop is also tentatively scheduled for May 21-27. For this workshop, we
will invite approximately 12 graduate students (and perhaps senior undergraduates) to spend one
week in our lab learning about our system. Travel expenses will be paid for these students. The
agenda will most likely consist of morning lectures and demonstrations followed by afternoon
laboratories. Initial feedback on this has been very positive, with several sites suggesting they
would subsidize attendance by their professionals rather than have their people miss the event.
Our facilities can accommodate 12 students comfortably, with a reasonable ratio of students to
staff, and adequate access to computing equipment. If interest exceeds this limit, we will
investigate alternative facilities. However, our tendency for the first training workshop is to keep it
small and focused, so that it can proceed as smoothly as possible.

MISSISSIPPI STATE UNIVERSITY PAGE 53 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

E. REFERENCES

[9] R.A.Cole, et al, “Multilingual Access and Retrieval using Communicative Interface
Agents (MARCIA),” submitted to Multilingual Information Access and Management: Call
for International Research Cooperation, National Science Foundation, June 1999.

[10] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary
Conversational Speech Recognition,” to appeadBiE Signal Processing Magazine
September 1999.

[11] J. Picone, “Continuous Speech Recognition Using Hidden Markov Mod&EE ASSP
Magazine vol. 7, no. 3, pp. 26-41, July 1990.

[12] Y. Wu, A. Ganapathiraju, and J. Picone, “Baum-Welch Reestimation of Hidden Markov
Models,” http://www.isip.msstate.edu/publications/reports/isip_Ivcsr/1999/baum_welch/
report_061599.pdf Mississippi State University, Mississippi State, Mississippi, USA,
May 1999.

[13] N. Deshmukh, A. Ganapathiraju, J. Hamaker, J. Picone and M. Ordowski, “A Public
Domain Speech-to-Text System,” to be presented at the 6th European Conference on
Speech Communication and Technology, Budapest, Hungary, September 1999.

[14] H. Hermansky, “Perceptual Linear Predictive (PLP) Analysis of Speeldutnal of the
Acoustical Society of Americeol. 4, pp. 1738-1752, 1990.

[15] W.M. Fisher,et al, “Data Selection for Broadcast News CSR Evaluations,” presented at the
DARPA Broadcast News Transcription and Understanding Workshop, Lansdowne,
Virginia, U.S.A., February 1998.

[16] 1. Alphonso, N.Deshmukh, and J. Piconbitp://www.isip.msstate.edu/projects/speech/
software/transcriber/index.htil Mississippi State University, Mississippi State,
Mississippi, USA, May 1999.

[17] P. Bothnergt al, “Welcome to the GCC Projectlittp://egcs.cygnus.candune 1999.

[18] J. Picone, “Managing Software Complexity in Signal Processing Rese&mtéedings of
the IEEE International Conference on Acoustics, Speech and Signal Procggsiriy-41-
[1I-44, Minneapolis, Minnesota, USA, April 1993.

[19] J. Fiscuset al, “SPeech Quality Assurance (SPQA) Package Version 2.3 AND Speech File
Manipulation Software (SPHERE) Package Version,2ffp://jaguar.ncsl.nist.gov/pub/
spga_2.3+sphere_2.5.tdr. National Institute of Standards and Technology, Gaithersburg,
Maryland, USA, June 1999.

[20] W.F. Tichy, “RCS--A System for Version ControlSoftware--Practice & Experience
vol. 15, no. 7, pp. 637-654, July 1985.

[21] “Concurrent Versions System (CVS)™http://www.cyclic.com/cyclic-pages/howget.html
Cyclic Software, Washington, D.C., USA, June 1999.

MISSISSIPPI STATE UNIVERSITY PAGE 54 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

[22]

[23]

[24]

[25]

[26]

[27]

[28]

R. Duncan, “Software Version Control Systemtittp://www.isip.msstate.edu/projects/
speech/education/tutorials/cvs/index.htidlississippi State University, Mississippi State,
Mississippi, USA, June 1999.

l. Alphonso, “CVS Anonymous Download Instructionstittp://www.isip.msstate.edu/
projects/speech/support/info/cvs_instructions.html Mississippi State University,
Mississippi State, Mississippi, USA, June 1999.

S. Balakrishnama and N.Deshmukh, “ISIP Software Documentatiomttp://
www.isip.msstate.edu/projects/speech/education/tutorials/isip_erMjssissippi State
University, Mississippi State, Mississippi, USA, June 1999.

ICASSP applets paper

E. Eckstein, M. Loy, and D. WoodJava Swing O'Reilly and Associates, Cambridge,
Massachusetts, USA, 1998.

R. Duncan, “Java Plug-In Installation Instructionsitp://www.isip.msstate.edu/projects/
speech/support/info/java_instructions.htidlississippi State University, Mississippi State,
Mississippi, USA, June 1999.

D. MacKenzie and B. Elliston,http://www.gnu.org/manual/autoconf-2.13/html_chapter/
autoconf_toc.htmlFree Software Foundation, Boston, Massachusetts, USA, July 1999.

MISSISSIPPI STATE UNIVERSITY PAGE 55 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

Digital Filter ’-_I
- —— - |Power Estimation
Bank
Filter Bank I

Speech

> Fourier
Transform W‘
Filter Bank I
-
Cepstrum I

Linear Prediction ‘

Filter Bank I
Cepstrum I

Figure 1. An overview of the front-end portion of the speech recognition system. Two popular analysis
techniques, mel-spaced cepstrum and perceptual linear prediction, are supported in the system. Other
approaches based on frame-based analysis techniques can be easily added.

Perceptual

Linear Prediction

vV v v vy

MISSISSIPPI STATE UNIVERSITY PAGE 56 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH...

OCTOBER 31, 2002

Critical Equal Intensity-
Speech
b Band Loudness Loudness
— Analysis Pre-Emphasis §#| Conversion
Inverse Discrete Solution for
Fourier Autoregressive All-Pole
Transform Coefficients Model

Figure 2. An overview of perceptual linear prediction (PLP) analysis.

increasingly popular in recent years.

MISSISSIPPI STATE UNIVERSITY

PAGE 57

This front-end

has become

NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH...

4

-
I"_!

N ™ i
(5N W W

[L

F
ke

ALV L

classes - utilities - scripts - speech - search - up

OCTOBER 31, 2002

I
s

oAy

Ay research in the area of signal processing requires the developrent of large applications in a relatively short period of
time. Unfortunately, research cormmenly suffers from a creative backlog due to reswriting of cormmeon fonctions and the tme
spent in debugging such things as file IO, It wovld be ideal to have a large, hierarchical software environment which can
support advanced research in signal processing. The ISIP Foundaton Classes (IFCs) and software environment are
designed to meet thiz need, providing everything from complex data stctores to an abstract file IA0 interface. This
software environoment starts from the lowest, system level dasges, and culminates in a state of the art public domain large

vocabulary speech recognition system.

Home significant features of the ISIP softwrare emvirononent include

® ynicode compatibility and wide character support to allow multlingnal applications
® abstract interface for file i'o

® well- equipped library of DEP fonctions
® advanced mathematical classes to provide linear algebra and matix operations

The hierarchical stcture of the software environment 15 as follows:

High Level Programming

DSP Library

Data Structure Library

Math Library

[/O library

System library

ISIP Speech Recognizer

Filter Signal
LinkList HashTable
Scalars Vectors Matrices

Sof SofSymbol SofList SofParser Parser

Integral SysChar SysString File Error Console

Figure 3. An overview of the hierarchy of ISIP classes. The system and I/O libraries are new additions to
the class structure. The math and data structure libraries make extensive use of templates.

MISSISSIPPI STATE UNIVERSITY

PAGE 58

NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

Il file: $isip/class/system/Integral/IntegralTypes.h
I/l version: $ld: IntegralTypes.h,v 1.4 1999/07/12 18:29:29 duncan Exp $
1

/I system include file
1
#include <wchar.h>

/I this is the basic isip environment include file. all Integral types
/I are defined in this file. these are also implemented as C++ classes.
/I all software must be built upon these basic types.

typedef void* voidp;

typedef signed char boolean;
typedef unsigned char byte;
typedef wchar_t unichar;

typedef unsigned short int ushort;
typedef unsigned long int ulong;
typedef unsigned long long int ullong;
/Itypedef short int short;

[ltypedef long int long;

typedef long long int llong;

IItypedef float float;

/Itypedef double double;

typedef unsigned char byte8;
typedef unsigned short int ushort16;
typedef unsigned long int uint32;
typedef unsigned long long int uint64;
typedef short int int16;

typedef long int int32;

typedef long long int int64;

typedef float float32;

typedef double float64;

Figure 4. The integral types define the fundamental building blocks of the ISIP environment. We have
taken an approach that requires these types to be a fixed number of bytes.

MISSISSIPPI STATE UNIVERSITY PAGE 59 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH...

/I Scalar: our template scalar class
I

template<class T>

class Scalar {

protected:

/I internal data
Il
T value_d;

public:

/l required static methods:
1
static String& name();

/l required methods:

/I no setDebug required

i

boolean debug(unichar* message);
T size();

/I initialization and release methods.

boolean init();
boolean release();

/I destructors/constructors
I

~Scalar();

Scalar();

Scalar(Scalar& arg);
Scalar(T arg);

/I former in-line methods
1
operator T();

Scalar& operator= (T arg);

/I get methods

1

boolean get(Scalar& arg);
boolean get(T& arg);

/I assignment methods
I
boolean assign(T arg);

/I mathematical functions
I

T min(T arg);

T min(T arg_1, T arg_2);

T max(T arg);

Figure 5. A template class definition for a scalar object. This template is used to build classes such as

Long, Short, and Float.

MISSISSIPPI STATE UNIVERSITY

PAGE 60

OCTOBER 31, 2002

T max(T arg_1, T arg_2);

T abs();
T abs(T arg);

T sign();
T sign(T arg);

T factorial();
T factorial(T arg);

[l useful for DSP

I

T limit(T min, T max);

T limit(T min, T max, T val);

T limitHard(T thresh, T new_val);
T limitHard(T thresh, T new_val, T arg);

T centerClip(T min, T max);
T centerClip(T min, T max, T arg);

private:
public:

I/ define the class name
1
static const unichar CLASS_NAME[] = L"Scalar";

I/ define the default value(s) of the class data
1

static const T DEF_VALUE = (T)0;

static const T DEF_RAND_MIN = (T)0;

/I default arguments to methods
1
static const long NEGATIVE = (long)-1;
static const long POSITIVE = (long)1;

static const long ERR = (long)20666;
3

/I all classes need to inherit Scalar
I

template class Scalar<long>;
/ltemplate class Scalar<short>;

/I end of include file
I
#endif

NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

Up | Software | Education | Experiments | Suppost
Horoe | Site Bap | About Us | Search | Contact

Flease direct questions o cornroents to belpidisip.osstate edu,

Figure 6. A new set of web pages have been created to support the project. These have been designed to
provide easy access to the web site. The choices to the left of the image mirror the physical organization of
the web site.

MISSISSIPPI STATE UNIVERSITY PAGE 61 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH...

OCTOBER 31, 2002

File Edit VYiew Go Communicator Help
w" Bookmarks & Location: Iisip.msstate. sdu/projectsspeech/education/tutorialsisip_enw/ ,I| ﬁv YWhat's Felated
iy
MAIN 4 — gl | i -
afoXciufpnlAnheshgKodnl . k)
CLASSES Juf,-,fl\jpl.lr” M}.f....
SYSTEM classes - utilities - scripts - speech - search - up
Integral
Memorybdanager . o . q o
Svahar name synopsis start description dependencies public constants protected private examples notes
Byssting
Error
Fie Console
Console : Console
10 .
Saf SYNOpsis:
Soflist gooe [flags ...] file ... -1 fisip/teoolsslib/$I5TP_BIHARY/ 1ib_smstem. a
SofParser
SufS]'T_nhulTahle #include <Conzole by
~Console(h; -
MATH Gonsole();
static boolesn open{svsstrings filensme, long mode = File::APPERD_OHLY);
static boolean broadeast{unichar® str);
SCALAR static boolesn clozed);
Bonlean B
Brte quick start:
Short
conzale cons;
Ushort boolean global error = Integral::FALSE;
Long
i Eoolean statns = cons. open{L"ont. txt");
Llong if (ztatms == Integral: :FALSE) {
U]long cons. pub{L" this file does nok exist"});
Float
Drouble if (glob;l_eirortT"Iniéeg:il;_ :TEU'E;} i ted")
Stﬂn cons. broadcast{L" onk. 1= elng create H
VECTOR cons. closef);
Wectorl ong description:
MATRIX Console class controls messages (ervors and debugging information) which programmers might want to send to stdout.
Matrixlong This class does not add new data. Modulaty of this class provides user to control debugging of kigher and lower level
class with separate consoles. The nser can save the ervor and debugeing messages in 4 separate log file and use it for
UTILITIES extensive debugging purpose.
SCRIPTS dependencies:
® SysSting
® Integral
8 File
public methods:
o required static method for the filename operation
shabic Strings name);
® required statc method for the dagnose operation i
= g e 9P @ 2

Figure 7. An example page of documentation for the IFCs. The code is directly linked to the page, making
it easy for users to view the code while studying the documentation.

MISSISSIPPI STATE UNIVERSITY PAGE 62 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH...

FILTER DESIGN TOOL

OCTOBER 31, 2002

r Comtrol Panel

Kaiser w | Plot Resolution: 500

Compute

Reset

rEnter Parameters for Kaiser Filter

rFilter Coefficients

Sample Frequency (Hz)

2000.0

Numerator {7)

Denominator {0)

Hi—3) = 0.0733

Lower Critical Frequen... [100.0

Hi—2) = 0.0876
Hi—1}) = 0.09E8
H{o) = 0.1

Upper Critical Frequen... [S00.0

H{1} = 0.03E68
H{Z) = 0.087E

Attenuation {dB) 10,0

H(3) =0.0733

Transitional Bandwidt... |100.0

Filter Order 0

Modify Coefficients

rFrequency Response: Magnitude

]

-E0

H(f)l (dE)

rFrequency Response: Phaze

» Source Code

® A simple mitorial on nsing this applet.

Figure 8. An example of a Java Swing applet that demonstrates the concept of digital filter design. Swing
has been a mixed blessing. While some aspects of GUI programming are nicely abstracted, other aspects,
such as interactions between grid boxes and event handlers, have been problematic.

MISSISSIPPI STATE UNIVERSITY

PAGE 63

NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... OCTOBER 31, 2002

Figure 9. A Java applet that allows users to submit speech recognition jobs remotely to a bank of compute
servers. Users can run canned experiments, or supply their own audio data. Parameters for the experiment
can be specified via dialog boxes. Results are emailed to the user, and can be examined directly on the
web site via links provided in the dialog boxes to the right.

MISSISSIPPI STATE UNIVERSITY PAGE 64 NSF CARE: AWARD 9809300

	08/15/99�—�08/14/00: RESEARCH AND EDUCATIONAL ACTIVITIES
	A. ��Production System Release
	B. ��Outreach Via Workshops
	C. ��Software Engineering
	D. ��Foundation Classes
	E. ��Java Applets

	F .��REFERENCES
	[1] R.�Sundaram, A.�Ganapathiraju, J.�Hamaker and J.�Picone, “ISIP Public Domain LVCSR System,” t...
	[2] J.�Picone and W.C.�Chapman, “Speech Recognition System Design Review,” http:// www.isip.mssta...
	[3] J.�Picone, C.�Atkeson and I.�Alphonso, “Harnessing High Bandwidth: Applications in Speech Rec...
	[4] J.�Picone, “Summary of SRSDR’00,” http://www.isip.msstate.edu/conferences/srsdr00/ technical_...
	[5] J.�Picone, “Speech Recognition System Training Workshop,” http://www.isip.msstate.edu/ confer...
	[6] J.�Picone, “Workshop Program,” http://www.isip.msstate.edu/conferences/srstw00/html/ program....
	[7] J.�Vincent, “Request Tracker,” http://www.fsck.com/projects/rt/, March�2000.
	[8] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary Conver...

	08/15/98�— 08/14/99: RESEARCH AND EDUCATIONAL ACTIVITIES
	A. ��Core Technology
	A.1 .��System Status
	A.2 .��System Enhancements
	A.3 .��Cross-Platform Portability
	B. ��Foundation Classes
	B.1 ��Integral Types
	B.2 . System and I/O Classes
	B.3 ��Math Classes
	Table�1 .�A comparison of template and non-template implementations of the math classes. Template...

	B.4 ��Concurrent Versions System�(CVS) and Anonymous CVS Servers
	B.5 ��Software Quality Control
	C. ��Web-Based Information
	C.1 .��Project Web Site
	C.2 .��Documentation
	Table�2 . An overview of the information contained in a typical page documenting a class.

	C.3 .��Educational Java Applets
	C.4 .��Remote Job Submission
	D. Summary

	E .��REFERENCES
	[9] R.A.�Cole, et al, “Multilingual Access and Retrieval using Communicative Interface Agents�(MA...
	[10] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary Conve...
	[11] J. Picone, “Continuous Speech Recognition Using Hidden Markov Models,” IEEE ASSP Magazine, v...
	[12] Y.�Wu, A.�Ganapathiraju, and J.�Picone, “Baum-Welch Reestimation of Hidden Markov Models,” h...
	[13] N. Deshmukh, A. Ganapathiraju, J. Hamaker, J. Picone and M. Ordowski, “A Public Domain Speec...
	[14] H.�Hermansky, “Perceptual Linear Predictive (PLP) Analysis of Speech.” Journal of the Acoust...
	[15] W.M.�Fisher, et al, “Data Selection for Broadcast News CSR Evaluations,” presented at the DA...
	[16] I.�Alphonso, N.�Deshmukh, and J.�Picone, http://www.isip.msstate.edu/projects/speech/ softwa...
	[17] P.�Bothner, et al, “Welcome to the GCC Project!,” http://egcs.cygnus.com, June�1999.
	[18] J. Picone, “Managing Software Complexity in Signal Processing Research,” Proceedings of the ...
	[19] J.�Fiscus, et al, “SPeech Quality Assurance (SPQA) Package Version 2.3 AND Speech File Manip...
	[20] W.F.�Tichy, “RCS--A System for Version Control,” Software--Practice & Experience, vol.�15, n...
	[21] “Concurrent Versions System�(CVS)”, http://www.cyclic.com/cyclic-pages/howget.html, Cyclic S...
	[22] R.�Duncan, “Software Version Control System,” http://www.isip.msstate.edu/projects/ speech/e...
	[23] I.�Alphonso, “CVS Anonymous Download Instructions,” http://www.isip.msstate.edu/ projects/sp...
	[24] S. Balakrishnama and N.�Deshmukh, “ISIP Software Documentation,” http:// www.isip.msstate.ed...
	[25] ICASSP applets paper
	[26] E.�Eckstein, M.�Loy, and D.�Wood, Java Swing, O’Reilly and Associates, Cambridge, Massachuse...
	[27] R.�Duncan, “Java Plug-In Installation Instructions,” http://www.isip.msstate.edu/projects/ s...
	[28] D.�MacKenzie and B.�Elliston, http://www.gnu.org/manual/autoconf-2.13/html_chapter/ autoconf...
	Figure�1 . An overview of the front-end portion of the speech recognition system. Two popular ana...
	Figure�2 . An overview of perceptual linear prediction�(PLP) analysis. This front-end has become ...
	Figure�3 .�An overview of the hierarchy of ISIP classes. The system and I/O libraries are new add...
	Figure�4 .�The integral types define the fundamental building blocks of the ISIP environment. We ...
	Figure�5 .�A template class definition for a scalar object. This template is used to build classe...
	Figure�6 .�A new set of web pages have been created to support the project. These have been desig...
	Figure�7 .�An example page of documentation for the IFCs. The code is directly linked to the page...
	Figure�8 .�An example of a Java Swing applet that demonstrates the concept of digital filter desi...
	Figure�9 .�A Java applet that allows users to submit speech recognition jobs remotely to a bank o...

	08/15/00�—�08/14/01: RESEARCH AND EDUCATIONAL ACTIVITIES
	A. ��Java Applets
	B. ��Production System Release
	C. ��Foundation Classes
	D. ��Workshops
	E. ��Software Engineering

	F .��REFERENCES
	[1] K.�Huang and J.�Picone, “Internet-Accessible Speech Recognition Experiment Server,” http://ww...
	[2] K.�Huang and J.�Picone, “ISIP CPU Load Statistics,” http://www.isip.msstate.edu/data/ statist...
	[3] J.�Hunter, Java Servlet Programming, O’Reilly and Associates, Cambridge, Massachusetts, USA, ...
	[4] J.�Hamaker, R.�Duncan, N.�Parihar, and J.�Picone, “A Public Domain Speech Recognition System,...
	[5] R. Sundaram, A. Ganapathiraju, J. Hamaker and J. Picone, “ISIP 2000 Conversational Speech Eva...
	[6] B. George, B. Necioglu, J. Picone, G. Shuttic, and R. Sundaram, “The 2000 NRL Evaluation for ...
	[7] R. Sundaram, J. Hamaker, and J. Picone, “TWISTER: The ISIP 2001 Conversational Speech Evaluat...
	[8] R.�Duncan and J.�Picone, “The ISIP Foundation Classes,” http://www.isip.msstate.edu/ projects...
	[9] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary Conver...
	[10] J. Langley and J. Picone, “Practical C++ ISIP-Style,” http://www.isip.msstate.edu/projects/ ...
	[11] S. Lippman and J. Lajoie, C++ Primer, Third Edition, Addison Wesley, Reading, Massachusetts,...
	[12] S.�Srivastava, R.�Duncan, and J.�Picone, “The Algorithm Classes,” http:// www.isip.msstate.e...
	[13] J.�Picone, “Speech Recognition System Design Review”, http://www.isip.msstate.edu/ conferenc...
	[14] J.�Picone, “Speech Recognition System Training Workshop,” http://www.isip.msstate.edu/ confe...
	[15] J.�Picone, “Speech Recognition System Design Review”, http://www.isip.msstate.edu/ conferenc...
	[16] J.�Picone, “Speech Recognition System Training Workshop,” http://www.isip.msstate.edu/ confe...
	[17] K.�Muir and J.�Picone, “SRSTW’00 Feedback”, http://www.isip.msstate.edu/conferences/ srstw00...
	[18] J.�Langley and J.�Picone, “SRSTW’01 Feedback”, http://www.isip.msstate.edu/conferences/ srst...
	[19] R.�Duncan, R.�King, and J.�Picone, “Varmint: A Bug Tracking and Resolution Tool”, http://www...
	Figure�1 . A view of the ISIP remote job processing facility. The machines shown in the bottom ro...
	Figure�2 . The front page of the remote job submission applet is shown. On the right, users can v...
	Figure�3 .�The feature extraction page allows users to select files from existing databases, or u...
	Figure�4 .�An excerpt from the interface to the speech recognition evaluation applet. This page a...
	Figure�5 .�The ISIP Foundation Classes�(IFCs) represent a hierarchy of software modules designed ...
	Figure�6 .��An expanded view of the functionality provided in the top two levels of the productio...
	Figure�7.�� An example of the Sof version of the recognizer parameter file. This format is tempor...
	Figure�8 .�An example of a front end created using our interface building tool. Users can flow ch...
	Figure�9 .�Samples of feedback from SRSDR’01. The second year of this workshop was a much more ef...
	Figure�10 .�Screenshots from our bug tracking software tool known as Varmint. This tool is writte...
	Figure�1 .��A typical speech recognition system.
	Figure�2 .��An overview of a generalized search engine that allows users to implement speech reco...
	Figure�3 .��Examples of feedback collected from SRSDR’00. Comments about topics for the extended ...
	Figure�4 .��An overview of a CASE-based tool that implements signal processing algorithms using a...
	Figure�5 .��An example of enhanced visualization capabilities in our pattern recognition applet. ...
	Figure�6 .��Two new data sets that pose challenging problems for classification algorithms have b...
	Figure�7 . An example of a clustering algorithm in which users see the decision regions evolve.

	08/15/01�—�10/31/02: RESEARCH AND EDUCATIONAL ACTIVITIES
	A. ��Retrospective
	B. ��Speech Recognition Toolkit
	C. ��Educational and Tutorial Resources
	D. ��Java Applets
	E. ��Workshops
	F. ��Summary and Future Work

	G .��REFERENCES
	[1] “GNU General Public License,” Free Software Foundation, Inc., 59 Temple Place�— Suite�330, Bo...
	[2] N. Parihar, J. Picone, D. Pearce, and H.G. Hirsch, “An Analysis of the Aurora Large Vocabular...
	[3] “ETSI ES 201 108 v1.1.2 Distributed Speech Recognition; Front-end Feature Extraction Algorith...
	[4] D.�Pearce, “Overview of Evaluation Criteria for Advanced Distributed Speech Recognition,” ETS...
	[5] N.�Parihar and J.�Picone, “DSR Front End LVCSR Evaluation,” AU/384/02, Aurora Working Group, ...
	[6] J.�Picone, “Fundamentals of Speech Recognition: A Tutorial Based on a Public Domain C++ Toolk...
	[7] J. Picone, “Internet Accessible Speech Technology,” National Science Foundation, May 25, 2001...
	[8] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary Conver...
	[9] K. Huang and J. Picone, “Internet-Accessible Speech Recognition Technology,” presented at the...
	[10] B. Jelinek, F. Zheng, N. Parihar, J. Hamaker, and J. Picone, “Generalized Hierarchical Searc...
	[11] K.�Huang and J.�Picone, “Network Builder�— An LVCSR Configuration Tool,” Institute for Signa...
	[12] I.�Alphonso and J. Picone, “Annotation Graphs,” Institute for Signal and Information Process...
	[13] “Documentation,” Institute for Signal and Information Processing, Mississippi State Universi...
	[14] “Software: On-line Tutorials and Courses,” Institute for Signal and Information Processing, ...
	[15] “Introduction to Algorithms,” Institute for Signal and Information Processing, Mississippi S...
	[16] “Algorithm: Energy,” Institute for Signal and Information Processing, Mississippi State Univ...
	[17] “Convolution,” Institute for Signal and Information Processing, Mississippi State University...
	[18] “Remote Job Submission,” Institute for Signal and Information Processing, Mississippi State ...
	[19] J. Shaffer, J. Hamaker and J. Picone, “Visualization of Signal Processing Concepts,” Proceed...
	[20] “Java Applets,” Institute for Signal and Information Processing, Mississippi State Universit...
	[21] “Java Applets: Pattern Recognition,” Institute for Signal and Information Processing, Missis...
	[22] P.C.�Woodland and D.�Povey, “Large Scale MMIE Training for Conversational Telephone Speech R...
	[23] “Speech Recognition System Design Review,” Institute for Signal and Information Processing, ...
	[24] “Speech Recognition System Training Workshop,” Institute for Signal and Information Processi...
	[25] C. J. Leggetter, and P. C. Woodland, “Flexible Speaker Adaptation Using Maximum Likelihood L...
	Figure�1 . A representation of a generalized hierarchical search space for a recognition system c...
	Figure�2 . A graph that depicts a representation of multiple pronunciations in network training. ...
	Figure�3 . An example of a man page representing the introduction to a C++ library (e.g., Algorit...
	Figure�4 . An example of a man page for a class (e.g., Energy). All documentation is html-based.
	Figure�5 . A screenshot from the front page of our on-line tutorial. Detailed instructions are su...
	Figure�6 . A screenshot from our web page that consolidates all of our on-line demonstrations.
	Figure�7 . A screenshot from our Java Applets page that consolidates all of our applets. Our flag...
	Figure�8 .�An overview of the agenda for a typical day (signal processing) in our one-week summer...

