
MISSISSIPPI STATE UNIVERSITY PAGE 1 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

08/15/00 — 08/14/01: RESEARCH AND EDUCATIONAL ACTIVITIES

In the third year of this project, we focused our efforts in two core areas:

• Java Applets : overhauled our Java interfaces to use servlet technology, and launched two new
applications: feature extraction and recognition.

• Production System Release : completed two alpha releases of a new version of the production
system that greatly enhance its flexibility and functionality. Extended the interface to support more
diverse file formats (both input and output). Integrated our front end application building software.

We also continued activities in the areas central to the overall research program:

• Foundation classes : added many algorithms at both the math and signal processing layers of the
system. Introduced classes to handle general statistical pattern recognition. Revamped many of the
underlying classes to make better use of templates and templatized functions.

• Workshops : hosted a software design review in January 2001, and two one-week training
workshops held in May (‘00 and ‘01). An impressive collection of on-line resources related to these
workshops is publicly available.

• Software engineering : upgraded our software development process to use a new problem-tracking
tool that was written specifically to deal with bug life-cycle issues. Streamlined our support activities
and improved the ease of use of our distribution and verification procedures.

The workshops continue to be extremely successful as demand has far surpassed our original
estimates for enrollment (and taxed our facilities). We have seen a dramatic increase in the
number of commercial users of the recognition system. In fact, some of our most active users are
now commercial users. On-line support has improved, but still remains a challenge given the wide
range of experience levels from the users.

A. Java Applets

A key component of our CARE project is the development and operation of an Internet-based job
submission facility [1]. This web site allows users to experience speech technology through an
easy-to-use web interface that does not require installation of local software. The main reason for
this is that the infrastructure required to run a speech recognition experiment can be considerable
both in terms of computing resources and intellectual resources (language models, dictionaries,
etc.). One important goal for the third year of the project was to bring on-line a large number of
PC-based compute servers to serve as the computational engines for this applet, and to make these
machines available through this job submission facility.

We have created this facility, and have a large number of servers available for users [2], as shown
in Figure 1. These machines have dual-Pentium processors (typically, 600 MHz or faster), large
memories (typically 1 GByte), and run the Sun Solaris operating system. Jobs are distributed
amongst them by some simple load balancing software that attempts to maintain a reasonable job
load on each machine. Our web server handles the initial interactions and job distribution.

As part of our goal to enhance this applet, we embraced the Java servlet technology [3] — a new
extension of the Java language designed to make it much easier to pass data to/from a user’s
browser. Given our needs to do fairly sophisticated client/server communications, and our
concerns about security, we needed a more powerful interface than that provided by languages
such as html or cgi. Servlet technology, though quite new, has been embraced by web server
technology providers such as Apache, and will become an important industry-wide standard

MISSISSIPPI STATE UNIVERSITY PAGE 2 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

component of a web server. We spent time this year learning this programming paradigm, and
reshaping our existing job submission applet to make use of its features. Previously, we used
Java’s Remote Method Invocation (RMI) protocol, and found it wasn’t sufficiently powerful.
Servlet technology is now being used in several places on our web site.

The new job submission applet [1] has a dramatically improved interface, as shown in Figure 2. In
this version, users select the type of experiment desired from the front page, and then traverse
subsequent pages to configure and run the experiment. Users can edit parameters, listen to data,
configure the particular data sets to be analyzed, or even upload their own files. Servlet
technology has been indispensable to making all this work in a seamless interface. The only
downside is that the current version of the servlet compliant server (an interim release by Sun) is a
bit slow and lacks robustness. However, an official release of a servlet compatible server by
Apache is expected to resolve most of these problems.

The new version of the applet supports two important applications: feature extraction and speech
recognition. Feature extraction was introduced as a dedicated application because this task has
been one of our most common support problems. Inexperienced users often have trouble settling
details such as byte-ordering, sampled data encodings, compression, etc. Hence, we provide users
an ability to process standard files, such as the DARPA Switchboard Corpus, or to upload their
own files. The latter feature allows users to compare their local installations to our reference
implementations on their own data. It also allows us to efficiently interact with them on their
specific problems since we can both view (and modify) the same experiment. The interface for the
feature extraction mode of the applet is shown in Figure 3.

Figure 1. A view of the ISIP remote job processing facility. The machines shown in the bottom row,
numbered 200 — 216 are available for remote jobs submitted through the Java applet. These machines
represent various generations of dual Pentium processors ranging in speed from 333 MHz to 800 MHz,
with a maximum of 1G of memory. The Sun Solaris operating system is used on all machines.

MISSISSIPPI STATE UNIVERSITY PAGE 3 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

The second application we have introduced is an upgraded version of our recognition decoding
applet. This application again allows users to perform recognition on a standard set of prestored
utterances, or to upload their own utterances. The main page of this portion of the applet is shown
in Figure 4. At this stage, users essentially are selecting a set of models to be used for recognition.
Parameters for the recognizer can be modified in subsequent menus. Results are returned in the
form of a URL that allows the user to access an experiment directory on our servers. The
recognition applet was introduced for the first time at SRSTW’01, and was well-received.

B. Production System Release

The prototype system [4], which is a fully functional speech recognition system, has been in
release for over two years as a proof of concept of basic algorithm ideas. It has been used in
several formal speech recognition evaluations [5-7], and delivers state of the art performance. In
the third year of this project, we have focused on delivering a new version of this system, which
we refer to as the production system, that is built on top of our powerful foundation classes. We
have made two releases of this version of the system and solicited user feedback on desired
functionality. We have also begun running experiments with this system and benchmarking its
performance relative to the prototype system.

Figure 2. The front page of the remote job submission applet is shown. On the right, users can view the
CPU activity of the servers that are accessible. On the left panel, users select the type of experiment.
Subsequent menus allow configuration of this experiment and monitoring of the job. All results and
intermediate calculations are accessible from the web. Users are emailed when the job completes.

MISSISSIPPI STATE UNIVERSITY PAGE 4 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Figure 3. The feature extraction page allows users to select files from existing databases, or upload their
own files. The parameters for the front end can be configured by selecting Edit button in the upper right of
the menu. Users can browse their local filesystems when selecting files to upload.

Figure 4. An excerpt from the interface to the speech recognition evaluation applet. This page allows users
to select data and run a recognition experiment. Most parameters for the recognizer can be configured
from subsequent pages.

MISSISSIPPI STATE UNIVERSITY PAGE 5 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

The production system is built from a hierarchy of software modules implemented in C++ that
provide a wide variety of generic mathematical and data structure-oriented operations.
Collectively, these modules are know as the ISIP Foundation Classes (IFCs) [8]. The hierarchy is
shown in Figure 5. At the highest level, the production system employs a class called
Speech Recognizer, that accepts signal data as input and produces output such as a transcription.
This class in turn invokes a pattern recognition class, HiddenMarkovModel, to perform a
particular type of speech recognition. These two levels of the system are highlighted in Figure 6.

The Hidden Markov Model class is built upon a powerful search library that implements a
dynamic programming-based hierarchical search [9]. This search algorithm has been under
development for several years, and provides an ability to emulate a wide variety of approaches to
speech recognition through a user-defined hierarchy of state machines. It also mixes network
decoding and N-gram decoding in a novel way that will support an interesting mixture of
knowledge sources in a single probabilistic format. The alpha release currently only supports
context-independent models and network decoding.

The production decoder reads the decoding process configuration from a parameter file specified
as a command line option. This parameter file is in Signal Object File (Sof) format. The
parameter file contains a full front-end and hidden Markov model (HMM) specification. The
HMM specification contains an algorithm and implementation field, the number of levels in the
search hierarchy, the model file location and a desired output description. Beam width values can
be also specified. A typical parameter file is provided in Figure 7.

Figure 5. The ISIP Foundation Classes (IFCs) represent a hierarchy of software modules designed to
make implementation and modification of complex systems straightforward. New to this release is the
numeric library, which implements some standard mathematical functions.

System-Level (/system)

Input/Output/Files (/io):

Math(/scalar/vector/matrx):

Data Structures (/dstr):

Shell Interactions (/shell)

Multimedia (/mmedia):

Algorithms (/algo):

Statistics (/stat)

Signal Processing (/sp):

Search Algorithms (/search):

Pattern Recognition (/pr):

Speech Recognition (/asr):

Checksum, Console, Error, File, Integral, Memory Manager, SysChar ...

Signal Object Files, Lists, Parsers, Name Map

Boolean, Byte, Char, Complex, Float, Double, Short, String, Templates

Circular Buffers, Hash Tables, Graphs, Linked Lists, Set, Stack, Vector ...

Command Line, Debug Level, Filename, Signal Data Base

AudioFile

Histogram, Gaussian Model, Mixture Model, Uniform Model ...

Calculus, Correlation, Covariance, Filter, Prediction, Spectrum ...

Audio Front End, Features, Front End, Featrure Buffer, Recipe ...

Hierarchical Search, History, Search Level, Search Node, Trace ...

Hidden Markov Model, Support Vector Machines

Speech Recognizer, Transcription

Numeric (/numeric): Bark, LinearAlgebra, Mel ...

MISSISSIPPI STATE UNIVERSITY PAGE 6 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

The decoder output configuration can be modified from the command line. We follow a rule that a
command line option always overrides any option read from the parameter file. An input file list
can be specified from the command line. The three output modes that can be specified from the
command line are: single file (FILE), output file list (LIST), and input list transformation
(TRANSFORM). The format given below specifies the output mode from the command line:

• -output_mode <FILE, LIST, TRANSFORM>: output mode specification can either be a file, a list or a
transformed input list

Examples of typical command lines are shown below:

(1) isip_recognize file1.raw file2.raw -p param.sof -output_mode FILE -output_file hypothesis.out
(2) isip_recognize file1.raw file2.raw -p param.sof -output_mode LIST -output_list out_list.sof
(3) isip_recognize file1.raw -p param.sof -output_mode TRANSFORM -output_dir output -dir_pres 3

In (1), the FILE mode outputs all hypotheses to the single output file specified by the-output_file
command line option. The output hypotheses are written to the filehypothesis.out.In (2), LIST
mode generates one hypothesis per output file. The list of these output files is specified by the-
output_listoption. The fileout_list.sof contains the locations of output files.

In (3), the TRANSFORM mode outputs hypotheses to theNth subdirectory inside the existing
output directory specified by the -output_dir. N is specified by the-dir_pres_levelcommand line
option. TheN subdirectories are formed as same as the correspondingN input subdirectories. For
example, if the input file is in/isip/data/examples/test/boy/bg/bg_119oo39a.raw, the output will
be placed in the file/output/test/boy/bg/bg_119oo39a.sof. In this caseN is 3. Here the sub-
directory structure/test/boy/bg is preserved.

Figure 6. An expanded view of the functionality provided in the top two levels of the production system. It
is here that the system branches on fundamental pattern recognition approaches. Such flexibility is one
thing that makes the ISIP very unique amongst existing speech recognition systems.

LEVEL 0: /asr LEVEL 1: /pr

Classes
Speech Recognizer
[Image Recognizer,
Music Recognizer]

Hidden Markov Model
[Neural Network,

Mixture of Experts]

Algorithms HMM, NN, NLP VITERBI, BAUM-WELCH

Features

• opens log file

• loads models
(algorithm-specific)

• loops over files

• executes a compute
method for a file
(algorithm-specific)

• determines the processing mode
(decode or train)

• creates supervision grammar for
training

• creates language model for
decoding

• handles model initialization

• performs core frame-based
statistical modeling computations

• loops over a file and processes
each frame

MISSISSIPPI STATE UNIVERSITY PAGE 7 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

@ HiddenMarkovModel 0 @

@ Algorithm 17 @

@ Sof v1.0 @
This is the parameters file for the production system

@ FrontEnd 0 @
name = "AudioFrontEnd";
audio = {
 byte_order = BIG_ENDIAN;
 num_channels = 1;
};
frame_duration = 0.01;
target = "BASE&D&A";
output_mode = "SOF_FEATURES_TEXT";

@ Algorithm 1 @
 name = "WINDOW";
algorithm = RECTANGULAR;
 duration = 0.025; alignment = LEFT;

@ Algorithm 2 @
name = "ENERGY";
implementation = LOG;

@ DiGraph<Long> 0 @
weighted = true;
vertices =
 {0, {0}},
 {1, {1}},
 {2, {2}},

arcs =
 {0, 1, 0},
 {0, 2, 0},
 {1, 3, 0},

.

 name = CoefficientLabel;
 variable = "BASE&D&A";

.

.

.

algorithm = "DECODE";
implementation = "VITERBI";
num_levels = 3;
model_file = "$ISIP_DEVEL/doc/examples/data/models/tidigit_preview.sof";
output_mode = "FILE";
output_file = "hypotheses_302010.out";

beam width at the 2-nd level
@ beam_2 0 @
value = 300;
beam width at the 1-st level
@ beam_1 0 @
value = 200;

Figure 7. An example of the Sof version of the recognizer parameter file. This format is temporary and
comprises a representation of the core information. More flexible formats supported by generalized parsers
will be available soon.

MISSISSIPPI STATE UNIVERSITY PAGE 8 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Additional facilities accessible by the command line specification are:

• -help: displays a help message,

• -verbose <NONE, BRIEF, DETAILED, ALL>: specifies the different verbosity levels about the
decoding process,

• -verify: verification mode flag - no decoding is done in this mode. This mode verifies the availability
and format of all required input files. It also generates output files.

• -log_file report.text: system generates the log file instead of printing information about the decoding
process to console,

• -debug_level <NONE, BRIEF, DETAILED, ALL>: debugging information level - specifies the amount
of debugging information generated by the system.

These modes have been provided to facilitate debugging and to minimize the number of user
configuration errors. Verify mode is particularly important because time-consuming runs can be
tested before a large amount of time is invested in an experiment. This mode is modeled after the
Unix “make” facility.

Performance of the production system is comparable to the prototype system, which is extremely
encouraging given the increased overhead of the production system (due to its flexibility). It is
hard to directly compare these results to the prototype system since there are significant
differences between the two. For example, the production system does feature extraction
internally while the prototype system does feature extraction with a separate utility. Nevertheless,
we can note that the production system is only about 50% slower than the prototype system on
decoding of TIDigits, which is very respectable given the flexibility of the system. Further, the
production system is much more efficient in terms of memory use than the prototype, because the
prototype system in network decoding is not able to effectively prune state-level histories. The
prototype system requires at least an order of magnitude more memory for most conditions.

C. Foundation Classes

An overview of the structure of the foundation classes is shown in Figure 5. This year we have
focused on higher-level libraries such as Search and Pattern Recognition, which are integral parts
of the new version of the recognition system. In the process of developing these, we made
significant modifications to our Algorithm classes, which are the core the signal processing
components of the system. These modifications, in turn, allowed us to significantly simplify some
of our supporting tools, such as the TransformBuilder show in Figure 8.

In the process of advancing the higher levels of the system, we have also been able to simplify
lower levels of the system using some newer features of C++. In an effort to consolidate the
features of C++ we are dependent upon, we developed an on-line tutorial of aspects of C++ that
we find extremely important and useful [10]. This tutorial leads users through the syntax, provides
examples linked to actual ISIP code, and references sections from a definitive reference textbook
in C++ [11] for further reading. This tutorial has been a very useful instructional aide for our
undergraduate student programmers, and was actually authored by one of our undergraduates.

Through a combination of newer features of the language that are now supported by the compilers
we use (GNU/EGCS gcc), and some novel code generation techniques implemented in Make
files, we have been able to dramatically reduce the code size of our lower level classes by relying

MISSISSIPPI STATE UNIVERSITY PAGE 9 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

on the make process to generate data-
specific versions of the class. This has
made maintenance and support of
these classes much easier, and made
the entire Math class package much
more elegant.

We had also been struggling recently
with the extensibility of the Algorithm
classes in terms of issues such as
operation of these classes on abstract
data types. For example, some classes,
such as those that perform linear
prediction analysis, can operate on
several types of data (e.g., signals,
autocorrelation coefficients, and
prediction coefficients), can produce
different types of outputs (filters,
temporal sequences, frequency domain
representations, etc.), and can use
different algorithms to perform such an
analysis. Our most recent attempt at
supporting this type of functionality
uses explicitly defined input and output
data types [12], and appears to be
sufficiently flexible. We are now able
to prototype a wide range of front ends
using the tool shown to the left in
Figure 8, and to implement them using
our generic signal processing tool
isip_transform.

These components are now integrated
into the speech recognition system as
well. The recognition system is
capable of performing recognition on a
variety of input streams, including
sampled data files, industry-standard
audio formats, and feature vectors. The
latter format is extremely important
because it allows non-speech

recognition users to use this technology for other pattern recognition applications. The integrated
front end also allows users to generate derived feature vectors, such as derivatives of features,
inside the recognizer, rather than storing these in external files. Considerations such as these result
in significant disk space savings, and improve ease of use of the system.

Figure 8. An example of a front end created using our
interface building tool. Users can flow chart algorithms and
generate the required code automatically.

MISSISSIPPI STATE UNIVERSITY PAGE 10 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

D. Workshops

In January 2001, we hosted our second annual design review workshop [15]. Attendance for this
workshop tends to be light, and included 14 participants representing 6 universities and
5 industrial sites. The primary functions of this workshop are to review our software design and to
solicit the community for input on new features. The workshop is a two-day event that includes a
half-day of training. A complete archive of the workshop, including presentation slides, is
available on-line at the workshop web site [15].

Feedback from this workshop was generally positive. Some examples are shown below in
Figure 9. Several good suggestions flowed from this workshop, including a need to place a greater
emphasis on reproducible benchmarks. The signal processing software and foundation classes
continue to be an attractive component of the system, which is probably more an indication of the
type of people attending the workshop (engineers vs. computer scientists) than the relative
success of a particular component of the system.

Our second workshop, which is a major focus of this research program, is a one-week training
workshop geared towards entry-level graduate students pursuing research into speech. Last year,
when I submitted this report, it was prior to holding our first summer workshop. This year, I
delayed the submission of this report until after we hosted our second workshop. We now have
had two very successful summer workshops, and are in a position to comment on the effectiveness
of this forum. Of course, all materials related to these workshops, including lecture notes and lab
exercises are on-line at the respective web sites for these workshops [13-16]. Feedback for the two

...SW engr. was cool. but i think you should have focused less on that and more on the SW design of
the Production SR. of course that’s from a SW Engr. perspective...

...I don’t think my current research effort would be at all feasible if I didn’t have the ISIP system to build
on. I’m very pleased to have it available. The workshop helped me get a better understanding of how
the system is put together and the constraints under which it has been / is being built. I would have liked
to have spent more time on the IFCs, though. ...

...Workshop was very informative. I was really impressed with how well your students conducted each
session of the workshop. Now, relating to the SRSD, as a novice in this area, I felt well informed and
gained an enormous amount of knowledge about the system...

...It is very interesting to see the evolution of the ISIP system over the past few months. A lot of work
was done to improve the functionalities and the reusability of the classes...

...Congratulations for a very well organized workshop. I found it informative, helpful and enlightening.
Although I have used the ISIP recognizer before, now I have a much better understanding of it overall...

...I thought the workshop was very informative! All of the speakers were very knowledgeable and ex-
tremely helpful! Looking forward to using the software at our site....

...Good workshop. Excellent effort. We all anxiously await the production system. I would like to see
more about the class hierarchy and learn where to find classes/methods in the source tree...

Figure 9. Samples of feedback from SRSDR’01. The second year of this workshop was a much more
efficient and effective operation.

MISSISSIPPI STATE UNIVERSITY PAGE 11 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

summer workshops is also available on-line at [17,18]. This year, we even broadcast live images
from the workshop using our web camera.

The format for the second summer workshop followed closely the format for the first workshop
(half-day lectures and half-day labs). However, we made significant changes to the laboratories
this year based on the feedback from last year’s workshop. Labs this year were much more self-
paced and open-ended, and required active participation from the users. From the feedback this
year, it is clear the lab sessions were vastly more successful. On the other hand, we did have some
problems with some mechanics related to downloads and installation of code. Based on past
experiences, we felt it was a good idea to have every participant download and install code.
Unfortunately, 24 simultaneous downloads from our servers taxed the network and took longer
than expected. Participants felt this was unproductive time. We need to reevaluate our process for
educating users about the finer points of installation and configuration.

Participation in the summer workshop this year was dominated by industry relative to last year.
SRSTW’00 included 18 participants from universities and 4 participants from industry.
SRSTW’01 included 9 participants from universities and 15 from industry. This skew occurred
despite heavy marketing of the workshop to graduate students through various forms of electronic
announcements. One possible explanation is that our system has matured to a point where it is
attracting significant industry interest. There is, of course, truth to this as a number of participants
this year explicitly discussed our interest in such commercial endeavors, and we know of several
companies developing products around pieces of the system.

On the other hand, it is clear that we aren’t quite as successful as we had hoped in meeting our
goal of increasing the graduate student population in speech. To do this, we need to increase the
number of graduate students attending the summer training workshop. Discussions with students
who attended this workshop seem to indicate we need to do a better job advertising the workshop
to graduate students. What the best forum is to reach them remains a question. This year we sent
email messages to the department heads at the top-100 universities in the country, as well as 100
historically black institutions (HBCUs) with engineering to computer science programs (in
addition to posting to all relevant newsgroup, web sites, and community-wide mailing lists).
Apparently, these messages targeted at department heads are not getting forwarded to the
students. We need a better approach to reaching students. We are considering surface mailing
printed announcements.

E. Software Engineering

If there is one statement in this report that rings true, it is the following: “With every release of our
system, we accumulate more experience with the challenges of supporting research software in a
Unix environment, where things tend to be less standardized.” Last year, we took major steps
forward by introducing two key technologies into our software process: a formal report tracking
system and automatic configuration during installation. Both had profound impacts on our ability
to improve the quality of our software and the efficiency with which we worked. However, the
report tracking software proved to have to major drawbacks: slow response time for a large
database due to inefficient code, and no comprehension of the bug tracking and resolution process
in the basic interface.

Hence, we embarked on an effort to develop a simple, highly-customized bug tracking tool known
as Varmint [19]. Before doing so, we evaluated several industry-wide packages, and carefully

MISSISSIPPI STATE UNIVERSITY PAGE 12 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

analyzed successful processes used in leading software companies (such as Microsoft, where
several of our students worked as interns in Summer’00). Once we determined that none of the
existing tools met our needs (and that many companies use expensive commercial packages or
proprietary internal packages), we had two undergraduate programmers develop a tool. This tool
is now publicly available as part of our software distribution, and has been successfully ported to
at least two other groups within our university.

A screenshot of the tool is shown in Figure 10. This tool maintains bugs using a one database per
project format. The primary screen, shown in the background in Figure 10, displays all current
bugs and their status. Users can program their own queries using SQL-like commands (“Show me
all the open bugs in the current release.”). Bugs can be sorted in many modes. Perhaps the most
important view of the bug list is the view of all open bugs for the current release. It is part of our

Figure 10. Screenshots from our bug tracking software tool known as Varmint. This tool is written in Tk/Tcl
for portability and uses a database tool (such as Oracle or mySQL) as a back-end. Its main virtue is that it
is customized to support tracking and resolution of a bug involving multiple programmers, and yet does this
with a minimum of operating system infrastructure. The net result is a tool that is fast, efficient, easy to use,
and equally important, easy to install.

MISSISSIPPI STATE UNIVERSITY PAGE 13 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

software development process to resolve all bugs before making a release. This tool has been
invaluable for managing open bugs, and for helping our student programmers to maintain a clear
vision for their priorities (a time management issue).

Like all good software, the Varmint tool has found its way into many other aspects of our project
management. We now organize all request management in our lab, including support requests
from help@isip and web site maintenance, using this tool. The ability to track and manage this
diverse set of needs from a single tool has proven to be invaluable.

F. REFERENCES

[1] K. Huang and J. Picone, “Internet-Accessible Speech Recognition Experiment Server,”
http://www.isip.msstate.edu/projects/speech/experiments, Mississippi State University,
Mississippi State, Mississippi, USA, May 2001.

[2] K. Huang and J. Picone, “ISIP CPU Load Statistics,”http://www.isip.msstate.edu/data/
statistics/cpu_stats, Mississippi State University, Mississippi State, Mississippi, USA,
May 2001.

[3] J. Hunter,Java Servlet Programming, O’Reilly and Associates, Cambridge, Massachusetts,
USA, 1998.

[4] J. Hamaker, R. Duncan, N. Parihar, and J. Picone, “A Public Domain Speech
Recognition System,”http://www.isip.msstate.edu/projects/speech/software/asr/
download/asr,Mississippi State University, Mississippi State, Mississippi, USA,
May 2001.

[5] R. Sundaram, A. Ganapathiraju, J. Hamaker and J. Picone, “ISIP 2000 Conversational
Speech Evaluation System,” Speech Transcription Workshop, College Park, Maryland,
USA, May 2000.

[6] B. George, B. Necioglu, J. Picone, G. Shuttic, and R. Sundaram, “The 2000 NRL
Evaluation for Recognition of Speech in Noisy Environments,” presented at the SPINE
Workshop, Naval Research Laboratory, Alexandria, Virginia, USA, October, 2000. SPINE

[7] R. Sundaram, J. Hamaker, and J. Picone, “TWISTER: The ISIP 2001 Conversational
Speech Evaluation System,” Proceedings of the Speech Transcription Workshop, Linthicum
Heights, Maryland, USA, May 2001.

[8] R. Duncan and J. Picone, “The ISIP Foundation Classes,”http://www.isip.msstate.edu/
projects/speech/software/asr/download/ifc, Mississippi State University, Mississippi
State, Mississippi, USA, May 2001.

[9] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary
Conversational Speech Recognition,” IEEE Signal Processing Magazine, vol. 16, no. 5, pp.
84-107, September 1999.

MISSISSIPPI STATE UNIVERSITY PAGE 14 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

[10] J. Langley and J. Picone, “Practical C++ ISIP-Style,”http://www.isip.msstate.edu/projects/
speech/education/tutorials/c++, Institute for Signal and Information Processing,
Mississippi State University, Mississippi State, Mississippi, USA, August 2000.

[11] S. Lippman and J. Lajoie, C++ Primer, Third Edition, Addison Wesley, Reading,
Massachusetts, USA, 1998, ISBN: 0-201-82470-1.

[12] S. Srivastava, R. Duncan, and J. Picone, “The Algorithm Classes,”http://
www.isip.msstate.edu/projects/speech/education/tutorials/isip_env/class/algo, Institute for
Signal and Information Processing, Mississippi State University, Mississippi State,
Mississippi, USA, May 2001.

[13] J. Picone, “Speech Recognition System Design Review”,http://www.isip.msstate.edu/
conferences/srsdr00, Institute for Signal and Information Processing, Mississippi State
University, Mississippi, USA, January 2000.

[14] J. Picone, “Speech Recognition System Training Workshop,”http://www.isip.msstate.edu/
conferences/srstw00, Institute for Signal and Information Processing, Mississippi State
University, Mississippi, USA, May 2000.

[15] J. Picone, “Speech Recognition System Design Review”,http://www.isip.msstate.edu/
conferences/srsdr01, Institute for Signal and Information Processing, Mississippi State
University, Mississippi, USA, January 2001.

[16] J. Picone, “Speech Recognition System Training Workshop,”http://www.isip.msstate.edu/
conferences/srstw01, Institute for Signal and Information Processing, Mississippi State
University, Mississippi, USA, May 2001.

[17] K. Muir and J. Picone, “SRSTW’00 Feedback”,http://www.isip.msstate.edu/conferences/
srstw00/misc/feedback/feedback.html, Institute for Signal and Information Processing,
Mississippi State University, Mississippi, USA, May 2000.

[18] J. Langley and J. Picone, “SRSTW’01 Feedback”,http://www.isip.msstate.edu/conferences/
srstw01/misc/feedback/feedback.html, Institute for Signal and Information Processing,
Mississippi State University, Mississippi, USA, May 2001.

[19] R. Duncan, R. King, and J. Picone, “Varmint: A Bug Tracking and Resolution Tool”,
http://www.isip.msstate.edu/projects/speech/education/tutorials/isip_env/util/devel/
varmint, Institute for Signal and Information Processing, Mississippi State University,
Mississippi, USA, May 2001.

MISSISSIPPI STATE UNIVERSITY PAGE 15 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

MISSISSIPPI STATE UNIVERSITY PAGE 16 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

08/15/99 — 08/14/00: RESEARCH AND EDUCATIONAL ACTIVITIES

In the second year of this project, we focused our efforts in five major areas:

• Production System Release : the first release of the production speech recognition system, based
on our modular libraries, is scheduled for July 1.

• Hosted two workshops : a software design review held in January 2000, and a one-week training
workshop held in May 2000.

• Software engineering : upgraded our distribution to use the autoconf facility, added an automated
report tracking system to our on-line support, created a multi-platform support facility.

• Foundation classes : added algorithms and other signal processing building blocks, introduced
classes to handle acoustic models, search algorithms, and knowledge sources, and released a front-
end that allows arbitrary algorithms to be implemented using a graphical user interface.

• Java Applets : enhanced our pattern recognition applet with several important new features,
including generation of arbitrary data sets, clustering, and visualization of decision surfaces.

The workshops appear to be extremely successful as demand has far surpassed our original
estimates for enrollment (and taxed our facilities). The number of serious users of the recognition
system is continually growing. It is becoming a challenge to provide same-day response to most
support requests, particularly given the wide range of experience levels from the users.

A. Production System Release

An overview of a typical speech recognition system is shown in Figure 1. There are three main
components to this system: signal processing,
language modeling, and search. We have had
a prototype system in release now for over
one year. This system was recently evaluated
as part of DoD’s yearly evaluation
cycle [1] — an important step towards
gaining wider acceptance of the system as a
state of the art system. We are now nearing
the first major release of our production
system that is built from the ISIP foundation
classes. We currently have many of the core
pieces implemented, including the signal
processing section (described later), acoustic
modeling, and a prototype hierarchical search
engine that was demonstrated at our
January workshop. Language modeling
classes are currently under development and
nearing completion. Integration of these
classes into a system has begun, and is
expected to be completed by mid-summer.

Novel aspects of this system include a
generalized hierarchical search engine,
shown in Figure 2, and a flexible approach to

Input
Speech

Language
Model p(W)

Recognized
Utterance

Acoustic
Front-End

Acoustic Models
p(A/W)

Search

Figure 1. A typical speech recognition system.

MISSISSIPPI STATE UNIVERSITY PAGE 17 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Figure 2. An overview of a generalized search engine that allows users to implement speech recognition
systems as a hierarchy of knowledge sources.

signal processing that allows new algorithms to be implemented using a CASE-based approach
involving a graphical user interface. The search engine is crucial to this system, in that it is by far
the most complex and unwieldy component. A clean implementation that provides users
reasonable programming hooks into all levels of the process is very important. The generalized
approach below still requires significant work with respect to efficiency and memory resources.
We are using the prototype system currently in release to develop these details, and then
transferring that knowledge into the production system.

Pieces of the production system, particularly the foundation classes, have been in release since
November 1999. The most current versions of the code are also available from our anonymous
CVS server. The foundation classes are slowly stabilizing as we add more upper-level
functionality and expose more bugs. The C++ language definition and implementation has
recently begun to stabilize, making many things possible using the latest version of the
compilation tools. This in turn has allowed us to change several aspects of our class designs. We
believe we have reached convergence on most major aspects of the system design, and now plan
to remain backwardly compatible with subsequent releases. We have also developed tools to
automatically convert data formats between the prototype and production systems, thereby
allowing users to leverage features of both systems while the latter is under development.

B. Outreach Via Workshops

MISSISSIPPI STATE UNIVERSITY PAGE 18 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

In January 2000, we hosted our first annual design review workshop. The primary function of this
workshop was to review our software design. A second important goal was to solicit the
community for input on new features. We arranged this workshop to be a two-day event. The first
day was devoted to an overview of the system, including demos, and general discussion. The
second day consisted of a training session where we walked users through our on-line tutorial. A
complete archive of the workshop, including presentation slides, is available on-line at the
workshop web site [2]. Participants received notebooks containing handouts of the lecture notes,
as well as a CDROM containing all software and instructional materials used at the workshop.

Attendance at this workshop was slightly lower than expected: 9 participants from several foreign
countries (China, Finland, Korea), government agencies (FBI, DoD), and industrial sites (IBM,
MITRE, Lincoln Labs). This was partially due to the time at which the workshop was
held (January 5) and concerns about residual Y2K problems. Nevertheless, it was a very
productive workshop in that users were able to build an entire large vocabulary continuous speech
recognition (LVCSR) system during the training session, and left feeling very good about the
software. Several collaborations resulted from the workshop, including invited talks at IBM, a
collaboration with Georgia Tech on the classroom of the future [3], and potential collaborations
with MITRE on various DoD-related speech recognition applications.

Feedback from this workshop was generally positive. Some examples are shown in Figure 3. We
were particularly interested in thoughts about the summer workshop, and action items for the
following year. A summary of the discussion about future plans is available [4] on the web. Given
the diverse group of participants, it was hard to form a consensus on the priorities of these items.
However, generally speaking, there were no surprises relative to our current plans.

In May 2000, we will offer our first extended training workshop [5], which is geared towards
entry-level graduate students. Travel funds are provided to encourage graduate students from
underrepresented institutions to attend. The program [6] for this week-long workshop combines
morning lectures on theory with afternoon laboratories focused on skill-building. The morning
lectures are split into two parts: fundamental theory and applications to speech recognition
(explanations of how the theory is actually implemented in a system). The laboratories involve
skill-building projects ranging from basic recognition foundation class programming to
conversational speech recognition system development. Participants literally leave the workshop
with a toolkit to run some of today’s important research tasks, and should be able to make
programming-level modifications to the system.

Twenty-four participants, including 18 graduate students, will attend the first workshop. Nineteen
institutions from seven countries are represented, including by design a broad range of U.S.
universities. Established research groups such as MIT, Rutgers and University of Colorado at
Boulder are represented. Underrepresented universities such as North Carolina A&T are also
participating. Further, universities less prominent in speech recognition research, such as
University of Houston, University of Denver, and Old Dominion University, are represented by
graduate students early in their Ph.D. programs. Hence, we are well along towards our goal of
increasing access to speech technology by incorporating underrepresented groups. In fact,
workshop enrollment was three times what was originally expected, and our acceptance rate was
approximately 66% of the applicants.

We plan to broadcast live still images from this workshop on the conference web site [5] this year
using a networked camera. Next year, we will attempt a live Internet broadcast using facilities

MISSISSIPPI STATE UNIVERSITY PAGE 19 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

I appreciate it very much that I had the opportunity to come to MSU to learn automatic speech recognition
(asr). I have done survey on the availability of asr software which I can apply LDC DARPA-TIMIT data
(on cd-rom) for training an asr system. But I did not have any one until I talked Mr. Dave Graff of LDC who
suggested that I talked to you.

The hospitality you extended to me is sincerely appreciated. I have done some paper-reading on speech
recognition years ago. But this is the first time I am trying to use it for data systems. The need at my or-
ganization is speaker-independent asr.

Most of the telephone data is conversational, I will try to work on Switchboard-type of data, hopefully in
the summer.

I tended to think that it would be a nice thing for a user if the input and modules can be simplified. I am an
engineer at my job; the real end-users may not be engineers.

1. Things you liked about the workshop:
The workshop went well, and met my goals:
a. get to know the ISIP group to facilitate collaboration
b. get the software up and running
c. get a feel for where the project is going
d. articulate my needs

 2. Things that need improvement: Hmmm, having trouble thinking of practical changes....
Maybe a tutorial on “current issues in speech recognition”

3. Things you would like to see in the summer training workshop: I plan to send students not experienced
in speech recognition, so tutorials would be useful.

 4. Things you would like to see us do differently for the design review:
see 2.

1. Things I liked: Clearly structured presentation of the system. Presentations covered most aspects of
the system. Code-testing (e.g. the diagnose() function) was stressed. Demo. Instrumental in inspiring con-
fidence in the system.

2. Things that need improvement: In the demo, most of my time was spent typing in long pathnames. I
suggest writing a (one-line) shell script for each step, and simply allowing the user to read the pathnames.

3. Things in a summer training workshop: Make a list of use-scenarios (e.g. word-lattice-construction;
lattice-rescoring; 1-pass decoding; viterbi-training; EM; segmentation; alignment; speaker adaptation;
system-extension with new acoustic models like SVMs, etc.) and go over how to do each one.

4. Things to do differently: I would spend a bit more time on some of the tougher algorithmic issues, e.g.
how exactly right-word extensions work for cross-word context dependence, and what happens if you
want to look (say) 5 phones to the right. And when traces are extended, presumably there are some cir-
cumstances where two traces can be merged; how exactly is this handled? Basically, I’d like to get a
more explicit sense of what the toughest issues were, and how the system handles them. Perhaps a
1/2 hour on this.

Overall, I thought it was an excellent review.

Figure 3. Examples of feedback collected from SRSDR’00. Comments about topics for the extended
summer workshop we extremely helpful and have been incorporated into the program.

MISSISSIPPI STATE UNIVERSITY PAGE 20 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

available at MS State (at no charge to the project). All materials developed for the workshop,
including laboratory exercises, will be posted on the web site. We have already had several
requests for these materials from people who cannot attend the workshop.

C. Software Engineering

With every release of our system, we accumulate more experience with the challenges of
supporting research software in a Unix environment, where things tend to be less standardized.
With the addition of a full-time software engineer this year, we were able to address these issues
in a much more powerful manner. One of the most popular distribution mechanisms for software
in Unix is an automatic configuration system developed by the GNU organization. This system,
known by various names such as configure and autoconf, automatically searches the system
during installation for required software packages, and configures software accordingly. A typical
installation procedure consists of the following sequence of commands:

• tar xvf isip_proto_v5.3.tar unpacks the software distribution
• cd isip_proto_v5.3: enters top-level directory
• configure --prefix=/usr/local/isip configures the software and sets the installation directory
• make compiles and links the software
• make install installs the software

This deceptively simple procedure has taken years of refinement for Unix systems, and involves
locating many important tools (gcc, perl, Tk/tcl, shells, etc.), and deciding how best to build the
software given the local system’s capabilities. In recent years, installation using this approach has
become fairly smooth under a multitude of Unix systems.

The overhead cost in adopting this form of installation procedure is high. The tools to do this are
not trivial. This year, we finally mastered this software and incorporated this facility into our
releases of the prototype system. This should resolve most support issues we have dealt with
involving system incompatibilities, and definitely minimizes the effort required by users to install
the system (since everything is automatic). Migrating our previous installation procedure required
a major overhaul, but was clearly well worth the effort.

As mentioned previously, support activities are requiring an increasing amount of time. Hence, it
became clear that we needed to install a formal method of support request tracking. We have
installed a public domain system called RT — Request Tracker [7]. This is a powerful system that
has most of the standard features included in such packages: ticket numbers, time-stamping of
requests, automatic acknowledgements, queues, and resolution tracking. RT is popular,
particularly within our university. We are able to leverage other installations on campus, and enjoy
excellent technical support on the package from other campus organizations. RT has been
extremely useful in managing our support line. For example, we are now able to generate
automated reports on the timeliness of our service. Any email to our support line,
help@isip.msstate.edu, is automatically routed to the RT system and acknowledged. Our goal is
to provide a reasonable response to each request within a 24 hour period when support staff are
on-site. Our software engineering staff position manages this system as part of his job
responsibilities.

A third step we have taken to improve the quality of our distributions involves the development of
a multi-platform and multi-OS environment to check releases for compilation and run-time
problems. We purchased a Pentium workstation and installed multiple operating systems: Sun

MISSISSIPPI STATE UNIVERSITY PAGE 21 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Solaris x86, Windows NT, and Linux. We also have Sun Sparc Solaris machines in our lab.
Further, we recently acquired an IBM AIX machine as a donation from IBM. These machines are
used to check every release before it is actually made available to the public. Though we tend to
be very methodical in our debugging and validation methods, we have found instances where
software will pass validation runs on all but one of the operating systems. Such problems are
subtle and rarely flagged by compilers (even though we use a common compiler across all
machines). Though such multi-platform checks are time-consuming, they are necessary if one
wants to avoid problems. Linux support, in particular, has recently become a critical requirement.

Along similar lines, we have also recently acquired professional strength code development tools
for Unix. Previously, we have been relying on a public domain code checker — dmalloc.
Unfortunately, software of the complexity we are developing breaks most public domain tools.
Such tools are not able to properly diagnose and isolate problems. Hence, we now have access to
two professional quality development tools offered by Rational Software. Even these tools do not
catch 100% of the problems observed in our code, primarily due to the complications that arise
from the use of many levels of C++ templates. However, such tools are often able to help us
resolve problems in minutes rather than hours, and have greatly increased productivity.

Using these tools, we were able to isolate and fix a number of memory bugs in our current
releases. Some of these were quite subtle and took hours of run-time to reproduce. However, our
current releases are now free of all known memory bugs, and are vastly improved over previous
releases. The software has been checked on a much wider range of tasks as well.

D. Foundation Classes

The foundation classes, upon which all higher-level software is built, continue to grow in terms of
their breadth and depth. We currently support the following libraries in our class hierarchy:

• system (i.e., Console, MemoryManager)
• input/output (i.e., Signal Object File, Sof Parser)
• math (i.e., Scalars, Vectors, and Matrices)
• data structures (i.e., Linked Lists, Hash Tables)
• shell (i.e., CommandLine, Filename)
• multimedia (AudioFile)
• statistics (GaussianModel, StatisticalModel)
• algorithms (Cepstrum, Linear Prediction)
• signal processing (FrontEnd, Features)
• pattern recognition (PCA, LDA)
• automatic speech recognition (Recognizer).

This year, we have focused on higher-level libraries such as Statistics, which provides statistical
models for each state in our acoustic models, and Data Structures, which provides graph objects
used in the search engine.

Our recent focus has been the development of the signal processing portion of the system. An
overview of the tool we have developed to provide users an easy way to build signal processing
systems is shown in Figure 4. The users have at their disposal any of the tools available in our
Algorithms library. For example, an industry-standard front-end uses a Fourier Transform
operation, a Cepstrum calculation, time derivatives of feature vectors, and a special type of
normalization algorithm. Each of these modules is available as a class under the Algorithms
library. Each class has a special set of methods that interface to the application builder, known as

MISSISSIPPI STATE UNIVERSITY PAGE 22 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

(SAMPLED_DATA)
AudioFile

the Transform class (the corresponding utility is isip_transform).

Our Transform class combines the user’s algorithm specifications by building a graph depicting
the sequence of algorithms to be applied to the signal, as shown above in Figure 4. Such block
diagram type approaches to signal processing have been popular for a number of years in signal
processing. Transform is a very powerful class in that it allows users to mask, combine, and
postprocess measurements of the signal in arbitrary ways. Since the internal structure of this class
is somewhat complicated, a graphical user interface is essential. Rather than have users edit a
parameter file containing information about the algorithms and their interconnections, users can
manipulate this representation using graphical tool. We decided to implement this in Java to make
it as portable as possible. Our first release of this tool will coincide with the summer workshop.

We have also made significant progress towards the development of the production recognition
system by implementing statistical modeling aspects of the system. The decoder portion of a
speech recognition system can be regarded as a hierarchy of graphs [8]. The leaf nodes of the
lowest level of this hierarchy are states in a hidden Markov model. Our StatisticalModel class
implements a generalized state, which can be an arbitrary mixture of distributions — Gaussians,
Exponentials, Laplacians, etc. Mixtures of Gaussian distributions are most popular in speech
recognition today; exponential models are becoming increasingly popular for some aspects of the
problem (they are rooted in maximum entropy theory).

We have begun tying these together to build a full-fledged recognition system. We have also
created conversion utilities that transform outputs of the prototype system into formats accepted
by the new system. This is an important capability since it allows us to interface the two systems
and maintain some level of backward compatibility. It also makes the development cycle more
efficient, since we can incrementally test isolated components of the new system on large enough
tasks to expose subtle bugs.

E. Java Applets

As we described in our last report, the first year of the java programming phase of our project
focused on stabilizing our approach to Java. Since the language was undergoing dramatic

Recipe PoolInputs

(Sof)
Features

Features

Process
Process

Process

Process

Outputs

Figure 4. An overview of a CASE-based tool that implements signal processing algorithms using a
GUI-oriented tool. Users essentially flow-chart an algorithm as a graph of recipes. The system
automatically schedules operations to implement the desired algorithm.

MISSISSIPPI STATE UNIVERSITY PAGE 23 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

changes, it was hard to modularize our applet development. The net result was that progress was
slow. Fortunately, in the second year of this effort, Java has stabilized considerably, and we have
been able to push ahead on using Java in our development environment. We have also had time to
expand the capabilities of our existing applets.

A good example of this is our pattern recognition applet. This year, we were able to greatly
enhance its educational value by augmenting basic capabilities with more visualization. An
example of this is shown in Figure 5. Users can specify the parameters of a Gaussian distribution,
and can view the support regions for these distributions in the original data space (along with the
resulting decision regions). In Figure 6, we show two new data sets that were added by one of our
sophomore undergraduate programmers. These data sets pose interesting challenges for
classification algorithms since they are not linearly separable (they can’t be separated by decision
regions formed by hyperplanes). We have plans to include algorithms that can handle such data —
for example, an algorithm based on support vector machines which is currently under
development in our research group. The pattern recognition applet was used extensively in our
Fundamentals of Speech Recognition course this semester.

Another novel feature added to this applet was the ability to classify the data using two popular
clustering algorithms — KMEANS and Linde-Buzo-Gray (LBG). These algorithms iteratively
reestimate cluster centers, and form decision regions based on nearest neighbor calculation with
respect to these cluster centers. A Java applet is an ideal forum in which to learn about such
algorithms because you can see the decision regions evolve with each iteration. This is
demonstrated in Figure 7. Users select the number of clusters they want to use, and the number of
iterations to be performed, and can then step through each iteration of the algorithm.
Classification results are displayed in the description box to the right. In Spring ‘01, we plan to
use this applet extensively in a pattern recognition course.

We have also begun implementation of several new applets. One which we are very excited about
is an applet that helps students visualize search algorithms. This was motivated by a visit to
MS State’s 3D immersive visualization environment known as the COVE during the January
design review, and viewing a demo where one walks along the edge of a mountain. We are
attempting to create such a visualization of the search space during recognition using standard
Java components (as opposed to some of the experimental virtual reality engines that are not quite
standard yet). Further, we are developing a basic digital signal processing applet demonstrating
the sampling process for signals. This is intended to be used in our undergraduate Signals and
Systems course. Most of this work is being carried out by our undergraduate programmers, and
represents a nice, non-critical path in which they can contribute to our research program.

Finally, we have begun some collaborations with Georgia Institute of Technology and MS State’s
College of Engineering to use our job submission applet to do audio indexing of classroom
lectures. This application was presented at a recent Internet 2 conference [3], and is an application
enabled by the vast bandwidth potential of Internet 2. It will become more feasible when we
expand our compute serving resources in the third year of this project. In this application, audio
from a lecture is shipped to our system for automatic transcription via recognition, and
time-alignment. The results are then transferred back to a database which can be searched by
students (“Show me all the lectures about Fourier Transform.”). While we are in the early stages
of the development of this capability, it is a good example of the burgeoning interest in audio
indexing and audio mining.

MISSISSIPPI STATE UNIVERSITY PAGE 24 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Figure 5. An example of enhanced visualization capabilities in our pattern recognition applet. We now
allow users to specify the parameters of Gaussian distributed data through dialog boxes. In the case
above, two Gaussian distributions were generated with means of [-1,1] and [1,-1] respectively. Principal
Components Analysis (PCA) was chosen as the classification algorithm. Step-by-step output from the PCA
approach is shown in the scrolling box on the right. Once the means and covariances are computed in
Step 2, the support regions for the distributions are displayed in the lower left. These are crucial to
understanding how algorithms such as PCA transform data. Other enhancements to this applet include the
addition of new clustering algorithms, and an interactive status bar (lower right) that provides feedback for
users when time-consuming operations are being performed.

Support Regions

MISSISSIPPI STATE UNIVERSITY PAGE 25 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Figure 7. An example of a clustering algorithm in which users see the decision regions evolve.

Figure 6. Two new data sets that pose challenging problems for classification algorithms have been added
by one of our undergraduate programmers.

MISSISSIPPI STATE UNIVERSITY PAGE 26 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

F. REFERENCES

[1] R. Sundaram, A. Ganapathiraju, J. Hamaker and J. Picone, “ISIP Public Domain LVCSR
System,” to be presented at the Speech Transcription Workshop, The University of
Maryland University College, College Park, Maryland, USA, May 2000.

[2] J. Picone and W.C. Chapman, “Speech Recognition System Design Review,”http://
www.isip.msstate.edu/conferences/srsdr00, Mississippi State University, Mississippi State,
Mississippi, USA, January 2000.

[3] J. Picone, C. Atkeson and I. Alphonso, “Harnessing High Bandwidth: Applications in
Speech Recognition,” presented at the Spring 2000, Internet2 Member Meeting,
Washington, DC, USA, March 2000.

[4] J. Picone, “Summary of SRSDR’00,”http://www.isip.msstate.edu/conferences/srsdr00/
technical_program/session_08/index.html, Mississippi State University, Mississippi State,
Mississippi, USA, May 2000.

[5] J. Picone, “Speech Recognition System Training Workshop,”http://www.isip.msstate.edu/
conferences/srstw00, Mississippi State University, Mississippi State, Mississippi, USA,
January 2000.

[6] J. Picone, “Workshop Program,”http://www.isip.msstate.edu/conferences/srstw00/html/
program.html, Mississippi State University, Mississippi State, Mississippi, USA,
May 2000.

[7] J. Vincent, “Request Tracker,”http://www.fsck.com/projects/rt/, March 2000.

[8] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary
Conversational Speech Recognition,”IEEE Signal Processing Magazine, vol. 16, no. 5, pp.
84-107, September 1999.

MISSISSIPPI STATE UNIVERSITY PAGE 27 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

08/15/98 — 08/14/99: RESEARCH AND EDUCATIONAL ACTIVITIES

In the first year of this project, we focused our efforts in three major areas:

• Core Technology : extensions of the speech recognition system required to enhance its appeal to
our customer base (driven by customer feedback);

• Foundation Classes : building blocks such as vectors, matrices, and data structures that simplify
and standardize the development of higher-level classes;

• Web-Based Information : a comprehensive and informative web site that constitutes a central point
of contact for everything related to the project.

We have seen interest in the project grow as evidenced by the fact our mailing list has grown to
150 participants, and we have received several serious inquiries about collaborations based on our
system (one of which resulted in participation in a joint NSF/EU proposal [1]). Major milestones
for the first year of the project included the release of a fully functional speech recognition system
(including feature extraction and training), and the development of a remote job submission
capability that lets users submit jobs to our system over the Internet.

A. Core Technology

State-of-the-art speech recognition technology is the foundation upon which this project is built.
We must not loose site of the importance of this core technology to this project. This technology is
being developed in a parallel effort funded by the Department of Defense. The system has
improved dramatically since the start of our NSF project in August’98. We briefly review the
enhancements made to the system in the first year of this project, and then discuss the impact this
has made on our efforts within this project. Next, we describe some enhancements made to the
system to broaden its appeal to our customer base, and review some initial attempts at cross-
platform portability.

A.1. System Status

In the past year, three important capabilities have been added to the speech recognition system we
have been developing: feature extraction, word graph generation, and Hidden Markov
Model (HMM) training. Feature extraction is the process by which the speech signal is converted
to a sequence of vectors that serve as input to the recognition system (a continuous density HMM
system). This is often called the front-end. Our approach was to initially replicate an industry-
standard front-end consisting of mel-spaced cepstral features [8] and their first and second-order
derivatives. This is one step that allows users to duplicate results obtained with other commercial
and proprietary systems. This capability was delivered as part of a general front-end capability
summarized in Figure 1.

A second key feature added to the system was the ability to generate word graphs. Speech
recognition experiments are time-consuming primarily because of the large language models used
in decoding portion [8] of a system (these large language models are desirable because they
maximize performance). Hence, to save time on subsequent experiments, a word graph is
constructed that represents most plausible, or highly probable, hypotheses that can be generated
by this network. This graph is then rescored with new acoustic or language models depending on
the nature of the research. This network can be quickly rescored — a process that often runs at

MISSISSIPPI STATE UNIVERSITY PAGE 28 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

least ten times faster than the process required to generate the network. Because of these time
savings, word graph rescoring is an extremely popular method of doing speech research for
conversational speech recognition, and is therefore a modality that must be supported for a system
to be widely accepted.

This feature was added to the system in early 1999, and required significant changes to the way
the decoder manages the search process. Fortunately, the current implementation represents a vast
improvement in the architecture and performance of the system [8]. Though it took longer than
expected to add this feature to the system (we struggled with this for 6 months), the final
implementation is extremely clean and efficient, and will have a positive impact on subsequent
generations of the system. The system now supports more decoding modes than any
commercially available system, and more than most proprietary systems as well.

A third essential feature that was added to the system this year was HMM training [11]. This
essentially provided closure on the speech recognition system in that users are now able to build
real systems from scratch (previously, one had to borrow some component from the system from
another source). We first implemented an algorithm known as Viterbi decoding, in which only the
best state sequence through a network is considered. This is an elegant algorithm in that it is
efficient, fast, and consistent with a formal languages view of the speech recognition problem.
This allowed us to develop the proper control structures and code infrastructure quickly. Once this
was complete, we added Baum-Welch training [12], which is more popular in state-of-the-art
systems.

The current system is described in great detail in an upcoming publication [8]. This is one of the
first such publications to provide a tutorial on the details of search algorithms, and is being
published in a journal that emphasizes education of entry-level graduate students in signal
processing. It is our hope that the time spent on this publication will pay off as more researchers
are made aware of the availability of this system and project. Our system is also represented at an
upcoming major speech conference [13] that will include a panel discussion on the merits of
public domain speech technology.

A.2. System Enhancements

In any such project intended to develop public domain code, it is important to adapt to the
changing needs of your user community. In the past few years, several major sites in speech
research have shifted to the use of features based on an algorithm known as perceptual linear
prediction [14]. This technique in some cases has been shown to deliver small improvements in
performance. It is an important feature to include if such sites are attempting to replicate their best
systems with our public domain system. We completed an initial implementation of this algorithm
this year, and are in the process of integrating it into our front-end architecture. A summary of this
approach is shown in Figure 2.

Another feature that was requested by several sites this year was the ability to switch language
models in the middle of the recognition process. This feature is useful for two reasons: (1) it
enables the development of command and control applications that switch between sub-grammars
depending on what words are recognized (context-senstitive language models or menus); (2) it
allows the recognition system to dynamically recurse through language models at runtime, rather
than compile all language models into one big network. The first point impacts the development
of voice-driven menu systems and real-time demonstrations. As a word or phrase is recognized, a

MISSISSIPPI STATE UNIVERSITY PAGE 29 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

new language model can be loaded, providing a small set of words or phrases as the next choice.
This is the strategy used by most systems that allow you to accelerate your desktop menus with
voice commands.

A second, and equally compelling reason to consider this feature, is the development of systems
that consist of a hierarchy of grammars (for example, sentences in terms of words, words in terms
of syllables, syllables in terms of phones, etc.). Many existing systems will compile such a system
into one large network. While this is sometimes attractive for efficiency reasons, for research
flexibility it is often better to process this hierarchy of networks at runtime (“on the fly”). This
allows users to change one small module of the system (for example, allowing a word to be
represented multiple ways) without recompiling the entire system.

Implementation of this capability requires use of an approach called “caching.” The system must
only activate those portions of the network that represent active words, or words used in the recent
past, and leave the remainder of the language model stored on disk. Fortunately, by implementing
this strategy, we can handle much larger language models, such as those used in the broadcast
news [15] and audio data mining research fields. Since there is currently a shift towards such
applications in various research communities including NSF and DARPA, we feel it is important
to provide a solution to this problem. Broadcast news language models tend to be large (because
they are dealing with lots of words that occur infrequently) and cannot be managed in memory as
a single unit. Our conversational speech recognition system could not handle such a large
language model due to the number of bigram entries contained in this model.

In addition to these algorithmic enhancements, several supporting tools were developed to
facilitate language modeling. These include a grammar compiler that accepts regular expressions
as input and outputs a finite state machine description used by our system, and a grammar
compaction algorithm that reduces the size of a word graph without compromising performance.
We also developed several display utilities [16] that allow users to look at speech data and analyze
its frequency content. We have interacted with several industrial sites on the development of these
tools. In fact, one commercial site is making extensive use of this tool in a production data
collection capacity, and hired one of our undergraduate programmers for the summer to customize
this tool to better suite their unique needs.

A.3. Cross-Platform Portability

We have begun to address issues related to portability across different computing platforms. Our
plan remains to develop code under the Solaris operating system on two platforms — Sun Sparc
and Intel PC (Solaris x86). Within these environments, we use a common compiler, gcc, provided
by the Free Software Foundation (GNU). This compiler is supported across a wide range of
platforms, including Microsoft Windows’9X and Windows NT. Since an ANSI standard for C++
has only recently been adopted, and most implementations of C++ are still not compatible (this
likely will continue for a few years even after the adoption of the standard), using a common
compiler across all platforms is the best way to guarantee portability. Currently, we periodically
release a Windows version by porting the GNU environment to Windows, and compiling the code
under gcc and the bash shell. This vastly simplifies the Windows porting effort.

Perhaps the fastest growing user population for our system is the Linux community. Fortunately,
the backbone of the Linux system is GNU software and the gcc compiler in particular. In fact,
GNU recently turned over development of its compiler, gcc, to an organization known as

MISSISSIPPI STATE UNIVERSITY PAGE 30 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

EGCS [17], which is a collection of free software advocates who have been informally developing
compiler extensions to gcc for years. EGCS is responsible for all subsequent releases of gcc (the
two have effectively merged) and is the compiler delivered on most production releases of the
Linux operating system (RedHat for example). Hence, conformance to gcc standards covers a
large portion of both the Windows and Unix markets, yet minimizes portability issues.

However, the Linux version of gcc distributed by EGCS currently lags the Sun Solaris version in
one important dimension: wide character support. One of the founding principles of our system is
that languages be handled in native format using Unicode character encoding. The current ANSI
C/C++ standards support a wide character encoding with a collection of new functions. These
must be supported by a runtime library, which Sun Solaris provides, but production releases of
Linux do not. Hence, the current release of our code will not compile under Linux. We expect this
problem to be resolved within the next three months. It doesn’t make sense to provide an interim
work around, because anything we do will be quickly obsoleted. It is expected EGCS will do a
much better job in the future of tracking standards in C++.

B. Foundation Classes

The most critical part of the first year of this project was to lay the proper foundation upon which
all other software can be written. This is perhaps the most difficult part of any technology-specific
project — balancing the efficiency and simplicity of the target application with extensibility and
flexibility needed by future research. We believe this is the major strength of our project — the
environment is object-oriented from the ground up and designed to be neutral to any particular
algorithmic approach. Fortunately, we have been able to leverage preexisting code developed for a
much less ambitious project [18] involving speech recognition. However, most of this code
needed revamping based on the changes in the C++ language definition and gcc compiler
capabilities.

The hierarchy of classes is shown in Figure 18. Our goal in the first year of this project was to
deliver everything through the DSP libraries, which we refer to as the ISIP foundation
classes (IFCs). In the second year of the project, we begin the “Great Convergence” as we rewrite
the speech recognition system using these IFCs. We expect this task to be completed by the end of
1999. This latter version of the system we will be the basis for our training workshops which will
begin in the summer of 2000.

B.1 Integral Types

At the bottom of our class pyramid is a header file that defines all low-level data types available to
the user. These are known and the integral types, and in many ways mirrors the syntax of the C
programming language. Our current integral types file is shown in Figure 4. This deceptively
simple file was the result of much hand-wringing about two competing design philosophies. The
C programming language was designed to be somewhat architecture independent. For example,
the datatype “int” could be 16-bits long on one machine, and 32-bits long on another. A C
program written properly would work on both machines regardless of the specific
implementation. On the other hand, in signal processing, we often need access to specific data
types. For example, speech signals are stored as 16-bit integers, and need to be represented as
such in C. The problem in C is that a 16-bit integer doesn’t really exist. Instead, you can use a
“short int” and must assume that an integer is 32 bits long.

MISSISSIPPI STATE UNIVERSITY PAGE 31 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

There is a growing movement within the C++ community to support data types such as int32 for a
32-bit integer. In fact, Microsoft seems to be leaning this way with its Visual C++. The integral
types file shown in Figure 4 represents a synthesis of the two approaches. Programmers used to
constructs such as “long” have these available. However, the scalar classes, to be discussed later,
are defined to be specific sizes, and hence use the size-specific data types. In the future, as
architectures and compilers expand to 64-bits and 128-bits, our code will be backwardly
compatible with no modifications, because the types are tied to a specific number of bytes. By
providing new types, such as “double double” or “long long,” we can also accommodate the new
wider formats.

B.2. System and I/O Classes

Our goal in the design of our system is to abstract the user from details of the operating system.
The system library serves this function by encapsulating all operating system specific activities,
such as file I/O and character string processing. Both libraries represent a significant improvement
over the previous implementation of this environment [18]. The System library supports low-level
operations such as file management (opening, closing, reading, writing), character processing
(Unicode support), error handling and error notification. All of these require interacting with
operating system-specific C functions, and hence must be centralized and abstracted from
user-level code.

The I/O library contains a novel approach to file formats. All files in our environment are
represented as Signal Object Files (Sof) [18]. Sof alleviates the need for users to read and write
data manually (formatting of data tends to be one of the most time-consuming aspects of speech
research). All objects know how to read/write from/to an Sof file. In fact, higher-level objects just
recurse through their hierarchy of objects for I/O. Sof is simply a smart indexing scheme that
keeps track of what objects are stored in a file. It allows multiple instances of an object (a String
object can be written several times to the file), and handles ASCII or binary files transparently. It
is also machine-independent in that users need not worry about byte-ordering or floating point
representations across platforms — this is handled automatically within Sof.

A centralized data storage strategy is essential in speech research, and other data-intensive
research areas as well. There is nothing speech-specific about Sof. Sophisticated database
management strategies have yet to provide a clean solution for researchers, so the tendency has
been to use proprietary formats or unstructured formats (ASCII). Most database packages don’t
want to deal with byte-formatted, such as an MPEG audio or video stream, and don’t allow partial
I/O of these types of data (retrieve only the middle three seconds of this audio file). There are
some public domain file formats being supported within the community [19], but these do not
interface well to C++ and have certain limitations in terms of the flexibility (only one instance of
an object can be written to a file). Sof is an important part of our overall strategy to ease the
programming burden of our users.

B.3 Math Classes

As shown in Figure 3, the next step up from our low-level IFCs are the math classes. This is
actually the first level we expect application developers to interact with — users should not use
the system classes directly, and should only use the I/O classes for programming I/O into new
class definitions. The math classes consist of scalars, vectors, and matrices. Their implementation

MISSISSIPPI STATE UNIVERSITY PAGE 32 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

follows that of the C++ Standard Template Libraries (STL), with two important exceptions. Our
types are allowed to be size-specific. For example, a Long is always a 32-bit integer, a VectorLong
is always a vector of 32-bit integers, etc. This gives the programmer complete control of data
sizes. Also, our matrix class is a vector of vectors, where each vector can have a different
dimension. This costs very little in overhead, and makes the matrix class much more useful as a
container class.

We began implementing the math classes with a simple strategy that did not rely on templates.
This was mainly due to a legacy of gcc not supporting a useful model of templates. Gcc was based
on an inclusion model in which all code related to a template had to be included in the header file.
Obviously, for the system of the scale we are talking about, this is impractical. Fortunately, with
the release of version 2.8.X of the gcc compiler, appropriate hooks have been provided to allow
source and header files to be separated for template definitions. A header file for a template
version of a scalar class is shown in Figure 5. Our benchmarks on code implemented with and
without headers seems to show that the template approach is every bit as efficient as the non-
template version, and requires much less time to compile. It is a win-win situation thus far. This is
summarized in Table 1 below.

Table 1. A comparison of template and non-template implementations of the math classes.
Templates appear to finally be competitive with traditional code.

In the first year of this project, we have completed implementation of the math classes based on
our new template approach. This was somewhat of a paradigm shift for us, and hence required
some additional training of our programmers. This approach will pay great dividends when we
move to higher-level libraries such as data structures, where one expects a template capability.
With templates, user can build generic lists, hash tables, etc. of whatever object they desire. This
is an extremely important capability for C++ programming. The only drawback of our approach is
that the template implementation is specific to gcc, since there no clear standard for how to
implement templates in the ANSI C++ specification. We continually monitor standards activities
to see how we can improve our portability.

Description Non-Template Template

Scalar Long:
executable (kB)
memory usage (kB)
runtime (ms)
compilation time (secs)

564
1484

10.9 ms
31.8

566
1484

11.4 ms
18.6

VectorLong:
executable (kB)
memory usage (kB)
runtime (ms)
compilation time (secs)

708
1592
12.9
76.8

713
1596
13.1
66.1

MatrixLong:
executable (kB)
memory usage (kB)
runtime (ms)
compilation time (secs)

4590
1640K
17.6
99.4

4605
1648K
17.9
76.9

MISSISSIPPI STATE UNIVERSITY PAGE 33 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

B.4 Concurrent Versions System (CVS) and Anonymous CVS Servers

One of the interesting aspects of our project is that truly concurrent development is being done by
a large number of programmers (between six and eight people work on the system continuously).
This places great stress on most non-commercial software management systems. Commercial
packages, on the other hand, are expensive (typically $1K per seat) and hamper our ability to do
concurrent development in a distributed fashion as we describe below. Hence, we spent some time
this year converting our software management environment from the popular revision control
system (RCS) [20] to a state-of-the-art package called Concurrent Versions System (CVS) [20].

CVS allows multiple users to check out the same code, make revisions, and check it back in. The
tool automatically merges the code to produce what it thinks is the correct version. CVS also
allows you to manage utilities, classes, libraries, etc., all within the same framework. It allows
users to check out an entire software tree as a single unit, rather than manage this as individual
files as is done in RCS. Unfortunately, this is not as simple as it sounds, and there is a steep
learning curve for CVS. Hence, we spent some time developing wrappers for common CVS
functions so that users were protected from the details of CVS [22]. This is important because
CVS is unwieldy at times, and can corrupt files if not used carefully. However, we are now
routinely using it in production, with satisfactory results.

One of the strongest arguments for using CVS is the capability it has for doing distributed
software development. We have implemented an anonymous CVS server that functions much like
an ftp server. Users can log into this server, and grab a snapshot of the code currently under
development, and do concurrent development if necessary. This is a fairly new capability
introduced into CVS in the last year, and is being used by several public domain software
projects. In our case, it is an extremely useful capability because it allows users to update a
portion of the environment as we make incremental changes, rather than download the entire
environment each time we make a small change. Since our final environment will be large, the
anonymous CVS distribution strategy allows users to maintain a current copy of the environment
without repeatedly doing massive downloads. It also offers the potential for others to contribute to
the environment. An on-line [23] tutorial on how to use our anonymous CVS server is available
on the web.

B.5 Software Quality Control

Maintaining quality software releases in a rapidly developing environment is always a challenge,
especially when dealing with student programmers. In fact, this is one reason we will add a staff
member to the project next year. We have been continually refining our software quality control
process. Three important facilities were added to our environment to enhance our process. First,
we adopted a public domain memory checking system known as dmalloc as a routine part of our
software development cycle. Dmalloc checks for memory leaks and other such programmer
errors. Though not an industrial strength product (such as Pure Software’s Purify), dmalloc runs
on all our supported platforms and does a good job of catching memory problems. It has made a
big difference in the quality of our code. Typical released code that used to have two or three
memory problems per class now are released with virtually no defects.

A second important step we have taken to improve the quality of our software is to introduce a
diagnostic method in each class. As a programmer implements a class, a diagnose method is

MISSISSIPPI STATE UNIVERSITY PAGE 34 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

provided that exercises all methods in the class, and produces predetermined output. We have
integrated this into our make facility as well: “make diagnose” automatically generates a test
program that uses this method. This facility, coupled with dmalloc, allows the programmer to do a
fairly complete test and verification of the class before it is released.

Finally, we have instituted a web-based checklist facility that programmers use to make sure they
complete all steps required of a release. As a programmer works through a class, the checklist is
updated with each major step. The checklist includes items such as initial design, design review,
implementation, diagnostics, debugging, dmalloc, documentation, cross-platform check, and
release. Pertinent information, such as the programmer’s name and date of completion, are
automatically generated and stored in database. Everything is done via the web and an SQL
database interface, which makes it extremely easy for the project manager to track progress.

C. Web-Based Information

Dissemination of information via the web is a critical part of this project. We have overhauled our
web site to showcase this project and to make information more readily accessible to our users.
The URL for the project is:

http://www.isip.msstate.edu/projects/speech

This web site contains some novel features that are described below.

C.1. Project Web Site

We have designed and implemented a uniform look and feel for the web site, as shown in
Figure 6. The hierarchy is designed to make it easy for users to access the software, educational
resources, and on-line job submission facility. Most of the web pages are implemented using
server-side includes that provide a uniform look and feel for all pages. We have also implemented
a search capability using a public domain SQL database package. Records in this database are
currently entered manually using a web-based interface. Our attempts at generating the database
automatically produces unacceptable results (personal AltaVista was the best tool we looked at,
but does not exist as a Unix package currently).

We have made it easy for people to contact us for support by providing a single point of email
contact: help@isip.msstate.edu. We typically have been able to respond in less than one hour to
most requests for help, though traffic has been fairly light thus far. Incoming requests to help are
reviewed by the project manager and assigned to the appropriate student worker for resolution.

We have also added a facility for archival of all mail messages sent to our project-specific email
alias: asr@isip.msstate.edu. The URL for this archive ishttp://www.isip.msstate.edu/data/
mailing_lists. Any message to this list is archived and added to the web page by a process that
runs nightly using mail processing tool (Monarch) that generates a threaded display. This archive
has proven to be extremely useful when new members join the list. Eventually, we will add an
FAQ to the web site to complement the information in the mailing list archives.

We also automatically track downloads of our software. The statistics on who is downloading our
software can be viewed at the following URL: http://www.isip.msstate.edu/data/statistics/web.
This page tracks hits on a user-specified set of web pages, allowing us to do a thorough analysis of
who is accessing our web pages and downloading our software.

MISSISSIPPI STATE UNIVERSITY PAGE 35 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

C.2. Documentation

We have begun building on-line documentation for our foundation classes. An example of this
documentation [24] is shown in Figure 7. To the left, we have the entire class index in a scrollable
window. To the right, we have the documentation for a particular class. Each major heading, such
as “MAIN,” has an overview of the library or set of libraries. The classes are grouped by their
position in the hierarchy. Eventually, we will need to supply a search engine for random access to
these pages.

Each individual web page is organized similar to a Unix man page, with the appopriate
modifications to account for the fact that these are classes instead of library functions. The source
code for the class is directly linked to the web page, making it easy for users to study the source
code and the documentation simultaneously. The pages are structured as follows:

Table 2. An overview of the information contained in a typical page documenting a class.

Pages for utilities, applications, and toolkits will follow the same format. A searchable database is
also under development to support random access to these pages.

C.3. Educational Java Applets

We have made a strategic commitment to developing Java applications because of Java’s inherent
portability. However, this has been a mixed blessing because the Java language and associated
toolkits are constantly changing. On top of that, each release of Java seems to have serious bugs
that get in the way of developing robust applications. The net effect is that our programming
efficiency in Java has been quite low, and our progress on educational applets has been hampered

Section Description Links Provided

Name class name class header file

Synopsis broad overview of the class N/A

Quick Start a working example N/A

Description brief description of the goals we had in
designing the class

N/A

Dependencies other classes included in the header
files and required for compilation

corresponding classes on which
this class is dependent

Public Methods user interface (also shows methods
required for all classes)

source code for each method

Public Constants constants available for general use N/A

Protected Data information for programmers on the
internal data

class header file

Private Methods methods used internally in the class source code for each method

Examples simple examples how to use the code N/A

Notes other information relevant to users and
programmers

N/A

MISSISSIPPI STATE UNIVERSITY PAGE 36 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

by these problems. Java’s lack of portability seems to be an industry-wide problem at the moment.

There are two strategic issues with Java programming. First, there is the GUI, or application
interface. Java previously provided the Abstract Window Toolkit (AWT) as its standard interface.
We developed a number of applications around this interface [25]. Unfortunately, this interface
was recently obsoleted, and replaced with Swing [26]. We spent time this year training our Java
programmers on the Swing interface, and porting our existing applications to this new interface.
Swing is still somewhat buggy and working around these bugs has been a time-consuming
process. We have, however, managed to release several new applets under Swing. An example of
one such applet, which teaches the principles of digital filter design, is shown in Figure 8. We
would like all our applets to have a common interface. Hence, some amount of retooling of
existing applets was necessary.

To make matters worse, Netscape’s latest releases of its browser are not fully compliant with
Swing. Netscape recently seems to consistently lag Sun Microsystems on support of Java. Hence,
users must download a plug-in from Sun to get true Java and Swing compliance. This appears to
be the best solution at the moment, Netscape’s commitment to retooling its browser appears to be
questionable. We provide installation instructions on our web site [27] for how to download the
package and install it in several different configurations. More importantly, we have also
programmed our applets to probe the user’s browser, detect this plug-in is missing, and prompt the
user with a message indicating what to do to download the plug-in.

Despite our Java retooling problems, we have been able to develop two new applets. The first is
the digital filtering applet mentioned previously, and shown in Figure 8. In this applet, a user can
design a filter using several predefined algorithms involving well-known filter prototypes. The
user can also draw a desired frequency response, and let the applet design the corresponding filter.
The applet provides details on the actual design, including filter coefficients, frequency and phase
response, and a pole/zero analysis. This applet is targeted towards split-level DSP courses, and
undergraduate signals and systems classes.

A second applet involves demonstration of fundamental concepts in pattern classification. Users
can select prestored data sets that highlight the differences between common classification
schemes such as principle components analysis, linear discriminant analysis, and Euclidean
distance. Users can also optionally enter their own data sets. Classifiers can then be trained on this
data, and the results depicted in terms of classification regions. This applet demonstrates several
statistical normalization principles used in signal to feature vector conversion process in speech
recognition. It will be useful for graduate courses in pattern recognition, speech recognition, and
digital signal processing. It has not been formally released because there are several Java
problems with the user interface. We expect this applet to be released in the first quarter of the
second year of this project.

We have also begun building a much more ambitious demo that is essentially a port of our Tk/Tcl
demonstration of the search algorithm used in the recognizer. This demo has been available for
some time as part of the recognition toolkit. It requires the Tk/Tcl toolkit on the platform running
the demo, as well as a port of the recognizer. We have demonstrated this application on Windows
as well as Unix machines. Our approach in Java was to port the C++ code for the recognizer, and
retool the interface. Unfortunately, this turned out to be a much more ambitious effort than
planned, for some of the reasons described above. Hence, we decided to better learn how to
implement more straightforward applets in Swing first. In the second year of this project, we will

MISSISSIPPI STATE UNIVERSITY PAGE 37 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

return to the problem of providing a Java-based graphical tutorial of how a speech recognition
search engine works.

C.4. Remote Job Submission

One of the truly unique capabilities that we added to the web site this year was the ability to
submit a speech recognition job over the Internet to our servers. The interface for this facility is
shown in Figure 9. The page can be reached by clicking on experiments on the project main page,
or directly from the following URL:http://www.isip.msstate.edu/projects/experiments. The page
contains a CPU monitor on the upper left that shows the status of our compute servers, a dialog
box on the bottom that is used to interact with the user, and windows to the right that provide
status on active jobs and access to the results produced by the job. After a job is submitted, users
can view the results on-line via a URL, or have the results transferred via email.

The current implementation is an initial prototype that will be refined in the coming year. It is
certainly not robust and not as graphical as we would like. There are two important features
included in the current system. First, users can run a canned experiment and obtain detailed
information about how the recognizer analyzed the data. This is useful for comparing
performance, replicating well-known results, or learning how the algorithm processes data.
Second, users can supply their own audio file via a URL. This is useful if you want to compare the
performance of several systems on the same data. Eventually, we will provide more support for
editing data graphically, and interacting with parameters of the models. For the moment, most
interactions are done via text boxes, and only a limited set of parameters can be modified.

D. Summary

The first year of this project has been productive in the much of the groundwork to support the
subsequent years of the project has laid. From a human resources standpoint, the funding from
this project has allowed the recruitment, training and development of four promising
undergraduate students (two of whom plan to pursue graduate degrees in our department under
ISIP’s direction), two M.S. students (who plan to continue for a Ph.D.), and one Ph.D. student. All
but one of these students will remain on this project until its conclusion. In addition to making
fundamental contributions to the project in the first year, all have been trained on our strict
software engineering paradigm. Since this project has strong synergy with a related project
focusing on core technology development, we are able to leverage many resources and much
infrastructure from that project. One of our most senior graduate students has transitioned from
the core technology project to this project, and will manage technical aspects of this project in the
second year.

The second year of the program provides for a professional staff position to manage the routine
operations of the project, particularly support and web site development. We have recruited a
senior engineer for this position. This individual has an MS in Computer Science, and over
20 years of experience in software engineering and computing systems in both industry and
academia. For the past several years, he has been the computer systems administrator for another
college on campus. Prior to that, he has operated a small consulting company that developed
business management software for hospitals. Since he is already a university employee, he has
begun interacting with our group on a volunteer basis so that he can familiarize himself with our
operation.

MISSISSIPPI STATE UNIVERSITY PAGE 38 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

This staff position has three primary duties: quality control, web site development, and support.
He will directly supervise the students working on the project, and be responsible for software
releases, bug fixes, and updates. A near-term goal is to implement the GNU configure [28]
distribution paradigm into our system, so that our software will automatically configure itself
upon installation. A secondary immediate goal will be to implement problem-tracking software so
that all messages to our help line will receive proper prioritization and attention.

The second year of this project is a pivotal year in that we will hold our first set of workshops. In
January 2000, we will hold a one-day industrial forum in which we conduct a formal design
review of the system, and solicit feedback from the participants on desired enhancements for the
coming year. This workshop is tentatively scheduled for January 6-7. We hope to have a mixture
of senior professionals from industry and academia (with more of an emphasis on industrial
participation). The program will most likely consist of a half-day of design reviews and demos,
followed by a half-day of discussion about recommended enhancements to the system. We expect
to develop a clear plan of action from this meeting in an attempt to focus our development towards
things of interest to the general community.

Our first summer workshop is also tentatively scheduled for May 21-27. For this workshop, we
will invite approximately 12 graduate students (and perhaps senior undergraduates) to spend one
week in our lab learning about our system. Travel expenses will be paid for these students. The
agenda will most likely consist of morning lectures and demonstrations followed by afternoon
laboratories. Initial feedback on this has been very positive, with several sites suggesting they
would subsidize attendance by their professionals rather than have their people miss the event.
Our facilities can accommodate 12 students comfortably, with a reasonable ratio of students to
staff, and adequate access to computing equipment. If interest exceeds this limit, we will
investigate alternative facilities. However, our tendency for the first training workshop is to keep it
small and focused, so that it can proceed as smoothly as possible.

MISSISSIPPI STATE UNIVERSITY PAGE 39 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

E. REFERENCES

[9] R.A. Cole, et al, “Multilingual Access and Retrieval using Communicative Interface
Agents (MARCIA),” submitted to Multilingual Information Access and Management: Call
for International Research Cooperation, National Science Foundation, June 1999.

[10] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary
Conversational Speech Recognition,” to appear inIEEE Signal Processing Magazine,
September 1999.

[11] J. Picone, “Continuous Speech Recognition Using Hidden Markov Models,”IEEE ASSP
Magazine, vol. 7, no. 3, pp. 26-41, July 1990.

[12] Y. Wu, A. Ganapathiraju, and J. Picone, “Baum-Welch Reestimation of Hidden Markov
Models,” http://www.isip.msstate.edu/publications/reports/isip_lvcsr/1999/baum_welch/
report_061599.pdf, Mississippi State University, Mississippi State, Mississippi, USA,
May 1999.

[13] N. Deshmukh, A. Ganapathiraju, J. Hamaker, J. Picone and M. Ordowski, “A Public
Domain Speech-to-Text System,” to be presented at the 6th European Conference on
Speech Communication and Technology, Budapest, Hungary, September 1999.

[14] H. Hermansky, “Perceptual Linear Predictive (PLP) Analysis of Speech.”Journal of the
Acoustical Society of America, vol. 4, pp. 1738-1752, 1990.

[15] W.M. Fisher,et al, “Data Selection for Broadcast News CSR Evaluations,” presented at the
DARPA Broadcast News Transcription and Understanding Workshop, Lansdowne,
Virginia, U.S.A., February 1998.

[16] I. Alphonso, N. Deshmukh, and J. Picone,http://www.isip.msstate.edu/projects/speech/
software/transcriber/index.html, Mississippi State University, Mississippi State,
Mississippi, USA, May 1999.

[17] P. Bothner,et al, “Welcome to the GCC Project!,”http://egcs.cygnus.com, June 1999.

[18] J. Picone, “Managing Software Complexity in Signal Processing Research,”Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. III-41-
III-44, Minneapolis, Minnesota, USA, April 1993.

[19] J. Fiscus,et al, “SPeech Quality Assurance (SPQA) Package Version 2.3 AND Speech File
Manipulation Software (SPHERE) Package Version 2.5,” ftp://jaguar.ncsl.nist.gov/pub/
spqa_2.3+sphere_2.5.tar.Z, National Institute of Standards and Technology, Gaithersburg,
Maryland, USA, June 1999.

[20] W.F. Tichy, “RCS--A System for Version Control,”Software--Practice & Experience,
vol. 15, no. 7, pp. 637-654, July 1985.

[21] “Concurrent Versions System (CVS)”,http://www.cyclic.com/cyclic-pages/howget.html,
Cyclic Software, Washington, D.C., USA, June 1999.

MISSISSIPPI STATE UNIVERSITY PAGE 40 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

[22] R. Duncan, “Software Version Control System,”http://www.isip.msstate.edu/projects/
speech/education/tutorials/cvs/index.html, Mississippi State University, Mississippi State,
Mississippi, USA, June 1999.

[23] I. Alphonso, “CVS Anonymous Download Instructions,”http://www.isip.msstate.edu/
projects/speech/support/info/cvs_instructions.html, Mississippi State University,
Mississippi State, Mississippi, USA, June 1999.

[24] S. Balakrishnama and N. Deshmukh, “ISIP Software Documentation,”http://
www.isip.msstate.edu/projects/speech/education/tutorials/isip_env,Mississippi State
University, Mississippi State, Mississippi, USA, June 1999.

[25] ICASSP applets paper

[26] E. Eckstein, M. Loy, and D. Wood,Java Swing, O’Reilly and Associates, Cambridge,
Massachusetts, USA, 1998.

[27] R. Duncan, “Java Plug-In Installation Instructions,”http://www.isip.msstate.edu/projects/
speech/support/info/java_instructions.html,Mississippi State University, Mississippi State,
Mississippi, USA, June 1999.

[28] D. MacKenzie and B. Elliston,http://www.gnu.org/manual/autoconf-2.13/html_chapter/
autoconf_toc.html, Free Software Foundation, Boston, Massachusetts, USA, July 1999.

MISSISSIPPI STATE UNIVERSITY PAGE 41 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Digital Filter

Bank
Power Estimation

Fourier

Transform

Perceptual

Linear Prediction

Linear Prediction

Filter Bank

Cepstrum

Filter Bank

Filter Bank

Cepstrum

Cepstrum

Speech

Figure 1. An overview of the front-end portion of the speech recognition system. Two popular analysis
techniques, mel-spaced cepstrum and perceptual linear prediction, are supported in the system. Other
approaches based on frame-based analysis techniques can be easily added.

MISSISSIPPI STATE UNIVERSITY PAGE 42 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Intensity-
Loudness

Conversion

Speech

Solution for
Autoregressive

Coefficients

Critical
Band

Analysis

Equal
Loudness

Pre-Emphasis

Inverse Discrete
Fourier

Transform

All-Pole
Model

Figure 2. An overview of perceptual linear prediction (PLP) analysis. This front-end has become
increasingly popular in recent years.

MISSISSIPPI STATE UNIVERSITY PAGE 43 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Figure 3. An overview of the hierarchy of ISIP classes. The system and I/O libraries are new additions to
the class structure. The math and data structure libraries make extensive use of templates.

MISSISSIPPI STATE UNIVERSITY PAGE 44 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Figure 4. The integral types define the fundamental building blocks of the ISIP environment. We have
taken an approach that requires these types to be a fixed number of bytes.

// file: $isip/class/system/Integral/IntegralTypes.h
// version: $Id: IntegralTypes.h,v 1.4 1999/07/12 18:29:29 duncan Exp $
//

// system include file
//
#include <wchar.h>

// this is the basic isip environment include file. all Integral types
// are defined in this file. these are also implemented as C++ classes.
// all software must be built upon these basic types.
...
typedef void* voidp;
typedef signed char boolean;
typedef unsigned char byte;
typedef wchar_t unichar;
typedef unsigned short int ushort;
typedef unsigned long int ulong;
typedef unsigned long long int ullong;
//typedef short int short;
//typedef long int long;
typedef long long int llong;
//typedef float float;
//typedef double double;
typedef unsigned char byte8;
typedef unsigned short int ushort16;
typedef unsigned long int uint32;
typedef unsigned long long int uint64;
typedef short int int16;
typedef long int int32;
typedef long long int int64;
typedef float float32;
typedef double float64;

MISSISSIPPI STATE UNIVERSITY PAGE 45 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Figure 5. A template class definition for a scalar object. This template is used to build classes such as
Long, Short, and Float.

// Scalar: our template scalar class
//
template<class T>
class Scalar {

protected:

 // internal data
 //
 T value_d;

public:

 // required static methods:
 //
 static String& name();

 // required methods:
 // no setDebug required
 //
 boolean debug(unichar* message);
 T size();

 // initialization and release methods.
 boolean init();
 boolean release();

 // destructors/constructors
 //
 ~Scalar();
 Scalar();
 Scalar(Scalar& arg);
 Scalar(T arg);

 // former in-line methods
 //
 operator T();

 Scalar& operator= (T arg);

 // get methods
 //
 boolean get(Scalar& arg);
 boolean get(T& arg);

 // assignment methods
 //
 boolean assign(T arg);

 // mathematical functions
 //
 T min(T arg);
 T min(T arg_1, T arg_2);

 T max(T arg);

 T max(T arg_1, T arg_2);

 T abs();
 T abs(T arg);

 T sign();
 T sign(T arg);

 T factorial();
 T factorial(T arg);

 // useful for DSP
 //
 T limit(T min, T max);
 T limit(T min, T max, T val);

 T limitHard(T thresh, T new_val);
 T limitHard(T thresh, T new_val, T arg);

 T centerClip(T min, T max);
 T centerClip(T min, T max, T arg);

 private:

 public:

 // define the class name
 //
 static const unichar CLASS_NAME[] = L"Scalar";

 // define the default value(s) of the class data
 //
 static const T DEF_VALUE = (T)0;
 static const T DEF_RAND_MIN = (T)0;

 // default arguments to methods
 //
 static const long NEGATIVE = (long)-1;
 static const long POSITIVE = (long)1;

 static const long ERR = (long)20666;

};

// all classes need to inherit Scalar
//
template class Scalar<long>;
//template class Scalar<short>;

// end of include file
//
#endif

MISSISSIPPI STATE UNIVERSITY PAGE 46 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Figure 6. A new set of web pages have been created to support the project. These have been designed to
provide easy access to the web site. The choices to the left of the image mirror the physical organization of
the web site.

MISSISSIPPI STATE UNIVERSITY PAGE 47 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Figure 7. An example page of documentation for the IFCs. The code is directly linked to the page, making
it easy for users to view the code while studying the documentation.

MISSISSIPPI STATE UNIVERSITY PAGE 48 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Figure 8. An example of a Java Swing applet that demonstrates the concept of digital filter design. Swing
has been a mixed blessing. While some aspects of GUI programming are nicely abstracted, other aspects,
such as interactions between grid boxes and event handlers, have been problematic.

MISSISSIPPI STATE UNIVERSITY PAGE 49 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2001

Figure 9. A Java applet that allows users to submit speech recognition jobs remotely to a bank of compute
servers. Users can run canned experiments, or supply their own audio data. Parameters for the experiment
can be specified via dialog boxes. Results are emailed to the user, and can be examined directly on the
web site via links provided in the dialog boxes to the right.

