
ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

original
nition
most

main
08/15/99 — 08/14/00: RESEARCH AND EDUCATIONAL ACTIVITIES

In the second year of this project, we focused our efforts in five major areas:

• Production System Release : the first release of the production speech recognition system, based
on our modular libraries, is scheduled for July 1.

• Hosted two workshops : a software design review held in January 2000, and a one-week training
workshop held in May 2000.

• Software engineering : upgraded our distribution to use the autoconf facility, added an automated
report tracking system to our on-line support, created a multi-platform support facility.

• Foundation classes : added algorithms and other signal processing building blocks, introduced
classes to handle acoustic models, search algorithms, and knowledge sources, and released a front-
end that allows arbitrary algorithms to be implemented using a graphical user interface.

• Java Applets : enhanced our pattern recognition applet with several important new features,
including generation of arbitrary data sets, clustering, and visualization of decision surfaces.

The workshops appear to be extremely successful as demand has far surpassed our
estimates for enrollment (and taxed our facilities). The number of serious users of the recog
system is continually growing. It is becoming a challenge to provide same-day response to
support requests, particularly given the wide range of experience levels from the users.

A. Production System Release

An overview of a typical speech recognition system is shown in Figure 1. There are three
components to this system: signal processing,
language modeling, and search. We have had
a prototype system in release now for over
one year. This system was recently evaluated
as part of DoD’s yearly evaluation
cycle [1] — an important step towards
gaining wider acceptance of the system as a
state of the art system. We are now nearing
the first major release of our production
system that is built from the ISIP foundation
classes. We currently have many of the core
pieces implemented, including the signal
processing section (described later), acoustic
modeling, and a prototype hierarchical search
engine that was demonstrated at our
January workshop. Language modeling
classes are currently under development and
nearing completion. Integration of these
classes into a system has begun, and is
expected to be completed by mid-summer.

Novel aspects of this system include a
generalized hierarchical search engine,
shown in Figure 2, and a flexible approach to

Input
Speech

Language
Model p(W)

Recognized
Utterance

Acoustic
Front-End

Acoustic Models
p(A/W)

Search

Figure 1. A typical speech recognition system.
MISSISSIPPI STATE UNIVERSITY
 PAGE 1 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

roach
y far

users
alized
rces.

then

e since
mous

-level
has

f the
ns. We
ow plan
ols to
ereby
Figure 2. An overview of a generalized search engine that allows users to implement speech recognition
systems as a hierarchy of knowledge sources.
signal processing that allows new algorithms to be implemented using a CASE-based app
involving a graphical user interface. The search engine is crucial to this system, in that it is b
the most complex and unwieldy component. A clean implementation that provides
reasonable programming hooks into all levels of the process is very important. The gener
approach below still requires significant work with respect to efficiency and memory resou
We are using the prototype system currently in release to develop these details, and
transferring that knowledge into the production system.

Pieces of the production system, particularly the foundation classes, have been in releas
November 1999. The most current versions of the code are also available from our anony
CVS server. The foundation classes are slowly stabilizing as we add more upper
functionality and expose more bugs. The C++ language definition and implementation
recently begun to stabilize, making many things possible using the latest version o
compilation tools. This in turn has allowed us to change several aspects of our class desig
believe we have reached convergence on most major aspects of the system design, and n
to remain backwardly compatible with subsequent releases. We have also developed to
automatically convert data formats between the prototype and production systems, th
allowing users to leverage features of both systems while the latter is under development.

B. Outreach Via Workshops
MISSISSIPPI STATE UNIVERSITY PAGE 2 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

f this
the

e first
n. The
rial. A
t the
notes,
op.

reign
IBM,
as
very

peech
t the
M, a
tions

3. We
r the
iven
items.

rds
s from
bines
ning
nition
volve

to
kshop
make

teen
f U.S.
do at
e also
ch as

by
oal of
n fact,
te was

year
ilities
In January 2000, we hosted our first annual design review workshop. The primary function o
workshop was to review our software design. A second important goal was to solicit
community for input on new features. We arranged this workshop to be a two-day event. Th
day was devoted to an overview of the system, including demos, and general discussio
second day consisted of a training session where we walked users through our on-line tuto
complete archive of the workshop, including presentation slides, is available on-line a
workshop web site [2]. Participants received notebooks containing handouts of the lecture
as well as a CDROM containing all software and instructional materials used at the worksh

Attendance at this workshop was slightly lower than expected: 9 participants from several fo
countries (China, Finland, Korea), government agencies (FBI, DoD), and industrial sites (
MITRE, Lincoln Labs). This was partially due to the time at which the workshop w
held (January 5) and concerns about residual Y2K problems. Nevertheless, it was a
productive workshop in that users were able to build an entire large vocabulary continuous s
recognition (LVCSR) system during the training session, and left feeling very good abou
software. Several collaborations resulted from the workshop, including invited talks at IB
collaboration with Georgia Tech on the classroom of the future [3], and potential collabora
with MITRE on various DoD-related speech recognition applications.

Feedback from this workshop was generally positive. Some examples are shown in Figure
were particularly interested in thoughts about the summer workshop, and action items fo
following year. A summary of the discussion about future plans is available [4] on the web. G
the diverse group of participants, it was hard to form a consensus on the priorities of these
However, generally speaking, there were no surprises relative to our current plans.

In May 2000, we will offer our first extended training workshop [5], which is geared towa
entry-level graduate students. Travel funds are provided to encourage graduate student
underrepresented institutions to attend. The program [6] for this week-long workshop com
morning lectures on theory with afternoon laboratories focused on skill-building. The mor
lectures are split into two parts: fundamental theory and applications to speech recog
(explanations of how the theory is actually implemented in a system). The laboratories in
skill-building projects ranging from basic recognition foundation class programming
conversational speech recognition system development. Participants literally leave the wor
with a toolkit to run some of today’s important research tasks, and should be able to
programming-level modifications to the system.

Twenty-four participants, including 18 graduate students, will attend the first workshop. Nine
institutions from seven countries are represented, including by design a broad range o
universities. Established research groups such as MIT, Rutgers and University of Colora
Boulder are represented. Underrepresented universities such as North Carolina A&T ar
participating. Further, universities less prominent in speech recognition research, su
University of Houston, University of Denver, and Old Dominion University, are represented
graduate students early in their Ph.D. programs. Hence, we are well along towards our g
increasing access to speech technology by incorporating underrepresented groups. I
workshop enrollment was three times what was originally expected, and our acceptance ra
approximately 66% of the applicants.

We plan to broadcast live still images from this workshop on the conference web site [5] this
using a networked camera. Next year, we will attempt a live Internet broadcast using fac
MISSISSIPPI STATE UNIVERSITY PAGE 3 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

I appreciate it very much that I had the opportunity to come to MSU to learn automatic speech recognition
(asr). I have done survey on the availability of asr software which I can apply LDC DARPA-TIMIT data
(on cd-rom) for training an asr system. But I did not have any one until I talked Mr. Dave Graff of LDC who
suggested that I talked to you.

The hospitality you extended to me is sincerely appreciated. I have done some paper-reading on speech
recognition years ago. But this is the first time I am trying to use it for data systems. The need at my or-
ganization is speaker-independent asr.

Most of the telephone data is conversational, I will try to work on Switchboard-type of data, hopefully in
the summer.

I tended to think that it would be a nice thing for a user if the input and modules can be simplified. I am an
engineer at my job; the real end-users may not be engineers.

1. Things you liked about the workshop:
The workshop went well, and met my goals:
a. get to know the ISIP group to facilitate collaboration
b. get the software up and running
c. get a feel for where the project is going
d. articulate my needs

 2. Things that need improvement: Hmmm, having trouble thinking of practical changes....
Maybe a tutorial on “current issues in speech recognition”

3. Things you would like to see in the summer training workshop: I plan to send students not experienced
in speech recognition, so tutorials would be useful.

 4. Things you would like to see us do differently for the design review:
see 2.

1. Things I liked: Clearly structured presentation of the system. Presentations covered most aspects of
the system. Code-testing (e.g. the diagnose() function) was stressed. Demo. Instrumental in inspiring con-
fidence in the system.

2. Things that need improvement: In the demo, most of my time was spent typing in long pathnames. I
suggest writing a (one-line) shell script for each step, and simply allowing the user to read the pathnames.

3. Things in a summer training workshop: Make a list of use-scenarios (e.g. word-lattice-construction;
lattice-rescoring; 1-pass decoding; viterbi-training; EM; segmentation; alignment; speaker adaptation;
system-extension with new acoustic models like SVMs, etc.) and go over how to do each one.

4. Things to do differently: I would spend a bit more time on some of the tougher algorithmic issues, e.g.
how exactly right-word extensions work for cross-word context dependence, and what happens if you
want to look (say) 5 phones to the right. And when traces are extended, presumably there are some cir-
cumstances where two traces can be merged; how exactly is this handled? Basically, I’d like to get a
more explicit sense of what the toughest issues were, and how the system handles them. Perhaps a
1/2 hour on this.

Overall, I thought it was an excellent review.
Figure 3. Examples of feedback collected from SRSDR’00. Comments about topics for the extended
summer workshop we extremely helpful and have been incorporated into the program.
MISSISSIPPI STATE UNIVERSITY PAGE 4 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

hop,
everal

es of
rdized.
issues
tware
tem,

system
pical

volves
the

ch has

is are
our
lt with

stall
uired

ce, it
have
that

ping of
pular,

enjoy
been

erate
line,
goal is
taff are
s job

nt of
time
: Sun
available at MS State (at no charge to the project). All materials developed for the works
including laboratory exercises, will be posted on the web site. We have already had s
requests for these materials from people who cannot attend the workshop.

C. Software Engineering

With every release of our system, we accumulate more experience with the challeng
supporting research software in a Unix environment, where things tend to be less standa
With the addition of a full-time software engineer this year, we were able to address these
in a much more powerful manner. One of the most popular distribution mechanisms for sof
in Unix is an automatic configuration system developed by the GNU organization. This sys
known by various names such as configure and autoconf, automatically searches the
during installation for required software packages, and configures software accordingly. A ty
installation procedure consists of the following sequence of commands:

• tar xvf isip_proto_v5.3.tar unpacks the software distribution
• cd isip_proto_v5.3: enters top-level directory
• configure --prefix=/usr/local/isip configures the software and sets the installation directory
• make compiles and links the software
• make install installs the software

This deceptively simple procedure has taken years of refinement for Unix systems, and in
locating many important tools (gcc, perl, Tk/tcl, shells, etc.), and deciding how best to build
software given the local system’s capabilities. In recent years, installation using this approa
become fairly smooth under a multitude of Unix systems.

The overhead cost in adopting this form of installation procedure is high. The tools to do th
not trivial. This year, we finally mastered this software and incorporated this facility into
releases of the prototype system. This should resolve most support issues we have dea
involving system incompatibilities, and definitely minimizes the effort required by users to in
the system (since everything is automatic). Migrating our previous installation procedure req
a major overhaul, but was clearly well worth the effort.

As mentioned previously, support activities are requiring an increasing amount of time. Hen
became clear that we needed to install a formal method of support request tracking. We
installed a public domain system called RT — Request Tracker [7]. This is a powerful system
has most of the standard features included in such packages: ticket numbers, time-stam
requests, automatic acknowledgements, queues, and resolution tracking. RT is po
particularly within our university. We are able to leverage other installations on campus, and
excellent technical support on the package from other campus organizations. RT has
extremely useful in managing our support line. For example, we are now able to gen
automated reports on the timeliness of our service. Any email to our support
help@isip.msstate.edu, is automatically routed to the RT system and acknowledged. Our
to provide a reasonable response to each request within a 24 hour period when support s
on-site. Our software engineering staff position manages this system as part of hi
responsibilities.

A third step we have taken to improve the quality of our distributions involves the developme
a multi-platform and multi-OS environment to check releases for compilation and run-
problems. We purchased a Pentium workstation and installed multiple operating systems
MISSISSIPPI STATE UNIVERSITY PAGE 5 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

r lab.
s are
end to
where
s are
ss all
if one
ment.

t tools
lloc.
ools.
cess to
o not
arise
lp us

rrent
er, our
vious

s of

istical
bjects

m. An
ssing
in our
form
pe of
ithms
wn as
Solaris x86, Windows NT, and Linux. We also have Sun Sparc Solaris machines in ou
Further, we recently acquired an IBM AIX machine as a donation from IBM. These machine
used to check every release before it is actually made available to the public. Though we t
be very methodical in our debugging and validation methods, we have found instances
software will pass validation runs on all but one of the operating systems. Such problem
subtle and rarely flagged by compilers (even though we use a common compiler acro
machines). Though such multi-platform checks are time-consuming, they are necessary
wants to avoid problems. Linux support, in particular, has recently become a critical require

Along similar lines, we have also recently acquired professional strength code developmen
for Unix. Previously, we have been relying on a public domain code checker — dma
Unfortunately, software of the complexity we are developing breaks most public domain t
Such tools are not able to properly diagnose and isolate problems. Hence, we now have ac
two professional quality development tools offered by Rational Software. Even these tools d
catch 100% of the problems observed in our code, primarily due to the complications that
from the use of many levels of C++ templates. However, such tools are often able to he
resolve problems in minutes rather than hours, and have greatly increased productivity.

Using these tools, we were able to isolate and fix a number of memory bugs in our cu
releases. Some of these were quite subtle and took hours of run-time to reproduce. Howev
current releases are now free of all known memory bugs, and are vastly improved over pre
releases. The software has been checked on a much wider range of tasks as well.

D. Foundation Classes

The foundation classes, upon which all higher-level software is built, continue to grow in term
their breadth and depth. We currently support the following libraries in our class hierarchy:

• system (i.e., Console, MemoryManager)
• input/output (i.e., Signal Object File, Sof Parser)
• math (i.e., Scalars, Vectors, and Matrices)
• data structures (i.e., Linked Lists, Hash Tables)
• shell (i.e., CommandLine, Filename)
• multimedia (AudioFile)
• statistics (GaussianModel, StatisticalModel)
• algorithms (Cepstrum, Linear Prediction)
• signal processing (FrontEnd, Features)
• pattern recognition (PCA, LDA)
• automatic speech recognition (Recognizer).

This year, we have focused on higher-level libraries such as Statistics, which provides stat
models for each state in our acoustic models, and Data Structures, which provides graph o
used in the search engine.

Our recent focus has been the development of the signal processing portion of the syste
overview of the tool we have developed to provide users an easy way to build signal proce
systems is shown in Figure 4. The users have at their disposal any of the tools available
Algorithms library. For example, an industry-standard front-end uses a Fourier Trans
operation, a Cepstrum calculation, time derivatives of feature vectors, and a special ty
normalization algorithm. Each of these modules is available as a class under the Algor
library. Each class has a special set of methods that interface to the application builder, kno
MISSISSIPPI STATE UNIVERSITY PAGE 6 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

(SAMPLED_DATA)
AudioFile

icting
block
signal

, and
s class

edit a
rs can
make
op.

nition
of a
of the

class
sians,
peech
of the

also
epted
tems
more
nough

roject
amatic

Recipe PoolInputs

(Sof)
Features

Features

Process
Process

Process

Process

Outputs
the Transform class (the corresponding utility is isip_transform).

Our Transform class combines the user’s algorithm specifications by building a graph dep
the sequence of algorithms to be applied to the signal, as shown above in Figure 4. Such
diagram type approaches to signal processing have been popular for a number of years in
processing. Transform is a very powerful class in that it allows users to mask, combine
postprocess measurements of the signal in arbitrary ways. Since the internal structure of thi
is somewhat complicated, a graphical user interface is essential. Rather than have users
parameter file containing information about the algorithms and their interconnections, use
manipulate this representation using graphical tool. We decided to implement this in Java to
it as portable as possible. Our first release of this tool will coincide with the summer worksh

We have also made significant progress towards the development of the production recog
system by implementing statistical modeling aspects of the system. The decoder portion
speech recognition system can be regarded as a hierarchy of graphs [8]. The leaf nodes
lowest level of this hierarchy are states in a hidden Markov model. Our StatisticalModel
implements a generalized state, which can be an arbitrary mixture of distributions — Gaus
Exponentials, Laplacians, etc. Mixtures of Gaussian distributions are most popular in s
recognition today; exponential models are becoming increasingly popular for some aspects
problem (they are rooted in maximum entropy theory).

We have begun tying these together to build a full-fledged recognition system. We have
created conversion utilities that transform outputs of the prototype system into formats acc
by the new system. This is an important capability since it allows us to interface the two sys
and maintain some level of backward compatibility. It also makes the development cycle
efficient, since we can incrementally test isolated components of the new system on large e
tasks to expose subtle bugs.

E. Java Applets

As we described in our last report, the first year of the java programming phase of our p
focused on stabilizing our approach to Java. Since the language was undergoing dr
Figure 4. An overview of a CASE-based tool that implements signal processing algorithms using a
GUI-oriented tool. Users essentially flow-chart an algorithm as a graph of recipes. The system
automatically schedules operations to implement the desired algorithm.
MISSISSIPPI STATE UNIVERSITY PAGE 7 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

ss was
have

time to

eatly
. An
ution,

ith the
of our

ges for
cision
ata —
nder
in our

pular
ely
on with
t such
his is

ber of
ithm.
n to

about
isit to
uary
e are
ndard

ot quite
trating
ls and
s, and

tate’s
room
lication
n we
audio
and
hed by
tages
udio
changes, it was hard to modularize our applet development. The net result was that progre
slow. Fortunately, in the second year of this effort, Java has stabilized considerably, and we
been able to push ahead on using Java in our development environment. We have also had
expand the capabilities of our existing applets.

A good example of this is our pattern recognition applet. This year, we were able to gr
enhance its educational value by augmenting basic capabilities with more visualization
example of this is shown in Figure 5. Users can specify the parameters of a Gaussian distrib
and can view the support regions for these distributions in the original data space (along w
resulting decision regions). In Figure 6, we show two new data sets that were added by one
sophomore undergraduate programmers. These data sets pose interesting challen
classification algorithms since they are not linearly separable (they can’t be separated by de
regions formed by hyperplanes). We have plans to include algorithms that can handle such d
for example, an algorithm based on support vector machines which is currently u
development in our research group. The pattern recognition applet was used extensively
Fundamentals of Speech Recognition course this semester.

Another novel feature added to this applet was the ability to classify the data using two po
clustering algorithms — KMEANS and Linde-Buzo-Gray (LBG). These algorithms iterativ
reestimate cluster centers, and form decision regions based on nearest neighbor calculati
respect to these cluster centers. A Java applet is an ideal forum in which to learn abou
algorithms because you can see the decision regions evolve with each iteration. T
demonstrated in Figure 7. Users select the number of clusters they want to use, and the num
iterations to be performed, and can then step through each iteration of the algor
Classification results are displayed in the description box to the right. In Spring ‘01, we pla
use this applet extensively in a pattern recognition course.

We have also begun implementation of several new applets. One which we are very excited
is an applet that helps students visualize search algorithms. This was motivated by a v
MS State’s 3D immersive visualization environment known as the COVE during the Jan
design review, and viewing a demo where one walks along the edge of a mountain. W
attempting to create such a visualization of the search space during recognition using sta
Java components (as opposed to some of the experimental virtual reality engines that are n
standard yet). Further, we are developing a basic digital signal processing applet demons
the sampling process for signals. This is intended to be used in our undergraduate Signa
Systems course. Most of this work is being carried out by our undergraduate programmer
represents a nice, non-critical path in which they can contribute to our research program.

Finally, we have begun some collaborations with Georgia Institute of Technology and MS S
College of Engineering to use our job submission applet to do audio indexing of class
lectures. This application was presented at a recent Internet 2 conference [3], and is an app
enabled by the vast bandwidth potential of Internet 2. It will become more feasible whe
expand our compute serving resources in the third year of this project. In this application,
from a lecture is shipped to our system for automatic transcription via recognition,
time-alignment. The results are then transferred back to a database which can be searc
students (“Show me all the lectures about Fourier Transform.”). While we are in the early s
of the development of this capability, it is a good example of the burgeoning interest in a
indexing and audio mining.
MISSISSIPPI STATE UNIVERSITY PAGE 8 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

Support Regions
Figure 5. An example of enhanced visualization capabilities in our pattern recognition applet. We now
allow users to specify the parameters of Gaussian distributed data through dialog boxes. In the case
above, two Gaussian distributions were generated with means of [-1,1] and [1,-1] respectively. Principal
Components Analysis (PCA) was chosen as the classification algorithm. Step-by-step output from the PCA
approach is shown in the scrolling box on the right. Once the means and covariances are computed in
Step 2, the support regions for the distributions are displayed in the lower left. These are crucial to
understanding how algorithms such as PCA transform data. Other enhancements to this applet include the
addition of new clustering algorithms, and an interactive status bar (lower right) that provides feedback for
users when time-consuming operations are being performed.
MISSISSIPPI STATE UNIVERSITY PAGE 9 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000
Figure 6. Two new data sets that pose challenging problems for classification algorithms have been added
by one of our undergraduate programmers.
Figure 7. An example of a clustering algorithm in which users see the decision regions evolve.
MISSISSIPPI STATE UNIVERSITY PAGE 10 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

CSR
ty of

,

in
ting,

0/
,

/
A,

ml/
A,

ulary
F. REFERENCES

[1] R. Sundaram, A. Ganapathiraju, J. Hamaker and J. Picone, “ISIP Public Domain LV
System,” to be presented at the Speech Transcription Workshop, The Universi
Maryland University College, College Park, Maryland, USA, May 2000.

[2] J. Picone and W.C. Chapman, “Speech Recognition System Design Review,”http://
www.isip.msstate.edu/conferences/srsdr00, Mississippi State University, Mississippi State
Mississippi, USA, January 2000.

[3] J. Picone, C. Atkeson and I. Alphonso, “Harnessing High Bandwidth: Applications
Speech Recognition,” presented at the Spring 2000, Internet2 Member Mee
Washington, DC, USA, March 2000.

[4] J. Picone, “Summary of SRSDR’00,”http://www.isip.msstate.edu/conferences/srsdr0
technical_program/session_08/index.html, Mississippi State University, Mississippi State
Mississippi, USA, May 2000.

[5] J. Picone, “Speech Recognition System Training Workshop,”http://www.isip.msstate.edu
conferences/srstw00, Mississippi State University, Mississippi State, Mississippi, US
January 2000.

[6] J. Picone, “Workshop Program,”http://www.isip.msstate.edu/conferences/srstw00/ht
program.html, Mississippi State University, Mississippi State, Mississippi, US
May 2000.

[7] J. Vincent, “Request Tracker,”http://www.fsck.com/projects/rt/, March 2000.

[8] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocab
Conversational Speech Recognition,”IEEE Signal Processing Magazine, vol. 16, no. 5, pp.
84-107, September 1999.
MISSISSIPPI STATE UNIVERSITY PAGE 11 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

wn to
on our
nes
stem
ssion

built.
gy is

has
the
act this
to the
cross-

tem we
arkov
erted
HMM

stry-
-order
ercial

ability

peech
ls used
e they
aph is
nerated
ing on
uns at
08/15/98 — 08/14/99: RESEARCH AND EDUCATIONAL ACTIVITIES

In the first year of this project, we focused our efforts in three major areas:

• Core Technology : extensions of the speech recognition system required to enhance its appeal to
our customer base (driven by customer feedback);

• Foundation Classes : building blocks such as vectors, matrices, and data structures that simplify
and standardize the development of higher-level classes;

• Web-Based Information : a comprehensive and informative web site that constitutes a central point
of contact for everything related to the project.

We have seen interest in the project grow as evidenced by the fact our mailing list has gro
150 participants, and we have received several serious inquiries about collaborations based
system (one of which resulted in participation in a joint NSF/EU proposal [1]). Major milesto
for the first year of the project included the release of a fully functional speech recognition sy
(including feature extraction and training), and the development of a remote job submi
capability that lets users submit jobs to our system over the Internet.

A. Core Technology

State-of-the-art speech recognition technology is the foundation upon which this project is
We must not loose site of the importance of this core technology to this project. This technolo
being developed in a parallel effort funded by the Department of Defense. The system
improved dramatically since the start of our NSF project in August’98. We briefly review
enhancements made to the system in the first year of this project, and then discuss the imp
has made on our efforts within this project. Next, we describe some enhancements made
system to broaden its appeal to our customer base, and review some initial attempts at
platform portability.

A.1. System Status

In the past year, three important capabilities have been added to the speech recognition sys
have been developing: feature extraction, word graph generation, and Hidden M
Model (HMM) training. Feature extraction is the process by which the speech signal is conv
to a sequence of vectors that serve as input to the recognition system (a continuous density
system). This is often called the front-end. Our approach was to initially replicate an indu
standard front-end consisting of mel-spaced cepstral features [8] and their first and second
derivatives. This is one step that allows users to duplicate results obtained with other comm
and proprietary systems. This capability was delivered as part of a general front-end cap
summarized in Figure 1.

A second key feature added to the system was the ability to generate word graphs. S
recognition experiments are time-consuming primarily because of the large language mode
in decoding portion [8] of a system (these large language models are desirable becaus
maximize performance). Hence, to save time on subsequent experiments, a word gr
constructed that represents most plausible, or highly probable, hypotheses that can be ge
by this network. This graph is then rescored with new acoustic or language models depend
the nature of the research. This network can be quickly rescored — a process that often r
MISSISSIPPI STATE UNIVERSITY PAGE 12 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

se time
ch for
system

e way
ts a vast
than
final

quent
n any

This
o build

from
y the
at it is
blem.
e this
e-art

f the
eing

signal
chers
d at an
its of

the
peech
l linear
nts in

ir best
ithm
f this

guage
(1) it
mmars
; (2) it
rather
ment
ized, a
least ten times faster than the process required to generate the network. Because of the
savings, word graph rescoring is an extremely popular method of doing speech resear
conversational speech recognition, and is therefore a modality that must be supported for a
to be widely accepted.

This feature was added to the system in early 1999, and required significant changes to th
the decoder manages the search process. Fortunately, the current implementation represen
improvement in the architecture and performance of the system [8]. Though it took longer
expected to add this feature to the system (we struggled with this for 6 months), the
implementation is extremely clean and efficient, and will have a positive impact on subse
generations of the system. The system now supports more decoding modes tha
commercially available system, and more than most proprietary systems as well.

A third essential feature that was added to the system this year was HMM training [11].
essentially provided closure on the speech recognition system in that users are now able t
real systems from scratch (previously, one had to borrow some component from the system
another source). We first implemented an algorithm known as Viterbi decoding, in which onl
best state sequence through a network is considered. This is an elegant algorithm in th
efficient, fast, and consistent with a formal languages view of the speech recognition pro
This allowed us to develop the proper control structures and code infrastructure quickly. Onc
was complete, we added Baum-Welch training [12], which is more popular in state-of-th
systems.

The current system is described in great detail in an upcoming publication [8]. This is one o
first such publications to provide a tutorial on the details of search algorithms, and is b
published in a journal that emphasizes education of entry-level graduate students in
processing. It is our hope that the time spent on this publication will pay off as more resear
are made aware of the availability of this system and project. Our system is also represente
upcoming major speech conference [13] that will include a panel discussion on the mer
public domain speech technology.

A.2. System Enhancements

In any such project intended to develop public domain code, it is important to adapt to
changing needs of your user community. In the past few years, several major sites in s
research have shifted to the use of features based on an algorithm known as perceptua
prediction [14]. This technique in some cases has been shown to deliver small improveme
performance. It is an important feature to include if such sites are attempting to replicate the
systems with our public domain system. We completed an initial implementation of this algor
this year, and are in the process of integrating it into our front-end architecture. A summary o
approach is shown in Figure 2.

Another feature that was requested by several sites this year was the ability to switch lan
models in the middle of the recognition process. This feature is useful for two reasons:
enables the development of command and control applications that switch between sub-gra
depending on what words are recognized (context-senstitive language models or menus)
allows the recognition system to dynamically recurse through language models at runtime,
than compile all language models into one big network. The first point impacts the develop
of voice-driven menu systems and real-time demonstrations. As a word or phrase is recogn
MISSISSIPPI STATE UNIVERSITY PAGE 13 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

choice.
s with

stems
terms
stem
arch

his
to be

must
recent
enting
oadcast
such

rtant
ecause
ory as

large

ed to
ssions
mmar

ance.
nalyze
f these
data
tomize

s. Our
Sparc
vided
ge of
++
(this

mon
cally
code

ately,
fact,
n as
new language model can be loaded, providing a small set of words or phrases as the next
This is the strategy used by most systems that allow you to accelerate your desktop menu
voice commands.

A second, and equally compelling reason to consider this feature, is the development of sy
that consist of a hierarchy of grammars (for example, sentences in terms of words, words in
of syllables, syllables in terms of phones, etc.). Many existing systems will compile such a sy
into one large network. While this is sometimes attractive for efficiency reasons, for rese
flexibility it is often better to process this hierarchy of networks at runtime (“on the fly”). T
allows users to change one small module of the system (for example, allowing a word
represented multiple ways) without recompiling the entire system.

Implementation of this capability requires use of an approach called “caching.” The system
only activate those portions of the network that represent active words, or words used in the
past, and leave the remainder of the language model stored on disk. Fortunately, by implem
this strategy, we can handle much larger language models, such as those used in the br
news [15] and audio data mining research fields. Since there is currently a shift towards
applications in various research communities including NSF and DARPA, we feel it is impo
to provide a solution to this problem. Broadcast news language models tend to be large (b
they are dealing with lots of words that occur infrequently) and cannot be managed in mem
a single unit. Our conversational speech recognition system could not handle such a
language model due to the number of bigram entries contained in this model.

In addition to these algorithmic enhancements, several supporting tools were develop
facilitate language modeling. These include a grammar compiler that accepts regular expre
as input and outputs a finite state machine description used by our system, and a gra
compaction algorithm that reduces the size of a word graph without compromising perform
We also developed several display utilities [16] that allow users to look at speech data and a
its frequency content. We have interacted with several industrial sites on the development o
tools. In fact, one commercial site is making extensive use of this tool in a production
collection capacity, and hired one of our undergraduate programmers for the summer to cus
this tool to better suite their unique needs.

A.3. Cross-Platform Portability

We have begun to address issues related to portability across different computing platform
plan remains to develop code under the Solaris operating system on two platforms — Sun
and Intel PC (Solaris x86). Within these environments, we use a common compiler, gcc, pro
by the Free Software Foundation (GNU). This compiler is supported across a wide ran
platforms, including Microsoft Windows’9X and Windows NT. Since an ANSI standard for C
has only recently been adopted, and most implementations of C++ are still not compatible
likely will continue for a few years even after the adoption of the standard), using a com
compiler across all platforms is the best way to guarantee portability. Currently, we periodi
release a Windows version by porting the GNU environment to Windows, and compiling the
under gcc and the bash shell. This vastly simplifies the Windows porting effort.

Perhaps the fastest growing user population for our system is the Linux community. Fortun
the backbone of the Linux system is GNU software and the gcc compiler in particular. In
GNU recently turned over development of its compiler, gcc, to an organization know
MISSISSIPPI STATE UNIVERSITY PAGE 14 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

ping
cc (the
of the
vers a

on in
em is
ANSI
hese
es of
t this
terim
do a

hich
ecific
and

the
ticular
d for a
ode
mpiler

as to
tion

rewrite
end of
will

ble to
the C

tively
. The
ample,
A C
cific
c data

ented as
use a
EGCS [17], which is a collection of free software advocates who have been informally develo
compiler extensions to gcc for years. EGCS is responsible for all subsequent releases of g
two have effectively merged) and is the compiler delivered on most production releases
Linux operating system (RedHat for example). Hence, conformance to gcc standards co
large portion of both the Windows and Unix markets, yet minimizes portability issues.

However, the Linux version of gcc distributed by EGCS currently lags the Sun Solaris versi
one important dimension: wide character support. One of the founding principles of our syst
that languages be handled in native format using Unicode character encoding. The current
C/C++ standards support a wide character encoding with a collection of new functions. T
must be supported by a runtime library, which Sun Solaris provides, but production releas
Linux do not. Hence, the current release of our code will not compile under Linux. We expec
problem to be resolved within the next three months. It doesn’t make sense to provide an in
work around, because anything we do will be quickly obsoleted. It is expected EGCS will
much better job in the future of tracking standards in C++.

B. Foundation Classes

The most critical part of the first year of this project was to lay the proper foundation upon w
all other software can be written. This is perhaps the most difficult part of any technology-sp
project — balancing the efficiency and simplicity of the target application with extensibility
flexibility needed by future research. We believe this is the major strength of our project —
environment is object-oriented from the ground up and designed to be neutral to any par
algorithmic approach. Fortunately, we have been able to leverage preexisting code develope
much less ambitious project [18] involving speech recognition. However, most of this c
needed revamping based on the changes in the C++ language definition and gcc co
capabilities.

The hierarchy of classes is shown in Figure 18. Our goal in the first year of this project w
deliver everything through the DSP libraries, which we refer to as the ISIP founda
classes (IFCs). In the second year of the project, we begin the “Great Convergence” as we
the speech recognition system using these IFCs. We expect this task to be completed by the
1999. This latter version of the system we will be the basis for our training workshops which
begin in the summer of 2000.

B.1 Integral Types

At the bottom of our class pyramid is a header file that defines all low-level data types availa
the user. These are known and the integral types, and in many ways mirrors the syntax of
programming language. Our current integral types file is shown in Figure 4. This decep
simple file was the result of much hand-wringing about two competing design philosophies
C programming language was designed to be somewhat architecture independent. For ex
the datatype “int” could be 16-bits long on one machine, and 32-bits long on another.
program written properly would work on both machines regardless of the spe
implementation. On the other hand, in signal processing, we often need access to specifi
types. For example, speech signals are stored as 16-bit integers, and need to be repres
such in C. The problem in C is that a 16-bit integer doesn’t really exist. Instead, you can
“short int” and must assume that an integer is 32 bits long.
MISSISSIPPI STATE UNIVERSITY PAGE 15 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

for a
gral
used to
ed later,
ure, as
ardly
s. By
new

stem.
vities,
ement
level
essing
with

from

are
write

peech
just
that
tring
tly. It
point

tensive
tabase

ncy has
don’t

artial
e are

not
e of
e the

his is
t use

o new
ntation
There is a growing movement within the C++ community to support data types such as int32
32-bit integer. In fact, Microsoft seems to be leaning this way with its Visual C++. The inte
types file shown in Figure 4 represents a synthesis of the two approaches. Programmers
constructs such as “long” have these available. However, the scalar classes, to be discuss
are defined to be specific sizes, and hence use the size-specific data types. In the fut
architectures and compilers expand to 64-bits and 128-bits, our code will be backw
compatible with no modifications, because the types are tied to a specific number of byte
providing new types, such as “double double” or “long long,” we can also accommodate the
wider formats.

B.2. System and I/O Classes

Our goal in the design of our system is to abstract the user from details of the operating sy
The system library serves this function by encapsulating all operating system specific acti
such as file I/O and character string processing. Both libraries represent a significant improv
over the previous implementation of this environment [18]. The System library supports low-
operations such as file management (opening, closing, reading, writing), character proc
(Unicode support), error handling and error notification. All of these require interacting
operating system-specific C functions, and hence must be centralized and abstracted
user-level code.

The I/O library contains a novel approach to file formats. All files in our environment
represented as Signal Object Files (Sof) [18]. Sof alleviates the need for users to read and
data manually (formatting of data tends to be one of the most time-consuming aspects of s
research). All objects know how to read/write from/to an Sof file. In fact, higher-level objects
recurse through their hierarchy of objects for I/O. Sof is simply a smart indexing scheme
keeps track of what objects are stored in a file. It allows multiple instances of an object (a S
object can be written several times to the file), and handles ASCII or binary files transparen
is also machine-independent in that users need not worry about byte-ordering or floating
representations across platforms — this is handled automatically within Sof.

A centralized data storage strategy is essential in speech research, and other data-in
research areas as well. There is nothing speech-specific about Sof. Sophisticated da
management strategies have yet to provide a clean solution for researchers, so the tende
been to use proprietary formats or unstructured formats (ASCII). Most database packages
want to deal with byte-formatted, such as an MPEG audio or video stream, and don’t allow p
I/O of these types of data (retrieve only the middle three seconds of this audio file). Ther
some public domain file formats being supported within the community [19], but these do
interface well to C++ and have certain limitations in terms of the flexibility (only one instanc
an object can be written to a file). Sof is an important part of our overall strategy to eas
programming burden of our users.

B.3 Math Classes

As shown in Figure 3, the next step up from our low-level IFCs are the math classes. T
actually the first level we expect application developers to interact with — users should no
the system classes directly, and should only use the I/O classes for programming I/O int
class definitions. The math classes consist of scalars, vectors, and matrices. Their impleme
MISSISSIPPI STATE UNIVERSITY PAGE 16 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

Our
rLong
data

ferent
l as a

lates.
based
r file.
with
allow
plate

h and
e non-
his is

ed on
quired
n we
ability.
. This

ch is
ow to
ities
follows that of the C++ Standard Template Libraries (STL), with two important exceptions.
types are allowed to be size-specific. For example, a Long is always a 32-bit integer, a Vecto
is always a vector of 32-bit integers, etc. This gives the programmer complete control of
sizes. Also, our matrix class is a vector of vectors, where each vector can have a dif
dimension. This costs very little in overhead, and makes the matrix class much more usefu
container class.

We began implementing the math classes with a simple strategy that did not rely on temp
This was mainly due to a legacy of gcc not supporting a useful model of templates. Gcc was
on an inclusion model in which all code related to a template had to be included in the heade
Obviously, for the system of the scale we are talking about, this is impractical. Fortunately,
the release of version 2.8.X of the gcc compiler, appropriate hooks have been provided to
source and header files to be separated for template definitions. A header file for a tem
version of a scalar class is shown in Figure 5. Our benchmarks on code implemented wit
without headers seems to show that the template approach is every bit as efficient as th
template version, and requires much less time to compile. It is a win-win situation thus far. T
summarized in Table 1 below.

Table 1. A comparison of template and non-template implementations of the math classes.
Templates appear to finally be competitive with traditional code.

In the first year of this project, we have completed implementation of the math classes bas
our new template approach. This was somewhat of a paradigm shift for us, and hence re
some additional training of our programmers. This approach will pay great dividends whe
move to higher-level libraries such as data structures, where one expects a template cap
With templates, user can build generic lists, hash tables, etc. of whatever object they desire
is an extremely important capability for C++ programming. The only drawback of our approa
that the template implementation is specific to gcc, since there no clear standard for h
implement templates in the ANSI C++ specification. We continually monitor standards activ
to see how we can improve our portability.

Description Non-Template Template

Scalar Long:
executable (kB)
memory usage (kB)
runtime (ms)
compilation time (secs)

564
1484

10.9 ms
31.8

566
1484

11.4 ms
18.6

VectorLong:
executable (kB)
memory usage (kB)
runtime (ms)
compilation time (secs)

708
1592
12.9
76.8

713
1596
13.1
66.1

MatrixLong:
executable (kB)
memory usage (kB)
runtime (ms)
compilation time (secs)

4590
1640K
17.6
99.4

4605
1648K
17.9
76.9
MISSISSIPPI STATE UNIVERSITY PAGE 17 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

ne by
usly).

mercial
to do
e time
ntrol

[20].

n. The
also

llows
ividual
steep
CVS
ause
now

uted
ch like
under
bility
ware
ate a
entire

e, the
ment

ute to
lable

enge,
staff
ntrol
. First,
of our
mmer

runs
ade a
three

ce a
thod is
B.4 Concurrent Versions System (CVS) and Anonymous CVS Servers

One of the interesting aspects of our project is that truly concurrent development is being do
a large number of programmers (between six and eight people work on the system continuo
This places great stress on most non-commercial software management systems. Com
packages, on the other hand, are expensive (typically $1K per seat) and hamper our ability
concurrent development in a distributed fashion as we describe below. Hence, we spent som
this year converting our software management environment from the popular revision co
system (RCS) [20] to a state-of-the-art package called Concurrent Versions System (CVS)

CVS allows multiple users to check out the same code, make revisions, and check it back i
tool automatically merges the code to produce what it thinks is the correct version. CVS
allows you to manage utilities, classes, libraries, etc., all within the same framework. It a
users to check out an entire software tree as a single unit, rather than manage this as ind
files as is done in RCS. Unfortunately, this is not as simple as it sounds, and there is a
learning curve for CVS. Hence, we spent some time developing wrappers for common
functions so that users were protected from the details of CVS [22]. This is important bec
CVS is unwieldy at times, and can corrupt files if not used carefully. However, we are
routinely using it in production, with satisfactory results.

One of the strongest arguments for using CVS is the capability it has for doing distrib
software development. We have implemented an anonymous CVS server that functions mu
an ftp server. Users can log into this server, and grab a snapshot of the code currently
development, and do concurrent development if necessary. This is a fairly new capa
introduced into CVS in the last year, and is being used by several public domain soft
projects. In our case, it is an extremely useful capability because it allows users to upd
portion of the environment as we make incremental changes, rather than download the
environment each time we make a small change. Since our final environment will be larg
anonymous CVS distribution strategy allows users to maintain a current copy of the environ
without repeatedly doing massive downloads. It also offers the potential for others to contrib
the environment. An on-line [23] tutorial on how to use our anonymous CVS server is avai
on the web.

B.5 Software Quality Control

Maintaining quality software releases in a rapidly developing environment is always a chall
especially when dealing with student programmers. In fact, this is one reason we will add a
member to the project next year. We have been continually refining our software quality co
process. Three important facilities were added to our environment to enhance our process
we adopted a public domain memory checking system known as dmalloc as a routine part
software development cycle. Dmalloc checks for memory leaks and other such progra
errors. Though not an industrial strength product (such as Pure Software’s Purify), dmalloc
on all our supported platforms and does a good job of catching memory problems. It has m
big difference in the quality of our code. Typical released code that used to have two or
memory problems per class now are released with virtually no defects.

A second important step we have taken to improve the quality of our software is to introdu
diagnostic method in each class. As a programmer implements a class, a diagnose me
MISSISSIPPI STATE UNIVERSITY PAGE 18 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

e have
test
do a

e they
klist is
eview,
, and
n, are
n SQL
s.

our
users.

wn in
ational
using
ented
ase are
tabase
ed at,

mail
hour to
lp are
tion.

email
/
s that
rchive
d an

g our
web.
lysis of
provided that exercises all methods in the class, and produces predetermined output. W
integrated this into our make facility as well: “make diagnose” automatically generates a
program that uses this method. This facility, coupled with dmalloc, allows the programmer to
fairly complete test and verification of the class before it is released.

Finally, we have instituted a web-based checklist facility that programmers use to make sur
complete all steps required of a release. As a programmer works through a class, the chec
updated with each major step. The checklist includes items such as initial design, design r
implementation, diagnostics, debugging, dmalloc, documentation, cross-platform check
release. Pertinent information, such as the programmer’s name and date of completio
automatically generated and stored in database. Everything is done via the web and a
database interface, which makes it extremely easy for the project manager to track progres

C. Web-Based Information

Dissemination of information via the web is a critical part of this project. We have overhauled
web site to showcase this project and to make information more readily accessible to our
The URL for the project is:

http://www.isip.msstate.edu/projects/speech

This web site contains some novel features that are described below.

C.1. Project Web Site

We have designed and implemented a uniform look and feel for the web site, as sho
Figure 6. The hierarchy is designed to make it easy for users to access the software, educ
resources, and on-line job submission facility. Most of the web pages are implemented
server-side includes that provide a uniform look and feel for all pages. We have also implem
a search capability using a public domain SQL database package. Records in this datab
currently entered manually using a web-based interface. Our attempts at generating the da
automatically produces unacceptable results (personal AltaVista was the best tool we look
but does not exist as a Unix package currently).

We have made it easy for people to contact us for support by providing a single point of e
contact: help@isip.msstate.edu. We typically have been able to respond in less than one
most requests for help, though traffic has been fairly light thus far. Incoming requests to he
reviewed by the project manager and assigned to the appropriate student worker for resolu

We have also added a facility for archival of all mail messages sent to our project-specific
alias: asr@isip.msstate.edu. The URL for this archive ishttp://www.isip.msstate.edu/data
mailing_lists. Any message to this list is archived and added to the web page by a proces
runs nightly using mail processing tool (Monarch) that generates a threaded display. This a
has proven to be extremely useful when new members join the list. Eventually, we will ad
FAQ to the web site to complement the information in the mailing list archives.

We also automatically track downloads of our software. The statistics on who is downloadin
software can be viewed at the following URL: http://www.isip.msstate.edu/data/statistics/
This page tracks hits on a user-specified set of web pages, allowing us to do a thorough ana
who is accessing our web pages and downloading our software.
MISSISSIPPI STATE UNIVERSITY PAGE 19 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

f this
llable
, such
their
ess to

riate
source
ource

se is

herent
ociated

us bugs
ming
mpered
C.2. Documentation

We have begun building on-line documentation for our foundation classes. An example o
documentation [24] is shown in Figure 7. To the left, we have the entire class index in a scro
window. To the right, we have the documentation for a particular class. Each major heading
as “MAIN,” has an overview of the library or set of libraries. The classes are grouped by
position in the hierarchy. Eventually, we will need to supply a search engine for random acc
these pages.

Each individual web page is organized similar to a Unix man page, with the appop
modifications to account for the fact that these are classes instead of library functions. The
code for the class is directly linked to the web page, making it easy for users to study the s
code and the documentation simultaneously. The pages are structured as follows:

Table 2. An overview of the information contained in a typical page documenting a class.

Pages for utilities, applications, and toolkits will follow the same format. A searchable databa
also under development to support random access to these pages.

C.3. Educational Java Applets

We have made a strategic commitment to developing Java applications because of Java’s in
portability. However, this has been a mixed blessing because the Java language and ass
toolkits are constantly changing. On top of that, each release of Java seems to have serio
that get in the way of developing robust applications. The net effect is that our program
efficiency in Java has been quite low, and our progress on educational applets has been ha

Section Description Links Provided

Name class name class header file

Synopsis broad overview of the class N/A

Quick Start a working example N/A

Description brief description of the goals we had in
designing the class

N/A

Dependencies other classes included in the header
files and required for compilation

corresponding classes on which
this class is dependent

Public Methods user interface (also shows methods
required for all classes)

source code for each method

Public Constants constants available for general use N/A

Protected Data information for programmers on the
internal data

class header file

Private Methods methods used internally in the class source code for each method

Examples simple examples how to use the code N/A

Notes other information relevant to users and
programmers

N/A
MISSISSIPPI STATE UNIVERSITY PAGE 20 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

ment.

ation
face.
rface
Java

rface.
uming
mple of
. We
g of

t with
Hence,
ars to

s to be
the

also
pt the

first is
r can
The
ng filter.
phase
es, and

Users
cation
lidean
on this

several
peech
, and
l Java
of the

k/Tcl
ble for
ing

ndows
r, and
than
how to
will
by these problems. Java’s lack of portability seems to be an industry-wide problem at the mo

There are two strategic issues with Java programming. First, there is the GUI, or applic
interface. Java previously provided the Abstract Window Toolkit (AWT) as its standard inter
We developed a number of applications around this interface [25]. Unfortunately, this inte
was recently obsoleted, and replaced with Swing [26]. We spent time this year training our
programmers on the Swing interface, and porting our existing applications to this new inte
Swing is still somewhat buggy and working around these bugs has been a time-cons
process. We have, however, managed to release several new applets under Swing. An exa
one such applet, which teaches the principles of digital filter design, is shown in Figure 8
would like all our applets to have a common interface. Hence, some amount of retoolin
existing applets was necessary.

To make matters worse, Netscape’s latest releases of its browser are not fully complian
Swing. Netscape recently seems to consistently lag Sun Microsystems on support of Java.
users must download a plug-in from Sun to get true Java and Swing compliance. This appe
be the best solution at the moment, Netscape’s commitment to retooling its browser appear
questionable. We provide installation instructions on our web site [27] for how to download
package and install it in several different configurations. More importantly, we have
programmed our applets to probe the user’s browser, detect this plug-in is missing, and prom
user with a message indicating what to do to download the plug-in.

Despite our Java retooling problems, we have been able to develop two new applets. The
the digital filtering applet mentioned previously, and shown in Figure 8. In this applet, a use
design a filter using several predefined algorithms involving well-known filter prototypes.
user can also draw a desired frequency response, and let the applet design the correspondi
The applet provides details on the actual design, including filter coefficients, frequency and
response, and a pole/zero analysis. This applet is targeted towards split-level DSP cours
undergraduate signals and systems classes.

A second applet involves demonstration of fundamental concepts in pattern classification.
can select prestored data sets that highlight the differences between common classifi
schemes such as principle components analysis, linear discriminant analysis, and Euc
distance. Users can also optionally enter their own data sets. Classifiers can then be trained
data, and the results depicted in terms of classification regions. This applet demonstrates
statistical normalization principles used in signal to feature vector conversion process in s
recognition. It will be useful for graduate courses in pattern recognition, speech recognition
digital signal processing. It has not been formally released because there are severa
problems with the user interface. We expect this applet to be released in the first quarter
second year of this project.

We have also begun building a much more ambitious demo that is essentially a port of our T
demonstration of the search algorithm used in the recognizer. This demo has been availa
some time as part of the recognition toolkit. It requires the Tk/Tcl toolkit on the platform runn
the demo, as well as a port of the recognizer. We have demonstrated this application on Wi
as well as Unix machines. Our approach in Java was to port the C++ code for the recognize
retool the interface. Unfortunately, this turned out to be a much more ambitious effort
planned, for some of the reasons described above. Hence, we decided to better learn
implement more straightforward applets in Swing first. In the second year of this project, we
MISSISSIPPI STATE UNIVERSITY PAGE 21 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

nition

ity to
lity is
page,

dialog
vide
, users

It is
tures
etailed
ring
data.
e the
ort for
most

rt the
g from
sing
t under
t. All
king
strict
roject
much
from

in the

outine
ited a
over
y and
another

eloped
he has
h our
return to the problem of providing a Java-based graphical tutorial of how a speech recog
search engine works.

C.4. Remote Job Submission

One of the truly unique capabilities that we added to the web site this year was the abil
submit a speech recognition job over the Internet to our servers. The interface for this faci
shown in Figure 9. The page can be reached by clicking on experiments on the project main
or directly from the following URL:http://www.isip.msstate.edu/projects/experiments. The page
contains a CPU monitor on the upper left that shows the status of our compute servers, a
box on the bottom that is used to interact with the user, and windows to the right that pro
status on active jobs and access to the results produced by the job. After a job is submitted
can view the results on-line via a URL, or have the results transferred via email.

The current implementation is an initial prototype that will be refined in the coming year.
certainly not robust and not as graphical as we would like. There are two important fea
included in the current system. First, users can run a canned experiment and obtain d
information about how the recognizer analyzed the data. This is useful for compa
performance, replicating well-known results, or learning how the algorithm processes
Second, users can supply their own audio file via a URL. This is useful if you want to compar
performance of several systems on the same data. Eventually, we will provide more supp
editing data graphically, and interacting with parameters of the models. For the moment,
interactions are done via text boxes, and only a limited set of parameters can be modified.

D. Summary

The first year of this project has been productive in the much of the groundwork to suppo
subsequent years of the project has laid. From a human resources standpoint, the fundin
this project has allowed the recruitment, training and development of four promi
undergraduate students (two of whom plan to pursue graduate degrees in our departmen
ISIP’s direction), two M.S. students (who plan to continue for a Ph.D.), and one Ph.D. studen
but one of these students will remain on this project until its conclusion. In addition to ma
fundamental contributions to the project in the first year, all have been trained on our
software engineering paradigm. Since this project has strong synergy with a related p
focusing on core technology development, we are able to leverage many resources and
infrastructure from that project. One of our most senior graduate students has transitioned
the core technology project to this project, and will manage technical aspects of this project
second year.

The second year of the program provides for a professional staff position to manage the r
operations of the project, particularly support and web site development. We have recru
senior engineer for this position. This individual has an MS in Computer Science, and
20 years of experience in software engineering and computing systems in both industr
academia. For the past several years, he has been the computer systems administrator for
college on campus. Prior to that, he has operated a small consulting company that dev
business management software for hospitals. Since he is already a university employee,
begun interacting with our group on a volunteer basis so that he can familiarize himself wit
operation.
MISSISSIPPI STATE UNIVERSITY PAGE 22 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

port.
ware
e [28]
tself
re so

s. In
sign
for the
ixture
strial
os,

expect
wards

, we
nd one
s. The
oon
they

event.
nts to

will
ep it
This staff position has three primary duties: quality control, web site development, and sup
He will directly supervise the students working on the project, and be responsible for soft
releases, bug fixes, and updates. A near-term goal is to implement the GNU configur
distribution paradigm into our system, so that our software will automatically configure i
upon installation. A secondary immediate goal will be to implement problem-tracking softwa
that all messages to our help line will receive proper prioritization and attention.

The second year of this project is a pivotal year in that we will hold our first set of workshop
January 2000, we will hold a one-day industrial forum in which we conduct a formal de
review of the system, and solicit feedback from the participants on desired enhancements
coming year. This workshop is tentatively scheduled for January 6-7. We hope to have a m
of senior professionals from industry and academia (with more of an emphasis on indu
participation). The program will most likely consist of a half-day of design reviews and dem
followed by a half-day of discussion about recommended enhancements to the system. We
to develop a clear plan of action from this meeting in an attempt to focus our development to
things of interest to the general community.

Our first summer workshop is also tentatively scheduled for May 21-27. For this workshop
will invite approximately 12 graduate students (and perhaps senior undergraduates) to spe
week in our lab learning about our system. Travel expenses will be paid for these student
agenda will most likely consist of morning lectures and demonstrations followed by aftern
laboratories. Initial feedback on this has been very positive, with several sites suggesting
would subsidize attendance by their professionals rather than have their people miss the
Our facilities can accommodate 12 students comfortably, with a reasonable ratio of stude
staff, and adequate access to computing equipment. If interest exceeds this limit, we
investigate alternative facilities. However, our tendency for the first training workshop is to ke
small and focused, so that it can proceed as smoothly as possible.
MISSISSIPPI STATE UNIVERSITY PAGE 23 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

ce
all

ulary

kov
lch/
A,

blic
ce on

t the
wne,

h/
,

File

rg,

l

E. REFERENCES

[9] R.A. Cole, et al, “Multilingual Access and Retrieval using Communicative Interfa
Agents (MARCIA),” submitted to Multilingual Information Access and Management: C
for International Research Cooperation, National Science Foundation, June 1999.

[10] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocab
Conversational Speech Recognition,” to appear inIEEE Signal Processing Magazine,
September 1999.

[11] J. Picone, “Continuous Speech Recognition Using Hidden Markov Models,”IEEE ASSP
Magazine, vol. 7, no. 3, pp. 26-41, July 1990.

[12] Y. Wu, A. Ganapathiraju, and J. Picone, “Baum-Welch Reestimation of Hidden Mar
Models,” http://www.isip.msstate.edu/publications/reports/isip_lvcsr/1999/baum_we
report_061599.pdf, Mississippi State University, Mississippi State, Mississippi, US
May 1999.

[13] N. Deshmukh, A. Ganapathiraju, J. Hamaker, J. Picone and M. Ordowski, “A Pu
Domain Speech-to-Text System,” to be presented at the 6th European Conferen
Speech Communication and Technology, Budapest, Hungary, September 1999.

[14] H. Hermansky, “Perceptual Linear Predictive (PLP) Analysis of Speech.”Journal of the
Acoustical Society of America, vol. 4, pp. 1738-1752, 1990.

[15] W.M. Fisher,et al, “Data Selection for Broadcast News CSR Evaluations,” presented a
DARPA Broadcast News Transcription and Understanding Workshop, Lansdo
Virginia, U.S.A., February 1998.

[16] I. Alphonso, N. Deshmukh, and J. Picone,http://www.isip.msstate.edu/projects/speec
software/transcriber/index.html, Mississippi State University, Mississippi State
Mississippi, USA, May 1999.

[17] P. Bothner,et al, “Welcome to the GCC Project!,”http://egcs.cygnus.com, June 1999.

[18] J. Picone, “Managing Software Complexity in Signal Processing Research,”Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. III-41-
III-44, Minneapolis, Minnesota, USA, April 1993.

[19] J. Fiscus,et al, “SPeech Quality Assurance (SPQA) Package Version 2.3 AND Speech
Manipulation Software (SPHERE) Package Version 2.5,” ftp://jaguar.ncsl.nist.gov/pub/
spqa_2.3+sphere_2.5.tar.Z, National Institute of Standards and Technology, Gaithersbu
Maryland, USA, June 1999.

[20] W.F. Tichy, “RCS--A System for Version Control,”Software--Practice & Experience,
vol. 15, no. 7, pp. 637-654, July 1985.

[21] “Concurrent Versions System (CVS)”,http://www.cyclic.com/cyclic-pages/howget.htm,
Cyclic Software, Washington, D.C., USA, June 1999.
MISSISSIPPI STATE UNIVERSITY PAGE 24 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

/
,

/

,

/
,

r/
.

[22] R. Duncan, “Software Version Control System,”http://www.isip.msstate.edu/projects
speech/education/tutorials/cvs/index.html, Mississippi State University, Mississippi State
Mississippi, USA, June 1999.

[23] I. Alphonso, “CVS Anonymous Download Instructions,”http://www.isip.msstate.edu
projects/speech/support/info/cvs_instructions.html, Mississippi State University,
Mississippi State, Mississippi, USA, June 1999.

[24] S. Balakrishnama and N. Deshmukh, “ISIP Software Documentation,”http://
www.isip.msstate.edu/projects/speech/education/tutorials/isip_env,Mississippi State
University, Mississippi State, Mississippi, USA, June 1999.

[25] ICASSP applets paper

[26] E. Eckstein, M. Loy, and D. Wood,Java Swing, O’Reilly and Associates, Cambridge
Massachusetts, USA, 1998.

[27] R. Duncan, “Java Plug-In Installation Instructions,”http://www.isip.msstate.edu/projects
speech/support/info/java_instructions.html,Mississippi State University, Mississippi State
Mississippi, USA, June 1999.

[28] D. MacKenzie and B. Elliston,http://www.gnu.org/manual/autoconf-2.13/html_chapte
autoconf_toc.html, Free Software Foundation, Boston, Massachusetts, USA, July 1999
MISSISSIPPI STATE UNIVERSITY PAGE 25 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

Digital Filter

Bank
Power Estimation

Fourier

Transform

Perceptual

Linear Prediction

Linear Prediction

Filter Bank

Cepstrum

Filter Bank

Filter Bank

Cepstrum

Cepstrum

Speech
Figure 1. An overview of the front-end portion of the speech recognition system. Two popular analysis
techniques, mel-spaced cepstrum and perceptual linear prediction, are supported in the system. Other
approaches based on frame-based analysis techniques can be easily added.
MISSISSIPPI STATE UNIVERSITY PAGE 26 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

Intensity-
Loudness

Conversion

Speech

Solution for
Autoregressive

Coefficients

Critical
Band

Analysis

Equal
Loudness

Pre-Emphasis

Inverse Discrete
Fourier

Transform

All-Pole
Model
Figure 2. An overview of perceptual linear prediction (PLP) analysis. This front-end has become
increasingly popular in recent years.
MISSISSIPPI STATE UNIVERSITY PAGE 27 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000
Figure 3. An overview of the hierarchy of ISIP classes. The system and I/O libraries are new additions to
the class structure. The math and data structure libraries make extensive use of templates.
MISSISSIPPI STATE UNIVERSITY PAGE 28 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

// file: $isip/class/system/Integral/IntegralTypes.h
// version: $Id: IntegralTypes.h,v 1.4 1999/07/12 18:29:29 duncan Exp $
//

// system include file
//
#include <wchar.h>

// this is the basic isip environment include file. all Integral types
// are defined in this file. these are also implemented as C++ classes.
// all software must be built upon these basic types.
...
typedef void* voidp;
typedef signed char boolean;
typedef unsigned char byte;
typedef wchar_t unichar;
typedef unsigned short int ushort;
typedef unsigned long int ulong;
typedef unsigned long long int ullong;
//typedef short int short;
//typedef long int long;
typedef long long int llong;
//typedef float float;
//typedef double double;
typedef unsigned char byte8;
typedef unsigned short int ushort16;
typedef unsigned long int uint32;
typedef unsigned long long int uint64;
typedef short int int16;
typedef long int int32;
typedef long long int int64;
typedef float float32;
typedef double float64;
Figure 4. The integral types define the fundamental building blocks of the ISIP environment. We have
taken an approach that requires these types to be a fixed number of bytes.
MISSISSIPPI STATE UNIVERSITY PAGE 29 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000

// Scalar: our template scalar class
//
template<class T>
class Scalar {

protected:

 // internal data
 //
 T value_d;

public:

 // required static methods:
 //
 static String& name();

 // required methods:
 // no setDebug required
 //
 boolean debug(unichar* message);
 T size();

 // initialization and release methods.
 boolean init();
 boolean release();

 // destructors/constructors
 //
 ~Scalar();
 Scalar();
 Scalar(Scalar& arg);
 Scalar(T arg);

 // former in-line methods
 //
 operator T();

 Scalar& operator= (T arg);

 // get methods
 //
 boolean get(Scalar& arg);
 boolean get(T& arg);

 // assignment methods
 //
 boolean assign(T arg);

 // mathematical functions
 //
 T min(T arg);
 T min(T arg_1, T arg_2);

 T max(T arg);

 T max(T arg_1, T arg_2);

 T abs();
 T abs(T arg);

 T sign();
 T sign(T arg);

 T factorial();
 T factorial(T arg);

 // useful for DSP
 //
 T limit(T min, T max);
 T limit(T min, T max, T val);

 T limitHard(T thresh, T new_val);
 T limitHard(T thresh, T new_val, T arg);

 T centerClip(T min, T max);
 T centerClip(T min, T max, T arg);

 private:

 public:

 // define the class name
 //
 static const unichar CLASS_NAME[] = L"Scalar";

 // define the default value(s) of the class data
 //
 static const T DEF_VALUE = (T)0;
 static const T DEF_RAND_MIN = (T)0;

 // default arguments to methods
 //
 static const long NEGATIVE = (long)-1;
 static const long POSITIVE = (long)1;

 static const long ERR = (long)20666;

};

// all classes need to inherit Scalar
//
template class Scalar<long>;
//template class Scalar<short>;

// end of include file
//
#endif
Figure 5. A template class definition for a scalar object. This template is used to build classes such as
Long, Short, and Float.
MISSISSIPPI STATE UNIVERSITY PAGE 30 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000
Figure 6. A new set of web pages have been created to support the project. These have been designed to
provide easy access to the web site. The choices to the left of the image mirror the physical organization of
the web site.
MISSISSIPPI STATE UNIVERSITY PAGE 31 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000
Figure 7. An example page of documentation for the IFCs. The code is directly linked to the page, making
it easy for users to view the code while studying the documentation.
MISSISSIPPI STATE UNIVERSITY PAGE 32 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000
Figure 8. An example of a Java Swing applet that demonstrates the concept of digital filter design. Swing
has been a mixed blessing. While some aspects of GUI programming are nicely abstracted, other aspects,
such as interactions between grid boxes and event handlers, have been problematic.
MISSISSIPPI STATE UNIVERSITY PAGE 33 NSF CARE: AWARD 9809300

ISIP: INTERNET ACCESSIBLE SPEECH... AUGUST 15, 2000
Figure 9. A Java applet that allows users to submit speech recognition jobs remotely to a bank of compute
servers. Users can run canned experiments, or supply their own audio data. Parameters for the experiment
can be specified via dialog boxes. Results are emailed to the user, and can be examined directly on the
web site via links provided in the dialog boxes to the right.
MISSISSIPPI STATE UNIVERSITY PAGE 34 NSF CARE: AWARD 9809300

	08/15/99�—�08/14/00: RESEARCH AND EDUCATIONAL ACTIVITIES
	A. ��Production System Release
	B. ��Outreach Via Workshops
	C. ��Software Engineering
	D. ��Foundation Classes
	E. ��Java Applets

	F .��REFERENCES
	[1] R.�Sundaram, A.�Ganapathiraju, J.�Hamaker and J.�Picone, “ISIP Public Domain LVCSR System,” t...
	[2] J.�Picone and W.C.�Chapman, “Speech Recognition System Design Review,” http:// www.isip.mssta...
	[3] J.�Picone, C.�Atkeson and I.�Alphonso, “Harnessing High Bandwidth: Applications in Speech Rec...
	[4] J.�Picone, “Summary of SRSDR’00,” http://www.isip.msstate.edu/conferences/srsdr00/ technical_...
	[5] J.�Picone, “Speech Recognition System Training Workshop,” http://www.isip.msstate.edu/ confer...
	[6] J.�Picone, “Workshop Program,” http://www.isip.msstate.edu/conferences/srstw00/html/ program....
	[7] J.�Vincent, “Request Tracker,” http://www.fsck.com/projects/rt/, March�2000.
	[8] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary Conver...

	08/15/98�— 08/14/99: RESEARCH AND EDUCATIONAL ACTIVITIES
	A. ��Core Technology
	A.1 .��System Status
	A.2 .��System Enhancements
	A.3 .��Cross-Platform Portability
	B. ��Foundation Classes
	B.1 ��Integral Types
	B.2 . System and I/O Classes
	B.3 ��Math Classes
	Table�1 .�A comparison of template and non-template implementations of the math classes. Template...

	B.4 ��Concurrent Versions System�(CVS) and Anonymous CVS Servers
	B.5 ��Software Quality Control
	C. ��Web-Based Information
	C.1 .��Project Web Site
	C.2 .��Documentation
	Table�2 . An overview of the information contained in a typical page documenting a class.

	C.3 .��Educational Java Applets
	C.4 .��Remote Job Submission
	D. Summary

	E .��REFERENCES
	[9] R.A.�Cole, et al, “Multilingual Access and Retrieval using Communicative Interface Agents�(MA...
	[10] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary Conve...
	[11] J. Picone, “Continuous Speech Recognition Using Hidden Markov Models,” IEEE ASSP Magazine, v...
	[12] Y.�Wu, A.�Ganapathiraju, and J.�Picone, “Baum-Welch Reestimation of Hidden Markov Models,” h...
	[13] N. Deshmukh, A. Ganapathiraju, J. Hamaker, J. Picone and M. Ordowski, “A Public Domain Speec...
	[14] H.�Hermansky, “Perceptual Linear Predictive (PLP) Analysis of Speech.” Journal of the Acoust...
	[15] W.M.�Fisher, et al, “Data Selection for Broadcast News CSR Evaluations,” presented at the DA...
	[16] I.�Alphonso, N.�Deshmukh, and J.�Picone, http://www.isip.msstate.edu/projects/speech/ softwa...
	[17] P.�Bothner, et al, “Welcome to the GCC Project!,” http://egcs.cygnus.com, June�1999.
	[18] J. Picone, “Managing Software Complexity in Signal Processing Research,” Proceedings of the ...
	[19] J.�Fiscus, et al, “SPeech Quality Assurance (SPQA) Package Version 2.3 AND Speech File Manip...
	[20] W.F.�Tichy, “RCS--A System for Version Control,” Software--Practice & Experience, vol.�15, n...
	[21] “Concurrent Versions System�(CVS)”, http://www.cyclic.com/cyclic-pages/howget.html, Cyclic S...
	[22] R.�Duncan, “Software Version Control System,” http://www.isip.msstate.edu/projects/ speech/e...
	[23] I.�Alphonso, “CVS Anonymous Download Instructions,” http://www.isip.msstate.edu/ projects/sp...
	[24] S. Balakrishnama and N.�Deshmukh, “ISIP Software Documentation,” http:// www.isip.msstate.ed...
	[25] ICASSP applets paper
	[26] E.�Eckstein, M.�Loy, and D.�Wood, Java Swing, O’Reilly and Associates, Cambridge, Massachuse...
	[27] R.�Duncan, “Java Plug-In Installation Instructions,” http://www.isip.msstate.edu/projects/ s...
	[28] D.�MacKenzie and B.�Elliston, http://www.gnu.org/manual/autoconf-2.13/html_chapter/ autoconf...
	Figure�1 . An overview of the front-end portion of the speech recognition system. Two popular ana...
	Figure�2 . An overview of perceptual linear prediction�(PLP) analysis. This front-end has become ...
	Figure�3 .�An overview of the hierarchy of ISIP classes. The system and I/O libraries are new add...
	Figure�4 .�The integral types define the fundamental building blocks of the ISIP environment. We ...
	Figure�5 .�A template class definition for a scalar object. This template is used to build classe...
	Figure�6 .�A new set of web pages have been created to support the project. These have been desig...
	Figure�7 .�An example page of documentation for the IFCs. The code is directly linked to the page...
	Figure�8 .�An example of a Java Swing applet that demonstrates the concept of digital filter desi...
	Figure�9 .�A Java applet that allows users to submit speech recognition jobs remotely to a bank o...
	Figure�1 .��A typical speech recognition system.
	Figure�2 .��An overview of a generalized search engine that allows users to implement speech reco...
	Figure�3 .��Examples of feedback collected from SRSDR’00. Comments about topics for the extended ...
	Figure�4 .��An overview of a CASE-based tool that implements signal processing algorithms using a...
	Figure�5 .��An example of enhanced visualization capabilities in our pattern recognition applet. ...
	Figure�6 .��Two new data sets that pose challenging problems for classification algorithms have b...
	Figure�7 . An example of a clustering algorithm in which users see the decision regions evolve.

