
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

introducing

A UNIX Based Telephone Speech
Data Collection System

prepared for:

Linguistic Data Consortium
441 Williams Hall

University of Pennsylvania
Philadelphia, PA 19104-6305

by:

Richard J. Duncan, Joseph Picone
Institute for Signal and Information Processing

Department of Electrical and Computer Engineering
Mississippi State University

Box 9571
413 Simrall, Hardy Rd.

Mississippi State, Mississippi 39762
Tel: 601-325-3149
Fax: 601-325-3149

email: duncan@isip.msstate.edu

ISIP MARCH 15, 1997

EXECUTIVE SUMMARY

In the last five years, a direct digital interface to the telephone network has become the standard
method of speech data collection for large speech corpora involving telecommunications
applications. In particular, the T1 interface is popular because it is a cost-effective way to deliver a
large number of voice channels. Unfortunately, such systems, most often based on PC hardware,
use closed architectures consisting of proprietary software and hardware designs, resulting in a
strong dependence on custom software from a single vendor. Vendors have repeatedly
demonstrated an inability to deliver timely and cost-effective solutions for speech research,
resulting in a great deal of wasted time and money, with no industry-standard solution in sight.

The Institute for Signal and Information Processing (ISIP) introduces a Unix-based platform for
speech data collection based on an open-architecture design. There exist two reasonable
alternatives for digital interfaces in modern day telephony: T1 and ISDN. T1 is currently more
pervasive and more cost-effective when a great number of telephone lines are to be used in a large
scale data collection application (typically the break point is between 4 and 8 lines). The platform
uses a very inexpensive and popular workstation, a Sun Sparcstation 5, as its host.

T1 interfaces for Sun workstations are hard to find. The market leader in this niche arena is a
system developed by Linkon Corporation. This system includes a T1 communications card that
occupies one SBus slot and performs all data transmission functions, and a two-slot multi-DSP
module that handles all call processing. The Linkon board is accompanied by some low-level,
general-purpose software which serves as the foundation for building telecommunication
applications. We have developed a hierarchy of software libraries extending the Linkon system to
elegantly perform the interactions specific to speech data collection. We provide templates for the
most common types of data collection: prompt and record modalities required for corpora such as
POLYPHONE, and two-sided conference-style recording required for SWITCHBOARD-type
corpora. We also provide easy to use interactive tools to build such applications from scratch.

The development effort for this data collection system involved four components: the
specification of an operational T1-based system, a C++ wrapper to vendor-specific hardware
functions, a fully hierarchical C++ code-base to manage all aspects of a speech data collection
system, and an intuitive graphical user interface (GUI) that allows rapid prototyping of data
collection applications. We also conducted extensive testing on naive subjects to optimize the GUI
so that minimal training is required to bring new engineers on-line with the system. The C++
code, adherent to ISIP’s strict standards of object-oriented data-driven programs, provides an
abstraction to the hardware. The high-level data collection software (including the GUI) is
hardware independent, making the future transition to other hardware systems a viable
proposition.

We have developed a fully-expandable, robust system for platform-independent collection of
telephone speech data. Our object-oriented software libraries and easy-to-use GUI provide a
powerful tool with which even a novice user can efficiently generate complex applications. This
document provides a detailed overview of our system, as well as a tutorial to illustrate prototyping
of applications. As the speech community concentrates more on SWITCHBOARD-type
telephone data, this system will play a pivotal role in speech recognition research.

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM I

ISIP MARCH 15, 1997

TABLE OF CONTENTS

1. ABSTRACT . 1

2. HISTORICAL PERSPECTIVE . 1

3. APPLICATION BUILDER (GUI) . 3

3.1. Quick Start with the Application Builder .4
3.2. Basic Features .4
3.3. Advanced Features .6
3.4. Building a Simple Application .6
3.5 Coordinating Multiple Items for Common Tasks10
3.6 Using Progress Mode to Debug Applications .13

4. PARAMETER FILEs . 15

4.1. Quick Start .16
4.2. Overview of the Scripting Language Syntax .16
4.3. Referencing Data .16
4.4. Control Flow .16
4.5. System Log Files .17

5. THE C++ INTERFACE . 19

5.1. System Architecture .20
5.2. Class Tele_interf — a Software Abstraction .21
5.3 Initialization and Configuration Methods. .21
5.4 Call management Methods. .24
5.5 Sphere Audio File Handling .25
5.6 High-Level I/O Methods .27
5.7 Low-Level I/O Methods .29
5.8 Example Diagnostic Programs .30

6. INSTALLATION . 32

6.1 System Requirements .33
6.2 Hardware Installation .33
6.3 Linkon Software Installation .33
6.4 Third Party Software Packages .33
6.5 Installing ISIP code. .33
6.6 Configuration of the T1 Line .34
6.7 Echo on the Digital Network .34
6.8 Linkon’s Analog System .35
6.9 Basic Hardware Diagnostics. .35

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM II

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM III

7 SWITCHBOARD . 37

7.1 LDC’s SWITCHBOARD Protocol .38
7.2 SWITCHBOARD Implementation .39

8. CONCLUSIONS . 42

9. ACKNOWLEDGEMENTS . 42

10. REFERENCES . 43

APPENDIX A. ITEM DEFINITIONS . 44

APPENDIX B. GENERAL PARAMETERS . 67

APPENDIX C. ITEM PARAMETERS . 70

APPENDIX D. SIGNAL DETECTION PARAMETERS . 77

APPENDIX E. INDEX

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 1 OF 78

1. ABSTRACT

It is highly desirable to collect speech data from the telephone network by digitally interfacing to
the network. This avoids an additional A/D conversion normally required by analog telephone
data collection hardware. There exist two reasonable alternatives for digital interfaces in modern
day telephony: T1 and ISDN. T1 is currently more pervasive and more cost-effective when a great
number of telephone lines are to be used in a large-scale data-collection application (typically the
break point is between 4 and 8 lines). T1 interfaces for Sun workstations have become a necessity
in the speech research community. The market leader in this niche arena is a system developed by
Linkon Corporation.

Using the Linkon system, we have developed a fully-expandable, robust system for
platform-independent collection of telephone speech data. Our object-oriented software libraries
and intuitive GUI provide powerful tools with which even a novice user can efficiently prototype
complex applications. Using the system one can generate programs which range from simple
single-user prompt/record demonstrations to robust SWITCHBOARD-type multi-user
applications. This document provides a detailed overview of our system, a complete
programmer’s reference guide, and a step-by-step tutorial to illustrate prototyping of applications.

2. HISTORICAL PERSPECTIVE

The first system featuring a digital interface that was deployed for full scale data collection in
speech research was the T1-based system built on the Intervoice Robot Operator hardware
platform. This environment featured an IBM PC with an interface consisting of two proprietary
boards, an OS/2 operating system (in its most recent generation), and a 4GL programming
language for rapid application prototyping. It was used to collect the SWITCHBOARD corpus,
and was recently in use on the CALL HOME and Voice Across Hispanic America (VAHA)
projects[1].

What was wrong with this system? First and foremost, it is a closed architecture based on a
platform that is incompatible with those currently used in speech research. Hence, its acceptance
by the community as a general purpose platform has been slow. Second, for most projects,
extensive firmware modifications have been required by the vendor to perform a particular style of
data collection. Such modifications have historically been very expensive, and have caused
numerous delays to the projects requiring them. In short, the vendor has traditionally been very
unresponsive to the need for such modifications. Third, the current platform requires a steep
learning curve involving a nontrivial custom environment. Operators often have to be educated
directly by the vendor, and require several months to come up to speed. The cost of maintaining
and operating the system is extremely high.

At the time the previous system was developed, there were no alternatives. Recently, though,
several vendors have announced similar capabilities on general purpose Unix workstations. For
the first time, it is feasible to duplicate the functionality of the Intervoice system in a much less
expensive Unix environment, built from standard programming tools well-known within the
speech research community. The advantages of this system are obvious and, most importantly,
will result in significant time and money savings for LDC. The virtues of the open architecture

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 2 OF 78

will become apparent in time as we demonstrate an ability to solve problems without the burden
of an unresponsive vendor.

XTL teleservices is an object-oriented C++ based platform developed by Sun Microsystems for
desktop call-processing applications. XTL was designed to provide an application programmer’s
interface (API) for the development of desktop applications, transparent porting between analog,
ISDN, and ATM based technologies, basic building blocks of call processing (e.g. DTMF and
silence detection), and other specialized services such FAX, modem, and video capabilities. There
are drawbacks to using Sun’s XTL platform as the core of a telephony application system. First of
all, XTL is not free software, it is licensed by host. Also, it relies on Sun tools, making portability
a problem. The aforementioned drawbacks of XTL and Intervoice indicate the reasons we decided

not to use it as part of our telephony environment.1

Platform independence was a major design goal for this project, so why not Java? Sun’s Java
webpage describes the Java Speech API, which will allow Java applications and applets to
incorporate speech technology into user interfaces. It will leverage the audio capabilities of other
Java Media APIs, and when combined with the Java Telephony API, will support advanced
computer telephony integration [5]. All of this is, of course, stated in the futures tense because this
integration is not complete at present. Java was still in its infancy at the beginning of this project.
It is still an open issue whether such a language can support demanding real-time applications
such as though described below. It would not have been possible to execute this project in Java at
the time it was started.

Similar to XTL, our approach was to develop a system whose core code was written in C++, was
object-oriented, and somewhat hardware-independent. The designers of the XTL system created a
good general form of implementation for the system, so we adopted many of the basic premises
that XTL uses (though you could argue these features are inherent in any X-based GUI
programming tool). The advantages of our code over XTL is portability and less strict installation
standards, as well as being available as unencumbered shareware. We have created a smaller,
robust, more dedicated system to handle a smaller range of speech data collection applications
more easily and efficiently.

1. It is interesting to note that at the start of this project in Spring’95, XTL seemed a viable approach. By the end
of this project in Spring’98, XTL was no longer a feasable option.

ISIP MARCH 15, 1997

APPLICATION BUILDER (GUI) 3

The easiest way to rapidly prototype a telephone speech data collection application is to use the
graphically based application builder.lk_appbuilder is the highest level interface available for
the system. It allows the user access to all possible parameters in all situations, thus providing a
simple interface to data collection application development. On-line, context sensitive help is
always available, detailing the specifics of each parameter. A novel feature to the system is the
graphical application debug mode, which maps a running application to the screen in real time.
This utility is optimized to have an easy learning curve for novice users, yet is powerful enough to
be useful to experienced users. Hencelk_appbuilder is the preferred way to prototype real
systems.

The Application Builder is located in$LINKON/bin/$ISIP_BINARY/lk_appbuilder .

lk_app

builder

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 4 OF 78

3.1. Quick Start with the Application Builder

To create a data collection application, you can start by filling in the general parameters
(configuration menu, see Figure 3.10). After these are set to your liking, you may proceed to
insert items (item menu, see Figure 3.7) for the different operations. Please note that most of the
parameters are not necessary for every system, so leaving a parameter blank (or unchanged from
the default) will often be the desired choice. For most areas of the screen, context sensitive help
can be found by clicking the right mouse button.

The easiest way to learn how to build applications is by looking at examples. Several example
applications are included with the distribution to facilitate learninglk_appbuilder. These sample
applications can be found in the$LINKON/util/example_applications/ directory. Use theOpen
function under theFile menu (Figure 3.9) to load these pre-written applications for viewing and
editing.

The simplest full application that can be created through the system is a type I data collection
system, in which a single user is prompted to speak utterances. An example of such a system may
be viewed in$LINKON/util/example_applications/v2.0/type_1/config/config_file_0.dcol. We
will step through the development of such a system in Section 3.4.

It is often desirable to provide the user with a menu and allow branching from the user’s choice. A
simple example of this implementation can be studied in the shell application located in
$LINKON/util/example_applications/v2.0/type_1/menu/menu0.dcol.

The label type II is used to refer to a SWITCHBOARD type data collection system where
conversational speech is recorded from two users simultaneously. A sample application is located
in $LINKON/util/example_applications/v2.0/type_2/config/config_file_0.dcol. Also, Section 7
describes the implementation of the LDC SWB-III protocol in greater detail.

3.2. Basic Features

The goal in designing the application builder is to make it powerful enough to design any
application the system itself can handle, but at the same time to keep it simple enough for anyone
to use without much experience or having to read this entire document. Figure 3.1 shows the basic
layout of the application builder’s main window. Remember that the right mouse button offers
context sensitive help in most situations.

The application being designed is displayed simultaneously in two forms. The top half of the
screen shows the call flow in a graphical plot. Each item is represented by an icon. Abort flow and
data flow between items (the most complicated part of the any design process) are represented by
sets of arrows. The arrows atop the items represent the abort control flow— what happens when
an item does not execute successfully. The arrows in the center represent normal control flow—
the default operation. The arrows along the bottom show the way data is moved around through
the application.

The second way the application is displayed is through text-based lists on the bottom half of the

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 5 OF 78

screen. Each item has anumber (far left), anabbreviation for the type, andtype. Each item may
optionally have aname of item, referenced item, and/orjump to on abort specification. These
parameters are displayed because they are closely interdependent upon other items. Item
parameters are set through the item configuration window, which is activated by double clicking
on either the item in the lists or the icon. When item configuration is selected, a window like the
one shown in Figure 3.2 will pop up. Internal data is changed instantly when a value is changed in
this window — hence there is no “ok” or “set” button. Notice that the parameters listed on the
control screen are updated along with the text field. Often, the desired value for a parameter is
already set as the default option. Simply leaving the value as is will configure the system to use
this setting.

Figure 3.1: screen capture of lk_appbuilder ’s main window

Items

Abort Flow

Item namesItem number

Data Flow
Current ItemComment

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 6 OF 78

3.3. Advanced Features

The advanced features provide the experienced user with more power to quickly design
applications. The advanced editing tools can be accessed through the options under theEdit menu
(Figure 3.3).

Often when editing an application, it is desirable to cut an existing item
and either move or copy it to another location. Both of these operations
can be performed on the current item by using theCut and Copy
command under theEdit menu. After cutting the desired item, move to
the location in the current application where you wish the item to be
placed and use thePaste command. The item will be inserted in this
location as if a new item is chosen from theItem menu, though it will
retain all manual configuration options. If the item has a name attribute
set, a string will automatically be appended to guaranty uniqueness.

Insert direction allows you to change the insert behavior of the
application builder. By default, new items (and pasted ones) are inserted after the current item.
Changing this option will cause new (or pasted) items to be inserted before the current item. This
is necessary if you wish to insert a new item before the first item in the system, but can be useful
in other situations as well.

The bottom of the control window, shown in Figure 3.4, has an Emacs-like mode line. From this

Figure 3.2: Example of the item configuration window

Figure 3.3: Edit menu

Figure 3.4: The application builder’s modeline.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 7 OF 78

window, you can monitor (from left to right) the save status, filename, current item number, and
total number of items. The save status is very reminiscent of GNU Emacs. If the characters ‘-- ’
appear in this space, no changes have been made since the last save; while a ‘** ’ indicates that
unsaved data exists. The filename appearing in the window is the most recent parameter filename.
This file will be overwritten by selecting theSave command from theFile menu. UseSave As to
avoid overwriting or to save the file with another name. The ‘current item number’ shows the
active item, and the ‘number of items’ field shows how many items are in the current application.
Note that the number of items displayed is the actual number of items present in the system, not
the estimated maximum number of items (thenum_items parameter, described on page 67).

The application builder is equipped with several keyboard accelerators to speed up common tasks.
The complete list of keyboard shortcuts is available as on-line help under theHelp menu and is
displayed in Figure 3.5. Another useful feature of the application builder is the graphical
application debug mode, which is discussed at the end of this chapter.

3.4. Building a Simple Application

To run through the basic operation of the application builder, follow the steps described in this
section. The application created will be a simple one — a system that first waits for a caller to call
in, answers the phone, and plays a welcome message. The system will then prompt for the user to
record an utterance, play the recorded utterance to the user, and ask if it is acceptable. The user
will then respond with the touch tone keypad. Upon an acceptable utterance, the system plays a
good-bye message and hangs up. This system can be visualized through the flowchart shown in

Key Function Key Function

Ctrl-q quit Ctrl-f forward one item

Ctrl-z suspend Right forward one item

Ctrl-o open application Ctrl-b backward one item

Ctrl-s save application Left backward one item

Ctrl-p print application Ctrl-F forward 5 items

Ctrl-r revert to saved Ctrl-Right forward 5 items

Ctrl-l redraw plot Ctrl-B backward 5 items

Ctrl-c copy item Ctrl-Left backward 5 items

Ctrl-d kill item Ctrl-a just to first item

Ctrl-x cut item Ctrl-e jump to last item

Ctrl-v paste item Ctrl-g previous item

ESC delete popup window ESC previous item

Figure 3.5: lk_appbuilder keybindings

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 8 OF 78

Figure 3.6.

To start, load the environment script with:

source $LINKON/LK_SETENV.sh;

Start the application builder by typing:

lk_appbuilder &;

The first thing this application should do is wait for a caller to phone in and when a call comes in,
answer the phone. This is done by inserting await for call item; from theItem menu (Figure 3.6),
selectWCAL: wait for call. A configuration window like the one shown in Figure 3.8 will appear.
There is no need to configure this item (the default values are sufficient), so click on the
close window button for thewait for call configuration window.

Next, the application should play a welcome message to the user. This is programmed by inserting
a play item (from theItem menu, selectPLAY: play). Again, an
item configuration window will pop up, but this time we need to
set a value. Select the widget labeledfilename. In this space, type
the filename of a welcome message speech file. This is the only
needed setting for this item, so click on theclose window button.

Now we need to record a speech utterance from the caller, it is
desirable to prompt the caller to speak by inserting anotherplay
item. This time, select thefilename widget and enter a filename
that contains an audio prompt (such as “Please start speaking
now”) rather than a welcome message. Also, it is useful to name
this item for later referral (we will jump back to this item if the
recorded utterance is not acceptable), so enter the text “prompt”
for thename of item.

In order to record audio data from the user, arecord item will be
used. This item type is accompanied by a large number of
parameters; most of these are signal detection parameters (see
Appendix D) that you should usually leave at the default values.
Only two of these parameters need to be changed. The first is the
filename_templateparameter. Enter a value of “_r001” here—

Figure 3.6: Application being designed

Figure 3.7: Item menu

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 9 OF 78

this causes all files created by this item to be named in the form
[speaker_number]_r001_c00.sphere. We also need to name the item so that the recorded
utterance can be played back to the user. Enter the text “1st recording” for thename parameter.

If you now wish to verify that the
recorded utterance is acceptable to
the user, you should next play the
recorded utterance back to the
user. This is done by creating
another play item. Instead of
specifying a filename for this item
(which would cause a static file to
be played), we wish to playback
the previously recorded file for
this speaker. Setting the parameter
referenced itemto “1st recording”, the same name assigned to the
record item, will facilitate this operation.

In order to have the user specify if the recorded utterance is
acceptable or not, you need to have them respond with a dtmf key.
First, you need aplay item to play a prompt explaining this intent.
This is implemented the same way as the first twoplay items. Next,
you need to actually read the dtmf key from the keypad. This is
done through the use of aget dtmf item. The configuration window
for a get dtmf is shown in Figure 3.2. For our purposes, set the
abort_keys parameter to all available touch tone keys,
“0123456789*#.” This will cause any dtmf key event to stop
execution of the item. Set thewait_time parameter to 10 seconds
using the string value “10.0.” To configure the item to return to the prompt if no key is hit, enter
“prompt” in thejump to if timeout parameter slot.

The last three items (get dtmf, play, and hangup) in the application assume that the user is
satisfied with the recording. Theget dtmf item keeps executing in a continuous loop until a
verification key is hit. Anotherplay item is inserted to thank the user for using the system and to
indicate the end of the phone call — the mechanism for this is identical to the welcomeplay item
described earlier. The last item in the list ishangup which terminates the call.

Now that the application’s individual items have been configured, selectGeneral Parameters
from theConfiguration menu (shown in Figure 3.10). Each of these general parameters needs to

be configured to match the values listed in Figure 3.11. A
description of each parameter can be obtained by
clicking the right mouse button on the parameter, or by
referring to Appendix B.

The application is now complete. You will need to save
this application to a file — under theFile menuFigure 3.10: Configuration menu

Figure 3.9: File menu

Figure 3.8: The wait for call configuration window

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 10 OF 78

(Figure 3.9) selectSave As. Use the dialog box to select a filename — “first_app.dcol” would be
appropriate.

We have included a fully-written copy of this application in the system distribution. You may
want to compare this example with your version. In order to do this, chooseNew Window from
the File menu. In the new window, load the example application,
$LINKON/util/example_applications/v2.0/type_1/config/first_config.dcol. Compare the two
systems, and verify that they are identical.

Your new application should now be ready to run. Use the main application,lk_driver to run this.
At the command line, type:

source $LINKON/LK_SETENV.sh
lk_driver -param first_app.dcol

Your new data collection application should now be running on the first channel, call in and see
how it works.

3.5. Coordinating Multiple Items for Common Tasks

The true power of this speech data collection system is in making diverse items work together.
Each of the items is designed to accomplish only a single, simple task. It is necessary to combine
multiple items together, just as different statements are combined in a programming language.
The very simple application described in Section 3.4 uses both data flow features (passing the
newly recorded utterance for playback) and jumping (looping on the user’s key-press).

This section will describe a few of the most common blocks used in applications, such as looping
structures, prompting for and reading dtmf (touch tone) keys from the user, menu-ing, and
database access.

parameter value

max loop iterations -1

database name First Application

program name First test program, run 1

administrative mail alias <your email address>

speaker directory format data/a%5.5d

needed disk space 0.25

data collection system 0

database logfile first_logfile_0.text

progress file first_progfile_0.text

Figure 3.11: Parameter settings

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 11 OF 78

While a linear control flow may accomplish the most basic of speech-collection tasks, branching
is a necessity for more sophisticated data-collection applications. Multiple forms of loop
structures can be created through combining theiterate items with thecheck dtmf items. Such
nested loop structures typically require the use of theset number item to reset internal counters
for the inner loop. A basic counting loop is shown in Figure 3.12.

Theplay item loop is executed times, where

is the difference between the specific string set in thecheck dtmf item and the initial value set in
the iterate item divided by theiterate item’sstepvalue.

If a pre-testing loop is desired, twodirect jump items are necessary. An example of this loop
structure is shown in Figure 3.13. Remember that aniterate item will increment itself the first
time it is executed, so in this case the loop will execute

times. This structure, although more complicated, is
generally more useful for data collection systems in
that it will not execute an item if a precondition
(such as a valid pin) is not met.

For a system as sophisticated as the full
SWITCHBOARD protocol (which is described in detail on page 37), the importance of nested
loops from a system design standpoint is clear. To convert a simple loop into a nested loop, a
mechanism is required that allows arbitrary re-setting of an item’s data. This is achieved with the
set number item. It is used to alter the internal data of another item. To implement a nested loop
as shown in Figure 3.14, aset number item is placed outside the inner loop to resetcount 1.
Items 5, 6, and 7 make up the inner loop here, withcount 1 acting as the LCV (loop control
variable). The outer loop contains items 2, 3, 4, 8, and all the items in the inner loop, withcount 0
acting as its LCV.

An obvious question now arises
— what would happen if theset
number item (4) is placed
inside the inner loop? The
answer is consistent with any
programming language, an
infinite loop will occur. An
infinite loop may also occur if

n

n
check initial–

step
-------------------------------------=

n
check initial–

step
------------------------------------- 1–=

Figure 3.12: A basic counting loop

Figure 3.13: counting loop with prechecking of the LCV

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 12 OF 78

the step value of aniterate item LCV is set to 0 or the ranges are not correct. The control items
are set up to give all power to the user, so caution is advised while placing and configuring these
items.

Due to hardware constraints, the dtmf key repeat speed is not as fast during aplay item as it is
during a get dtmf item. This is the only reason that both items exist instead of a single,
multipurpose item. In most cases where dtmf keys are read from the user, it is desirable for the
user to be able to interrupt the prompt with data (key-presses). Once the user begins to enter a
dtmf string in aplay item, theplay item will continue to read until the completion of user input
(see page 49 for more information). If an unlinkedget dtmf item was placed next in the call flow,
the application would wait twice for the same information. Also, future items that need to
reference this information would be easily confused
as it would get stored in two different locations. To
solve these problems, set theshort circuit dtmf
parameter in theget dtmf item to the name of the
play item.

Figure 3.15 shows an example of a prompted dtmf
read. If the user begins to enter the pin during the
prompt, the play item (prompt pin) will wait for the
completion of the string. Thepin item will not do
anything with the user in this case, as a number value
will be present in theshort circuit dtmf parameter. Instead of waiting for a dtmf string, thepin
item will simply copy the string contained inprompt pin as its own. Thus when item 5 references
pin for synthesis, it will receive the number entered duringprompt pin . If the user had not begun
hitting dtmf keys during the prompt,prompt pin ’s data will be null and thus not be imported by
pin, and therefore thepin item will read the number and behave accordingly; and the referencing
will behave normally.

In order to place multiple applications on the same phone line, data collection systems employ
menus. There is no specific menu option available in the application builder’s arsenal, but menus
can easily be constructed with multiplecheck dtmf items. Figure 3.16 shows implementation of a
very simple menu. After a prompt, the user enters a dtmf key. If ‘1’ is entered, the first block
(playing instructions) is executed and it loops back to the prompt. If ‘2’ is selected, then a prompt
record block will be executed and it will end the call. On a user input of ‘3’ the system will just
end the call.

Figure 3.15: basic prompt dtmf read

Figure 3.14: Nested counting loops

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 13 OF 78

For more sophisticated data collection, it will probably be desirable to connect to an external
database server (such as Oracle). For instance, the SWITCHBOARD protocol we have
implemented on the Linkon system connects across the network to an Oracle server at LDC.
Rather than create a specific item type for this task, theshell commanditem can be used. Perl
scripts have been provided to handle all remote database functions through network sockets.

These perl scripts interface with the Linkon system through stdin and stdout, coordinating with
variousshell command items. The specifics of this interface are described in Section 7.

An example (Figure 3.17) illustrates how to glue all these features together. Here, the pin reading
block of the SWITCHBOARD application is shown. Note that the block incorporates a prompted

get dtmf, looping, and database access. First, the system prompts and reads the pin from the user.
The pin is then passed to acheck mpin item, which queries the database for the pin’s validity. The
check dtmf item (28) tests the output ofcheck pin, it does not check the pin itself. If the pin is not
valid, the user will hear an audible error message and get a few more attempts to enter a valid pin
(through a pre-testing counting loop). This example shows how these simple items can be
combined to form a very sophisticated block of code.

3.6. Using Progress Mode to Debug Applications

The approach towards building of speech collection applications on this system is quite similar to
writing a computer program in a high-level language. The designer of the data collection
application will run into many of the same problems that a programmer does, namely logical
bugs. For simple applications with a strictly linear control flow, debugging is a simple process of
using the application and noticing how at some point it diverges from the expected behavior. For a
more complicated control flow, however, this quickly becomes unmanageable. For more serious
debugging, the application can be run in the highest debug mode (lk_driver -debug 3). The
driver program will output (to stdout) all information in this case, including specific calls to the
Linkon hardware.

Figure 3.16: Implementing a menu

Figure 3.17: Reading and testing a user’s pin

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 14 OF 78

The output from the debug mode is very complete, but is not very
concise. If only the application itself needs to be debugged, we
suggest using the progress mode. This mode will graphically
display the running application. To run the application in progress
mode, selectRun Debugger from the Util menu (Figure 3.18).
The debugging console (shown in Figure 3.19) will pop up
directly to the right of the application builder’s main window. If
the application is running, the item selection square in the main window will automatically move
to synchronously highlight the current active item.

The debugging console also provides a convenient way to monitor the string data contained in
each item. The two columns on the bottom half of the debugging console are synchronized to the

lists in the main window. The two new fields arecurrent DTMF
and referenced DTMF. The first field displays the data string
contained in the item, the latter displays the data contained in the
referenced item. For example, consider the case of the following
two items:get dtmf and check dtmf. After the get dtmf item
executes, its current DTMF field will be set to what the user enters
on the touch-tone keypad. When thecheck dtmf item executes, it
will load the same number as the referenced dtmf field. If a single
specific key/number is used (instead of a list of numbers, as
described on page 55), a quick visual inspection will indicate
whether the test is successful.

This chapter provided an introduction to the top-level user
interface — the application builder; and described how to create
simple applications through numerous illustrations. The
appendices and on-line help contain the specific reference
material necessary for real system development. Next, we discuss
parameter files, the output from the application builder and the
input to the real system.

Figure 3.18: Util menu

Figure 3.19: Debugging console

ISIP MARCH 15, 1997

PARAMETER FILES 4

The Application Builder, for the most part, simply allows the user a graphical interface with
which to create parameter files for the system. These files can also be manually edited in any text
editor. These parameter files contain all information necessary to run a data collection application,
from system configuration to call flow specification. The specifications of these files are described
in this chapter. Any parameter file can be edited by the application builder, manually (in a text
editor), or by using a combination of the two methods. The only risk in moving from a manually
edited file back to graphical builder is that the application builder is more stringent on comments.
All comments except single lines beginning with the special ‘#*’ sequence, located before each
item and the general parameters, will be ignored (and lost) by the application builder. Other than
the slight limitation on comment structure, advanced users may efficiently update scripts more
efficiently with more powerful text processing tools (Perl, Emacs, Sed & Awk, etc.)

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 16 OF 78

4.1. Quick Start

The fastest way to learn how to program application scripts directly is to look at existing
applications. Either look at the code distributed with the software or the code written through the
application builder. There are three example scripts included in the distribution which will
facilitate a new user’s instruction on parameter files.

A type I data collection system is characterized by the system prompting the caller to speak
utterances. This is about the simplest application that can be created through the system. Look to
$LINKON/util/example_applications/v2.0/type_1/config/config_file_0.dcol for the source.

It is often desired to provide the user a menu and allow branching from the caller’s choice. A
simple example of how this popular feature can be implemented can be viewed in
$LINKON/util/example_applications/v2.0/type_1/menu/menu0.dcol

A type II data collection system is characterized by conversational speech recorded from two
callers in conversation simultaneously. A sample application of this form of data collection is
located in $LINKON/util/example_applications/v2.0/type_2/config/config_file_0.dcol.

4.2. Overview of the Scripting Language Syntax

The language in which the scripting (or parameter) files are written is similar to PERL. A specific
Backaus-Naur style language definition is given in Figure 4.1. The main purpose of the scripts is
to assign values to parameters, so the basic structure is:

parameter = value ;

Theparameteris any predefined attribute relevant to the current item, and thevalueis any string
terminated by a semicolon. The parameter file consists of a magic string, general system
parameters, and a list of item definitions. The general parameters are described in Appendix B.
This being an object oriented system, each item in the list is a self executing module — the list is
all that is necessary to specify a complete application flow. Descriptions of each of the item types
can be found in Appendix A. Parameter descriptions can be found in Appendices C & D.

4.3. Referencing Data

As in most object oriented systems, user data is always kept WITHIN the individual items. The
only two types of data that can be passed between objects are character strings and filenames. To
access dynamic data that has been set earlier in the program, simply refer to the name of the item
in which the data was collected. Each type of item interprets the data differently. See the item
definitions (Appendix A) for specifics.

4.4. Control Flow

The normal control flow of a program is to traverse each item sequentially. Since this leads to
rather restrictive and static systems, we provide capabilities for more complex flows. The flow

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 17 OF 78

altering mechanism provided by the system can be simplified toif ERROR jump NAME, where
nameis the name parameter assigned to another item. This basic structure can be built upon to
create very complex programs. Look at theControl flow capabilitiessection in each of the item
definitions (Appendix A) for specific information on how different items can alter the flow.

4.5. System Log Files

A logfile is maintained by the system as specified by thedatabase logfileparameter (page 68).
This logfile is used to determine speaker numbers, hence multiple copies of the same system can
be run to collect information to the same database simultaneously. The file locking system has
been tested to work over NFS network mounted drives, so it is possible to run the same
application on different machines, provided they all access the same logfile on one disk.

<file>::=MAGIC_STRING<comments><database info><comments><num items>
<comments><items><comments>EOF

<database info>::=<comments><dbase statement> | <dbase statement><database info>
<dbase statement>::=<general param> = <value>; | <general param> = {<value>};
<comments>::=<comment> | <comments><comment> | ““
<comment>::= \n#<string>\n
<num items>::=num_items = <integer>;
<items>::=<comments>ITEM;<comments><item statements>
<item statements>::=<statements><type statement><statements>
<type statements>::=type = <item_type_name>; | type = <item_type_pnuem>;
<item_type_name>::=play | record | check dtmf | get dtmf | synthesize | wait for call

| dial | hangup | mail | shell | conference connect | conference disconnect |
direct jump | save number | set number | iterate | kill program

<item_type_pnuem>::=PLAY | RECD | CHKN | GETD | PLYN | WCAL | DIAL | HANG | MAIL | SHEL
| CNFC | CNFD | JUMP | SVEN | SETN | ITER | DIE

<statements>::=<comments><statement> | <statement><statements>
<statement>::=<item param> = <value>; | <item param> = {<value>}; | ““
<general param>::= database_name | monitor_command | program_name | admin_alias |

speaker_directory_format | disk_info | data_collection_system |
teleconferencing_system | database_logfile | starting_speaker_number

<item param>::=<sigd param> | abort_keys | filename_template | conf_filename_template
| wait_interval | filename_0 | filename_1 | filename_2 | speaker_mode | dtmf |
name | ref_name | jump_name | address | shell_command | conf_channel | initial
| step

<sigd param>::=sample_frequency | initial_pad | final_pad | max_initial_silence |
max_final_silence | max_duration | min_energy

<value>::= <string> | <float> | <signed integer>
<string>::=<character> | <character><string>
<float>::=<signed integer>.<integer>
<signed integer>::=<sign><integer> | <integer>
<integer>::=<digit> | <digit><integer>
<sign>::= + | -
<digit>::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<character>::=<lcase character> | <ucase character> | <ext character>
<lcase character>::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
<ucase character>::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z
<ext character>::= | ‘ ‘ | ‘_’ | ‘!’ | ‘@’ | ‘$’ | ‘%’ | ‘^’ | ‘&’ | ‘*’ | ‘(‘ | ‘)’

| ‘-’ | ‘=’ | ‘+’ | ‘`’ | ‘~’ | ‘:’ | ‘’’ | ‘<‘ | ‘>’ | ‘,’ | ‘.’ | ‘?’

Figure 4.1: Parameter file language description — Backaus-Naur style

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 18 OF 78

The logfile contains a single line entry for each caller. The first field in this line is the sequentially
assigned speaker number. The second entry is a time stamp for the call. The third (and final) entry
is a string with length equal to thenumber of items parameter. Each character in this string
represents the state of each item. A blank space means that this item is in an intermediate state —
it has yet to attempt execution. An ‘s’ indicates successful execution. An ‘h’ indicates that the user
hung up on this item. An ‘x’ indicates that this item was not reached, something that will often
happen if the user hangs up before the last of the messages is played.

Thenumber of itemsparameter (page 67) exists mainly for the purpose of making logfiles usable
after changes are made in the application. The logfile is read as a random access binary file, with
field length being determined by thenumber of items parameter. Overestimating this parameter
allows the same logfile to be used if minute changes are made in the configuration script.

An example logfile is shown in Figure 4.2. The first 21 speakers are collected using a uniform
length configuration script, successful calls are logged for callers 1,3,5,6,8, and 10. The first
eleven entries have 8 items, but space for 20 (null characters are represented by^@). After these
initial calls, the application was changed to have an additional item (speakers 50-55), but no calls
were logged with this application. Callers 56 and 57 were back to 8 items, caller 58 was set up for
a 5 item application. It is even possible that three different applications were running
simultaneously using the same logfile if thenumber of items setting is identical for each script.
Changing the number of items parameter and re-using an old logfile will generate a fatal error,
possibly corrupting the logfile.

#0001 Sun Oct 26 16:45:13 1997 ssssssss^@^@^@^@^@^@^@^@^@^@^@
#0002 Sun Oct 26 16:45:13 1997 ^@^@^@^@^@^@^@^@^@^@^@
#0003 Sun Oct 26 16:48:27 1997 ssssssss^@^@^@^@^@^@^@^@^@^@^@
#0004 Sun Oct 26 16:48:27 1997 ^@^@^@^@^@^@^@^@^@^@^@
#0005 Sun Oct 26 16:51:28 1997 ssssssss^@^@^@^@^@^@^@^@^@^@^@
#0006 Sun Oct 26 16:52:44 1997 ssssssss^@^@^@^@^@^@^@^@^@^@^@
#0007 Sun Oct 26 16:52:44 1997 ^@^@^@^@^@^@^@^@^@^@^@
#0008 Sun Oct 26 16:59:01 1997 ssssssss^@^@^@^@^@^@^@^@^@^@^@
#0009 Sun Oct 26 16:59:01 1997 ^@^@^@^@^@^@^@^@^@^@^@
#0010 Sun Oct 26 17:04:33 1997 ssssssss^@^@^@^@^@^@^@^@^@^@^@
#0011 Sun Oct 26 17:04:33 1997 ^@^@^@^@^@^@^@^@^@^@^@
#0050 Fri Mar 13 15:32:49 1998 ^@^@^@^@^@^@^@^@^@^@
#0051 Fri Mar 13 15:36:26 1998 ^@^@^@^@^@^@^@^@^@^@
#0052 Fri Mar 13 15:48:52 1998 ^@^@^@^@^@^@^@^@^@^@
#0053 Fri Mar 13 15:50:05 1998 ^@^@^@^@^@^@^@^@^@^@
#0054 Fri Mar 13 15:50:50 1998 ^@^@^@^@^@^@^@^@^@^@
#0055 Fri Mar 13 15:52:43 1998 ^@^@^@^@^@^@^@^@^@^@
#0056 Fri Apr 3 02:11:06 1998 ^@^@^@^@^@^@^@^@^@^@^@
#0057 Fri Apr 3 02:12:57 1998 ^@^@^@^@^@^@^@^@^@^@^@
#0058 Fri Apr 3 02:28:58 1998 ^@^@^@^@^@^@^@^@^@^@^@^@^@^@
#0059 Fri Apr 3 02:30:31 1998 ^@^@^@^@^@^@^@^@^@^@^@
#0060 Fri Apr 3 02:34:44 1998 ^@^@^@^@^@^@^@^@^@^@^@

Figure 4.2: Example Log file

ISIP MARCH 15, 1997

THE C++ INTERFACE 5

The linkon hardware was not specifically designed with speech data collection in mind, but rather
to be a general purpose telecommunications board. The code developed for the system is built as a
multi-level hierarchal C++ framework, which can be accessed from many different levels. The
Data_collect, Item, andItem_list classes are highly parameter dependent; a safe design option is
to leave these classes driven by the GUI and parameter file interface and avoid any hard-coded
settings. TheTele_interf class is an appropriate level to interface with the hardware, allowing
coding of a wide variety of applications without dealing directly with the device drivers. There is
little advantage to going below theTele_interf class for telephony board operations since most
applications will use the functionality already built into this class. Additionally, all platforms
supported by ISIP in the future will use theTele_interf class as a common entry point, thus
providing support for multiple platforms and compatibility with other systems.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 20 OF 78

5.1. System Architecture

Figure 5.1 provides an overview of the
hierarchical software design. Building
multiple layers into the system was
necessary to provide simplified code
design for future developers.Tele_interf is
a generic computer/telephone interface, on
top of which the parameter based system
and GUI are built. This class is the break in
the system architecture between
hardware-specific and generic telephony
operations, which guarantees portability of
the high-level system to new hardware.

Three classes have been designed to
interface directly with the Linkon fs4000
hardware: DDI , Channel, and Linkon.
The class at the lowest level is theDDI
class, which acts as a wrapper for Linkon
Corp.’s Direct Driver Interface functions
[6]. A log can be kept of every call to the
DDI library functions — a very useful
feature in debugging hardware problems
and communicating with the vendor. Each
hardware line, orChannel, is abstracted to
an object, allowing most board functionality to be consistent for either party of a conferenced call.
TheLinkon class is used to coordinate and distribute the operations among channels and control
teleconference connections.

The Tele_interf class abstracts the computer/telephone interface. There is no hardware-specific
code in theTele_interfclass, so only code below this point in the hierarchy needs to be changed to
adapt the system to hardware platforms other than Linkon. The majority of this section describes
theTele_interf class in great detail, as it is the C++ API to ISIP’s abstract telephone object.

Items are self executing objects which are configurable to perform specific tasks. The most
important parameter for anItem object is itstype which defines how all other parameters are
used. The different item types are described in detail in Appendix A. AnItem_list is a collection
of Item objects that describe the call flow in a complete data collection application.

The Data_collectclass is used to keep track of every aspect of a data collection system. It
configures the hardware (through aTele_interfobject), handles the log file (page 17), parses the
parameter file for configuration, and executes theItem_list for each caller.

In addition to the classes described above that compose the hierarchy of hardware control and
database collection, three classes (Filename, Signal_detector, andSample_comp) are included, at

Linkon DDI

Item . . .

Channel

Item Item Item Item

Tele_interf

Channel

DDI

Linkon

Data_collect

Item_list

Figure 5.1: ISIP C++ code hierarchy

Low Level

High Level

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 21 OF 78

the lowest level, to assist in common transactions. TheFilenameclass is designed to modularize
the common operations of system filenames, from handling environmental variables to file
locking. The Signal_detectorclass does nothing more than hold all of the signal detection
parameters, but is far more convenient than passing multiple variables around. TheSample_comp
class is used to perform audio format conversion and signal scaling.

5.2. Class Tele_interf — a Software Abstraction

Direct access to the board through C++ has been abstracted by use of the classTele_interf.
Figure 5.3 shows the public functions available through this class which are relevant to telephone
data collection. The purpose of this class is to abstract a generic computer/telephone interface
whereby the system could easily be ported to other hardware with minimal modifications. Thus,
there is no hardware-specific code (particularly no Linkon-specific code) in theTele_interf class.

The remainder of this chapter will describe, in detail, the C++ interface to the hardware platform
usingTele_interf. While this chapter gives a high-level view of each of the functions, many of the
specific details can only be observed by actually looking at source code. Thus, example code is
included as the last section of this chapter (5.8) for the simple diagnostic programs described in
the installation chapter. All code adheres to ISIP’s strict standards of object-oriented data-driven
programs, ensuring readability and simplicity. Since all of the source code is included with the
distribution, a programmer may delve as deep into the system as they wish to determine the exact
inner workings. However, this will not be necessary to design typical data collection applications.

5.3. Initialization and Configuration Methods

Any program that uses the system must construct aTele_interfobject —the constructor takes no
arguments. Before performing any operations with the board, it is also necessary to initialize the
Tele_interfobject and instruct it on which channels to use. For a single channel application (such
as Type 1 data collection), you have the option of either specifying a channel directly or allowing
the system to choose from the bank offreechannels. For a two channel application, both channels
must be explicitly stated. The status of all channels is maintained in the $LINKON/proc directory

code expansion explanation

f free channel is free to be used by any application, even if not explic-
itly requested (sequential channel assignment).

r reserved channel is not in use, but may only be used by an application
that specifically requests it (no sequential channel assignment).

o open channel is currently held by an application, with no current line
activity.

b busy channel is held by an application and there is current line activ-
ity (connected to a user).

Figure 5.2: The four possible states of a channel.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 22 OF 78

// tele_interf: a class that provides a general high-level interface to
// more specific telephone interface hardware classes
//
class Tele_interf{

public:
// required methods
//
char_1* name_cc();
volatile void error_handler_cc(char_1* method_name, char_1* message);

// constructors/destructors
//
~Tele_interf();
Tele_interf();

// initialization/configuration methods
//
logical_1 init_cc(); // 1 non-specific channel
logical_1 init_cc(int_4 chan); // 1 specific channel
logical_1 init_cc(int_4 master, int_4 slave); // 2 specific channels

logical_1 reset_cc(); // after each call

logical_1 reset_conf_flag_cc(); // for forced disconnect

logical_1 select_cc(int_4 value); // select master/slave/both
logical_1 select_cc(char_1* val); // select master/slave/both
logical_1 configure_cc(char_1* keys); // configure channels
logical_1 configure_cc(); // configure channels

int_4 get_chan_number_cc(); // return channel number
logical_1 get_con_status_cc(); // remote connection ?

logical_1 set_digits_cc(Filename num_file); // set the digits

// call management
//
logical_1 offhook_cc(); // basic call progress
logical_1 onhook_cc();
logical_1 hangup_cc();
logical_1 dial_cc(char_1* tel_number);
logical_1 dial_cc(int_4& status, char_1* tel_number);
logical_1 wait_for_call_cc();
logical_1 wait_for_call_cc(char_1 *ani); // return ANI info
logical_1 wait_for_event_cc(char_1* keys, float_4 timeout);

logical_1 connect_cc(); // connect slave channel
logical_1 disconnect_cc(); // disconnet slave channel

// method to set some data to be used in creating sphere files
//
logical_1 set_sphere_parameters_cc(char_1* database_name, int_4 speaker_number);
logical_1 set_sphere_parameters_cc(int_4 speaker_number);

Figure 5.3: class Tele_interf public functions.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 23 OF 78

in a file named channels.dat. The TCL applicationlk_channel_handler assists in monitoring and
altering the channel states. The channels.dat file contains a single character entry for each
physical channel on the board, with possible character codes ‘f ’, ‘ r ’, ‘ o’, and ‘b’. These codes are
described in Figure 5.2.

To reflect the multiple methods available for channel selection, there exist three versions of the
Tele_interf::init_cc() method. Callinginit_cc() with no arguments will allocate the
first free channel for use by your program. An overloaded version of init_cc() allows one to
specify a channel to be used. In this case, the system will grab either afreeor reservedchannel.

// i/o methods, high level
//
logical_1 record_file_cc(float_4& rec_time, Filename& out_file,

Signal_detector& sigd);
logical_1 record_file_cc(float_4& rec_time, Filename& out_file,

float_4 sample_freq, float_4 max_time);
logical_1 play_file_cc(Filename& in_file);
logical_1 quick_play_file_cc(Filename& in_file);

logical_1 play_numbers_cc(char_1* numbers);
logical_1 play_teli_number_cc(char_1* numbers); // does pausing
logical_1 get_dtmf_string_cc(char_1* numbers, char_1 abort, float_4 timeout,

int_4 num_digits);
logical_1 finish_dtmf_string_cc(char_1* numbers, char_1 abort, float_4 timeout,

int_4 num_digits);

logical_1 record_files_cc(float_4& rec_time, Filename& master_file,
Filename& slave_file, float_4 sample_freq, float_4 max_time);

logical_1 record_files_cc(float_4& rec_time, Filename& master_file,
Filename& slave_file, Signal_detector& sigd);

// i/o methods, low level
//
logical_1 start_read_cc(int_4& needed_size, Signal_detector& sigd);
logical_1 start_read_cc();
logical_1 start_write_cc();
logical_1 stop_write_cc();

int_4 read_cc(sample_type** obuffer, sample_type* buffer, int_4 buffer_size);
int_4 read_cc(FILE* fp, int_4 max_size);

int_4 read_cc(sample_type** obuf_m, sample_type** obuf_s, sample_type* buf_m,
sample_type* buf_s, int_4 buffer_size);

int_4 read_cc(FILE* master, FILE* slave, int_4 max_size);

int_4 write_cc(sample_type* signal, int_4 nsamples);
int_4 write_cc(FILE* fp, int_4 max_size);

logical_1 generate_dtmf_cc(char_1 value);
logical_1 get_dtmf_cc(char_1& dtmf, float_4 timeout);
char_1 get_last_dtmf_cc();

};

Figure 5.3: class Tele_interf public functions.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 24 OF 78

Specifying the channel is advised to keep different applications on specific inbound telephone
numbers — these channels should generally be reserved so they will not be arbitrarily grabbed by
another program. Due to teleconferencing limitations on Linkon’s hardware, a two line call
requires adjacent channel numbers. In order to use two lines in the same application, the
two-argument version ofinit_cc() must be used to specify both channel numbers.

The get_channel_number_cc() method will return an integer corresponding to the physical
channel currently being used by your application (referred to asactive), or TELI_NO_CHANif no
channel is set.get_con_status_cc() is used to query the status of a remote connection,
returningISIP_FALSE if no user is currently connected to the system on the active channel and
ISIP_TRUE otherwise. Theconfigure_cc() methods are used to reconfigure a channel to the
default settings (a string of abort keys may also be included). Thereset_cc() function is used
to clear the abort status of the board between calls.reset_conf_flag_cc() resets the
teleconferencing flag to the disconnected state —useful for a forced disconnect.

If your application requires multiple channels (such as SWITCHBOARD) you must specify the
channel each method will act upon (i.e. the activechannel). Theselect_cc() functions are used
to set the active channel. The version which takes a character pointer accepts a string value:
master, slave, or both. The codesmasterandslaveset a single channel as active and this channel
is used for performing all tasks until the next call toselect_cc() . The codewordboth indicates
for the operation to be performed on both channels. Note that not all functions support multiple
channels, and a few do not support single channels. For example,dial_cc() will only operate
on a single channel, while the conference record method will only operate on both channels
simultaneously. The conf_connect_cc() and conf_disconnect_cc() functions will ignore the active
channel setting and always operate on the master channel.

The final configuration method isset_digits_cc() , which specifies the canned audio used by
the play_numbers_cc() (synthesize) function. The argument to this function is aFilename
object containing the name of a NIST sphere audio file. This file should contain the audio
corresponding to ‘0’. The format of this filename should end in 0.ext (for example,
$SWB_DCOL/prompts/say_0.sphere or 0.sp). The filename must have an extension. The ‘0’ will
be replaced with ‘1’-’9’ and ‘11’ to determine the rest of the digits, with ‘11’ indicating a pause
(specified by a ‘,’ character in the number string). So, if you specify the filename to be
“$PROMPTS/0.sphere,” the files should appear on your system as $PROMPTS/0.sphere,
$PROMPTS/1.sphere, . . . , $PROMPTS/9.sphere, and finally $PROMPTS/11.sphere.

5.4. Call management Methods

Once the board has been properly initialized, call management routines are used to connect with a
user by beginning a call. The two ways to begin a call are to either wait for a user to dial into the
system,wait_for_call_cc() , or to initiate an outbound call,dial_cc() . A user must be
connected for any i/o methods to be performed.hangup_cc() disconnects a user from the
system.

Most passive data collection applications will want to operate on inbound calls, with the users
calling in at their convenience.wait_for_call_cc() is a blocking function which, once called,

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 25 OF 78

does not return until a user has dialed in. This method may optionally return the Real-Time ANI
information for the calling party (commonly referred to as caller-id). The ANI information
returned will be in the form of a character string, with each character among those defined as valid
dtmf codes (TELI_TT_0 - TELI_TT_9 , TELI_TT_ABS , TELI_TT_LBS , TELI_TT_PAUSE) in the
header filetele_interf_constants.h. This method will always returnISIP_TRUE .

If your application needs to initiate an outbound call, use thedial_cc() methods. Both
dial_cc() functions require that the telephone number to dial be specified as a character string
and that each character in the string be a valid dtmf code. If a dial operation is successful, the
function will return ISIP_TRUE , else it will return ISIP_FALSE . Success is defined in this
context as the establishment of a connection to a live human. A status variable may be passed by
reference to this method via the alternate overload to provide an integer code for the status of the
dial. These codes are defined intele_interf_constants.h. Support beyond the codes for human,
ring no answer, and busy has not been extensively tested by ISIP.

The two hook functions,onhook_cc() andoffhook_cc() , should not be used external to the
Tele_interfclass for typical applications. The higher leveldial_cc() , wait_for_call_cc() ,
andhangup_cc() should be used instead. The hook functions are included in the interface only
for completeness.Channels(or lines) are usually left in the offhook state so that the T1’s hunt
algorithm will not try to connect an inbound call to idle channels. The only channels that should
be in the onhook state are those waiting for an inbound call and those performing a hook flash for
the dial or hangup functions.

In a SWITCHBOARD-style application, the common flow is to wait for caller A to dial in and
then dial out to caller B. Once two callers are on-line, the voice channels may be connected so that
the callers can hear each other (as if caller A had directly dialed caller B). This is called a
conference connection, or, as described by Linkon, Corp., a Linkon Expansion Bus (LEB)
connection. Theconnect_cc() function is used to create a teleconferencing connection between
the two channels; thedisconnect_cc() function breaks the connection. Because only two
channels may be connected in this manner, the Tele_interf class is designed to only operate on
two channels. This design may be expanded in the future to support hardware advances.

With the Linkon hardware, it is not possible to write (play audio) to conference connected
channels. If this is attempted, the connection will be broken and must be explicitly re-initiated by
the program. This response was found to be less error prone than automatically re-initiating the
connection after audio output.

5.5. Sphere Audio File Handling

The system is designed to handle high-level audio functions with NIST sphere files. A sphere file
is an audio data file with an ascii header. The header is a block of name-value pairs, stored in a
readable text format. The sphere file is prevalently used in the speech community to handle both
waveform data and arbitrary information (such as database information). The format was
developed by John Garafalo and Jon Fiscus at the National Institute of Standards and Technology
Spoken Natural Language Processing group. Utilities and programming libraries for handling
sphere files are available for download at the NIST website [7].

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 26 OF 78

Since the system was designed to be used as a data collection platform, it includes some database
information with every sphere file recorded. Theset_sphere_parameters_cc() methods are
used to set the database name and speaker number so as to include these fields in the sphere
headers. Once set, the database name need not be set again, but the speaker number is usually
changed for each new call. A summary of the sphere fields set is shown in Figure 5.4.

Although the Linkon hardware supports theµlaw audio data compression format, we observed
errors when recording data in this mode (playback still worked fine). Most data would come off
the T1 without problems, but the first packet (3504 bytes/samples, ~ 0.44 seconds of speech)
would be corrupt if the caller spoke as the board went into record mode. If no energy was present
on the line during this initial fraction of a second, no such errors were incurred. Linkon
corporation has been advised of this error, but time will not be invested on our part to locate the
source since there is an alternate method.

field type description

sample_count int number of samples in the file

sample_n_bytes int number of bytes per sample (1 forµlaw)

channel_count int number of channels in this file (always 1)

sample_rate int sample frequency of recording (always 8000)

sample_coding str format of the data (T1’s use “µlaw” encoding)

sample_byte_format str format of each sample (always “1”). This parameter
is used for multiple byte samples to specify byte
encoding.

database_id str the database name (user specified)

speaker_number int the speaker number (user specified)

recording_date str unix date style string specifying the date of recording

recording_environment str always “telephone”

dcol_system int data collection system, or channel used, for this
recording.

conf_system int the channel of the conferenced party, if applicable

sample_min int minimum sample value

sample_max int maximum sample value

sample_sig_bits int number of significant bits per sample

Figure 5.4: NIST sphere file header fields. The shaded entries are those standard to NIST
sphere files, the rest are additional fields added by ISIP for database purposes.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 27 OF 78

Obviously, this is not acceptable for data collection purposes. This behavior does not present itself
for linear data recording (16 bit signed linear samples), so the fix is to leave the board in linear
configuration. The linear data is still perfectly quantized to 255 values of (directly corresponding
to the sox and w_editµlaw look up table after applying a scale factor of 2). Since the data is still 8
bit quantized in the linear format, the data transformation is perfectly invertible with the loss of no
information.

The conversion is performed at the lowest level, a system designer deals only withµlaw data.
Both direction of the conversion use look up tables to minimize CPU overhead. This is not the
only binary operation performed on the data between disk files and the T1, it is also byte-swapped
to accommodate the native Sun byte ordering (Big Endian). The design choice to do this
processing online is to simplify the data collection process. Future hardware platforms will
probably not have the same idiosyncrasies as the Linkon board, but will quite possibly present
other challenges. Maintaining separate data sets for different hardware platforms would be a
management nightmare. Since these byte operations require minimal CPU resources, these details
are completely abstracted from the user.

The parameters described above represent theµlaw speech encoding used on T1 lines.
Alternatively, the analog system uses 16 bit, uncompressed, single channel, raw signal data at a
sample frequency of 8kHz. NIST sphere files for this system should be configured with the
sample_codingset to “pcm” and thesample_byte_formatset to “10.” The sample_max header
field is used to normalize all linear signal data during playback. This play normalization feature is
currently not available for theµlaw data format.

5.6. High-Level I/O Methods

High-level i/o methods are included in theTele_interfclass to simplify common operations. With
these methods you can play an audio prompt, record the user’s speech, and read dtmf (touch tone)
keys with little underlying knowledge of the hardware. Although multiple overloaded versions of
these methods exist, it is not possible to predict every possible use of the board, so the low-level
i/o methods used by these high-level functions are also included in this interface. A description of
the low-level methods may be found in the next section (5.7).

The most basic form of data collection comes from theTele_interf::record_file_cc()
function. This records what the user speaks into the telephone microphone and saves it to a disk
file. The interface to this function comes in two variants. One version uses the custom signal
detector (page 77) to record a single speech utterance. The second version is set to record for a
specified amount of time (in seconds). Both versions return in therec_time parameter the
length, in seconds, of the recorded audio file. Therecord_file_cc() methods can only be
performed on a single channel at a time, and recording will stop if the user hangs up or presses
any dtmf key.

To record data from both users simultaneously, use therecord_files_cc() methods. These
functions operate essentially the same way as the single channel record operation but with two
files (one for each channel) specified rather than one. These files will contain perfectly

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 28 OF 78

time-aligned data. The Linkon board returns interleaved buffers of data approximately 0.125
seconds long (this will likely vary for different hardware platforms). If necessary, one buffer of
data will be cropped from one channel’s data file to equalize recording lengths.

A second central feature of telephone interfaces is playing audio prompts to the user. One can
provide this functionality by simply creating aFilenameobject pointing to an audio prompt file
and calling play_file_cc() , passing this filename as the only argument. The
play_file_cc() method will play the prompt to the user. These methods can be used to play a
file to a single user or two users simultaneously.

The methodsplay_file_cc() andquick_play_file_cc() differ in that the former method
will not return until the entire prompt has been played and the latter will return as soon as the
audio data has been dumped into a buffer on the board. If the playback of multiple, uninterrupted
prompts is desired, all but the last should be called withquick_play_file_cc() . Calling
play_file_cc() with the last file will wait until all files (including the last) have finished
playing before returning.

While the record method will be interrupted by any dtmf key, much more control is available for
the play methods. Only keys configured to be in the abort mask, by calls toconfigure_cc(),
will interrupt playback. Once an acceptable key is hit, there are two options for reading the value.
First, you can call the low-level methodget_last_dtmf_cc() to discover which single key was
hit to cause the interrupt. For a more complex handling, you can immediately call the
finish_dtmf_string_cc() method (operating much the same asget_dtmf_string_cc(),
described below) to read a longer dtmf string from the board. The string returned by
finish_dtmf_string_cc() will include, as the first character, the interrupt causing character
hit during the play operation.

In order to provide easily processed user input, theget_dtmf_string_cc() function is
designed to read a string of dtmf (touch tone) characters. This is an invaluable function for
databases, nearly as useful as reading input from the keyboard is in text-based interfaces. This
function is nice in that one function call will return the entire dtmf input (such as a PIN) from the
user. get_dtmf_string_cc() reads data until an end of string event. This event may be
generated in three ways. First, a time-out waiting for a dtmf key (each key-press resets the count)
will terminate the read. Secondly, if thenum_digits parameter is set, the read will terminate
with the nth input character. Lastly, a terminal character can be specified through theabort_key
parameter. This terminal character will not be returned as part of the string.

While the interface to the two functions, get_dtmf_string_cc() and
finish_dtmf_string_cc() , is identical, the two methods behave slightly differently. The
num_digits parameter specified in the call tofinish_dtmf_string_cc() will include the
first character which triggered the play operation to cease (passing a value of 1 will cause it to
return immediately). Also, keys are read in much faster from the dedicated
get_dtmf_string_cc() function due to hardware i/o limitations. So, if reading dtmf input
through a prompt is not quick enough (i.e., it seems to drop characters), consider using the
dedicated method.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 29 OF 78

A set of high-level methods was also designed to synthesize number strings into speech for the
user. Canned speech files for each number must be specified (see theset_digits_cc() method
in Section 5.3). All characters will be played using thequick_play_file_cc() method to
minimize pauses between characters, but the system will wait until playback of all numbers
completes before returning from the function. Note that non-numeric characters in the data string
will be ignored.

If the number to be synthesized is a telephone number, the speech signal can be delimited by
appropriate pauses to maximize understandability. Use theplay_teli_number_cc() method to
automatically add these pauses to the speech signal. As it is difficult to describe exactly where
these pauses are added, Figure 5.5 shows examples of the most common cases. Pauses will be
added by inserting a pause character into the dtmf string (the ‘,’ character, as defined in
tele_interf_constants.h). This file should be associated with the _11 digit, as described by
set_digits_cc() in Section 5.3.

5.7. Low-Level I/O Methods

The high-level methods described in the previous section exist to simplify applications, but we
cannot predict every possible use of the board. For this reason, the low-level basic methods are
also at the programmers disposal. Through the use of these functions most any operation can be
performed.

The read and write functions are with reference to the telephone line, not the disk. So, the read
functions will record data coming from the telephone line into a disk file or memory buffer, the
write functions will play data from a disk file or memory buffer to the telephone line.

The first step in recording data is to call astart_read_cc() method to configure the board to
begin recording data. Two variants of this method exist. The first method is used if you desire to
use the signal detector. In this form you pass a signal detector object (parameters are described in
Appendix D). The method will return the size of the memory buffer required to record such an
utterance asneeded_size . The second variant, which takes no arguments, is used if no signal
detection is necessary.

original number delimited number

8335 8335

3258335 325-8335

16013258335 1-601-325-8335

916013258335 9-1-601-325-8335

03258335 0-325-8335

98335 9-8335

Figure 5.5: Adding pauses to a telephone number

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 30 OF 78

To record data with a signal detector, one must allocate a memory buffer large enough for
needed_size samples to be stored since thisread_cc() function will operate entirely in
memory.read_cc() will set obuffer to hold a pointer to data within the allocated memory
buffer. The position ofobuffer indicates the start of the valid utterance. Theread_cc()
function will also return the number of samples of this valid utterance. Since no memory
allocation is performed by the function, only the originally allocated buffer needs to be deleted
after the operation is complete (and data saved).

If no signal detection is needed, the process is much simpler. The programmer needs only to
specify an open file pointer for writing samples and the maximum number of samples to read. The
user may prematurely abort either version of the read operation by hitting a dtmf key.

Since theread_cc() operations described can only be performed on one channel at a time,
overloads exist to read both channels simultaneously in both modes. Simply pass two sets of
memory pointers or two open file pointers to read from both channels. These dual channel read
operations will return perfectly time aligned data. The Linkon board returns interleaved buffers of
data approximately 0.125 seconds long (this will likely vary for different hardware platforms). If
necessary, one buffer of data will be cropped from one channel to equalize recording lengths.

The first step in writing data to the board is to call thestart_write_cc() function. This
function takes no arguments, it merely configures the board and prepares it for a write operation.
You may write data either from an open file pointer or from a memory buffer, with a similar
interface in both cases. Thewrite_cc() functions will return as soon as all data passed to them
has been written to an internal buffer on the hardware. This does not necessarily mean that the
operation has completed. After all data has been written to the board (through one or multiple
write_cc() calls), execute thestop_write_cc() method. It will clean up the status of the
board and wait for all data to actually be played to the user (real-time synchronization). The
write_cc() functions may be used for either the master, slave, or both channels.

The read_cc() functions will abort on any dtmf key pressed, thewrite_cc() functions will
only abort if the key pressed is in the user-specified abort string (a mask of dtmf characters). If
such an abort occurs, theget_last_dtmf_cc() method may be used to determine which key
caused the abort (it will returnNULL if no abort was triggered). If, instead, you wish to simply
wait for a dtmf key, use theget_dtmf_cc() function. It will wait for the specified amount of
time (time-out is in seconds) for a dtmf key to be hit. It will only register those keys specified in
the abort string (see the documentation for theconfigure_cc() method, Section 5.3). The
functiongenerate_dtmf_cc() is included in the interface for completeness, but is currently not
implemented.

5.8. Example Diagnostic Programs

The example diagnostic programs described in Section 6.9 were all written using class
Tele_interf. These programs exercise the basic board functionality.

The simple/ subdirectory contains simple example programs demonstrating the system’s basic
functionality. There are four applications included with the system. The first,wait_prompt_read,

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 31 OF 78

has a channel wait for a caller and record a short utterance of speech. The second,
dial_prompt_read, is very similar towait_prompt_read, the only difference being this system
initiates the call to a specified telephone number. An example of dtmf (touch-tone keys) number
input and output is available aswait_prompt_pin_synth. The final program,
wait_dial_cnf_read, tests the conferencing capabilities of the board by connecting two users and
recording both sides of a short conversation.

These four programs are simple examples of most basic telephony-board functionality. The
programs have examples of call flow initiation, single and dual channel audio i/o, and number i/o.
These basic components are most of what is used in the full parameter based data collection
system. Complete understanding of these basic programs should be achieved before attempting to
create more complex telephony applications in C++.

ISIP MARCH 15, 1997

INSTALLATION 6

This section provides assistance on installing the full speech data collection system. It begins with
a brief overview of the hardware installation. A few suggestions for the Linkon software
installation are also provided. There are external software packages necessary to use the system
most effectively. A detailed description is given to the building of the ISIP software onto your
system. Lastly, testing programs are described that can assist in diagnosing specific hardware
problems.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 33 OF 78

6.1. System Requirements

6.2. Hardware Installation

The Linkon and Newbridge hardware installation is covered in depth in the respective manuals,
but we have a few suggestions.

Although a CSU is not required for the T1 line to interface with the Newbridge board, it is an
invaluable diagnostic tool. In addition to diagnostics, the CSU assists in protecting the computer
hardware from power surges along the T1 line.

NOTE: I don’t know how to write this section

6.3. Linkon Software Installation

Although Linkon Corp.’s documentation describes installation of system software in detail, we
wish to add our suggestions for fusing their code with your environment.

DDI vs. TVOX. Common interface to reboot board, how to set this to happen automatically
(supposedly).

NOTE: I don’t know how to write this section

6.4. Third Party Software Packages

While the software written is fairly independent, it does require a few packages to be installed
(and visible) on your system. TCL, Tk, and Perl are necessary to run the application builder. We
recommend having TCL/Tk version 8.0 or greater and Perl version 5.0. In the interest of making
our software easier to install and maintain, no third party extensions to TCL/Tk are used, the
standard distribution will suffice. TCL/Tk can be easily found on a variety of anonymous ftp sites,
including ftp://www.smli.com/pub/tcl. The tk executablewish must be in your path for the
application builder to run. The Perl distribution can also be found via anonymous ftp or the web,
try http://www.lafayette.edu/doughera/doughera/perl/perl.html.

6.5. Installing ISIP code.

The first step in installing the software is to decide where to place the distribution on your file
system. Place the filelinkon.tar in the parent directory of where you wish the system to
reside. For example, if you wish to have a directory /usr/local/isip/linkon, you would untar from
/usr/local/isip, the linkon directory will be created automatically. The following commands would
be necessary for this example:

mkdir /usr/local/isip;
mv linkon.tar /usr/local/isip;

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 34 OF 78

cd /usr/local/isip;

Next, untar the distribution.

tar -xBf linkon.tar;

This will create the directory./linkon, placing all software within. In order to load the environment
needed to either install or run the software:

cd linkon;
source ./LK_SETENV.sh

Next, build the software by executing the script

 ./Make.sh install

This will build all relevant software and install it as necessary. The software, as all of ISIP’s public
domain code, is written to be compiled with GNU gcc and GNU make; Make sure that GNU
make is highest in your PATH. Also, the ‘ar’ command must be in your path. It can be found
typically in /usr/ccs/bin/ar.

ISIP code is designed to be easy to install.

To make the software run correctly, it is necessary to set an environmental variable, LINKON, to
point to the base directory of the installation. It is also recommended that the directory
$LINKON/bin/$ISIP_BINARY be in your PATH. A modification to your ~/.bashrc will probably
be necessary, adding the following commands.

LINKON=/usr/local/isip/linkon;
export LINKON;
source $LINKON/LK_SETENV.sh;

contact your UNIX systems administrator if you require assistance in this task.

6.6. Configuration of the T1 Line

set up RTANI on the channels. If you desire to run the system without this feature, you must edit
the Tele_interf class header file (located in
$LINKON/class/tele_interf/v1.0/tele_interf_constants.h). After making this change, you must
rebuild the ISIP code.

Curr ently have a message on Kay Franklin’s voice mail to get back to me

6.7. Echo on the Digital Network

Hybrid echo is the primary source of echo generated from the public-switched telephone network
(PSTN). This is created as voice signals are transmitted across the network via the “hybrid” at the

* assuming that /usr/local/isip is the base
directory of your installation.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 35 OF 78

2-wire/4-wore PSTN conversion points. This happens when a portion of the energy in a 4-wire
section is reflected back on itself, creating the echoed speech. When the total network delay
exceeds 36ms, echo is noticeable.

In recording conversations between two people, separate channels are used for each of the
speakers. Ideally each channel contains signal from one of the speakers only. However, due to
echo, each channel may in practice contain signals from both the speakers, though to varying
degrees. Most audio recorded at ISIP over our T1 line has had no echo present, but this ends up
being a product of the phone network, not the telephony hardware. The Linkon digital hardware
has not introduced any cross-talk in our testing.

The process of echo cancellation involves two steps. First, as the call is set up, the echo canceler
employs a digital adaptive filter which characterizes the echo path. When the signal passes
through this filter, a replica of the echo is generated. If the filter characteristics match the echo
path characteristics, a simple subtraction of the signal and the synthesized echo rids the signal of
echo. The second process is that of error suppression, where the residual echo is attenuated to
below the noise floor.

However, the cancellation is not perfect and an adaptive process is pursued where the residual
signal is used to adapt the filter more accurately to the echo path. ISIP supports an off-line echo
cancellation software that is very useful for two-channel data recorded from the digital telephone
network[8].

6.8. Linkon’s Analog System

Linkon Communications manufactures two versions of the fs4000 board.The board described and
used in this document is the T1 board. They also manufacture a less expensive analog board,
which directly interfaces to 8 analog telephone lines. The two systems are mostly identical from
the software standpoint. In fact, much of the original code in this system was developed on the
less expensive analog system. This was a cost effective option, offsetting the high usage cost of
the T1 for basic system development.

Unfortunately, the software designed may not completely ignore the hardware platform. A few
tasks are performed differently on the T1 line then the analog system. For one thing, lines on the
digital system should be left in the offhook state when not in use, so as not to confuse the T1 hunt
algorithm. Analog lines should generally be left on-hook. Obviously, no real-time ANI
information will be available on the analog system, so modifications would be necessary to that
code as well. Fortunately, the DSP chips on both boards handle data in much the same way, so
most of the audio i/o functions could remain unchanged.

6.9. Basic Hardware Diagnostics

Several programs are available to help test the basic functionality of the hardware. All of these
programs are located under the directory $LINKON/util/example_applications/v2.0/diagnostics/.

The simple/ subdirectory contains simple example programs demonstrating the system’s basic

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 36 OF 78

functionality. There are four applications included with the system. The first,wait_prompt_read,
has a channel wait for a caller and record some speech. The second,dial_prompt_read, is very
similar to wait_prompt_read except the system initiates the call to a specified telephone number.
An example of dtmf (touch-tone keys) number input and output is available as
wait_prompt_pin_synth. The final program, wait_dial_cnf_read, tests the conferencing
capabilities of the board by connecting two users and recording both sides of the conversation. For
more information on these programs, view Section 5.8.

If configuration problems persist with the hardware, it may be necessary to consult with your
Linkon vendor. The Linkon software distribution includes several diagnostic programs. These
programs are at a much lower level than those described in the previous paragraph, but are helpful
to develop a common ground with a technical support representative. Before running a low level
linkon diagnostic program, set the linkon software to report maximum debugging information,

lkonlog -b 0 -d fff

This command must be run as root. This level of debugging should not be necessary in most
situations.

ISIP MARCH 15, 1997

SWITCHBOARD 7

The first SWITCHBOARD database was collected at Texas Instruments in 1992 [1]. Dr. Godrey
stated that large structured collections of speech and text are essential to progress in speech and
speaker recognition research—an accepted truth in the speech community. At the time of this
writing, the Linguistic Data Consortium (LDC) is in the process of collecting SWB-II phase 3.

To test the versatility our data collection system, we have implemented the LDC’s
SWITCHBOARD-II phase 3 protocol. The application parameter file was created using
lk_appbuilder. Since this is the most complicated application designed on the system, this
section of the document will go over a few key points of the interface. The modularly designed
Oracle database access routines used in the SWB implementation also provide useful examples of
how the system may be expanding to interface with other software.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 38 OF 78

7.1. LDC’s SWITCHBOARD Protocol

The LDC SWITCHBOARD protocol defines a very sophisticated data collection system. Many
issues went into the design, many of them dated back to simpler data collection efforts years ago
at Texas Instruments. Some of the queries are for legal issues (such as the ‘press 1 to participate’),
while other blocks assist in correcting physical shortcomings in the phone network (such as the
problem ANI check).

To collect a SWITCHBOARD database, a large number of volunteers must register into a
database, providing a list of availability times and phone numbers. The participants then call into
the system at their leisure, using a pin number to identify themselves. A second caller will then be
located by the system using the database of available participants. The system will then dial up to
5 phone numbers in an attempt to connect a second caller. Once both callers are on-line, a topic
prompt will be read and the conversational speech will be recorded. The database is designed such
that two participants will never talk to each other twice. Also, each call must be initiated from a
unique phone number, as gathered through the RT-ANI packets from the digital phone network.

The Phase 3 of the SWB-II corpus was gathered from Southeastern universities during the fourth
quarter of 1997. It was collected using the Intervoice system, described briefly in Section 2.
Figures 7.1 and 7.2 describe the call flow of SWB-II phase 3.

Figure 7.1: Flowchart for SWITCHBOARD (section A)

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 39 OF 78

7.2. SWITCHBOARD Implementation

The LCD SWB-II phase 3 protocol has been implemented on our data collection system in order
to test versatility in large applications. The application parameter file was created using
lk_appbuilder. The full application, which almost perfectly mimics LDC’s application running
on the Intervoice hardware, is a 101 item application. All source code and data collected may be
viewed in the $LINKON/pilot_swb/ directory, hereafter called $SWB_DCOL. The configuration
file is in config/main.dcol. The graphical output oflk_appbuilder for the complete application is
shown at the end of the chapter.

All database access is done remotely, by connecting to the same oracle server at the University of
Pennsylvania that the Intervoice system queries. All such access are performed through perl
scripts, interfacing to the data collection system throughshell commanditems. Each of these perl
scripts reads information from the data collection system to stdin, performs its task by connecting
to LDC’s oracle server, and writes back to the application through stdout. The perl scripts to
perform specific database tasks are stored in $SWB_DCOL/config/scripts/ directory, underlying
perl modules are in $SWB_DCOL/config/oracle/. This abstract interface description can be used
to create a wide variety of database applications.

Figure 7.2: Flowchart for SWITCHBOARD (section B)

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 40 OF 78

The database query interface is shown in Section 7.3. After the initial socket authentication, the
first field returned by each query will contain a status value—either true(T), false(F), or not
available(NA). If the oracle server is not available or network problems occur in reaching LDC,
‘NA’ will be returned. In this case, each program will terminate the current callers with an error
message and alert the project manager through email. A return of ‘F’ implies that a logical error
occurs (not admitting the caller, no free callers, no available topics, etc.), which should be handled
by software. A ‘T’ return means that no problems occurred in this test. The call_stat query,
executed after each speaker, requires an 11 value enumeration for <call_status>. The possible
values for this field are listed in Figure 7.4. Not all of these return codes are used, more on this in
the final discussion of this chapter.

The first shell command described in main.dcol starts a local database relay server. For efficiency,
a single network socket is opened at the beginning of the call and remains open throughout the
duration of the call. All database access is performed through opening local sockets to this relay
server. Depending on network traffic between Mississippi State and the University of
Pennsylvania and the current load on LDC’s oracle server, it takes up to five seconds to open the
initial socket. To hide this latency from the user, the introductory prompt is played at this time.
Directly after the first welcome message is played, a query is done using the caller’s ANI
information. This is the only query that can be performed at this time, the secondary intention
(outside of the protocol) is to test the database connection before asking the user to continue. If
the server was not started properly, an error message will be played before the caller is asked for
any input.

After the system is assured that the caller wishes to participate, the program branches if the
caller’s ANI information returned from the phone network is among a manually maintained list of
known problem numbers. If so, the caller is prompted to enter her phone number manually.

startup:

() <= 130_18_6_2 1

(t/f/na) <= dbaction check_prob_ani <mani>
(t/f/na) <= dbaction check_mpin <mpin>
(t/f/na) <= dbaction check_mani <mpin> <mphone>
(t/f/na) <= dbaction check_madmit <mpin>

get second caller:
(t/f/na, <spin>, <sphone>) <= dbaction get_spinphone <mpin>

connect:

(t/f/na, <topic_id> 2) <= dbaction get_topic <mpin> <spin>

callstat: executed every time
(t/f/na) <= dbaction call_stat <date> <mpin> <mani> <mphone> <spin> <sphone>

<topic_id> <off_hook_duration> 3 <talk_duration (connect-disconnect)>
<record_duration> <call_status> <channel_num>

1.I.P. address of isip02, our local server running the data collection system. This number served as a simple
authentication double check.
2.Use topic id number to create prompt filename.
3.All times in minutes:seconds (MM:SS).

Figure 7.3: Remote Oracle query specification

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 41 OF 78

code value

0 CallSucceeded

1 Busy

2 CalleeNotAvailable

3 RingNoAnswer

4 AnsweringMachine

5 FaxOrModem

6 CallIncomplete

7 CalleeHangUp

8 CallerHangup

9 TimeOut

10 LineProblem

Figure 7.4: Call_status field enumeration

The next step in the application is to test the
identity of the caller through a personal
identification number (PIN). The caller is
given up to 3 chances to enter a valid PIN.
Once the PIN has been tested, the system will
check the uniqueness of the caller’s telephone
number—since the database protocol
mandates that each caller may only
participate once on the same phone line. The
final test before looking up a second caller
verifies that the caller has not participated
within the last 24 hours. These queries are
performed remotely to the LDC Oracle server.

Now that the first caller has been processed, a
second caller must be located from the list of
available participants. A database query
returns a pin and phone number set. It dials
the second caller, asks for the participant by
name, and asks for a pin. The second user
(called the slave) is given up to 3 chances to
enter a valid pin, which is compared to the
value returned by the original query. If the second participant is not available or does not enter a
valid pin, another caller will be attempted. Up to 5 callers will be tested in this manner. If none are
available, an error message will be sent to the first caller. This last query will also end the local
database server process.

Once both callers are on-line and verified, a welcome message and brief instructions are played to
both parties. After a topic prompt is played, the two callers are connected. After one minute of
introductions, both sides of the conversation are recorded. After this recording, both callers are
thanked and the call is ended. A final call_staus query is given to the oracle server to end the call.

There are only two inconsistencies between the Intervoice implementation and this
implementation. The first difference is a more limited call status code—our system only outputs
three values (connected, no answer, or busy), while the Intervoice system outputs 11 values
(indicating specific trunk and line problems). This information is available from the linkon
hardware, but changes to the dial item would be necessary to provide this level of information.
The second problem is reading dtmf characters during the playback of an audible prompt. This
method is simply not fast enough on the Linkon hardware, so it is not used in the full interface.

A feasible implementation of the LDC SWB-II phase 3 protocol has been developed on our UNIX
based telephone data collection system. The database aspects of the application will prove very
helpful for other applications, as the perl scripts are written in a modular fashion and are highly
reusable. All levels of the system, from the hardware to the application builder, have proven
robust through strenuous local testing. The intense system design also provided valuable feedback
to the design process—the SWB exercise has vastly improved the data collection system.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 42 OF 78

8. CONCLUSIONS

We have developed a robust, fully-expandable system for platform-independent collection of
telephone speech data. Our object-oriented software libraries and easy-to-use GUI provide
powerful tools with which even a novice user can efficiently create complex applications. This
document provides a detailed overview of this system, as well as a tutorial to illustrate prototyping
of applications. While the current focus of the speech research community is recognition of
broadcast news (HUB-4), significant effort is still expended towards SWITCHBOARD-type
telephone data, for which this system will play a pivotal role.

A software system of this magnitude can, of course, be implemented in numerous ways. The
code-base has undergone multiple revisions and additions as the program definition has evolved.
Also, extensive testing with the SWITCHBOARD application brought many practical bottlenecks
to the surface. As the main phase of the Linkon project draws to a close, several ideas for
expansion of the current system come to mind. For instance, adding an include directive to the
parameter file would provide several benefits, including basic modularity and an easy mechanism
to re-use pieces of code and faster editing of the resulting smaller parameter files. A more
powerful interface to the application builder’s debug mode would be a helpful addition. While the
SWITCHBOARD application we developed in-house proves the feasibility of the system for a
serious application, these additions would only serve to strengthen the usability of the system.

In addition to the software expansions mentioned above, it would be interesting to migrate the
system to a new set of hardware. Specifically, an ATM interface to the phone network may prove
to be more cost effective for high call volumes in the years to come. The code was specifically
written with such a transition in mind, but undoubtedly issues will arise in such a transition. The
only true measure of hardware independence is the effort involved in porting a system.

Adherent to ISIP’s commitment to public domain software, this document and the complete
software system is available athttp://www.isip.msstate.edu/resources/technology/projects/1997/
t1_interface.

9. ACKNOWLEDGEMENTS

We wish to thank Jack Godfrey1, Mark Liberman, Dave Graff, Kevin Walker, George Zipperlen,
and all of the staff at the Linguistic Data Consortium for funding and supporting this work as well
as for their significant technical assistance throughout the course of the project. Vicki Smith, Kay
Franklin, and the network support team at MCI were instrumental in helping us decipher our
digital interface to the phone network. Anna M. Linley, George Dinsdale, and Jack Lin of Linkon
Corporation should also be recognized for hardware technical support at the beginning of the
project.

The first student engineer to work on this project was Paul Kornman, one of the original members
of ISIP. He joined ISIP in Fall’94 as a Junior, one of the finest undergraduates in the ECE
department. It was partly Paul’s zeal for telecommunication networks (he was also trying to

1.Dr. Godfrey has moved back to Texas Instruments during the course of the project.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 43 OF 78

connect his apartment complex with a T1 line) that inspired us to take on such a project. Paul
Kornman was killed in an auto accident by a drunk driver in the early morning on Tuesday,
October 17, 1995. True to Paul, he was driving home at 1 AM after studying late into the night at
his office in Simrall Hall. Paul was an excellent engineer and a good friend who will be missed.

10. REFERENCES

[1] J.J. Godfrey, E.C. Holliman, and J. McDaniel, “SWITCHBOARD: Telephone Speech
Corpus for Research and Development,” inProceedings IEEE International Conference on
Acoustics, Speech, and Signal Processing, pp. I-517-I-520, San Francisco, California, USA,
March 1992.

[2] B. Wheatley and J. Picone, “Voice Across America: Toward Robust Speaker Independent
Speech Recognition For Telecommunications Applications,”Digital Signal Processing: A
Review Journal, vol. 1, no. 2, pp. 45-64, April 1991.

[3] J. Picone, “Managing Software Complexity in Signal Processing Research,” inProceedings
IEEE International Conference on Acoustics, Speech, and Signal Processing,
pp. III-41-III-44, Minneapolis, Minnesota, USA, April 1993.

[4] J.E. Porter, “Features of T1 Line CODEC Code Distributions,” ITT
Aerospace/Communications Division, 10060 Carroll Canyon Road, San Diego, CA 92131,
July 1991.

[5] “Java Speech API: A White Paper,” available at
http://java.sun.com/products/java-media/speech/, Sun Microsystems, 1998.

[6] LinkonCommunicationsBoardDirectDriver InterfaceProgrammer’sGuideandReference
Manual. Release 5.0.0, July 17, 1996. Linkon Corporation.

[7] J. Fiscus and J. Garafolo, Speech Header Resources (SPHERE),
http://www.itl.nist.gov/div894/894.01/software.htm

[8] A. Ganapathiraju and J. Picone, “EchoCancellationFor EvaluatingSpeaker Identification
Technology.” Proceedings of IEEE Southeastcon, pp. 100-102, Blacksburg, Virginia, USA,
April 1997.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 44 OF 78

APPENDIX A. ITEM DEFINITIONS

A data collection system parameter file is made up of two parts, general parameters and items.
The general parameters, described in Appendix B, are parameters common to and possibly used
by each item in the system. The actual application, however, is designed by linking a list of items
together. This section describes the behavior of items, the basic building blocks of database
applications.

This is an object oriented system, so user data is always kept WITHIN the individual items
themselves. The only two types of data that can be passed between objects are character strings
and filenames. To access dynamic data that has been set earlier in the program, simply refer to the
name of the item in which the data was collected. Each type of item interprets the data differently,
as evident in the different “input data” information.

The normal control flow of a program is to traverse each item in order. This leads to very static
systems, so the system needs additional parameters in order to be capable of more complex flows.
The flow altering mechanism provided by the system can be simplified toif ERROR jump NAME,
where name is the name you assign to another item. This basic structure can be built upon to
provide very complex programs.

These are the available item types:

• wait for call . 45
• dial . 46
• hangup. 48
• play 49
• record 51
• synthesize 52
• get dtmf 53
• check dtmf . 55
• save number . 56
• set number. 57
• conference connect 58
• conference disconnect . 59
• shell . 60
• mail 62
• direct jump 64
• iterate. 65
• kill program. 66

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 45 OF 78

Item: wait for call

Description:

This item puts the line in an idle (on-hook) state until an in-bound call
arrives. Upon arrival of the call, the line comes off-hook and the call is
answered. The RT-ANI information (caller-id) of the user who called
is stored and can be referenced whenever required.

Parameters:

none.

Output:

Dtmf is set to the phone number that dialed in.

Conferencing:

Can be performed on either the master or slave channel.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 46 OF 78

Item: dial

Description:

This item performs a hook flash and then dials the specified number.
When someone on the other end of the line speaks a word, the item is
considered to be successful and it moves on. If a timeout occurs (no
answer), the application aborts and tries to jump to the specified operation.

Parameters:

number to dial (referenced) (ref_name):
The telephone number is referenced from this item. If this is specified, the statically
expressed telephone number specified in the dtmf parameter is ignored and instead, the
system dials the dtmf string stored in the item named here. This should typically be set to
reference an item of type get dtmf or a shell command. The data flow can be seen
visually as the bottom arrows of the plot, data is “pulled” from its origin to where it is
used.

number to dial (static) (dtmf):
This is the telephone number that is dialed. This can be left NULL and the reference
object can be set to dial the numbers set in another item, such as a “get dtmf” or a “shell
command” item.

connecting message (filename_0):
This parameter can be to a NIST SPHERE file containing an audio message such as
“Connecting now.” It can be played in the future if appropriate by using a play item
configured to reference the dial item.

busy message (filename_1):
This parameter can be set to a NIST SPHERE file containing an audio message such as
“The number was busy, please try again later.” It can be played in the future if
appropriate by using a play item configured to reference the dial item.

no connection message (filename_2):
This parameter can be set to a file containing an audio message such as “No connection
was made.” It can be played in the future if appropriate by using a play item configured
to reference the dial item.

jump to if no connection (jump_name):
This parameter controls the behavior of the item on an unsuccessful dial. If the dial
attempt fails (no connection is made), control aborts to the item with this name. If no
value is specified here, control advances to the next item regardless of exit status. The
control flow can be seen visually by the arrow leaving the top of the dial item.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 47 OF 78

Output:

out_filename is set to the appropriate status file. A good use of the output from a dial
object would be to create a new play item after the dial object. By configuring the play
item with the dial item as its referenced item, the audible dial status will be played.

Conferencing:

Can be performed on either master or slave.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 48 OF 78

Item: hangup

Description:

This item terminates the current connection by hanging up the line.
After the hook flash, the line is left in an idle (off-hook) state.

Parameters:

goodbye message (filename_0):
This parameter can be set to a file that is played to the user before hanging up the line. It
is played, of course, only if the user is still on the line and has not hung up.

Output: none.

Conferencing:

Can be performed on either the master or slave channels.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 49 OF 78

Item: play

Description:

This item plays the specified audio file to the line. The audio file
should be in the NIST SPHERE file format, set to 8kHz, 8 bit u-law
data. The signal is normalized before playing through scaling by the
sample_max SPHERE header entry.

If the max number of digits parameter is set to a non-zero value, then playback is aborted
on any key-press (effectively ignoring this parameter). The abort keys parameter will
instead be used to specify the TERMINAL character for a string of digits. If the max
number of digits parameter is greater than 1, the hardware waits for the specified amount
of time after a key-press aborts playback for further dtmf keys.

Parameters:

filename to play (static) (filename_0):
This parameter specifies the NIST SPHERE filename to be played.

play abort keys (abort_keys):
These are various dtmf keys that make up the dtmf interrupt mask. Any of these keys
being hit causes the current item to abort playback. If a key is not specified in this list,
the board does not respond to it as a user input. If the max number of digits parameter is
set to a non-zero value, then playback is aborted on any key-press (effectively ignoring
this parameter). Instead, the abort keys parameter is used to specify the TERMINAL
character for a string of digits of digits (if n > 1).

max number of digits (speaker_mode):
This is the maximum number of digits to be read from the dtmf (touch tone) keypad.
This is a useful parameter if the number of digits to be read from the user is known in
advance. For a menu situation, setting this to ‘1’ causes only one digit to be read and then
the system moves on instantly, waiting no longer for the next character.

wait time between digits (wait_interval):
This is the maximum amount of time that this item waits for between dtmf keys. If an
event does not come in this interval, the item aborts and waits no longer for further
digits.

filename to play (referenced) (ref_name):
Instead of specifying a static filename to be played, the user can reference the filename of
another item. The referenced item should usually be of type record (i.e. play the newly
recorded audio file) or shell command (i.e. play the file specified by the FILENAME:
header in the program output). The data flow can be seen visually as the bottom arrows
of the plot, the data is “pulled” from its origin to where it is used.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 50 OF 78

jump if dtmf keys are hit (jump_name):
This item jumps to the named item if the following conditions are met: 1. this parameter
points to a valid name 2. the abort keys parameter is not null 3. the number of digits is
greater than 0 4. a dtmf key is hit during playback

Output:

The dtmf string read is available as output data.

Conferencing:

Can be performed on either the master, slave, or both channels.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 51 OF 78

Item: record

Description:

This item records audio data over the line into a NIST SPHERE file.
There are two ways to specify when recording will stop:

1. use the signal detector --- this will cause data to be recorded as long as a signal
is present (within specified parameters, see Appendix D).

2. use the wait time to specify the duration of recording, thus disabling the signal
detector.

Parameters:

filename template (filename_template):
The characters in this field are added to the internal program data (including the speaker
number) to create a unique filename. Note that the user may use the same filename
template only once within an application.

speaker mode (speaker_mode):
This field is copied directly into the recorded NIST SPHERE file. Commonly used
values for this field are “read,” “prompted,” or “conversational.”

Output:

the main recorded file is saved in out_filename, the length of recording (in seconds) is
stored into dtmf.

Conferencing:

Can be performed on either master, slave, or both channels. In the conference record
mode (both), two files will be created. The filenames will be calculated by combining the
filename_template and the channel number. It should also be noted that a conference
record will always return equal duration recordings in the two channels, even if cropping
one channel is necessary.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 52 OF 78

Item: synthesize

Description:

This item causes the data string of numbers to be converted into an
audio signal and played over the line. Non-numeric characters in the
data string are ignored.

Parameters:

abort keys (abort_keys):
These are various dtmf keys that make up the dtmf interrupt mask. Any of these keys
being hit causes the current item to abort its action. The hardware does not abort an item
for a key not specified in this list.

filename for digit 0 (filename_0):
This is the filename (including full pathname) for the ‘0’ digit NIST SPHERE file. From
this filename all other digit filenames are permuted by substituting the last ‘0’ with ‘1’
through ‘9’, and optionally ‘11’ for a pause (see the speaker_mode parameter for
details).

telephone number? (speaker_mode):
This parameter is used to tell the synthesize item to play the number as a telephone
number (e.g. 1-601-555-1212 vs. 16015551212). Placing a true value (non-null) in this
space causes the appropriate pauses to be inserted in the playback (the default behavior is
to play a number with no breaks in the output).

data string (static) (dtmf):
This field is used to statically set a string. The characters in this field commonly
correspond to dtmf keys on a touch-tone keypad, but any ASCII character (such as
program arguments) can also be specified.

data string (referenced) (ref_name):
This field is used to reference a string from another item. If the user specifies the name of
an item that has a dtmf parameter set (e.g. get dtmf, shell command, play, wait for call,
iterate, etc.), then the value in this item’s string container (dtmf) is used. This string of
characters commonly corresponds to dtmf keys on a touch-tone keypad, but any ASCII
character (such as program arguments) can also be specified. The data flow can be seen
visually as the bottom arrows of the plot, data is “pulled” from its origin to where it is
being used.

Output: none.

Conferencing:

Can be performed on either master or slave.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 53 OF 78

Item: get dtmf

Description:

This item reads a string of dtmf (touch-tone) characters entered by the
user and stores them to internal data. These characters can be
referenced for use by other items, see help on referencing data for
more information.

An end of string event terminates the reading of data. The end of string can be generated
in three ways:

1. a timeout waiting for a dtmf key (a key-press before timeout occurs resets the
wait)

2. number of characters read exceeds the value of the max number of digits
parameter

3. a terminal character can be specified through the abort_keys parameter

The end-of-string terminal character is not returned as part of the string.

Parameters:

terminal key (abort_keys):
The get dtmf item reads dtmf keys from the keypad, and concatenates all the accepted
key-presses to the current string. This field is used to specify the TERMINAL character
in such a string of dtmf key-presses.

key timeout (wait_interval):
This is the maximum amount of time that this item waits for a dtmf key to be hit. If an
event does not come in this amount of time, the item aborts its action. If it has jump
capabilities, it performs the jump in this situation. Note that the board waits for this
length of time between each digit. It only tries to alter the control flow if no keys are hit.
The control flow can be seen visually by the arrow leaving the top of the item’s icon.

max number of digits (speaker_mode):
This is the maximum number of digits to be read from the dtmf (touch tone) keypad.
This is a useful parameter if the number of digits to be read from the user is known in
advance. For a menu situation, setting this to ‘1’ causes only one digit to be read and then
the system moves on instantly, waiting no longer for the next character.

short circuit data (referenced) (ref_name):
This field is used to reference a string from another item. If the user specifies the name of
an item that has a dtmf parameter set (e.g. get dtmf, shell command, play, wait for call,
iterate, etc.), then the value in this item’s string container (dtmf) is copied into the data
container for this get dtmf item as if it was entered on the keypad. Control is advanced
immediately to the next item. This feature is used to create the common task block of

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 54 OF 78

prompting for and reading a string from the user’s dtmf keypad. The play item can be
configured to read dtmf keys if they are hit during playback, but it does not wait after the
end of the file if a key has not been hit. The get dtmf item is configured immediately
following the play prompt to try to import the string read. If the user begins to input a
string during the prompt, the entire string entered is copied into the data string container
of this get dtmf item. Later in the application, the user need only to reference the data
string held by this get dtmf item to read the data entered from either the play prompt or
this get dtmf item. This string of characters commonly corresponds to dtmf keys on a
touch-tone keypad, but any ASCII character (such as program arguments) can be
specified. The data flow can be seen visually as the bottom arrows of the plot, data is
“pulled” from its origin to where it is being used.

jump to on time out (jump_name):
If no valid dtmf key is hit within the time limit, control aborts to an item with this name.
The control flow can be seen visually by the arrow leaving the top of the item’s icon.

Output:

The string of characters is saved into dtmf

Conferencing:

Can be performed on master, slave, or both. If the both option is used, only one string is
kept, both channels being merged in the order in which the keys were hit.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 55 OF 78

Item: check dtmf

Description:

This item makes a comparison test of two character strings. If the
match fails, the control flow jumps to a specified item. If the match is
successful, the control flow passes to the next item as expected.

This can be visualized by plotting the state graph.

If you wish to implement a "jump to if match" system, have a "direct jump" item
immediately follow this item, and have it jump to the match item. Then configure the
current item to jump to the successor of the jump item.

Parameters:

list of numbers (filename_0):
This is a file containing a list of strings that is compared against the referenced dtmf
string. If the referenced data string does not match any of the strings in this file, the
comparison fails and the item jumps to the specified item. A successful match results in
normal program flow to the next item.

specific number (dtmf):
This is a specific data string that can be compared against the referenced dtmf number
string. If the referenced data string does not match any the specified string, the
comparison fails and the item jumps to the specified item. A successful match results in
normal program flow to the next item. The control flow can be seen visually by the arrow
leaving the top of the check dtmf item.

string to check (referenced) (ref_name):
This field contains the name of the item who’s data is of interest in the comparison
function. It is most likely an item of type get dtmf, shell command, or iterate. The data
flow can be seen visually as the bottom arrows of the plot, the data is “pulled” from its
origin to where it is used.

jump to if no match (jump_name):
If the comparison of the referenced data string and the string(s) specified in this item
fails, control aborts to the item specified with this name. The control flow can be seen
visually by the arrow leaving the top of the check dtmf item.

Output: none.

Conferencing:

N/A.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 56 OF 78

Item: save number

Description:

This item saves a data string to a disk file. The filename is generated in
the same way as that for the record item, see help on
filename_template for more information. This is a very useful
mechanism for databases to associate sequentially assigned speaker numbers with
preassigned PINs or speaker identification numbers.

Parameters:

data string (referenced) (ref_name):
This field is used to reference a string from another item. If the user specifies the name of
an item that has a dtmf parameter set (e.g. get dtmf, shell command, play, wait for call,
iterate, etc.), then the value in this item’s string container (dtmf) is used. This string of
characters commonly corresponds to dtmf keys on a touch-tone keypad, but any ASCII
character (such as program arguments) can also be specified. The data flow can be seen
visually as the bottom arrows of the plot, data is “pulled” from its origin to where it is
being used.

filename template (filename_template):
The characters in this field are added to the internal program data (including the speaker
number) to create a unique filename. Note that the user may use the same filename
template only once within an application.

Output:

none.

Conferencing:

N/A

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 57 OF 78

Item: set number

Description:

This item alters the internal dtmf string data of another item to the
specified value. It is most commonly used to specify the name of an
inner loop counter to reset counts during execution of outer loops.

Instead of the typical items that only read data from another item, this item writes data to
another item.

Some caution is advised in using this item. Some items keep permanent data and will not
be reset across calls, and therefore should not be processed with this item. For example,
changing the compare value in a check dtmf item could cause a valid number to be
rejected.

If the value specified is “reset iteration count” and the referenced item (or target item) is
of type iteration, then the iteration will reset to its initial value.

Parameters:

target item (referenced) (ref_name):
This field contains the name of the item in which data is set. It is most commonly used to
specify the name of an inner loop iteration counter, to reset it outside of the nested loop.
The data flow can be seen visually as the bottom arrows of the plot, data generally
appears to be “pulled” from its origin to where it is used. In case of the set number item,
however, data flows in the opposite direction of the arrow.

value (dtmf):
This filed contains the value to be exported to the named item. The dtmf parameter of the
named item is then altered to reflect the value specified here. Use of this item is the only
way to externally affect another item’s data. This item can also be used to reset an
iteration item to its initial value. This can be done by either explicitly specifying the
initial value in this field; or by using the key phrase “reset iteration count”, in which case
the iteration item will reset itself to its initial value. The latter method is preferred,
keeping the reset value with the iteration item rather than this reset item.

Output:

The dtmf parameter may be accessed in the normal manner.

Conferencing:

N/A

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 58 OF 78

Item: conference connect

Description:

This item creates a full duplex teleconferencing connection between
the master and the slave channel. As long as a conferencing
connection is made, no audio output operation (e.g. play, synthesize
etc.) may be performed. Record, get dtmf, and all call flow items can be executed as
normal.

Execution of this item has no effect if a teleconferencing connection already exists.

Parameters:

none

Output:

none

Conferencing:

Always performed on master channel.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 59 OF 78

Item: conference disconnect

Description:

This items causes a teleconferencing connection to be broken. This
will allow audio signals to once again be output to the channels.

Execution of this item has no effect if no teleconferencing connection currently exists.

Parameters:

none

Output:

none

Conferencing:

Always performed on master channel.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 60 OF 78

Item: shell

Description:

Execute the command specified by the shell_command parameter. The
program is run with no command line arguments, so it is often
necessary to write a shell script interface to use common utilities. The
input to the program is:

"<speaker_number>|<channel>|<dtmf>"

Where speaker_number is the sequential speaker number of the current caller, channel is
the line number associated with the master channel, and dtmf is the referenced data
string.

If the command is run in the foreground, program output is saved in a way that facilitates
easy referencing by other items, such as check dtmf.

This item aborts (and tries to jump) if the external program returns ISIP_ERROR only in
interactive mode.

Parameters:

command to execute (shell_command):
This is an external shell command that is executed by the system.

background process? (speaker_mode):
This parameter is used to specify whether the shell command should be run in the
background or interactively. If the command is run in the background (non NULL value),
control returns immediately and advances to the next item without waiting for any output
or exit status. If this field is left NULL, the command is run interactively. Such an
interactive shell command waits until the program completes execution, stores the
program output, and possibly jumps if the program exits with an error status.

data string (static) (dtmf):
This field is used to statically set a string. The characters in this field commonly
correspond to dtmf keys on a touch-tone keypad, but any ASCII character (such as
program arguments) can also be specified.

data string (referenced) (ref_name):
This field is used to reference a string from another item. If the user specifies the name of
an item that has a dtmf parameter set (e.g. get dtmf, shell command, play, wait for call,
iterate, etc.), then the value in this item’s string container (dtmf) is used. This string of
characters commonly corresponds to dtmf keys on a touch-tone keypad, but any ASCII
character (such as program arguments) can also be specified. The data flow can be seen

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 61 OF 78

visually as the bottom arrows of the plot, data is “pulled” from its origin to where it is
being used.

jump to on error (jump_name):
If the shell program encounters an error (exit status of ISIP_ERROR), control aborts to
an item with this name. The program can more reliably return an error status by printing
the string “RETURN: $ISIP_ERROR” to stdout. The control flow can be seen visually
by the arrow leaving the top of the shell item.

Output:

dtmf holds the program output.

Conferencing:

N/A.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 62 OF 78

Item: mail

Description:

Send mail about an event. The /bin/mail standard Unix sendmail
program will be used. Mail will be sent to the admin alias mail address
specified in the general parameters. The following headers will be
included in the message:

SPEAKER_NUMBER: <sequentially assigned speaker number>

DTMF: <string of characters to include>

REF-DTMF: <string of characters from referenced item (if any)>

The contents of “file to include” and the referenced output file will be will be mailed,
each wrapped in:

“\n---------------------- begin File %s --------------\n”

“\n---------------------- end File %s ----------------\n”

where %s is the file name.

Parameters:

email address (address):
This is the email address that the email generated by this item will be sent to. This
address can either be set to a single-user address, an alias or to a space-separated set of
email addresses. e.g. single user: address = admin@mydomain.edu, list: address =
admin1@domain1.edu admin2@domain2.com

file to include (filename_0):
The contents of the file specified by this parameter, and those of the referenced output
file are mailed, each wrapped in: “\n---------------------- begin File %s --------------\n”,
“\n---------------------- end File %s ----------------\n”, where %s is the file name.

data string (static) (dtmf):
This field is used to statically set a string. The characters in this field commonly
correspond to dtmf keys on a touch-tone keypad, but any ASCII character (such as
program arguments) can also be specified.

data string and/or file (referenced) (ref_name):
This field is used to reference data from another item. If the user specifies the name of an
item that has a dtmf parameter set (e.g. get dtmf, shell command, play, wait for call,
iterate, etc.), then the value in this items string container (dtmf) is used. This string of
characters commonly correspond to dtmf keys on a touch-tone keypad, but any ASCII
character (such as program arguments) can be specified. If the named item has the
filename set, the contents of this file are included in the mail message. The data flow can

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 63 OF 78

be seen visually as the bottom arrows of the plot, data is “pulled” from its origin to where
it is used.

Output:

none.

Conferencing:

N/A.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 64 OF 78

Item: direct jump

Description:

Unconditionally jump to the named item.

This is useful in applying modularity to applications.

Parameters:

jump to item (jump_name):
Control is passed to an item named in this field. The control flow can be seen visually by
the arrow leaving the top of the item’s icon.

Output:

none.

Conferencing:

N/A

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 65 OF 78

Item: iterate

Description:

This item holds an internal count value. Each time this item is
executed (including the first time), the count value is incremented by
the step value. Both step and the internal count must be numerical
values.

This item is meant to be used in conjunction with check dtmf so as to limit the number of
times a user can attempt to enter a valid pin number, to prevent security risks.

Parameters:

initial value (initial):
This is the initial value for an iterate item. A set number item can reset an iterate item to
its initial value by using the key phrase “reset iteration count” instead of specifying a
numeric value.

step value (step):
This is the step value for an iterate item. This is added to the internal count held by the
iterate item (in the dtmf data string container) every time the iterate item is executed,
including the first.

Output:

The present count is available.

Conferencing:

N/A

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 66 OF 78

Item: kill program

Description:

This item kills the application. After execution, it will accept no more
calls, the UNIX process will end, and the allocated channels will be
freed to be used by other applications. This is meant to be available as
an administrative item to allow a clean exit method. This will probably not be used in the
final version of applications, but is a very helpful tool for development.

Parameters:

none.

Output:

none.

Conferencing:

N/A

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 67 OF 78

APPENDIX B. GENERAL PARAMETERS

A data collection system parameter file is made up of two components, general parameters and
items. The general parameters, described in detail in this section, are parameters common to and
possibly used by each item in the system.

number of items num_items

This is a very generous estimate for the total number of items that may be in the system.
This number MUST be greater than or equal to the actual number of items in the system.
This field defines both the memory allocated at the start of the system and the length of
each log entry. Only applications that have the num_items set to the same number can
run on a common set of log files. If a small tolerance is allowed in this parameter, minor
changes to the parameter file do not render previous log files unusable.

database name database_name

This field forms a part of the header of all SPHERE speech data files generated by the
data collection system using the SPHERE field “database_name.”

monitor command monitor_command

The monitor program is useful for a system meant to run continuously (most data
collection systems). This program will be run automatically upon the system being
started and will monitor the current system processes, making sure that your application
stays among them. If the program is to die, mail will be sent to the email address
specified by the admin_alias parameter. An additional parameter used by this system is
the program_name. This text string allows the monitor to distinguish between multiple
processes running on the same system. Both the monitor command, the admin alias, and
the program name must be set in order for the monitor to run. Leaving the monitor
command parameter blank causes no monitor to be run.

program name program_name

This is the name that will be associated with the run-time process, and the name used to
identify the program in the admin mail sent, if the program were to die. This need not be
set if the monitor is you do not expect to use the monitor.

Administrative mail alias admin_alias

This is the email address (or address list) to which email will be sent during serious
program diagnostics. Program termination (as reported by the optional run_monitor) or
the data disk filling up are the only two events currently supported.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 68 OF 78

speaker directory format speaker_directory_format

This is the format that will be used to create the data directories for the speakers. It is
used as: sprintf((char*)data_dir,speaker_directory_format,(int)speaker_number); Note
that it uses the ANSI C sprintf function, formatted to include one long integer as data.
See the C documentation on sprintf for more information. It is advisable to force leading
zeros onto this format. For a five digit number, this is accomplished by using “%5.5d”
instead of “%5d”.

needed disk space disk_info

This is the amount of free disk space (in megabytes) that is needed per call. If this
amount is not available, the system will not accept any new callers and try to inform by
email.

data collection system data_collection_system

This is the main data collection system variable. For the linkon system, this corresponds
to the channel number. Leaving this value blank will allow the system to use the first
available channel for the application. If the correct channel number is not available from
the choices, please consult the User’s guide about configuring the channels in the GUI.
For a two channel application it is necessary to specify both channel numbers.

teleconferencing system data_collection_system

This is the main data collection system variable. For the linkon system, this corresponds
to the channel number. Leaving this value blank will allow the system to use the first
available channel for the application. If the correct channel number is not available from
the choices, please consult the User’s guide about configuring the channels in the GUI.
For a two channel application it is necessary to specify both channel numbers.

database logfile database_logfile

This is the log file for the database being collected. It is a binary file that can be read but
should not be edited by the user. Since the size of each entry corresponds to the
num_items parameter, changing this parameter requires a new log file to be used. It is
probably not a good idea to keep this log file on the same disk as the incoming data. It is
possible to collect the same database over multiple processes (and phone lines). The
system parses to the end of the log file and locks each new speaker number as it needs
them. The lockf() protocol is used, which is secure even across NFS file systems. In
order to run multiple instances of the same application, only the data collection system
parameters need to be changed. If this file does not exist on program start-up, the
application creates it and makes the first entry as specified by the starting speaker
number parameter.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 69 OF 78

starting speaker number starting_speaker_number

Upon start-up, it is often preferable to start with a speaker number other than zero. The
system will automatically start at the next available number from the log file if it exists,
but it is sometimes desirable to use a new log file, or to cause a break (i.e.: starting at
1000 after a crash in which the last data collected was 843). If this parameter is not set or
set to -1, it uses the next available slot. If this parameter is set to a number that has
already been collected in the data file, the program will error (thereby preventing data
overwrite).

progress file progress_file

Through the use of the file specified by this parameter the application builder’s progress
may be interfaced to a currently running instance of the same application. Viewing the
application builder in this mode is the easiest way to debug a call flow, as the system will
automatically set the current item to be the item currently being executed in the system.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 70 OF 78

APPENDIX C. ITEM PARAMETERS

abort keys abort_keys

These are various dtmf keys that make up the dtmf interrupt mask. Any of these keys
being hit causes the current item to abort its action. The hardware does not abort an item
for a key not specified in this list.

background process? speaker_mode

This parameter is used to specify whether the shell command should be run in the
background or interactively. If the command is run in the background (non NULL value),
control returns immediately and advances to the next item without waiting for any output
or exit status. If this field is left NULL, the command is run interactively. Such an
interactive shell command waits until the program completes execution, stores the
program output, and possibly jumps if the program exits with an error status.

busy message filename_1

This parameter can be set to a NIST SPHERE file containing an audio message such as
“The number was busy, please try again later.” It can be played in the future if
appropriate by using a play item configured to reference the dial item.

command to execute shell_command

This is an external shell command that is executed by the system.

conference conf_channel

The value of this field determines whether the conferencing mode is used or not. If this is
set tomasteror ““, then it uses the master channel only. If set toslave, then only the
slave channel is used for this operation. If set toboth, then both channels are used
simultaneously for the operation. In the plot, M =master, S =slave, and B =both.

connecting message filename_0

This parameter can be to a NIST SPHERE file containing an audio message such as
“Connecting now.” It can be played in the future if appropriate by using a play item
configured to reference the dial item.

data string (referenced) ref_name

This field is used to reference a string from another item. If the user specifies the name of
an item that has a dtmf parameter set (e.g. get dtmf, shell command, play, wait for call,
iterate, etc.), then the value in this item’s string container (dtmf) is used. This string of
characters commonly corresponds to dtmf keys on a touch-tone keypad, but any ASCII

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 71 OF 78

character (such as program arguments) can also be specified. The data flow can be seen
visually as the bottom arrows of the plot, data is “pulled” from its origin to where it is
being used.

data string (static) dtmf

This field is used to statically set a string. The characters in this field commonly
correspond to dtmf keys on a touch-tone keypad, but any ASCII character (such as
program arguments) can also be specified.

data string and/or file (referenced) ref_name

This field is used to reference data from another item. If the user specifies the name of an
item that has a dtmf parameter set (e.g. get dtmf, shell command, play, wait for call,
iterate, etc.), then the value in this items string container (dtmf) is used. This string of
characters commonly correspond to dtmf keys on a touch-tone keypad, but any ASCII
character (such as program arguments) can be specified. If the named item has the
filename set, the contents of this file are included in the mail message. The data flow can
be seen visually as the bottom arrows of the plot, data is “pulled” from its origin to where
it is used.

email address address

This is the email address that the email generated by this item will be sent to. This
address can either be set to a single-user address, an alias or to a space-separated set of
email addresses. e.g. single user: address = admin@mydomain.edu, list: address =
admin1@domain1.edu admin2@domain2.com

file to include filename_0

The contents of the file specified by this parameter, and those of the referenced output
file are mailed, each wrapped in: “\n---------------------- begin File %s --------------\n”,
“\n---------------------- end File %s ----------------\n”, where %s is the file name.

filename for digit 0 filename_0

This is the filename (including full pathname) for the ‘0’ digit NIST SPHERE file. From
this filename all other digit filenames are permuted by substituting the last ‘0’ with ‘1’
through ‘9’, and optionally ‘11’ for a pause (see the speaker_mode parameter for
details).

filename template filename_template

The characters in this field are added to the internal program data (including the speaker
number) to create a unique filename. Note that the user may use the same filename
template only once within an application.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 72 OF 78

filename to play (referenced) ref_name

Instead of specifying a static filename to be played, the user can reference the filename of
another item. The referenced item should usually be of type record (i.e. play the newly
recorded audio file) or shell command (i.e. play the file specified by the FILENAME:
header in the program output). The data flow can be seen visually as the bottom arrows
of the plot, the data is “pulled” from its origin to where it is used.

filename to play (static) filename_0

This parameter specifies the NIST SPHERE filename to be played.

goodbye message filename_0

This parameter can be set to a file that is played to the user before hanging up the line. It
is played, of course, only if the user is still on the line and has not hung up.

initial value initial

This is the initial value for an iterate item. A set number item can reset an iterate item to
its initial value by using the key phrase “reset iteration count” instead of specifying a
numeric value.

jump if dtmf keys are hit jump_name

This item jumps to the named item if the following conditions are met: 1. this parameter
points to a valid name 2. the abort keys parameter is not null 3. the number of digits is
greater than 0 4. a dtmf key is hit during playback

jump to if no connection jump_name

This parameter controls the behavior of the item on an unsuccessful dial. If the dial
attempt fails (no connection is made), control aborts to the item with this name. If no
value is specified here, control advances to the next item regardless of exit status. The
control flow can be seen visually by the arrow leaving the top of the dial item.

jump to if no match jump_name

If the comparison of the referenced data string and the string(s) specified in this item
fails, control aborts to the item specified with this name. The control flow can be seen
visually by the arrow leaving the top of the check dtmf item.

jump to item jump_name

Control is passed to an item named in this field. The control flow can be seen visually by
the arrow leaving the top of the item’s icon.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 73 OF 78

jump to on error jump_name

If the shell program encounters an error (exit status of ISIP_ERROR), control aborts to
an item with this name. The program can more reliably return an error status by printing
the string “RETURN: $ISIP_ERROR” to stdout. The control flow can be seen visually
by the arrow leaving the top of the shell item.

jump to on time out jump_name

If no valid dtmf key is hit within the time limit, control aborts to an item with this name.
The control flow can be seen visually by the arrow leaving the top of the item’s icon.

key timeout wait_interval

This is the maximum amount of time that this item waits for a dtmf key to be hit. If an
event does not come in this amount of time, the item aborts its action. If it has jump
capabilities, it performs the jump in this situation. Note that the board waits for this
length of time between each digit. It only tries to alter the control flow if no keys are hit.
The control flow can be seen visually by the arrow leaving the top of the item’s icon.

list of numbers filename_0

This is a file containing a list of strings that is compared against the referenced dtmf
string. If the referenced data string does not match any of the strings in this file, the
comparison fails and the item jumps to the specified item. A successful match results in
normal program flow to the next item.

max number of digits speaker_mode

This is the maximum number of digits to be read from the dtmf (touch tone) keypad.
This is a useful parameter if the number of digits to be read from the user is known in
advance. For a menu situation, setting this to ‘1’ causes only one digit to be read and then
the system moves on instantly, waiting no longer for the next character.

no connection message filename_2

This parameter can be set to a file containing an audio message such as “No connection
was made.” It can be played in the future if appropriate by using a play item configured
to reference the dial item.

number to dial (referenced) ref_name

The telephone number is referenced from this item. If this is specified, the statically
expressed telephone number specified in the dtmf parameter is ignored and instead, the
system dials the dtmf string stored in the item named here. This should typically be set to

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 74 OF 78

reference an item of type get dtmf or a shell command. The data flow can be seen
visually as the bottom arrows of the plot, data is “pulled” from its origin to where it is
used.

number to dial (static) dtmf

This is the telephone number that is dialed. This can be left NULL and the reference
object can be set to dial the numbers set in another item, such as a “get dtmf” or a “shell
command” item.

play abort keys abort_keys

These are various dtmf keys that make up the dtmf interrupt mask. Any of these keys
being hit causes the current item to abort playback. If a key is not specified in this list,
the board does not respond to it as a user input. If the max number of digits parameter is
set to a non-zero value, then playback is aborted on any key-press (effectively ignoring
this parameter). Instead, the abort keys parameter is used to specify the TERMINAL
character for a string of digits of digits (if n > 1).

short circuit data (referenced) ref_name

This field is used to reference a string from another item. If the user specifies the name of
an item that has a dtmf parameter set (e.g. get dtmf, shell command, play, wait for call,
iterate, etc.), then the value in this item’s string container (dtmf) is copied into the data
container for this get dtmf item as if it was entered on the keypad. Control is advanced
immediately to the next item. This feature is used to create the common task block of
prompting for and reading a string from the user’s dtmf keypad. The play item can be
configured to read dtmf keys if they are hit during playback, but it does not wait after the
end of the file if a key has not been hit. The get dtmf item is configured immediately
following the play prompt to try to import the string read. If the user begins to input a
string during the prompt, the entire string entered is copied into the data string container
of this get dtmf item. Later in the application, the user need only to reference the data
string held by this get dtmf item to read the data entered from either the play prompt or
this get dtmf item. This string of characters commonly corresponds to dtmf keys on a
touch-tone keypad, but any ASCII character (such as program arguments) can be
specified. The data flow can be seen visually as the bottom arrows of the plot, data is
“pulled” from its origin to where it is being used.

speaker mode speaker_mode

This field is copied directly into the recorded NIST SPHERE file. Commonly used
values for this field are “read,” “prompted,” or “conversational.”

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 75 OF 78

specific number dtmf

This is a specific data string that can be compared against the referenced dtmf number
string. If the referenced data string does not match any the specified string, the
comparison fails and the item jumps to the specified item. A successful match results in
normal program flow to the next item. The control flow can be seen visually by the arrow
leaving the top of the check dtmf item.

step value step

This is the step value for an iterate item. This is added to the internal count held by the
iterate item (in the dtmf data string container) every time the iterate item is executed,
including the first.

string to check (referenced) ref_name

This field contains the name of the item who’s data is of interest in the comparison
function. It is most likely an item of type get dtmf, shell command, or iterate. The data
flow can be seen visually as the bottom arrows of the plot, the data is “pulled” from its
origin to where it is used.

target item (referenced) ref_name

This field contains the name of the item in which data is set. It is most commonly used to
specify the name of an inner loop iteration counter, to reset it outside of the nested loop.
The data flow can be seen visually as the bottom arrows of the plot, data generally
appears to be “pulled” from its origin to where it is used. In case of the set number item,
however, data flows in the opposite direction of the arrow.

telephone number? speaker_mode

This parameter is used to tell the synthesize item to play the number as a telephone
number (e.g. 1-601-555-1212 vs. 16015551212). Placing a true value (non-null) in this
space causes the appropriate pauses to be inserted in the playback (the default behavior is
to play a number with no breaks in the output).

terminal key abort_keys

The get dtmf item reads dtmf keys from the keypad, and concatenates all the accepted
key-presses to the current string. This field is used to specify the TERMINAL character
in such a string of dtmf key-presses.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 76 OF 78

value dtmf

This filed contains the value to be exported to the named item. The dtmf parameter of the
named item is then altered to reflect the value specified here. Use of this item is the only
way to externally affect another item’s data. This item can also be used to reset an
iteration item to its initial value. This can be done by either explicitly specifying the
initial value in this field; or by using the key phrase “reset iteration count”, in which case
the iteration item will reset itself to its initial value. The latter method is preferred,
keeping the reset value with the iteration item rather than this reset item.

wait time wait_interval

This is the maximum amount of time that this item waits for an event to occur. If an event
does not come in during this interval, the item aborts its action. If the item has jump
capabilities, it performas the jump in this situation. The control flow can be seen visually
by the arrow leaving the top of the item’s icon.

wait time between digits wait_interval

This is the maximum amount of time that this item waits for between dtmf keys. If an
event does not come in this interval, the item aborts and waits no longer for further
digits.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 77 OF 78

APPENDIX D. SIGNAL DETECTION PARAMETERS

The linkon system comes with a custom signal detector designed specifically for speech data
collection. The complete detection process can be configured with user specified parameters,
although the default values will usually suffice. We tried to be consistent with the standard naming
in the DSP and speech research community, in naming the signal detector parameters. Figure D.1
shows a typical speech signal and some important parameters which are described below. All
signal detection parameters related to time are specified in seconds.

It should also be noted here that in conference record mode cropping is used to guarantee exactly
equal duration files on the master and slave channels.

Figure D.1: A typical speech signal.

max duration

initial pad

final pad

max initial
silence

max final
silencemin

energy

non-signal-detected time wait_interval

Using this mode for record disables the signal detector. Only a specified abort key or
recording time exceeding a preset value will end the recording process.

sample frequency sample_frequency

This is the sample frequency at which the data will be sampled during recording.
Currently only 8000 Hz is supported by the Linkon hardware.

ISIP MARCH 15, 1997

SUN BASED T1 SPEECH DATA COLLECTION SYSTEM PAGE 78 OF 78

initial pad time initial_pad

This is the time in the recording process prior to which the signal detector is inactive.
This is useful, since in many instances the signal detector crops the initial part of the of
the speech because of the low signal levels.

final pad time final_pad

This amount of time (in seconds) will be padded to the end of the recorded utterance. For
the board’s signal detector this is a particularly necessary parameter, since the detector
only registers a rising edge of an utterance, a sustained signal will not be considered. As
a rule of thumb, for a symmetrical utterance, set this parameter to approximately 0.5
seconds longer than the initial_pad parameter.

maximum initial silence max_initial_silence

This is the maximum amount of silence that the signal detector will wait through before
it detects the first signal. If a silence longer than this period occurs before the first signal,
no utterance will be recorded.

maximum final silence max_final_silence

This is the maximum amount of silence that the signal detector will wait through after
already having heard a signal. Another way to think of this parameter is the maximum
silence that will occur between linguistic entities (could be words or syllables) in
utterances.

maximum duration max_duration

This is the maximum duration of time that you wish an utterance to be recorded. After
this time has expired, recording will terminate and the file will be cropped. The total time
of the recorded disk file will include the maximum duration and both the initial and final
pad times.

minimum detection energy min_energy

This parameter allows the sensitivity of the signal detector to be calibrated about the
channel’s noise level. 500000.0 is a reasonable value to use for a noisy analog line, a
digital line will have a much lower value. Having this value set too high will cause
speech signals to not register, too low will cause noise to register to the detector.

	Figure 3.1: screen capture of lk_appbuilder’s main window
	Figure 3.2: Example of the item configuration window
	Figure 3.3: Edit menu
	Figure 3.4: The application builder’s modeline.
	Figure 3.5: lk_appbuilder keybindings
	Figure 3.6: Application being designed
	Figure 3.7: Item menu
	Figure 3.8: The wait for call configuration window
	Figure 3.9: File menu
	Figure 3.10: Configuration menu
	Figure 3.11: Parameter settings
	Figure 3.12: A basic counting loop
	Figure 3.13: counting loop with prechecking of the LCV
	Figure 3.14: Nested counting loops
	Figure 3.15: basic prompt dtmf read
	Figure 3.16: Implementing a menu
	Figure 3.17: Reading and testing a user’s pin
	Figure 3.18: Util menu
	Figure 3.19: Debugging console
	introducing
	EXECUTIVE SUMMARY
	TABLE OF CONTENTS
	1 . ABSTRACT� 1
	2 . HISTORICAL PERSPECTIVE� 1
	3 . APPLICATION BUILDER (GUI)� 3
	3.1 . Quick Start with the Application Builder� 4
	3.2 . Basic Features� 4
	3.3 . Advanced Features 6
	3.4 . Building a Simple Application� 6
	3.5 Coordinating Multiple Items for Common Tasks 10
	3.6 Using Progress Mode to Debug Applications 13

	4 . PARAMETER FILEs� 15
	4.1 . Quick Start� 16
	4.2 . Overview of the Scripting Language Syntax� 16
	4.3 . Referencing Data� 16
	4.4 . Control Flow� 16
	4.5 . System Log Files� 17

	5 . THE C++ INTERFACE� 19
	5.1 . System Architecture� 20
	5.2 . Class Tele_interf — a Software Abstraction� 21
	5.3 Initialization and Configuration Methods 21
	5.4 Call management Methods 24
	5.5 Sphere Audio File Handling 25
	5.6 High-Level I/O Methods 27
	5.7 Low-Level I/O Methods 29
	5.8 Example Diagnostic Programs� 30

	6 . INSTALLATION� 32
	6.1 System Requirements 33
	6.2 Hardware Installation 33
	6.3 Linkon Software Installation 33
	6.4 Third Party Software Packages� 33
	6.5 Installing ISIP code.� 33
	6.6 Configuration of the T1 Line 34
	6.7 Echo on the Digital Network 34
	6.8 Linkon’s Analog System 35
	6.9 Basic Hardware Diagnostics 35

	7 SWITCHBOARD 37
	7.1 LDC’s SWITCHBOARD Protocol 38
	7.2 SWITCHBOARD Implementation 39

	8 . CONCLUSIONS 42
	9 . ACKNOWLEDGEMENTS� 42
	10 . REFERENCES� 43
	Appendix�A.�� Item DefinitionS� 44
	Appendix�B.�� General parameteRS� 67
	Appendix�C.�� Item parameters� 70
	Appendix�D.�� Signal detection parameters� 77
	Appendix�E.�� INDEX
	Appendix D.�� Signal detection parameters
	non-signal-detected time
	wait_interval
	sample frequency

	sample_frequency
	initial pad time

	initial_pad
	final pad time

	final_pad
	maximum initial silence

	max_initial_silence
	maximum final silence

	max_final_silence
	maximum duration

	max_duration
	minimum detection energy

	min_energy
	1.�� ABSTRACT
	2.�� HISTORICAL PERSPECTIVE
	Figure D.1: A typical speech signal.
	Sun Based T1 Speech Data Collection System i
	Sun Based T1 Speech Data Collection System ii
	Sun Based T1 Speech Data Collection System iii

	APPLICATION BUILDER (GUI) 3
	3.1.�� Quick Start with the Application Builder
	3.2.�� Basic Features
	3.3.�� Advanced Features
	3.4.�� Building a Simple Application
	3.5.�� Coordinating Multiple Items for Common Tasks
	3.6.�� Using Progress Mode to Debug Applications

	PARAMETER FILEs 4
	4.1.�� Quick Start
	4.2.�� Overview of the Scripting Language Syntax
	4.3.�� Referencing Data
	4.4.�� Control Flow
	4.5.�� System Log Files

	THE C++ INTERFACE 5
	5.1.�� System Architecture
	5.2.�� Class Tele_interf — a Software Abstraction
	5.3.�� Initialization and Configuration Methods
	5.4.�� Call management Methods
	5.5.�� Sphere Audio File Handling
	5.6.�� High-Level I/O Methods
	5.7.�� Low-Level I/O Methods
	5.8.�� Example Diagnostic Programs
	Figure 4.1: Parameter file language description — Backaus-Naur style
	Figure 4.2: Example Log file
	Figure 5.1: ISIP C++ code hierarchy
	Figure 5.2: The four possible states of a channel.
	Figure 5.3: class Tele_interf public functions.
	Figure 5.3: class Tele_interf public functions.
	Figure 5.4: NIST sphere file header fields. The shaded entries are those standard to NIST sphere ...
	Figure 5.5: Adding pauses to a telephone number
	Figure 7.1: Flowchart for SWITCHBOARD (section A)
	Figure 7.2: Flowchart for SWITCHBOARD (section B)
	Figure 7.3: Remote Oracle query specification
	Figure 7.4: Call_status field enumeration

	SWITCHBOARD 7
	7.1.�� LDC’s SWITCHBOARD Protocol
	7.2.�� SWITCHBOARD Implementation

	INSTALLATION 6
	6.1.�� System Requirements
	6.2.�� Hardware Installation
	6.3.�� Linkon Software Installation
	6.4.�� Third Party Software Packages
	6.5.�� Installing ISIP code.
	6.6.�� Configuration of the T1 Line
	6.7.�� Echo on the Digital Network
	6.8.�� Linkon’s Analog System
	6.9.�� Basic Hardware Diagnostics
	8.�� CONCLUSIONS
	9.�� ACKNOWLEDGEMENTS
	10.�� REFERENCES
	Appendix A.�� Item DefinitionS
	Item: wait for call
	Item: dial
	Item: hangup
	Item: play
	Item: record
	Item: synthesize
	Item: get dtmf
	Item: check dtmf
	Item: save number
	Item: set number
	Item: conference connect
	Item: conference disconnect
	Item: shell
	Item: mail
	Item: direct jump
	Item: iterate
	Item: kill program
	Appendix B.�� General parameteRS
	number of items
	num_items
	database name

	database_name
	monitor command

	monitor_command
	program name

	program_name
	Administrative mail alias

	admin_alias
	speaker directory format

	speaker_directory_format
	needed disk space

	disk_info
	data collection system

	data_collection_system
	teleconferencing system

	data_collection_system
	database logfile

	database_logfile
	starting speaker number

	starting_speaker_number
	progress file

	progress_file

	Appendix C.�� Item parameters
	abort keys
	abort_keys
	background process?

	speaker_mode
	busy message

	filename_1
	command to execute

	shell_command
	conference

	conf_channel
	connecting message

	filename_0
	data string (referenced)

	ref_name
	data string (static)

	dtmf
	data string and/or file (referenced)

	ref_name
	email address

	address
	file to include

	filename_0
	filename for digit 0

	filename_0
	filename template

	filename_template
	filename to play (referenced)

	ref_name
	filename to play (static)

	filename_0
	goodbye message

	filename_0
	initial value

	initial
	jump if dtmf keys are hit

	jump_name
	jump to if no connection

	jump_name
	jump to if no match

	jump_name
	jump to item

	jump_name
	jump to on error

	jump_name
	jump to on time out

	jump_name
	key timeout

	wait_interval
	list of numbers

	filename_0
	max number of digits

	speaker_mode
	no connection message

	filename_2
	number to dial (referenced)

	ref_name
	number to dial (static)

	dtmf
	play abort keys

	abort_keys
	short circuit data (referenced)

	ref_name
	speaker mode

	speaker_mode
	specific number

	dtmf
	step value

	step
	string to check (referenced)

	ref_name
	target item (referenced)

	ref_name
	telephone number?

	speaker_mode
	terminal key

	abort_keys
	value

	dtmf
	wait time

	wait_interval
	wait time between digits

	wait_interval

