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1. INTRODUCTION

There are many possible techniques for classification of data. Principle Component Analysis
and Linear Discriminant Analysis (LDA) are two commonly used techniques for data classific
and dimensionality reduction. Linear Discriminant Analysis easily handles the case wher
within-class frequencies are unequal and their performances has been examined on ra
generated test data. This method maximizes the ratio of between-class variance to the withi
variance in any particular data set thereby guaranteeing maximal separability. The use of
Discriminant Analysis for data classification is applied to classification problem in spe
recognition.We decided to implement an algorithm for LDA in hopes of providing be
classification compared to Principle Components Analysis. The prime difference between LDA
PCA is that PCA does more of feature classification and LDA does data classification. In PCA
shape and location of the original data sets changes when transformed to a different space w
LDA doesn’t change the location but only tries to provide more class separability and dr
decision region between the given classes.This method also helps to better understa
distribution of the feature data. Figure 1 will be used as an example to explain and illustrat
theory of LDA.
Figure 1. Figure showing data sets and test vectors in original
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2. DIFFERENT APPROACHES TO LDA

Data sets can be transformed and test vectors can be classified in the transformed space
different approaches.

Class-dependent transformation: This type of approach involves maximizing the ratio of betwe
class variance to within class variance. The main objective is to maximize this ratio so that ade
class separability is obtained. The class-specific type approach involves using two optimizing c
for transforming the data sets independently.

Class-independent transformation: This approach involves maximizing the ratio of overall varian
to within class variance. This approach uses only one optimizing criterion to transform the dat
and hence all data points irrespective of their class identity are transformed using this transfo
this type of LDA, each class is considered as a separate class against all other classes.

3. MATHEMATICAL OPERATIONS

In this section, the mathematical operations involved in using LDA will be analyzed the aid of sa
set in Figure 1. For ease of understanding, this concept is applied to a two-class problem. Eac
set has 100 2-D data points. Note that the mathematical formulation of this classification str
parallels the Matlab implementation associated with this work.

1. Formulate the data sets and the test sets, which are to be classified in the original space.
given data sets and the test vectors are formulated, a graphical plot of the data sets and
vectors for the example considered in original space is shown in Figure 1. For ease
understanding let us represent the data sets as a matrix consisting of features in the fo
given below:

(1)

2. Compute the mean of each data set and mean of entire data set. Let and be the m

of set 1 and set 2 respectively and be mean of entire data, which is obtained by mergin

set 1 and set 2, is given by Equation 1.

(2)

set1

a11 a12

a21 a22

… …
… …

am1 am2

= set2

b11 b12

b21 b22

… …
… …

bm1 bm2

=

µ1 µ2

µ3

µ3 p1 µ1 p2 µ2×+×=
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where and are the apriori probabilities of the classes. In the case of this simple

class problem, the probability factor is assumed to be 0.5.

3. In LDA, within-class and between-class scatter are used to formulate criteria for clas
separability. Within-class scatter is the expected covariance of each of the classes. T
scatter measures are computed using Equations 3 and 4.

(3)

Therefore, for the two-class problem,

(4)

All the covariance matrices are symmetric. Let and be the covariance of set 1
set 2 respectively. Covariance matrix is computed using the following equation.

(5)

The between-class scatter is computes using the following equation.

(6)

Note that can be thought of as the covariance of data set whose members are the

vectors of each class. As defined earlier, the optimizing criterion in LDA is the ratio
between-class scatter to the within-class scatter. The solution obtained by maximizin
criterion defines the axes of the transformed space. However for the class-dependent tra
the optimizing criterion is computed using equations and (5). It should be noted that if the
is a class dependent type, forL-class separate optimizing criterion are required for ea
class. The optimizing factors in case of class dependent type are computed as

(7)

For the class independent transform, the optimizing criterion is computed as

(8)

4. By definition, an eigen vector of a transformation represents a 1-D invariant subspace of t
vector space in which the transformation is applied. A set of these eigen vectors who
corresponding eigen values are non-zero are all linearly independent and are invariant un
the transformation. Thus any vector space can be represented in terms of line
combinations of the eigen vectors. A linear dependency between features is indicated by

p1 p2

Sw pj covj( )×
j

∑=

Sw 0.5 cov1× 0.5 cov2×+=

cov1 cov2

covj x j µ j–( ) x j µ j–( )T
=

Sb µ j µ3–( ) µ j µ3–( )T×
j

∑=

Sb

L

criterionj inv covj( ) Sb×=

criterion inv Sw( ) Sb×=
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zero eigen value. To obtain a non-redundant set of features all eigen vectors correspond
to non-zero eigen values only are considered and the ones corresponding to zero eig
values are neglected. In the case of LDA, the transformations are found as the eigen vec
matrix of the different criteria defined in Equations 7 and 8.

5. For anyL-class problem we would always haveL-1 non-zero eigen values. This is attributed
to the constraints on the mean vectors of the classes in Equation 2. The eigen vect
corresponding to non-zero eigen values for the definition of the transformation.

For our 2-class example, Figures 2 and 3 show the direction of the significant eigen vect
along which there is maximum discrimination information. Having obtained the
transformation matrices, we transform the data sets using the single LDA transform or th
class specific transforms which ever the case may be. From the figures it can be observ
that, transforming the entire data set to one axis provides definite boundaries to classify t
data. The decision region in the transformed space is a solid line separating the transform
data sets thus

For the class dependent LDA,

(9)

For the class independent LDA,

(10)

Similarly the test vectors are transformed and are classified using the euclidean distance
test vectors from each class mean.

The two Figures 4 and 5 clearly illustrate the theory of Linear Discriminant Analysis applie
a 2-class problem. The original data sets are shown and the same data sets after transfo
are also illustrated. It is quite clear from these figures that transformation provides a bou
for proper classification. In this example the classes were properly defined but cases wher
is overlap between classes, obtaining a decision region in original space will be very dif
and in such cases transformation proves to be very essential. Transformation along larges
vector axis is the best transformation.

Figures 6 and 7, are interesting in that they show how the linear transformation process c
viewed as projecting data points onto the maximally discriminating axes represented b
eigen vectors.

6. Once the transformations are completed using the LDA transforms, Euclidean distance
RMS distance is used to classify data points. Euclidean distance is computed usin

Equation 11 where is the mean of the transformed data set, is the class inde

and is the test vector. Thus for classes, euclidean distances are obtained for each
point.

transformed_set_j transform_j
T

set_j×=

transformed_set transform_spec
T

data_set
T×=

µntrans n

x n n
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Figure 2. Figure for eigen vector direction in class dependent type
Figure 3. Figure for eigen vector direction in class independent type
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7. The smallest Euclidean distance among the distances classifies the test vector

belonging to class .

4. CONCLUSIONS

We have presented the theory and implementation of LDA as a classification technique. Throu
the tutorial we have used a 2-class problem as an exemplar. Two approaches to LDA, namely
independent and class dependent, have been explained. The choice of the type of LDA depend
data set and the goals of the classification problem. If generalization is of importance, the
independent tranformation is preferred. However, if good discrimination is what is aimed for
class dependent type should be the first choice. As part of our future work, we plan to work
Java-based demonstration which could be used to visualize LDA based transformations o
defined data sets and also help the user apperiaciate the difference between the various class
techniques.

dist_n transform_n_spec( )T
x× µntrans–=

n
n

Figure 4. Data sets in original space and transformed space along with the tranformation axis for
class dependent LDA of a 2-class problem



Figure 5. Data sets in original space and transformed space for class independent type of LDA of a
2-class problem
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5. SOFTWARE

All Matlab code written for this project is available for public from our website
www.isip.msstate.edu
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Figure 6. Figure showing histogram plot of transformed data with decision region in class indepen-
dent type and the amount of class separability obtained in transformed space
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Figure 7. Histogram plot of transformed data with decision region in class dependent type and the amount of
class separability obtained in transformed space
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