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1. ABSTRACT

This report describes the research effort of the “Syllable-Based Speech Processing”
participating in the 1997 Summer Workshop on Innovative Techniques for LVCSR. We prese
attempt to model syllable-level acoustic information as a viable alternative to the convent
phone-level acoustic unit for large vocabulary conversational speech recognition (LVCSR)
motivation for this work was the inherent limitations of phone-based approaches, primaril
excessive number of commonly occurring patterns and lack of a mechanism for modeling
scale temporal dependencies. In this report we present preliminary but encouraging resu
Switchboard. Our syllable-based recognition system, developed in less than six months of
exceeded the performance of a comparable triphone system both in terms of word
rate (WER) and complexity. The WER of the best syllable system reported here is 49.1%
standard SWITCHBOARD (SWB) evaluation. Durational modeling and spectral clustering
also been explored in this context. Further, the advantages in explicitly modeling monosy
words was demonstrated. One of the highlights of this research is the numerous stra
developed to train and test systems with mixtures of acoustic units.

2. INTRODUCTION

For at least a decade now the triphone has been the dominant method of modeling s
acoustics for speech recognition. However, triphones are a relatively inefficient decomposi
unit due to the large number of frequently occurring patterns. Moreover, since a triphone
spans an extremely short time interval, such a unit is not suitable for integration of spectra
temporal dependencies. For applications such as SWITCHBOARD (SWB) [1] wh
performance of phone-based approaches is unsatisfactory [2], the focus has shifted to a
acoustic context. The syllable is one such acoustic unit. Its appeal lies in its close connec
articulation, its integration of some co-articulation phenomena, and the potential for a rela
compact representation of conversational speech.

We also conjecture that using a syllable as the fundamental acoustic unit obviates the ne
explicit pronunciation modeling, since it can model many of the common variation
pronunciation based on a longer context window. Also, an analysis of the hand-transcribe
from the SWB corpus [3] revealed that the deletion rate for syllables was below 1%.
surprisingly, the comparable rate for phone deletions was an order of magnitude higher —
This is a clear indication of the stability of a syllable-sized acoustic unit.

The use of an acoustic unit with a longer duration also makes it possible to simultaneously e
temporal and spectral variations. Parameter trajectories [4] and multi-path HMMs are examp
techniques that can exploit the longer acoustic context (but as yet have had marginal imp
triphone-based systems). Recent research on stochastic segment modeling of phon
demonstrates that recognition performance can be improved by exploiting correlations in sp
and temporal structure. However, these experiments were limited to phone-based systems
viability on larger units is yet to be proven. We believe that applying these ideas
syllable-sized unit, which has a longer contextual window, will result in significa
improvements [7].
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3. BASELINE SYSTEMS

As part of our preliminary work on syllable-based LVCSR, two baseline systems w
constructed based on research conducted at prior CLSP workshops: acontext-independent
monophone systemand aword-internal triphone system. Both these systems were carefull
designed to provide state-of-the-art performance on a standard SWB task within the constra
the technology used for implementation. All systems described in this report were based
standard LVCSR training and test procedure for a commercially available package — HTK
The baseline systems were also used to validate the training process and the training scripts
were used during the workshop. We decided not to incorporate cross-word context for the sy
system, since this adds significant complexity to the decoder and may mask the fundam
advantages of syllable-based speech modeling. We also restricted our experiments to a
language model which could be efficiently processed in a lattice re-scoring framework.
recognition experiments were based upon re-scoring lattices generated from a more sophis
recognition system prior to the workshop. These lattices, supplied to all participants a
workshop, had a word error rate (WER) of approximately 10%. Though not described in
detail here, we also built a cross-word triphone system as a reference point which delive
45.6% WER.

3.1. Phone-Based Baseline Systems

Since the syllable models in all systems described here were context-independent, a comp
context-independent phone , or monophone system was constructed as a baseline. This
used a phone inventory consisting of 42 phones and a silence model (in addition, a word
silence model was used as well). All phone models were standard 3-state left-to-right m
without skip states. These models were seeded with a single Gaussian observation distri
The number of Gaussians was increased to 32 per state during re-estimation using a seg
K-MEANS approach.

To construct the context-dependent phone system, single-Gaussian monophone models ge
from the context-independent system were clustered and used to seed triphone model
passes of Baum-Welch re-estimation were used to generate single-component m
distributions for the triphone models. These models were then successively refined to have
Gaussians per state using a standard divide-by-2 clustering algorithm. The resulting syste
81,314 virtual triphones, 11,344 real triphones, 34,042 states and 8 Gaussians per mixtur
final count for the number of Gaussians is, however, reduced by tying states in the triphones
word-internal triphone system resulted in 49.8% WER.

Several features common in state-of-the-art SWB LVCSR systems were deliberately not inc
in this baseline system since the main goal of this work was to study the feasibility of syllabl
an acoustic unit. The most prominent missing features were the use ofa crossword decoder, a
trigram language model, vocal tract length normalization, and speaker adaptation. In fact, it
is hoped that some of these features will not be needed in a syllable system due to the in
advantages of the syllable.
2
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3.2. Syllable-Based Baseline System

Perhaps the most critical issue in a syllable-based approach is the number of syllables requ
give good coverage of the application. The number of lexical syllables in English is estimat
be on the order of 10,000 [9]. This makes building a context-dependent syllable syst
challenge. The first step in developing such a system was to represent each entry in the le
previously defined in terms of phones, as a sequence of syllables — a process kno
syllabificationof the lexicon. We used a syllabified lexicon developed at Workshop’96 (WS’
for this stage [8]. This lexicon consisted of over 70,000 word entries for SWB and required 9
syllables for complete coverage of the 60+ hour training data.

The WS’96 lexicon indicated syllabification, but still represented all pronunciations in term
phone sequences, for example:

BEFORE ➔ [ b . ax ] [ f ‘ ow r ]

AFTER ➔ [ ‘ ae [ f ] t . er ]

The brackets indicate syllabification, and the punctuation marks indicate stress levels
overlapping brackets indicate “ambisyllabic” consonants, i.e., consonants that can be cons
to be members of both the preceding and the following syllable (or alternatively but equivale
the syllable boundary can be considered to fall within the ambisyllabic consonant). Ambisyl
consonants may occur frequently in rapid or casual speech, and the WS’96 lexicon was de
to represent the most casual syllabification; therefore, ambisyllabic consonants were ram
occurring in 54% of the entries.

In converting these entries to representations in terms of syllables, one issue was the
treatment of the stress information, i.e., whether to create separate syllable mode
pronunciations differing only in stress, or whether to merge such pronunciations into a s
model. For the initial baseline system, stress was ignored, partly simply to avoid addit
complication, but also because the value of lexical stress information seemed questionab
cases where stress has a strong effect on vowel quality, the stress marker is redundant; ph
identity implicitly encodes stress, as in the “ax” in “ BEFORE”. More importantly, actual stress in
continuous spontaneous speech is quite different from lexical stress; many “stressed” syllab
actually unstressed in fluent speech.

The second major issue in converting the lexicon was the treatment of ambisyllabic conso
i.e., whether to assign such consonants entirely to one of the adjacent syllables or to cont
treat them as belonging to both syllables. In this case, the decision was to continue to treat th
belonging to both syllables. This avoided the difficulty of determining the best criterion
assigning the consonant to a single syllable (the preceding one? the following one? the one
it belongs in very deliberate speech, where there are no ambisyllabics?). More importan
maintained the distinction between syllables whose initial (final) consonant is shared wit
adjacent syllable and those whose initial (final) is wholly within the syllable. To maintain
distinction in the lexicon, a special symbol (#) was introduced to mark ambisyllabics.
3
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In the syllabified lexicon, then, the examples shown above were represented as:

BEFORE ➔ _b_ax _f_ow_r

AFTER ➔ _ae_f# _#f_t_er

(The initial underscore distinguished syllables containing only one phone from monophones
_ay vs. ay) Both the treatment of stress and the treatment of ambisyllabicity deserve fu
research, but alternatives were not explored during the workshop for lack of time.

The model topology for the syllable models was kept similar to the context-independent p
system (left-to-right models without skip states). However, each syllable model was allow
have a unique number of states. The number of states was selected to be equal to one
median duration of the syllable, measured in 10 ms frames. The duration information for
syllable was measured from a forced alignment based on a state-of-the-art triphone s
developed during WS’96. Syllable models were trained in a manner analogous to
context-dependent phone system, minus the clustering stage. The resulting mode
8 Gaussians per state. This system however suffered from a large number of very poorly t
syllables due to insufficient training data. To circumvent this problem we tested a system bas
the 800 most frequent syllables. The syllables which occurred less frequently were replac
their corresponding phonetic representation. The monophones were trained as an indep
system with 32 Gaussian components per state. The performance of this system was 57.8%

Given this promising result, and the unwieldy nature of using the full set of over 9,000 sylla
we decided to use the smaller set described above for all further experiments. One advan
this approach is that each syllable model is guaranteed a reasonable amount of training
Another reason for going to a smaller subset of syllables was that the 9023 syllable syste
consuming over 400M of memory during the training phase that generates the 8 mixture m
This slowed down the training process considerably due to excessive swapping of data
secondary memory. One drawback of the reduced system is that it becomes imperative
Monophones 2419 Frequent syllables

Flat-start models

Models trained to 8 Gaussians/state

WER 56.4% (S 36.9%, D 13.2%, I 4.6%)
Figure 1: Baseline syllable system, 2419 syllables + 42 monophones
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system comprised of a mixture of phones and syllables be developed to handle words not c
completely by the syllable inventory.

3.3. Hybrid System with 2,419 Syllables

As described in the previous section, the baseline syllable system was tested as a 800 sy
monophone system in which syllables and monophones were trained independently. Th
logical step was to train a system with the syllable and monophone parameters estim
concurrently. This system was trained using a subset of the syllabary consisting of all syll
that occurred at least 20 times in the training database. This resulted in a set of 2419 syllabl
refer to this approach of training syllables and phones or any mixture of acoustic units (e.g.
and syllables) as ahybrid system.

Several important issues, such as ambisyllabicity and resyllabification were ignored in
process. For example, if a syllable with an ambisyllabic marker was to be replaced by its p
representation, we ignored the marker all together. For instance, “_sh_ey_d# _#d_ih_ng” was
represented as “sh ey d_#d_ih_ng.” The problem with this treatment is that it replaces part o
phone,d#, which represents only the initial portion of the ambisyllabicd, with a model
representing the entire phoned. In effect, then, the hybrid model contains one and a h
consonants where only one should occur. The 2419 syllables and 42 phones in this system
trained together using training procedure described in Figure 1. This system delive
56.4% WER.

3.4. Hybrid System with 800 Syllables

It was observed that many models in the above system were still poorly trained. Due to
constraints, we circumvented this problem by building a system consisting of the 800
frequent syllables and the word-internal context-dependent phones. It is interesting to not
that these 800 syllables covered almost 90% of the training data. The remaining 10%
replaced by its underlying phone representation. This system gave a performance of 55.1%

Since the hybrid system had both syllables and phones, each unique word in the training da
Baseline word-internal 800 Frequent syllables

4 passes of Baum-Welch

WER 51.7% (S 33.9%, D 14.3%, I 3.5%)

Triphones from hybrid system
Figure 2: Hybrid syllable system with 800 syllables and word-internal triphones reestimated
5



Data set # words

% miss

Baseline Syllable +
Phone System

Word-internal Triphone
System

All Words 18069 53 47

SO 15676 51 46

MX 1186 58 46

PO 1207 71 60
Table 1: Error analysis of the baseline syllable system
0 20 40 60 80
0

1000

2000

3000

Duration in number of 10ms frames
Figure 3: Duration histogram for the syllable “_ae_n_d”
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could be classified into one of three categories:syllable-only(SO) words — words that have one
or more syllables in their lexical representation but do not have any phones;phones-only(PO)
words — words that have only phones in their lexical representation; andmixed(MX) words —
words that are represented in terms of both phones and syllables. Table 1 shows a compa
the errors for these two systems. The category ‘miss’ represents incorrectly recognized or delete
reference words. The alignments required for this analysis come from the output ofsclite [x],
NIST’s scoring software. It is evident from this analysis that the syllable system’s perform
degrades on MX and PO words, most likely attributable to edge effects at syllable-p
junctions. This was the motivation for our next experiment: a hybrid system with
context-independent phones replaced by their context-dependent counterparts.

The following example shows how the context for a sequence of phones in this system
obtained from their adjoining syllables:

ACCEPTED ➞ _eh_k k-s+eh s-eh+p eh-p+t _t_ih_d

In this representation, the phone preceding the “-” specifies the left context, the symbol follo
the “+” specifies the right context, and any entity with an “_” is a syllable. Syllable models fr
the above system and triphone models from the baseline triphone system were combin
reestimated using 4 passes of Baum-Welch over the entire training database. Figure 2 illu
the process. This system achieved a WER of 51.7%. It is interesting to note that a system s
to this with context-independent phones resulted in an increased in the absolute WER of 4%
highlights the significance of the edge-effect phenomena when syllables and phones ar
7
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together. Another important observation from the error analysis is that most of the errors (~
were on monosyllabic words. Modeling of monosyllabic words is a crucial obstacle to achie
high performance on SWB.

4. FINITE DURATION MODELING

The histograms of the syllable durations obtained from forced alignments show large amou
variation from the nominal durations of the syllables. This is depicted in Figure 3. Further
high word deletion rate with infinite duration syllable models, coupled with the expectatio
higher durational stability from syllables suggests a need for additional durational constrain
the syllable models. Our first attempt at accommodating this involved using a finite dura
model topology. During the workshop we experimented with two finite duration topologies. S
our hybrid systems had a mixture of acoustic units, we had the option of applying finite dur
topology for all the models or just the syllable models.

4.1. Top_001

The first topology we experimented with was a model topology where we replicate each o
states in the infinite duration model four times and remove the self loop for that state. Fig
shows how are infinite duration models were transformed to finite duration models. Replic
states have the same output distribution as the original state. Two strategies were used
transition probabilities. The first strategy involved assigning transition probabilities as show
Figure 4, where was varied from 0.0001 to 0.1. The WERs as a result of this modificatio
listed in Table 2. The second strategy involved matching the assigning transition probabilit
proportion with the self-loop probability of the original state in the infinite duration model. T

x
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allows a model to exhibit similar transition properties as the original model, yet have addit
durational constraints.

4.2. Top_002

In the second set of experiments, each state (S) in the infinite duration model was replica
times where P is a function of the expected number of frames mapped into the state S for a
syllable token. Mathematically,

, (1)

where is the number of frames mapped to the state S and is the self loop probability f
state S. Note that is a function of , the self loop probability. As in Top_001, the ou
distribution of each of the replicated states was tied to the distribution of the original state
newly generated model set was seeded from the infinite duration models and was further t
with 4 passes of Baum-Welch re-estimation. Figure 5 describes the change from an in
duration topology to a finite duration topology. This modification was applied only to the syll
models in the hybrid system.

Table 2 summarizes the results of the topology modification experiments. It can be seen th
topology Top_001, as it stands, is not effective in improving WER. This may be attributed to
lack of training data for the output distributions and transition probabilities, or to the inadeq
of the topology itself. Top_002 on the other hand performs well when only applied to the syl
models.

5. MONOSYLLABIC WORD MODELING

The motivation to create monosyllabic word models was an intermediate step towards exp

P E N[ ] 2.stddev N( )+ f p( )= =

N p
P p
Experiment % WER

Baseline Triphones 49.8

Hybrid Syllable 51.7

Top_001: 67.2

Top_001: 66.4

Top_001: 64.0

Top_001: 63.4

Top_001:  a function of self-loop probability 58.1

Top_001 applied to syllables only 57.8

Top_002 49.9

x 0.0001=

x 0.001=

x 0.01=

x 0.1=

x

Table 2: Summary of results for experiments on finite duration HMM topology
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durational clustering for the 800 syllables + word-internal triphone system. The objective w
distinguish a syllable in a monosyllabic word from the same syllable appearing in words
multiple syllables. Our conjecture was that the duration of a syllable in a monosyllabic word sh
have a different durational distribution than the same syllable in words that are polysyllabic
example, in comparing the syllable _ay, _ax, _ih_n to the respective corresponding monosy
word ‘I’, ‘A’, ‘IN’, we might conclude that the syllable _ay (which appears in words that a
polysyllabic) would have a different durational distribution than the same syllable used
monosyllabic pronunciation. Therefore, we built a system that contained the 200 most fre
monosyllabic words, retained the syllables that had enough training tokens, and added the
internal triphones with the intention of realigning the training data to obtain durational distribut
for syllables and monosyllabic word models. Surprisingly, this system reduced the WE
2.4%(absolute) when compared to the system with 800 syllables + word-internal triphones.

Some interesting facts about this system:

• performance exceeds a comparable word-internal triphone system by an absolute WER of 0.5%;

• the WER remains unchanged when the 200 monosyllabic words are added to the word-internal
triphone system.

This second result provides us with some evidence that monosyllabic word models are not th
reason for the improvement of our system over a word-internal triphone system. This alleviate
concern that the word-internal triphone system was unfairly constrained, since 71% of the
tokens in training are the 200 monosyllabic words.

5.1. Training Procedure

There was no specific basis for choosing 200 word models, except that all 200 models had su
training data. We settled on 200 word models after reviewing the effect of these models o
training tokens of the 60+ hour training set. The first step in creating this system was to use th
syllables + word-internal triphones to align the 60+ hour training set. From this alignmen
Category Count/Percentage

Unique Words 15,127

Number of Word Tokens 659,713

Number of Monosyllabic Words (dependent on lexicon/alignments) 529

Monosyllabic word tokens covered by the top 200 Monosyllabic words 95%

Word tokens covered by the 529 Monosyllabic words 75%

Word tokens covered by the top 200 Monosyllabic words 71%
Table 3: 60 hour training data breakup
10
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created a list of monosyllabic words, sorted by their frequency of occurrence. From this lis
picked the 200 most frequent unique words (some monosyllabic words at this stage of the
had multiple pronunciations).

The 200 word models were seeded with the most frequent syllable model for that word. No
had 800 syllables and 200 word models. However, the number of training tokens to
800 syllables was reduced due to the creation of 200 word models (some syllables only ap
as monosyllabic words). A threshold of 114 training tokens was used to determine the syl
that would be trained. This number comes from the number of training tokens that were ava
to train the 800th most frequent syllable in the baseline syllable system (the syllable system
was used to seed all of the system mentioned in this section). Using this threshold onl
syllables survived. It turns out that 168 syllables did not have enough training material and
syllables were stripped done to their monophone representations.

The number of states in the syllable and word models were reestimated by relabeling the
alignments using 632 syllables and 200 word models. The number of states for each new
was again chosen to represent one half the median duration. The models of this hybrid s
(200 word models + 632 syllables + word-internal triphones) were reestimated by run
4 iterations of the Baum-Welch algorithm on the WS’97 official 60+ hour training set. The hy
system was tested on the official WS’97 test set using the official HUB5E scoring software

The triphone models were updated only if a minimum of 114 training tokens existed. The de
for HTK is 1 training token. All previous systems used the default parameter. In a follow
experiment we trained and tested another system using the default value. Interestingly, we
Category
Number of

Models
affected

Example of some of the models
(format: _model_name(# states in new model))

Adding 7 states 1 _aw(11)

Adding 5 states 2 _g_aa_sh(23) _hh_ae_f(13)

Adding 4 states 5 _w_ey_r(13) _f_ah_n#(11) _ae_n(8) _g_eh_dh#(15)
_f_ah_n(15)

Adding 3 states 18

Adding 2 states 52

Adding 1 state 146

Not Changing 218

Removing 1 state 160

Removing 2 states 27 _ih_sh#(6) _#r_ih_n_t(5) _m_y_uw_z#(9)

Removing 3 states 3 _ey_sh#(5) _m_ae_g#(8) _d_ih_d(6)
Table 4: Change in model duration for syllables
11



each
529
200

ever,
r of

g of
ce of
an be

as one
mber
pdate
ed in a
of 1

Category
Number of

Models
affected

Example of some of the models
(format: __model_name(# states in new model))

Adding 7 states 1 __yeah(17)

Adding 6 states 3 __oh(12) __uh(14) __um(22)

Adding 5 states 3 __true(17) __wow(23) __no(13)

Adding 4 states 6 __yes(18) __own(10) __news(17) __here(12) __huh(13)
__i_(8)

Adding 3 states 4 __too(11) __right(18) __t_(10) __sure(17)

Adding 2 states 19

Adding 1 state 57

Not Changing 83

Removing 1 state 20

Removing 2 states 3 __don_t(8) __want(10) __our(8)

Removing 3 states 1 __the(5)
that this change accounted for only 0.1% of the 2.4% drop in absolute WER.

5.2. A Look at the Training Data

Table 3 categorizes the official 60+ hour training set according to the number of syllables in
word. The training set has a total of 529 monosyllabic words. It turns out that these
monosyllabic words cover 75% of the total number of word tokens in the training set. The top
monosyllabic words cover 71% of the total number of word tokens in the training set. How
the 329 monosyllabic words that we did not model account for only 5% of the total numbe
monosyllabic words in the 60+ hour training set.

5.3. Probing the 2.4% drop in WER

In comparing the 800 syllable + word-internal triphones system with a system consistin
200 words + 632 syllables + word-internal triphones, we find there is an absolute differen
2.4% in WER. This was a surprising result, but the reason for the decrease in WER error c
explained by comparing the various differences between these systems. The lexicon w
major difference. However, it was not the only difference between the two systems. The nu
of states in the models was also modified, and the number of training tokens needed to u
model parameters was increased to 114 tokens. As explained earlier, it has been establish
follow-on experiment that this deviation from the normal training procedure (where a default
token is used) accounts for 0.1% of the 2.4% drop in WER (absolute).
Table 5: Change in model duration for monosyllabic words
12
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The number of states for each model was computed by relabeling the forced alignments
60+ hour training set using the 800 syllables + word-internal triphone system. The relab
process was used to change the alignment labels to include 200 word models and the 632 s
models. Syllable models that did not have enough training tokens were reduced to
corresponding monophone representations. Table 4 provides some insight into how the num
states change from the seed syllable model to the syllable model used with the 200 word m
One common concern is the number of training tokens that were affected by changin
durations. Syllables that grew by more than 1 state account for 12% of the syllable training t
and syllables that lost more than one state account for 9% of the syllable training tokens.

The same type of analysis can be done on the word models. The word models were seeded
most frequent occurring syllable for that word. There were 14 monosyllabic words that had
than 1 pronunciation. Table 5 provides some insight into how the number of states change
the seed syllable model to the word model. Word models that grew by more than 1 state ac
for 26% of the monosyllabic word training tokens and word models that lost more than 1
account for 4% of the monosyllabic word training tokens. From these statistics, one can con
that word models were influenced more by the change in durations than syllable models.

The experiment to account for the reduction in WER due to the change in durations wa
completed due to time constraints. However, other durational clustering experiments run o
syllables did not have a major impact on the overall performance. It is unclear exactly wha
outcome would be since ~50% of the training tokens for words and syllables had model
changed in duration by more than 2 observation frames (the models we are using assume th
state will consume, on the average, 2 frames of observation).
Word Possible variations in original lexicon

THE _dh_ah _ah_iy _dh_ax

FOR _f_er _f_ow_r

TO _t_ax _t_uw
Table 6: Examples of multiple pronunciations being folded into one model
Syllable Word

_n_ow KNOW, NO

_d_ey_r THERE, THEY’RE, THEIR

_t_ax
_t_uw

TO
TOO, TWO
Table 7: Examples of separate models for words with distinct lexical baseforms
13
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5.4. Effect on the Lexicon

Another contributing factor to the 2.4% improvement in WER is the lexicon. One reason
SWB is a difficult corpus to recognize is the variability in pronunciations. The deletion rate
phones in SWB has been estimated to be ~12%, whereas the deletion rate for syllables
(based on human transcription projects). Since, the syllable is a longer acoustic unit compa
the phone, the need to explicitly provide pronunciations for all variants could be allevia
Therefore, it should be possible for the syllable model to automatically consume the acou
variation of the pronunciation of a word/syllable in the model parameters. If this argument h
true, then the creation of word models allows for the variation in pronunciation to be clust
into autonomous models.

In the creation of word models two changes occur. First, some words that had mul
pronunciations were now represented by one model. Table 6 provides some examples f
modification. Another example not provided in the table is the word ‘AND’. In the lexicon there is
only one pronunciation: “_ae_n_d.” However, in conversational speech the possible alternat
pronunciations could be a deleted “_ae,” or a deleted “_d,” or a deleted “_ae” and “_d.” Using the
larger acoustic unit is a way of making the word model less dependent on the lexical realiz
and the variation in pronunciation can be modeled by the data directly.

Second, some monosyllabic words with the same baseform were now modeled as differen
models. Table 7 provides some examples of this modification. The first example is probab
most obvious example. It is easy to imagine that the word “NO” can be short or long, and it is
more unlikely that the word “KNOW” has this characteristic. The number of states in the mod
are different. The word model “KNOW” was built with 9 states and the word model “NO” was
Syllables Affected
(800 syllable system)

System that had 200
words + 632 syllables

Coverage of the 60+
hour training set

(Excluding Phones)

What the
syllable became

58
Monosyllabic Words

(__and __that)
19% Word Models

98

Monosyllabic Words (_it’s
_ih_t_s)

21% Word Models

Phones
(graduates, diets, poets)

< 114 Tokens Phones

12 Phones < 114 Tokens Phones

50

Monosyllabic Words (__i
__a __in)

24% Word Models

Syllables
(_ay _ax _ih_n)

7% Syllables

582 Syllables 29% Syllables
Table 8: Mapping 800 syllables into 200 word and 632 syllable models
14
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Syllables Affected
(800 syllable system)

System that had 200
words + 632 syllables

Misses False Alarms

58
Monosyllabic Words

(__and __that)
+0.1% -2.0%

98

Monosyllabic Words (_it’s
_ih_t_s)

-0.1% -2.7%

Phones
(graduates, diets, poets)

12 Phones

50

Monosyllabic Words (__i
__a __in)

-1.8% -3.0%

Syllables
(_ay _ax _ih_n)

582 Syllables
built with 13 states. The difference between these models is on average 80ms of speech. Sim
the third example depicts a situation where both the number of states in the model as well
most likely pronunciation of the word would vary. The word “TO” is more likely to be
pronounced as “_t_ax” rather than “_t_uw” in conversational speech. In this case the number
states needed to model “TO” is four compared to 10 states for the word “TWO,” and 11 states for
the word “TOO.”

5.5. Effect on Word Models

Though we have provided examples of the changes in the lexicon, we have not discuss
relationship between word models that used to be syllables and vice versa. These effects
explored in several different ways. First, we can examine how syllables were affected b
creation of word models by analyzing the change in coverage. After the categories of chang
been established we can determine how the errors changed for monosyllabic words in te
misses (reference words that either deleted or substituted) and false alarms (hypothesized
that were either inserted or substituted).

One might wonder how the 800 syllable models in the baseline systems were changed
models (200 word models and 632 syllables) in the monosyllabic word system? The rea
that, some of the syllables were trained only from monosyllabic word tokens and some o
syllables had training tokens that were both from monosyllabic and polysyllabic words. How
when word models were created, some of the original syllables ended up having insuff
training material to accurately train both a word model and a syllable model. For a model to
enough training tokens there needed to be 114 examples. This was based on the fact that th
most frequent syllable was trained on 114 tokens. Table 8 provides a breakdown on how th
syllables were mapped to the 200 words + 632 syllables. 58 of the 800 syllables were al
Table 9: Effect of mapping 800 syllables to 200 word and 632 syllable models
15
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monosyllabic words and this covered 19% of the 800 syllable tokens in the 60+ hour trainin
Note that some of the syllables had multiple pronunciations for a monosyllabic word and w
we created a word model we took the most frequent syllable for that monosyllabic word to
the model. Finally, 234 syllables were in fact monosyllabic words that cover 10% of the
phone training tokens.

Now that we have established how the syllables changed into word models, Table 9 show
breakdown of errors in terms of misses and false alarms. The misses and false alarms
absolute change of error from the 800 syllables + word-internal triphone system to the 200
+ 632 syllables + word-internal triphones system. The change is computed for the words
each distinct category. For example, for 58 syllables that were already word models, the mis
increased by 0.1% and the false alarm rate decreased by 2.0%.

5.6. Finite Duration Word Models

The finite durational models presented in this final report were implemented on the 200
models and 632 syllables. The word-internal triphone models were not transformed to
duration models (remained as 3 state left-right HMMs). The word error for this system on
official WS97 test set was 49.1%. This is compared to 49.3% WER for the 200 word mod
632 syllables + word-internal triphones using infinite duration models.

6. AUTOMATIC IDENTIFICATION OF MODALITIES

One of our goals in the summer workshop was to test the hypothesis that syllables allow o
carry out research that is difficult in phoneme based recognizers. Our method of demonst
this was to attempt to develop a successful scheme for automatically identifying modalit
LVCSR acoustic data (which traditionally has been a difficult task with phone based recogniz

What are modalities? Modalities are classifiable variations in acoustic data. Well known exa
are pronunciation variations due to gender, dialect or context. A modality may also be prod
by a significant fraction of some word tokens lacking a constituent phoneme (as in pronou
“and” as “n”). The use of modalities is well established in speech recognition. We build ge
dependent models and context dependent triphones. Explicitly modeling modalities pro
sharper models. But these are heuristically defined modalities, not necessarily suited
recognition tasks. Gender models, for example, are not useful for small corpora. Dividing a
corpus by gender produces badly trained models.

If we could however automatically detect the presence of modalities, we could reap the ben
sharper models when the acoustic data supports their existence and not pay the penal
under-training, when data does not contain the modality. The use of classification trees driv
linguistic questions during the training of context dependent triphones is an example o
strategy. In addition, automatic identification could also uncover modalities unknown to
researcher. For example, telephone data may have been collected on different handsets. In
the promise of automatic detection of modalities, no successful example of an implementati
this in LVCSR is known to us, although attempts have been made. We review these attem
well as successful implementations in the area of digit recognition in the next section.
16
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6.1. Previous work

The effectiveness of automatic identification of modalities in continuous digit recognition
been demonstrated previously [11]. Whole word models for digit tokens were clustered us
dynamic programming approach that simultaneously considered spectral and dur
information. This scheme could be easily applied to our syllable recognizer.

Another approach in this direction has been the parametrization of trajectories in acoustic
Gish and Ng have developed a formalism for parametrizing trajectories and defining a dis
metric between them [4]. Kannan and Ostendorf subsequently used this approach to c
triphone models in a recognizer trained on SWB [12]. They obtained a small improveme
0.1% over models using full Gaussians and no mixtures. This gain was lost once tying of m
was allowed on both systems. Parametrizing syllable trajectories is certainly an appealin
and we hope that it will receive more attention in the future.

Lastly, the work of Korkmazskiy et. al. also demonstrated a successful method of auto
identification of modalities in continuous digit recognition [6]. They developed a technique
identifying modalities in a wireless telephony corpus. Their novel approach was not to cluste
tokens for a digit by looking at their acoustic feature vectors but instead at their log scores
forced alignments. They then trained an HMM on each cluster and combined them as se
paths in a multipath HMM for the digit.

A pessimistic assessment of these three approaches to automatic identification would state
success of automatic methods in digit recognition is due to the relative ease of the ta
comparison to LVCSR. An optimistic one would state that the success was due to the large
of speech used in digit recognition. We believe that the longer duration of syllables makes
suitable for the development of automatic identification techniques in LVCSR.

6.2. Experimental Design

Three main experiments were performed to identify modalities. We began with a d
implementation of the ideas of Korkmazskiy et. al. in our syllable recognizer. Our sec
experiment implemented the dynamic programming technique. And lastly we investigated a
approach based on identifying preferred Gaussian transitions between HMM states. Comm
the design of all our experiment was the use of multipath HMMs. Implementing modalitie
pronunciation variations in the dictionary would have intersected with this syllabification w
Instead, we chose to keep these two areas of work separate by implementing modali
multiple paths within a single HMM, a straightforward procedure in HTK based training and tes

6.3. State Space Clustering

Research on acoustic syllable models at this workshop was limited to context-indepe
models. It is, however, widely known that context-independent acoustic models have o
limited capacity of accounting for the acoustic variation in the speech signal. First, lack of co
information prevents them from modeling co-articulation phenomena. Second, their mod
accuracy is usually impaired by more general variation caused by different speakers, sex, d
recording conditions etc. In order to improve the performance of our syllable models
17
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investigated techniques other than context-dependent modeling, which were designed to r
certain inadequacies in HMMs leading to weak modeling power.

A major shortcoming of standard continuous density HMMs is the amount of non-determi
inherent in their topologies. In a fully continuous HMM the emission probability of
observation vector at any time instant from a given state is computed as a weighted
(“mixture”) of Gaussian probability density functions (or “mixture components”) associa
with that state. In practice, however, the emission probability in a particular state is cle
dominated by a small set of mixture components, in the sense that one or two mixture comp
receive high scores and contribute most to the overall sum, whereas the remaining m
components receive low scores and have little impact on the resulting sum. A typ
decomposition of a mixture is shown in Table 10.

Also, the selection of dominant mixture components during decoding is unconstrained i
sense that it only depends on the acoustic vector at the current time frame. It is independen
choice of mixture components at the previous and/or following time frames, by virtue of
Markov property of HMMs. Thus, the combinatorial possibilities of dominant mixtu
components across states can be described by a directed acyclic graph defining the state-
space (Figure 6). Nodes in this graph stand for mixture components. An HMM with st
defines complete subgraphs: all pairs of adjacent nodes are fully connected. For stat

 mixture components per state, the number of possible paths through this graph is .

m

n

n 1– n

m m
n
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Start
Stop
Figure 7: Multipath HMM structure
Table 10: Mixture decomposition, syllable _k_uh_d. The dominant mixture components are those
with the largest weights
19
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In practice, however, some mixture components group together across states to model pa
modalities. These horizontal clusters, which we call mixture trajectories, are not enforced b
HMM topology; rather, continuity information is typically lost due to the Markov assumpti
This may lead to crossovers of different trajectories, which aggravates confusion bet
different models during decoding [14]. However, if the number of possible trajectories cou
limited, confusion would be reduced.

Our goal was to apply an algorithm to syllable models which would automatically sepa
relevant trajectories and create model structures which explicitly disallow crossovers bet
them. One such model structure is a multipath model, which assigns trajectories to se
unconnected paths in an HMM as shown in Figure 7.

The main research issues in this paradigm were: the data-driven extraction of trajectories th
the state-mixture space, and the optimal topologies for the resulting HMMs. Two diffe
methodologies for acquiring trajectories were investigated: implicit acquisition of trajectorie
clustering the training data and retraining new models for each of the cluster, and ex
extraction of mixture trajectories from original models.

In order to set up the experimental environment for investigating multipath models, a
experiment was conducted which used clustering of the training data as a basis for determ
mixture trajectories. The training data was clustered according to a distance measure prop
the literature, viz.~state acoustic likelihood [6]. The state acoustic likelihood is the likelihoo
the data given a model, averaged over all frames assigned to a particular state. These valu
Figure 8: State level alignment used for state space clustering
20
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obtained by a forced alignment of the entire WS97 training set using the hybrid syllable sys
models (800 syllables and word-internal triphones). An example of this state-level alignme
shown in Figure 8.

Since the models used for alignments did not contain skip transitions, each instance of a
could thus be assigned a fixed-dimensional vector, where the number of vector componen
the number of states in the model. These vectors would then serve as the basis for splitti
data into two clusters, one cluster comprising those examples which are distributed in the
probability region and thus match the model well, and a second cluster which subsumes tok
the low probability region which exhibit a greater distance from the original model. The data
split along the mean of the distance vector distribution, i.e. along the plane perpendicular
direction of greatest variation. This split is shown in Figure 9 for a three-state model.

The splitting procedure was applied to the 485 most frequent syllables, out of 800 syl
models. Each of these models had more than 200 training tokens, which was consider
minimum threshold in view of the fact that fewer than 100 tokens would remain for training a
data splitting. Each token in the training database was relabelled as either belonging to Clu
or to Cluster 2. For each cluster, a separate model was subsequently trained. The topolo
these cluster models were determined as follows:

• manually created a new segmentation of the training database that consists of utterances typically
10 seconds in duration and are excised at significant pause boundaries and/or turn boundaries;

• the average (mean) duration of the tokens in each cluster was recomputed;

• based on the mean duration, the number of states in each model was chosen;

• as in the initial procedure, models were designed to contain one state for every two frames;

• the final number of mixture components per state was defined as half the number of mixture
component per state in the original model.

The clustered models were subject to an iterative process of splitting the Gaussians wit
subsequent passes of re-estimation, until four mixture components per state were obtaine
final step, the separate cluster models were merged into a single model by connecting th
identical START and STOP states. These cluster models were then used for decoding, to
with the 315 remaining unclustered syllable models and triphone models. It should be note
this way of splitting the training data was not designed to directly identify mixture trajectorie
was expected that the clustering and re-training procedure would automatically separate m
trajectories.

Decoding was carried out on the WS’97 development test set. Compared to the baseline s
system, the word error rate dropped by 0.2%. A more detailed error analysis showed, how
that the syllable models did not improve as expected. The number of misses for all-syllable
(this includes monosyllabic words and thus the most frequent syllable models) increased
46.3% to 47.4%. On the other hand, words consisting of both syllable and phone models a
as those consisting only of phone models did improve substantially as far as the number of m
is concerned, though, the number of false alarms increased. These results seem to indic
21
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though syllable models deteriorated, the clustering procedure lead to a better treatment of
consisting either of both syllables and phones or of phones only. Therefore, the mar
improvement in word error rate might be due to the better acoustic modeling at syllable-trip
boundaries. It had been observed before that edge effects at these boundaries have a sig
impact on the overall system performance.

6.4. Durational Clustering

It was observed during the course of the workshop that many syllables exhibit a durat
distribution with a large variance, as shown in Figure 3. This led to the assumption that a
accurate modeling of various durational modalities might improve performance. We ther
Figure 9: State space clustering, two clusters in this case
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decided to create multipath models with each path in the model representing a dura
modality. The models were created as follows:

• first, a forced alignment was generated on the training set using the syllable system which comprised
200 monosyllabic word models, 632 syllable models and triphones;

• based on those alignments, duration histograms were computed for each of the monosyllabic word
models and for the top 260 syllable models;

• the data was split at the 25th and 75th percentiles of the duration histogram for each model;

• the numbers of states for the multipath models were re-defined: all tokens below the geometric mean
were assigned a number of states equivalent to half the duration at the 25th percentile, all tokens
above the geometric mean were assigned a number corresponding to half the duration at the 75th
percentile;

• the new models were seeded from the original models. Where the new model had fewer states, states
were deleted from the beginning/end of the original model; in cases where the new model contained
more states, states from the original model were replicated and inserted at equal intervals in the new
model;

• finally, four passes of re-estimation were performed on the new models.

Decoding was carried out using the multipath models, the remaining 372 syllable models a
triphone models. This strategy however increased the word error rate by 0.2%. The numb
both false alarms and misses increased for all word types. This may be due to the fact th
durational characteristics have been constrained excessively by allowing only two basic du
modalities for each multipath model. Furthermore, the new models were not re-trained
scratch but seeded from the original models, which clearly is a severe limitation.

6.5. Dynamic Programming Clustering

The basic idea behind the dynamic programming approach to identify modalities is to calc
the distance between training tokens and then apply the K-MEANS algorithm to obtain clu
Our implementation began by mapping each frame of a token for a speech unit to a Gaussi
state label. The state labels were obtained from a forced alignment of the training data
HMM state level. The Gaussian label for a frame corresponded to the most probable Ga
from the state mixture model.

The distance between tokens was calculated by a dynamic programming scheme. Consid
tokens, possibly of different durations. Begin by stretching the shorter one to align with the lo
token. This involves some arbitrary assignment of Gaussian and state labels to the new “fr
of the shorter token. You can now compare both tokens on a frame by frame basis. If the
labels for a frame differ between the two tokens, you incur a penalty of two. If the state labe
the same for a frame but the Gaussian labels differ, you incur a penalty of one. The dis
between the tokens is the sum of these frame penalties. But there are other ways of ass
labels to the stretched token. We use the assignments that minimizes the penalty betwee
As defined, however, this distance is not symmetric. So another minimizing distance is calc
by shrinking the longer token to the duration of the shorter one. The final distance used
23
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average of the two minimizing distances. Using this distance metric, clusters are identified.

6.6. Gaussian Transitions Clustering

It is commonly stated that speech violates the assumptions inherent in the use of HMMs
such assumption is that the speech frames of different HMM states are uncorrelated. Duri
workshop, we formulated a simple procedure to test this hypothesis for the case of mi
models.

Instead of looking at acoustic vectors, one can consider the Gaussians in a mixture model.
we train mixture models, we are assuming that the Gaussians in different states are condit
independent. If we assign the frames of a token to particular Gaussians in a state, we would
those assignments to be statistically independent of similar assignments for frames assig
another state. The existence of modalities in our training tokens would violate that assum
We can quantify this violation by implementing a variation of the procedure used
Korkmazskiy et al.

Note that, from the state space clustering approach all tokens had been reduced to the sam
by considering the average score for the frames assigned to a state of the HMM. Thus, all
of a three-state HMM could be mapped to a three dimensional space irrespective of
differences in total frame lengths. Since we were searching for modalities in the data we be
study the sequence of Gaussians produced by a token as it traversed the HMM. To that e
applied the following ad-hoc procedure using the forced alignments done with our best sy
recognizer.

Each frame in a state of a training token was assigned its highest scoring Gaussian fro
mixture components for that state. The Gaussian index, along with its score, formed a data p
each frame of a token: {highest scoring Gaussian index, its score}. These pairs were
organized as follows:

state data list = {one or more frame pairs assigned to a state}

token data list = {one or more state data lists}

These data lists were then reduced to a length equal to the number of states in the HM
mapping each state data list to the index of the most common Gaussian in each state. If
more Gaussians had the same largest frequency, we broke ties by selecting the highest
Gaussian. This reduction maps all tokens to a vector of the form {g(1), g(2),...,g(n)}, where
denotes the Gaussian index for state i. We call such a vector a Gaussian sequence.

This procedure may seem crude and others may be designed but for the purposes
investigation it has a crucial virtue. It does not introduce statistical dependence between f
assigned to different states of an HMM. Thus, any test of the null hypothesis that there
dependence between Gaussians from different states will still be valid.

Initially, we had hoped that a frequency count of the Gaussian index vectors would re
dominant “trajectories”, in the tokens. A look at the data for “__a” quickly showed that this
24
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not a useful approach. The monosyllabic word “__a” was the most common speech unit i
training data. It had 15,316 training tokens. Its HMM had three states with 8 Gaussians per
Thus, we expected that the table of frequencies for the Gaussian sequences should h
entropy of roughly 9 bits (8^^3) given that the Gaussians had roughly the same weight i
mixture model. The observed frequency, however, only required about 7 bits.

We concluded from this that there was evidence for modalities in the training tok
Unfortunately, the most commonly observed Gaussian sequence corresponded to less tha
the tokens. Creating a separate path in the HMM for such a small percentage of the tokens s
a fruitless approach. Most of the syllables have a frequency of one or two thousand tokens a
of that, about a 100 tokens, is marginally sufficient for reliable estimates of the Gaus
parameters. In addition, most syllables have more than three states so whatever “trajectori
identified by this procedure would rapidly blend in with the statistical noise. Instead, we cho
look at the correlations between Gaussians in different states.

If “trajectories” in the Gaussian sequences were not common enough, perhaps transitions be
states would be. In the case of the “__a” tokens, we found that 9% of the tokens made a tra
from Gaussian 4 in state 2 to Gaussian 6 in state 3. This frequency was about six times high
expected from the mixture weights assigned to those Gaussians. This phenomena was also
in other syllables. For example, the monosyllabic word “__or” had a six-state HMM and 3
training tokens. About 19% of the tokens went from Gaussian 8 in state 3 to Gaussian 4 in s
Due to time constraints we could not explore this approach further.

There are various ways of quantifying the violation of statistical independence in the trans
observed in the Gaussian sequences. One can look at the Kullback-Liebler distance betw
assumption of conditional independence and the observed distribution [13]. Alternatively, a
squared test on the contingency table built from the frequencies of the observed trans
between states could be calculated. In either case, one would have a measure of what tra
seems to be most correlated. For example, the transition between states 3 and 4 in the
example above. The training tokens could then be clustered so as to minimize tran
correlations within clusters. Multipath HMMs could be trained in a manner similar to
approach outlined in our previous experiments.

7. SUMMARY

In this 1997 Summer Workshop on Innovative Techniques for LVCSR, the aim of the Syll
Speech Processing Team before the workshop began was to study the feasibility of using sy
as units for acoustic modeling for LVCSR and to compare its performance with state-of-th
triphone based systems. Various baseline systems were built, namely, a word-internal tri
system, a cross-word triphone system, a context independent phone system and an all s
system. Due to various reasons such as decoder availability, and ease of analysis, we deci
to experiment on context-dependent syllables during the workshop. As a fair compariso
therefore compare our syllable systems with the word-internal triphone system.

One of the major contributions of our group was developing a strategy to efficiently train and
systems which use models covering a wide range of temporal/linguistic contexts like w
25
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System Description % WER

Context Independent Phone System 62.3

Context Dependent Cross-Word Triphone System 45.6

Context Dependent Word-Internal Triphone System 49.8

Baseline Syllable System, 800 Syllables and 42 Monophones 55.1

Hybrid Syllable System, 800 Syllables and Word-Internal Triphones 51.7

Hybrid Syllable System, 200 Monosyllabic Words, 632 Syllables,
word-internal Triphones

49.3

Finite Duration Monosyllabic Word System 49.1

State-Space Clustering on Hybrid Syllable System with 800 Syllables 51.5
syllables and phones. Table 11 summarizes results of the significant experiments. (the
finally ended up with a whopping 50 experiments with at least 4 passes of re-estimation in
case).

A close look at the SWB data shows that over 70% of the database consists of monosy
words. Most errors in the hybrid syllable system were on monosyllabic words too. This prom
us to model the monosyllabic words explicitly as word models. We chose to model
monosyllabic words which covered over 75% of the monosyllabic word instances in the tra
data. This system comprising of monosyllabic words, syllables and word-internal triph
performed at 49.3% WER surpassing the word-internal triphone system by 0.5% absolute
Applying finite duration topology to the models reduced the WER further to 49.1%.

Another area of work conducted during the summer was to automatically model modalities
such strategy was the state-space clustering technique using multipath HMMs. This system
marginal improvement of 0.2% over the baseline. Other techniques like Gaussian tran
clustering were trained but could not be tested due to time constraints.

The results from this summer’s work clearly indicate that syllables show promise in mode
acoustics for LVCSR. In post-workshop research conducted at Mississippi State Unive
syllables were used on a smaller domain, AlphaDigits [15]. The syllable based system traine
tested similar to the SWB systems outperformed a cross-word triphone system by a 2.5% ab
or a 20% relative WER. This clearly validates the results achieved at this workshop. In an
post-workshop experiment a system comprising of word-internal triphones and 200 monosy
words was trained and tested and not surprisingly this system did not improve performance
shows that the improvement in performance of the syllable system over its baseline
attributed only to modeling monosyllabic words explicitly. There exists a more subtle advan
in modeling syllable-sized units for LVCSR.
Table 11: Summary of significant results
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As part of future work we need to understand the effect of ambisyllabics in the lexicon.
expediency we ignored issues involving the ambisyllabics during this summer’s work. M
efficient modeling of suffixes and common word endings also stands for further research
exploration. Note that none of the syllable-based systems described in this report used stat
to tackle under-trained models. This is another area that needs further investigation.
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