
Department of Electrical and Computer Engineering

Interactive Frequency Response Analysis of
Linear Systems Using Poles and Zeros

In partial fulfillment of the requirements for

EE 4012 Senior Design

By:

Jonathan Hamaker
hamaker@isip.msstate.edu

Instructor:

Dr. Bert Nail

Department of Electrical & Computer Engineering
Mississippi State University
Mississippi State, MS 39762

Spring Semester 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 0 OF 25

EE 4012 SENIOR DESIGN PROJECT SPRING 1997

Table of Contents

Abstract 1

1. Introduction 1

2. Background 2

3. Critical Design Issues 4

3.1 Availability and Portability 4

3.2 Interface Considerations 5

3.3 Future Compatibility 5

4. Design and Implementation 6

4.1 Determination of Functionality 6

4.2 User Interface 7

4.3 Software Design 9

5. Conclusions 11

6. Future Work 11

7. Acknowledgements 12

8. References 12

Appendix A.1 Source Code Overview 13

Appendix A.2 Source Code Details 14

Interactive Frequency Response Analysis of Linear
Systems Using Poles and Zeros

Jonathan Hamaker

EE 4012 -- Senior Design Project
Department of Electrical and Computer Engineering

Mississippi State University, Mississippi 39762
hamaker@isip.msstate.edu
ABSTRACT

Pole/Zero response of linear systems is

one of the fundamental topics covered in

any electrical engineering curriculum. Yet,

so many students leave these courses

wi thout a fu l l understanding of th is

concept . Visual izat ion of pole/zero

response of systems is not intui t ive

(despite what the textbooks may say).

Thus, the student needs tools which allow

him to visualize the pole/zero interaction

and correlate this visualization to the

discussion in the textbook. To this end, we

have developed a graphical user interface

(GUI) which allows the student to explore

the basic pole/zero analysis concepts for

both analog and digital systems. This GUI

is based on the platform-independent Java

programming language and follows a

hierarchical design. These factors provide

bo th compat ib i l i t y to fu tu re Java

enhancements and access ib i l i ty to

students (the target audience). This GUI is

one of many tools which wil l aid the

undergraduate and novice engineer in

understanding of fundamental signals and

systems concepts.

1. INTRODUCTION

Poles and zeros are fundamental to any

linear system. They are the components

which produce the frequency responses

that electrical engineers have been taught

to know as magnitude and phase response

of the system. Commonly, these responses

are shown in a two-dimensional plot of
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 2 OF 25
magnitude vs. frequency or phase vs.

f requency. However, the po le /zero

response is not a 2-D response but rather

a 3-D surface produced by the interaction

of the poles and zeros. A sample of this

surface is shown in Figure 1.

2. BACKGROUND

Conventional textbook analysis is based

on pole and zero placement in either the

s-plane or the z-plane. The position of a

pole or zero in each of these planes is

fundamentally related to the frequency

and bandwidth of the response produced

by the pole or zero. The basic concept is

shown in Figure 2.

For analog systems, the center frequency

of the response produced is related to the

distance from the real axis. This relation is

shown in Equation 1. The bandwidth of the

response produced is similarly a function

of the distance from the imaginary axis as

shown in Equation 2.

(1)

(2)

f
distance

2π
-------------------=

BW
distance()–

2
---------------------------=
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

s-Plane

σ

jω

Figure 1. 3 dimensional frequency response to a two-pole system. Note that the conventional 2
dimensional response is a slice of this 3-D surface.

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 3 OF 25

s-Plane

σ

jω

∝ BW∝ f0 Magnitude

Frequency

BW BW

z-Plane

Θ ∝ f0
α ∝ log(BW)

Θ
α

-f0 f0

Figure 2. Relationship between frequency, bandwidth and location in the s-plane and z-plane.
Note that in the z-plane the relationship is not linear.
The response due to digital poles and

zeros is quite different from that caused by

analog poles and zeros. The z-plane is a

non-linear mapping of a strip of the s-

plane into a unit circle. The conversion is

such that the left half of the s-plane falls

inside the unit circle, the right half outside

the unit circle and the imaginary axis onto

the unit circle. Due to sampling theorem,

this strip is repeated at equal intervals

and, thus, each point in the unit circle

represents an infinite number of frequency

points. As with the s-plane, the position of

the poles and zeros in the z-plane is

related to the frequency and bandwidth of

the response produced. These relations

are shown in Equat ions 3 and 4

respectively.

(3)f
Θ
2π
------* sample frequency()=
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 4 OF 25
(2)

3. Critical Design Issues

The system response tool was created to

facilitate learning by students and, as

such, requires certain attributes. These

inc lude: e f fo r t less ava i lab i l i t y and

portability to a wide range of students, an

easy to use as well as comprehensive

interface, and (of course) accurate results.

In addition, this project is not intended to

be extinct in a few years. To eliminate this

possibil i ty, care was taken to insure

compatibility with future versions of Java.

3.1. Availability and Portability

With students as the target audience,

availability and portability are especially

important. We can not simply create a

piece of software which requires an

installation process so difficult that only a

computer expert could compile it. Nor

could we produce software which is

available on a single platform or for a

s ing le machine. Luck i ly, there is a

programming language which takes care

of both of these problems - Java.

Java is a programming language which

provides platform-independent coding.

This means that code compiled on one

machine wi l l run on another “Java-

compatible” machine without recompiling.

This is a huge advantage for students

since this allows them to use it with no

knowledge of compilers. In this respect,

Java is a suitable choice over languages

such as Visual C++ or Visual Basic.

Java also provides the portability. To date,

Java is freely avai lable on the most

popular platforms (Windows, Unix, SGI,

etc.). Java is also integrated into the two

most popular web browsers - Netscape

and Microsoft Internet Explorer. This is an

extremely useful characteristic of Java

because it allows our tool to be used by

nearly any student who has access to a

computer.

BW
α()log()* sample frequency()

2π
--–=
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 5 OF 25
There is a down-side to using Java as the:

the low-level graphics are platform-

dependent. Thus, a widget which is

rendered the way one would like on a

cer tain system, may not be rendered

exactly the same on a different system.

This leads to difficult design, because in

the attempt to make the software as

generic as possible, the designer must

constantly adjust the GUI to look good on

every possible user’s system. However,

despite this problem, Java is a good

choice because it allows us to reach most

every member of our target audience.

3.2. Interface Considerations

To be used as a learning tool, the interface

must not interfere with the learning

experience. The user must be given as

much control as possible over the tool

without being overwhelmed with options.

The input and output should be integrated

such that the user can see the result of

input actions. On-line help should also be

provided for all aspects of the interface.

Another important consideration for the

interface is the accuracy and clarity of the

results displayed. Extensive testing must

be undertaken to insure that the user gets

the expected results for all cases. Also the

user should be given control over the

output displays. The user may want to see

a part of the output that is not visible and,

thus, should have full control over the look

of the output

3.3. Future Compatibility

Compat ib i l i ty is always an issue in

software design. The software would be

virtually useless if it did not operate in 2

years or if it could not be upgraded easily.

Using an object-oriented approach is

meant to el iminate this concern. By

defining a hierarchy which is not based on

low-level Java code, we remove ourselves

from the conflicts caused by future Java

upgrades. A lso, we must use on ly
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 6 OF 25
“standard” classes for the interface. If we

were to use non-standard classes there is

the chance that future upgrades would not

be compatible with our code.

Despite the hoopla surrounding object-

oriented programming, there are some

problems. The first downfall is that the

designer might have to give up desired

functionality in order to use the standard

classes. The designer can not merely

change the standard class because upon

upgrading he would have to change the

new version also.

The more tasking problem is that Java is

sti l l a relatively new language which

derives from an unfinished standard. Java

is a relatively new language which has

been through only 2 major revisions. Thus

it is subject to drastic changes which might

greatly effect the future operation of the

code running under it. This is another

reason that a hierarchy far removed from

the low-level code is extremely important.

The low-level code is much more likely to

be changed than the high level code, thus

we shr ink our chance o f los ing

compatibility during an upgrade.

4. DESIGN AND IMPLEMENTATION

This design was a systematic one in which

the foundations were thought through at

length well before a single piece of code

was wr i t ten . The process invo lved

cons is ted o f four ma jo r s teps :

determination of necessary functionality;

design of user interface; design of the

software; and integration of all parts into a

final product and testing it.

4.1. Determination of Functionality

A clear vision of the final product was

necessary before beginning the software

construct ion. There were two major

concerns in the design of this system. The

first of these was that the user understand

the planar locations of poles and zeros. To
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 7 OF 25
allow for this we design the system such

that the input area is relatively intuitive and

so the user can manipulate the pole/zero

position once on the map. Secondly, the

output needed to include the frequency

response as well as the time-domain

response of the system. This was the

fundamental component that the rest of

the design revolved around.

4.2. User Interface

The user interface was designed with the

concept of separating input and output.

Figure 3 shows the final interface design

for the system response tool. One can see

that the top half of the screen contains all

of the input components including an area

to enter the pole/zero frequency and

bandwidth. Frequency and bandwidth

were chosen as the method for input

instead of the location in the planes

because this was the concept we were

trying to impar t to the student - the

connection between poles, zeros and the

frequency and bandwidth of the response

they produce.

The pole/zero map provides an area for

the student to manipulate the poles and

zeros to note how the response changes

as the poles/zeros are moved in the plane.

This is important because it helps the

student gain an intuition of the interaction

between the poles and zeros based on

their relative location in the planes.

The ou tpu t pane l cons is ts o f the

magnitude and phase responses. (The

impulse response is not included at this

point but will be added in future versions.)

These pane ls show the f requency

response produced by the poles and zeros

in the pole/zero map. These plots can be

interactively zoomed in on and panned.

They also give the user the ability to trace

the plot. This, in addition to the pole/zero

map, are the most important areas in the

GUI because they allow the user to make
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 8 OF 25

EE 4012 SENIOR DESIGN PROJECT SPRING 1997

Figure 3. System response GUI. Note the clear division between the input and output areas.

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 9 OF 25
the connect ion between frequency

response and the locations of the poles

and zeros.

4.3. Software Design (Appendix A)

The software was designed according to

the hierarchical object-oriented pattern

shown in Figure 4. One can see that the

input and output are the major divisions in

the software. This tool is also event-driven

such that the output only responds to

actions initiated at the input. Thus, the

input effectively controls the output. Note

also that their is only one connection to the

Java c lasses. Th is he lps to insure

compatibility as discussed earlier since

there need only be concern over the
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

Applet

Java Core Classes & Java GUI Classes

Input Output

Magnitude PhaseData Input Pole/Zero Map

Figure 4. Overview of hierarchical software design. Note the single dependence on Java classes

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 10 OF 25
change of the single connection.

The design of the software also included

considerat ion of the inter face. The

interface was not intended to be slow to

respond but, upon initial testing, this was

the case. The GUI was required to

respond to events in a sequential fashion.

To circumvent this problem, we chose to

use the thread capabilities inherent in

Java. Provided in Java is a thread class

which allows our classes to operate in

parallel. For instance, the magnitude and

phase responses can be calculated

simultaneously instead of sequentially.

This allows a smoother interface and

allows the user to continue tweaking the

pole/zero system without waiting after

each change. Each of the classes which

required time consuming calculations

which could be done independently of

another class were instantiated with these

threads.

Another concern in writing this software

was the need for future upgrades. To

facilitate this need, we have provided

Appendix A which details the hierarchy of

our code and the class structures and

methods. This should prove to be a useful

tool for future improvement of this tool.

4.4. The Final Product and Testing

With all of these considerations accounted

for, the final pieces were put into place.

The most important of these was testing of

the product. Testing was performed by

comparing the output of the tool to a large

number of pole/zero systems in textbooks.

The total systems tested were 12 analog

systems and 8 digital systems. Each of the

system responses from our tool matched

perfectly with the responses listed in the

textbook for both magnitude and phase.

Being reasonably assured that the output

was correct, the testing moved to the next

phase: testing for accessibility. The GUI
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 11 OF 25
was run on a variety of platforms including

Windows95, SunOS, and Solaris. On each

o f these sys tems we tes ted us ing

Netscape Navigator 3.0 and the Java

Appletviewer. We also tested using a

number of different windowing systems.

The resu l t s o f these tes ts were

discouraging. Although, the software

worked fine in each of the different cases,

the appearance of the GUI was different.

In some cases, the GUI was not even

useful because certain parts of it were

obscured by others. This is indicative of

the problem discussed earlier - the low-

level graphics are platform-dependent.

There is no intuitive way to combat this

problem unless and until Java develops

platform-independent widgets or until the

various systems set some kind of standard

for the look of their widgets.

5. CONCLUSIONS

In this paper, we have described a Java-

based system for pole/zero analysis of

linear systems. This tool incorporates the

fundamental concepts of system response

into a visualization tool that students can

use for enhancement of the textbook

understanding. All software (source and

executable) can be found on our web site

at

http://isip.msstate.edu/software/java_system_response/

6. FUTURE WORK

Although this project accomplished the

majority of the desired goals, it is still

lacking in a couple of areas. The most

important of these are the need for on-line

help and time-domain response. Both of

these features will be added to the next

release. Also, the interface needs to be

expanded to allow the user even greater

flexibility and control over the design

process.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 12 OF 25
7. ACKNOWLEDGEMENTS

The author wishes to thank a number of

people for their support in this effort. First,

I wish to thank Janna Shaffer for her

artistic direction in designing the GUI.

Secondly, Dr. Joe Picone and Aravind

Ganapathiraju and all of the members of

ISIP for their technical direction in times of

need. Lastly, I would like to thank all of

those who tolerated my absence from their

lives over the past 4 months.

8. REFERENCES

1 Blinchikoff, Herman J., and Anatol I.
Zverev, Filtering in the Time and
Frequency Domains. New York: John
Wiley and Sons, 1976.

2 Williams, Charles S., Designing Digital
Filters. Englewood Cliffs, New Jersey:
Prentice Hall, 1986.

3 Bogner, R.E. and A.G. Constantinides.
Introduction to Digital Filtering. New York:
John Wiley and Sons, 1975.

4 Van Valkenburg, M.E., Analog Filter
Design, Fort Worth, Texas: Holt, Rinehart
and Winston, Inc., 1982
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 13 OF 25
APPENDIX A.1: SOURCE CODE OVERVIEW

FilterApplet -> java.lang.Applet

TogglePanel -> SubPanel -> FramedPanel -> java.awt.Panel

Designer -> SubPanel -> FramedPanel -> java.awt.Panel

InputPanel -> SubPanel -> FramedPanel -> java.awt.Panel

DataInputPanel -> SubPanel -> FramedPanel -> java.awt.Panel

DataDisplayPanel -> SubPanel -> FramedPanel -> java.awt.Panel

PzmapPanel -> SubPanel -> FramedPanel -> java.awt.Panel

Pzmap -> java.awt.Canvas

OutputPanel -> SubPanel -> FramedPanel -> java.awt.Panel

MagResponse -> G2Dint -> Graph2D -> java.awt.Canvas

PhaseResponse -> G2Dint -> Graph2D -> java.awt.Canvas

ImpulseResponse -> G2Dint -> Graph2D -> java.awt.Canvas
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 14 OF 25
APPENDIX A.2: SOURCE CODE DETAILS

file: Constants.java

class Constants
contains all of the constants for the applet classes

Hierarchy: PoleZero

file: PoleZero.java

class PoleZero
Implements an object representing a pole or zero

Hierarchy: PoleZero

public double mag_response(double frequency_in, double sample_frequency)
returns the magnitude response of this digital pole or zero object at the
indicated frequency

 public double mag_response(double frequency_in)
returns the magnitude response of the analog pole or zero object at the
indicated frequency

public double phase_response(double frequency_in, double sample_frequency)
returns the phase response of this digital pole or zero object at the
indicated frequency

 public double phase_response(double frequency_in)
returns the phase response of the analog pole or zero object at the
indicated frequency

public boolean debug()
prints the indicated debugging statement
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 15 OF 25
file: ZPlane.java

public class ZPlane
this class contains the necessary methods to convert from z-plane coordinates
to frequency coordinates

Hierarchy: ZPlane

public static double get_freq (double z_real, double z_imag, double sf)
this method returns the frequency of the point in the z-plane given the
sample-frequency

public static double get_band(double z_real, double z_imag, double sf)
this method returns the bandwidth of the point in the z-plane given the
sample-frequency

public static double get_real(double frequency, double bandwidth,double sf)
this method returns the real coordinate in the z-plane given the
frequency, bandwidth and the sample-frequency

public static double get_imag(double frequency, double bandwidth,double sf)
this method returns the imaginary coordinate in the z-plane given the
frequency, bandwidth, and the sample-frequency

file: PzGraphicsObj.java

class PzGraphicsObj
Implements an object which holds the graphics and pixel bounds for a pole or
zero in the pole/zero map

Hierarchy: PzGraphicsObj

public boolean set_limits(int xmin_a, int ymin_a, int xmax_a, int ymax_a)
sets the new limits of the object

 public boolean move_by_one (int direction)
moves this object in any direction by one pixel

 public int getx ()
returns the x coordinate of the object

 public int gety ()
returns the y coordinate of the object
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 16 OF 25
public boolean does_contain (int x, int y)
determines if the x and y coordinate are located within the graphics bounds

public boolean draw_self (Graphics graph)
this is a method to draw this pole or zero on the map when called

file: FramedPanel.java

class FramedPanel extends Panel
Draws 3-D frame around a panel.

Hierarchy: FramedPanel -> java.awt.Panel

public Insets insets()
Ensures that no Component is placed on top of the frame. Overrides
the Insets method of the Panel class.

public void paint(Graphics g)
Draws the frame at this panel’s edges.

file: SubPanel.java

class SubPanelpu extends FramedPanel
SubPanel is a FramedPanel with the layout manager of GridBagLayout.

Hierarchy: SubPanel -> FramedPanel -> java.awt.Panel

public boolean constrain(Container container, Component component,
constrain creates the constraints of a component in a container and then
adds the component to the container. it is based on code from “Java in a
Nutshell” by David Flanagan. Published by O’Reilly and Associates
incorporated.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 17 OF 25
file: FilterApplet.java

class FilterApplet extends Applet implements Runnable
this class implements the interface to a threaded applet which allows the user to
interactively design analog and digital filters

Hierarchy: FilterApplet -> java.applet.Applet

public void init()
this method initializes this applet

public void run()
this method runs the threaded applet

file: TogglePanel.java

public class TogglePanel extends SubPanel implements Runnable
this class implements the interface to allow toggling of the analog and digital
designs of a Designer panel

Hierarchy: TogglePanel -> SubPanel -> FramedPanel -> java.awt.Panel

 public TogglePanel(Designer designer_a, int type)
this method initializes the class

void place_components ()
this method places the individual controls on the panel

public void run()
this method runs the threaded class

public boolean handleEvent(Event event)
this method handles the various interrupt events that may occur in this
component
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 18 OF 25
file: Designer.java

public class Designer extends SubPanel
this class implements a tool which allows the user to place poles and zeros on
a pole-zero map interactively and view the effects of these poles and zeros on
the frequency response and the impulse response this class implements the
interface to allow toggling of the analog and digital designs of a Designer panel

Hierarchy: Designer -> SubPanel -> FramedPanel -> java.awt.Panel

 public Designer(int type)
this method constructs the default Designer object

private boolean add_components()
this method initializes the gui components of the class

public boolean set_design_type(int new_type)
this is a method to set the design type. the design type will be set to the
value passed in to new_type

file: InputPanel.java

class InputPanel extends SubPanel
this class implements a tool which controls the input to a pole-zero map it
allows the user to place poles and zeros.

Hierarchy: InputPanel-> SubPanel -> FramedPanel -> java.awt.Panel

public InputPanel(OutputPanel output_a, int type)
this method constructs the default InputPanel object

private boolean add_components()
this method initializes the gui components of the class

public boolean set_design_type(int new_type)
this is a method to set the design type. the design type will be set to the value
passed in to new_type
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 19 OF 25
file: DataInputPanel.java

public class DataInputPanel extends SubPanel implements Runnable
this class implements a canvas which allows one to enter a pole or a zero
and causes it to be displayed on a pole-zero map

Hierarchy: DataInputPanel-> SubPanel -> FramedPanel -> java.awt.Panel

public DataInputPanel(PzmapPanel pz_map_a, int type)
this method constructs a DataInputPanel of the default type

private boolean add_components()
this method initializes the gui components of the class

public boolean set_design_type(int new_type)
this is a method to set the design type. the design type will be set to the value
passed in to new_type

public void run()
this method runs the threaded applet

public boolean add_pz()
this is a method to add a pole or zero to the appropriate portions of our frame.

public boolean handleEvent(Event event)
this method handles the various interrupt events that may occur in this
component

file: DataDisplayPanel.java

public class DataDisplayPanel extends SubPanel
this class implements a canvas which holds a list of poles and zeros.

Hierarchy: DataDisplayPanel -> SubPanel -> FramedPanel -> java.awt.Panel

public DataDisplayPanel(int type)
this method constructs a DataDisplayPanel of the default type

private boolean add_components()
this method initializes the gui components of the class

public boolean clear_all()
this is a method to clear all poles and zeros from the lists
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 20 OF 25
public boolean add_zero(double frequency, double bandwidth)
this is a method to add a zero to the zero list

public boolean add_pole(double frequency, double bandwidth)
this is a method to add a pole to the pole list

public boolean set_design_type(int new_type)
this is a method to set the design type. the design type will be set to the value
passed in to new_type

public boolean reset_selected()
this is a method resets the lists so that both are deselected

public boolean remove_selected()
this is a method removes the current pole/zero from its list

public boolean select_item(double frequency, double bandwidth, int type)
this is a method to set the selected item in one of the lists

public boolean change_value(double new_freq, double new_band)
this is a method to change a pole or zero in the respective list

file: PzmapPanel.java

public class PzmapPanel extends SubPanel implements Runnable
this class implements a canvas which holds either a digital or analog pole-zero
map and displays the location of poles and zeros on that map.

Hierarchy: PzmapPanel -> SubPanel -> FramedPanel -> java.awt.Panel

public PzmapPanel(OutputPanel output_a, DataDisplayPanel display_a, int type)
this method constructs a PzmapPanel of the default type

private boolean add_components()
this method initializes the gui components of the class

public boolean clear_all()
this is a method to clear all poles and zeros from the map

public boolean add_zero(double frequency, double bandwidth)
this is a method to add a zero to the pzmap

public boolean add_pole(double frequency, double bandwidth)
this is a method to add a pole to the pzmap
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 21 OF 25
public void run()
this method runs the threaded class

public boolean set_sample_frequency (double new_freq)
this is a method to set the sample frequency. This has an effect only on
the digital map

public boolean set_dc_gain (double new_dc_gain)
this is a method to set the dc gain of the filter

public boolean set_map_type(int new_type)
this is a method to set the map type. the map type will be set to the value
passed in to new_type

public boolean handleEvent(Event event)
this method handles the various interrupt events that may occur in this
component

file: Pzmap.java

public class Pzmap extends Canvas implements Runnable
this class implements a canvas which holds either a digital or analog pole-zero
map and displays the location of poles and zeros on that map.

Hierarchy: Pzmap -> java.awt.Canvas

public Pzmap(int type, PoleZero pz_array_a[], OutputPanel output_a,
DataDisplayPanel data_display_a)
this method constructs a Pzmap of the default type

private boolean draw_analog_map(Graphics graph)
this method will draw an s-plane pole/zero map on the input graphic object

private boolean draw_digital_map(Graphics graph)
this method will draw a unit circle pole/zero map on the input graphic object

private boolean add_analog_pole (double frequency, double bandwidth)
this is a method to add a pole to the current analog map

private boolean add_analog_zero (double frequency, double bandwidth)
tthis is a method to add a zero to the current analog map

private boolean add_digital_pole (double frequency, double bandwidth)
this is a method to add a pole to the current digital map
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 22 OF 25
private boolean add_digital_zero (double frequency, double bandwidth)
tthis is a method to add a zero to the current digital map

public boolean clear_all()
this is a method to clear all poles and zeros from the map

public boolean add_zero(double frequency, double bandwidth)
this is a method to add a zero to the pzmap

public boolean add_pole(double frequency, double bandwidth)
this is a method to add a pole to the pzmap

public void run()
this method runs the threaded class

public boolean set_sample_frequency (double new_freq)
this is a method to set the sample frequency. This has an effect only on
the digital map

public boolean set_map_type(int new_type)
this is a method to set the map type. the map type will be set to the value
passed in to new_type

public boolean keyDown(Event e, int key)
this method determines the key pressed if the key is an arrow key then it
allows micro-positioning

public boolean keyUp(Event e, int key)
this method determines the key released if the key is an arrow key then it
refreshes the output screenbe set to the value

public boolean mouseDown(Event e, int x, int y)
this method determines the location of a mouse click and figures out
whether or not it was intended to be on a pole or zero. It sets the current
pole or zero to be the one clicked on.

public boolean mouseUp(Event e, int x, int y)
this method determines the location of a mouse click it sets the current pole
or zero to be unknown

public boolean mouseDrag(Event e, int x, int y)
this method determines the location of a mouse drag and sets the current
pole or zero to point to this new location
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 23 OF 25
file: OutputPanel.java

class OutputPanel extends SubPanel
this class implements a tool which controls the output of a pole-zero map
it displays the various responses

Hierarchy: OutputPanel -> SubPanel -> FramedPanel -> java.awt.Panel

public OutputPanel(int type, double frequency, PoleZero pz_array_a[])putPanel()
this method constructs the default OutputPanel object

private boolean add_components()
this method initializes the gui components of the class

public boolean update_screen()
this method sets the update_flag causing a repaint of the canvas

public boolean partial_update()
this method only updates a portion of this panel

public boolean set_pz_array(PoleZero pz_array_a[])
this method sets the pz_array to point to the input variable

public boolean set_frequency(double frequency)
this method sets the sample frequency or maximum frequency

public boolean set_dc_gain(double new_dc_gain)
this method sets the dc gain of the filter

public boolean set_design_type(int new_type)
this is a method to set the design type. the design type will be set to the value
passed in to new_type
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 24 OF 25
file: MagResponse.java

public class MagResponse extends G2Dint implements Runnable
this class implements a canvas which holds the magnitude response of a filter
described by a set of poles and zeros.

Hierarchy: MagResponse -> G2Dint -> Graph2D -> java.awt.Canvas

public MagResponse(double frequency, PoleZero pz_array_a[], int type)
this method constructs a MagResponse canvas

public boolean draw_analog_response(int length)
this method draws the frequency response of the analog poles and zeros on
the screen

public boolean draw_digital_response(int length)
this method draws the frequency response of the digital poles and zeros on
the screen

public boolean set_design_type(int new_type)
this is a method to set the design type. the design type will be set to the
value passed in to new_type

public boolean set_pz_array(PoleZero pz_array_a[])
this method sets the pz_array to point to the input variable

public boolean set_dc_gain(double new_dc_gain)
this method sets the dc gain of the filter

public boolean set_frequency(double frequency)
this method sets the sample frequency or maximum frequency

public boolean update_screen()
update_screen sets the update_flag causing a repaint of the canvas.

public void run()
run is the body of the thread. it will update the display area when necessary.
The necessity is based on the condition of the update_flag.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

POLE ZERO SYSTEM RESPONSE ANALYSIS USING JAVA PAGE 25 OF 25
file: PhaseResponse.java

public class PhaseResponse extends G2Dint implements Runnable
this class implements a canvas which holds the phase response of a filter
described by a set of poles and zeros.

Hierarchy: PhaseResponse -> G2Dint -> Graph2D -> java.awt.Canvas

public PhaseResponse(double frequency, PoleZero pz_array_a[], int type)
this method constructs a PhaseResponse canvas

public boolean draw_analog_response(int length)
this method draws the frequency response of the analog poles and zeros on
the screen

public boolean draw_digital_response(int length)
this method draws the frequency response of the digital poles and zeros on
the screen

public boolean set_design_type(int new_type)
this is a method to set the design type. the design type will be set to the
value passed in to new_type

public boolean set_pz_array(PoleZero pz_array_a[])
this method sets the pz_array to point to the input variable

public boolean set_frequency(double frequency)
this method sets the sample frequency or maximum frequency

public boolean update_screen()
update_screen sets the update_flag causing a repaint of the canvas.

public void run()
run is the body of the thread. it will update the display area when necessary.
The necessity is based on the condition of the update_flag.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

	APPENDIX A.1: SOURCE CODE OVERVIEW
	APPENDIX A.2: SOURCE CODE DETAILS
	ABSTRACT
	1.�� INTRODUCTION
	2.�� BACKGROUND
	3.�� Critical Design Issues
	3.1.�� Availability and Portability
	3.2.�� Interface Considerations
	3.3.�� Future Compatibility

	4.�� DESIGN AND IMPLEMENTATION
	4.1.�� Determination of Functionality
	4.2.�� User Interface
	4.3.�� Software Design (Appendix A)
	4.4.�� The Final Product and Testing

	5.�� CONCLUSIONS
	6.�� FUTURE WORK
	7.�� ACKNOWLEDGEMENTS
	8.�� REFERENCES
	1 Blinchikoff, Herman J., and Anatol I. Zverev, Filtering in the Time and Frequency Domains. New ...
	2 Williams, Charles S., Designing Digital Filters. Englewood Cliffs, New Jersey: Prentice Hall, 1...
	3 Bogner, R.E. and A.G. Constantinides. Introduction to Digital Filtering. New York: John Wiley a...
	4 Van Valkenburg, M.E., Analog Filter Design, Fort Worth, Texas: Holt, Rinehart and Winston, Inc....

	Interactive Frequency Response Analysis of Linear Systems Using Poles and Zeros
	Jonathan Hamaker
	EE 4012 -- Senior Design Project
	Department of Electrical and Computer Engineering
	Mississippi State University, Mississippi 39762
	hamaker@isip.msstate.edu

