
Department of Electrical and Computer Engineering

Spectrum Analysis Using Java

In partial fulfillment of the requirements for

EE 4012 Senior Design

By:

Janna M. Shaffer
shaffer@isip.msstate.edu

Instructor:

Dr. Bert Nail

Department of Electrical & Computer Engineering
Mississippi State University
Mississippi State, MS 39762

Spring Semester 1997

SPECTRUM ANALYSIS USING JAVA PAGE 0 OF 18

EE 4012 SENIOR DESIGN PROJECT SPRING 1997

Table of Contents

Abstract 1

1. Introduction 1

2. Motivation 3

3. Description 3

4. Design and Implementation 4

4.1 Evaluation of the Problem 4

4.2 Graphical User Interface 4

4.3 Input Classes 6

4.3 Output Classes 6

4.3 Data Class 7

4.4 Threading 8

4.5 Bringing It All together 8

5. Testing and Validation 8

6. Conclusion 9

References 9

Spectrum Analysis Using Java

Janna M. Shaffer

EE 4012 -- Senior Design Project
Department of Electrical and Computer Engineering

Mississippi State University
Mississippi State, Mississippi 39762

shaffer@isip.msstate.edu
ABSTRACT

Signal spectrum analysis is considered to

be a difficult and unintuitive concept by

most students of Electrical Engineering.

We have developed a graphical learning

tool to assist in the explanation and

visualization of spectral analysis concepts

(such as frequency response) for an

educational environment. The Java-based

graphical user interface (GUI) for this tool

has been refined using human factors

research to minimize the learning curve for

the novice user. The object-or iented

design and plat form- independence

provided by Java make this tool widely

portable and easily accessible to students

and provide them with a powerful learning

mechanism for a complex subject.

1. INTRODUCTION

Spectrum Analysis is not an intuitive

process. One must go through the

mathematical process of the Fourier

Transform to understand the frequency

response of a signal. It would be much

more useful if a student could see the

frequency response of a signal rather than

t r y ing to v isua l ize i t f rom abst rac t

mathematical equations. Thus a spectrum

analysis visualization package would be a

much needed educational tool.

This need for visualization of a concept

and Java’s graphical environment make

Java a good programming language to

develop such a tool in. Portability and

accessibil i ty also make Java a good
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 2 OF 18

EE 4012 SENIOR DESIGN PROJECT SPRING 1997

Figure 1. Duality as Shown Through the Spectrum Analysis Tool

SPECTRUM ANALYSIS USING JAVA PAGE 3 OF 18
choice. With this use of this Spectrum

Analysis tool, the frequency response of a

signal should become an easier concept

for students to understand

2. MOTIVATION

The main objective for this spectrum

analysis tool is education. Its purpose is to

help clarify concepts that are often hard for

students to grasp such as the frequency

response of a signal. Because this tool is

written in Java, it is easily accessible to

students. The applet can be run in the web

browser itself or downloaded and run in an

applet viewer. An example of one of the

concepts that can be learned from this tool

is in Figure 1. This figure shows that the

magnitude response of a unit pulse is a

sinc function and that the magnitude

response of a sinc function is a unit pulse.

This illustrates the concept of duality.

3. DESCRIPTION

The spectrum analysis tool was created

using Java. Its use wil l be to clar i fy

concepts of magnitude response, phase

response, and windowing of a signal. The

tool has a graphical user interface for ease

of use. The input signal area of the tool

can be directly drawn on or a signal

selected from a predefined list may be

chosen to plot on this area. The window

function area has the same setup as does

the input signal area. There is a control

bar that contains components to control

the interactive drawing of input signals. On

this control bar is the button which will

execute the analysis of the input signal

and window funct ion i f there is one

defined. There is also a control bar that

contains the predefined list of input signals

and user defined graphing parameters.

The tool also contains a graph for the

magnitude response and phase response

of the input signal. This graph is zoomable

for grater resolution of the frequency

response. All of these components work

together to implement a software tool that

helps students learn the concept of
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 4 OF 18
frequency response.

4. DESIGN AND IMPLEMENTATION

The design process was taken one

obstacle at a time. The first step was

designing the graphical user interface

(GUI). The next step was to decide on the

basic functionality for input and output to

the applet. After this major step was

accomplished, details of the software

s t r uc tu re were wor ked ou t and

implemented. When each of these steps

were executed, a working software tool

resu l ted .

4.1. Evaluation of the Problem

Before any code was written, an idea of

what would be needed for input and

output, and how this would be displayed

had to be considered. A canvas for input

signals would be necessary as to specify

the input to the system. Also a canvas for

the window function, magnitude response,

and phase response would be needed. It

could also be concluded that a control bar

would be needed to control the input/

output of the applet. Once the basics for

the applet were determined, a preliminary

layout could evolve.

4.2. Graphical User Interface (GUI)

Java’s built in graphical interface classes

were utilized to design the GUI for this

tool. The actual GUI for this tool can be

seen in Figure 2. The layout of the GUI

was divided into input, output, and the

window function. The input area for this

tool resides in the top half of the applet.

The control bars controlling the drawing

and other parameters for the input

surround it. The lower half of the applet

contains the window function, phase

response, and magnitude response. The

magnitude and phase response lie below

the input canvas as to keep with a basic

flow from input to output. The magnitude

response area lies above the phase

response area for that is the usual practice
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 5 OF 18

Figure 2. Graphical User Interface
for displaying frequency response graphs.

With the GUI completed, the details of how

each area would work independently and

also how they would interconnect could be

decided upon.

The graphics classes themselves are

subclassed off basic Java components.

The two main components used were the

canvas and the panel. From the Panel

class, a framed panel was subclassed to

draw a three-dimensional border around
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 6 OF 18
the panel. From the framed panel, a sub-

panel was subclassed to set the layout

and basic colors for the canvas. The input

panel, output panel, window function

panels, and the input control bar were

subclassed from the sub-panel. The

canvas class in Java was the other class

widely used throughout the code. From the

Canvas class was subclassed a drawing

canvas. This drawing canvas allowed for

drawing directly onto the canvas. It also

provided functionality for drawing the grid

and setting parameters for the graph.

From the drawing canvas class were

derived the input drawing canvas class

and the window function class. Each class

further specialized the drawing canvas by

adding the functionality to choose default

signals to plot based on the need for that

particular class.

4.3. Input Classes

The input class is the first of the two main

sections in the structure of this code. It

contains instances of the input drawing

canvas, the control bar, and the drawing

control bar. The input drawing canvas is a

canvas that al lows the user to draw

directly on it. It has two main axes: the

horizontal axis represents time while the

vertical axis represents amplitude. The

two control bars surround the input

drawing canvas. The control bar contains

a pull-down list of predefined signals that

can be plotted onto the input drawing

canvas. It also contains two input areas

tha t con t ro l the t ime d iv is ion and

amplitude division for the input drawing

canvas. The drawing control bar contains

two buttons. One button clears the input

drawing canvas. The other button signifies

that the input is ready for analysis.

4.4. Output Classes

The second of the two main sections in the

structure of this code is the output class.

The output class contains instances of the

magnitude response graph, the phase
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 7 OF 18

Window
Function

Applet

Input Output

Input
Signal

Drawing
Controls

Control
Bar

Magnitude
Response

Phase
Response

Data

Figure 3. Software Structure
response graph, and the window function

canvas. The window function canvas area

also includes a button that clears the

drawing area. The window function is

included in the output class for visual

purposes only, although it is actually an

input characteristic. The magnitude and

phase response graphs are entirely

controlled by the output class.

4.5. Data Class

Before the data class was created, there

was no way for communication between

the input and output classes. The data

class provided this bridge between the

input and output classes. This class is

passed in to all classes of input and

output. It contains an array for the input

va lues, f lags, and func t ions tha t

manipulate the data. The flags are the

primary form of communication between

input and output. When a certain task has

been performed somewhere else in the

code, the appropriate flag is set to alert

the other sections of this change. The data

c lass a l lowed fo r more e f f i c ien t
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 8 OF 18
communication between classes.

4.6. Threading

After the initial layout of the software was

complete, details of the interworkings of

the software had to be worked out. The

threading of classes played an important

role in the functionality of the software. By

using threads in conjuction with the data

class flags, a class can constantly check

to see if it needs to update or perform a

particular task. For example, the output

class checks to see if the flag that signifies

that input data is ready for analysis is set.

When this flag is set, the output then

performs the FFT analysis. The beauty of

this the output class being threaded is that

while the output is being calculated, the

rest of the classes can go on and do their

regular tasks, thus their is no dead time

during analysis. Several classes work in a

manner similar to this, such as the input

drawing canvas and the window function.

4.7. Bringing It All Together

With the GUI in place, the class structure

determined, and threading implemented,

the last step in the design process was to

make sure that each step was integrated

correctly and the output of the tool was

correct. Integrating the steps was not a

difficult task because of the forethought in

laying out the software design. Input could

talk to the output and window function by

means of threads which utilized the data

class. Implementing the actual code to

perform the analysis was also integrated

swiftly. With the initial design in place, the

next step in the design process would be

testing.

5. TESTING AND VALIDATION

This program was developed on the Unix

operating system. The majority of the

testing was done using the Unix version of

Netscape Navigator Gold 3.0 and an

appletviewer. On this platform, the majority

of this tool’s features worked properly. The
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 9 OF 18
main problem with this Spectrum Analysis

tool is the phase response. To date, there

is a problem outputting correct phase. This

problem can and will be fixed in future

versions of the software. The problem

stems from the input data star ting at

negative time rather than at time zero. The

other significant problem came from a

problem with Java. GUI components

appear different depending upon where

the applet is run. The GUI looked different

in Netscape than it did in the appletviewer.

The main difference was how the panels

were sized and aligned. Follow-up testing

was performed using the Windows 95

version of Netscape Navigator 3.0. The

same problems that occurred on the Unix

p la t fo r m were a lso present on the

Windows platform.

6. CONCLUSION

This paper describes the functionality and

design process of a Spectrum Analysis

tool written in Java. This tool should

provide a learning mechanism for students

trying to understand the often unintuitive

concept of spectrum analysis.. This

design, however, is not in its final stage.

There is still some functionality that must

be added. The design process wi l l

cont inue in a circular fashion whi le

features are being added in subsequent

versions of this tool.

REFERENCES

1 Flanagan, David. Java in a Nutshell.

Sebastopol, California: O’Reilly and

Associates, Inc., 1996.

2 Naughton, Patrick and Herbert Schildt.

Java: The Complete Reference.

Berkeley, California: Osborne McGraw-

Hill, 1997.

3 Proakis, John G. and Dimitris G.

Manolakis. Digital Signal Processing,

3rd ed. Upper Saddle River, New

Jersey: Prentice Hall, 1996.

4 Ziemer, Rodger E., William H. Tranter,
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 10 OF 18
and D. Ronald Fanin. Signals and

Systems: Continuous and Discrete, 3rd

ed. New York: Macmillan Publishing

Company, 1993.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 11 OF 18
APPENDIX A: SOURCE CODE DOCUMENTATION

file: Spectrum.java

class Spectrum extends Applet
Spectrum is the instance of the applet itself.

public void init()
init is called when applet Spectrum begins. Sets layout of the applet and
adds an input and output panel to the applet.

file: FramedPanel.java

class FramedPanel extends Panel
Draws 3-D frame around a panel.
Hierarchy: Panel->FramedPanel

public Insets insets()
Insets ensures that no Component is placed on top of the frame. Overrides
the Insets method of the Panel class.

public void paint(Graphics g)
paint draws the frame at this panel’s edges.

file: SubPanel.java

class SubPanel extends FramedPanel
SubPanel is a FramedPanel with the layout manager of GridBagLayout.
Hierarchy: Panel->FramedPanel->SubPanel

SubPanel()
Constructor that sets size, background properties, and layout manager.

public boolean constrain(Container container, Component component,
constrain creates the constraints of a component in a container and then
adds the component to the container. it is based on code from “Java in a
Nutshell” by David Flanagan. Published by O’Reilly and Associates
incorporated.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 12 OF 18
file: InputPanel.java

class InputPanel extends SubPanel
InputPanel creates a basic canvas for which a drawing canvas, a control bar for
the input parameters, and a control bar for drawing are added.
Class hierarchy: Panel->FramedPanel->SubPanel>InputPanel

Imputable(Data d)
Constructor sets size, background properties.

void add_components()
add_components adds a control panel, a drawing controls panel, and a
canvas to the input panel.

file: OutputPanel.java

class OutputPanel extends SubPanel implements Runnable
OutputPanel creates area for phase and magnitude response, and window
function panels to be added to the applet. Controls the execution of the FFT.

OutputPanel(Data d)
Constructor sets size, background properties, layout manager, and adds
components. Initializes thread for running the output.

void add_components()
add_components adds a phase canvas, magnitude canvas, and a place
holder for the controls and window function to the output panel.

void control_layout()
control_layout adds the window function panel and a control bar to a panel

void place_controls()
place_controls places individual controls on the control panel.

public void run()
run is the body of the thread. It will update the display area when necessary.
The necessity is based on the condition of the calculate_flag.

boolean sr_init(double sr_wr_d[], double sr_wi_d[])
sr_init creates lookup tables for sin and cosine terms.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 13 OF 18
boolean Srfft(double[] output_a, double[] input_a)
Srfft is used to compute the real split-radix FFT.
This code is based on the code by G. A. Sitton of the Rice University. The theory
behind the implementation closely follows the description of the split-radix algo-
rithm in: J. G. Proakis, D. G. Manolakis, “Digital Signal Processing —Principles,
Algorithms, and Applications” 2nd Edition, Macmillan Publishing Company,
New York, pp. 727-730, 1992.

file: FunctPanel.java

class FunctPanel extends SubPanel
Creates area for a window function drawing canvas and its controls to be placed.
Allows for user interaction with the window function panel.

FunctPanel(Data d)
Constructor calls parent constructor and creates instance of the window
function drawing panel and passes it the data class to write to.

void ClearDrawingArea()
ClearDrawingArea clears the window function drawing area.

public boolean action(Event e, Object arg)
action handles any user event.

void add_components()
add_components adds a control panel and a canvas to the input panel.

file: Data.java

class Data
Data contains data in array format for the input and output values also contain flags
to be checked before and after performing FFT analysis.

Data()
Constructor initializes size of FFT depending on size of DrawingCanvas.

void InitializeWindowFunction()
InitializeWindowFuction writes all ones into the window function so as not to
affect input if no window is applied.

void ApplyWindow()
Apply_Window multiplies the input_data by the window_function.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 14 OF 18
void time_shift()
time_shift shifts starting point of the fft window to time=0.

 file: DrawingCanvas.java

class DrawingCanvas extends Canvas implements Runnable
Drawing Canvas adds interactive drawing capabilities.

DrawingCanvas(Data d)
DrawingCanvas()

Constructor contructs a canvas for drawing waveforms onto the canvas.

public boolean update_screen() {
update_screen sets the update_flag causing a repaint of the canvas.

void DetermineDimensions()
DetermineDimensions determines the dimensions of the canvas.

public void run()
run is the body of the thread. It will update the display area when necessary.
The necessity is based on the condition of the update_flag.

public boolean handleEvent(Event e) {
handleEvent controls the handling of the mouse on the screen during drawing.

public void paint(Graphics g)
paint displays a grid on the canvas and enables drawing directly onto the
canvas using lines.

void fillArray()
fillArray fills the array that contains pixel data with the pixels of the curve drawn.

public void DrawGrid(Graphics g)
DrawGrid draws default grid onto the canvas: includes main axes, grid map,
and tick marks.

void DrawWaveform(int tempArray[])
DrawWaveform plots pixel values in the pixel array to the canvas.

void WriteData(int curveArray[])
WriteData write actual curve data to data class so fft can be performed set
flag after data written.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 15 OF 18
void SetTimeDivision(double new_time_div)
SetTimeDivision sets time division from user input.

void SetAmplitudeDivision(double new_amp_div)
SetAmplitudeDivision sets amplitude division from user input.

void ClearDrawingArea() {
ClearDrawingArea removes drawing elements from the canvas but leaves
the grid.

file: WindowFunction.java

class WindowFunction extends DrawingCanvas {
WindowFunction creates an interactive drawing canvas for window functions.
Hierarchy: Canvas->DrawingCanvas->WindowFunction

WindowFunction(Data d) {
Constructor contructs a canvas for drawing waveforms.

void drawRectangular()
drawRectanglular draws rectangular window to drawing canvas.

void drawHanning()
drawHanning draws Hanning window to drawing canvas.

void drawBartlett()
drawBartlett draws Bartlett window to drawing canvas.

file: InputDrawingCanvas.java

class InputDrawingCanvas extends DrawingCanvas
InputDrawingCanvas allows for interactive drawing on a canvas and also
specifies specific input signal that can be plotted.
Hierarchy: Canvas->DrawingCanvas->InputDrawingCanvas

InputDrawingCanvas(Data d)
Constructor constructs a canvas for drawing.

void drawSine()
drawSine draws sine wave to drawing canvas.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 16 OF 18
void drawCosine()
drawCosine draws cosine wave to drawing canvas.

void drawSinc()
drawSinc draws sinc wave to drawing canvas.

void drawUnit()
drawUnit draws unit pulse function centered about the origin.

void drawTriangle()
drawTriangle draws triangle function centered about the origin.

file: DrawControls.java

class DrawControls extends SubPanel implements Runnable
Threaded control bar that controls drawing capabilities of input.
Hierarchy: Panel->FramedPanel->SubPanel->DrawControls

DrawControls(DrawingCanvas wp, Data d)
Constructor that initializes the local variables with instances of the
InputDrawingCanvas and FFT data.

public void run()
run is the body of the thread. It will update the display area when necessary.
The necessity is based on the condition of the update_flag.

public boolean action(Event e, Object arg)
action handles any action performed by the user.

void place_drawing_controls()
place_drawing_controls positions individual controls on the drawing
control panel.

file: ControlBar.java

class ControlBar extends SubPanel
ControlBar controls the InputDrawingCanvas. It allows for the user to pick a
waveform and set amplitude and time divisions.

ControlBar(InputDrawingCanvas wp)
Constructor calls parent constructor.

public boolean action(Event e, Object arg)
action handles any user input
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 17 OF 18
public boolean keyUp(Event e, int key)
keyUp determines the key released if the key is an arrow key then it
refreshes the output screen.

void place_controls()(
place_controls positions individual controls on the Control Panel.

file: MagResponse.java

public class MagResponse extends G2Dint implements Runnable
MagResponse implements a canvas which holds the magnitude response of a
signal. The class it is subclassed from, G2Dint, adds zooming capabilites to the
Graph class.
Hierarchy: Graph->G2Dint->MagResponse

public MagResponse(Data fft_input)
Constructor constructs a magnitude response graph area.

public boolean draw_response()
draw_response draws the magnitude response of the signal on the screen.

public boolean update_screen()
update_screen sets the update_flag causing a repaint of the canvas.

public void run()
run is the body of the thread. it will update the display area when necessary.
The necessity is based on the condition of the update_flag.

file: PhaseResponse.java

public class PhaseResponse extends G2Dint implements Runnable
PhaseResponse implements a canvas which holds the magnitude response of
a signal.
Hierarchy: Graph->G2Dint->PhaseResponse

public PhaseResponse(Data fft_input)
Constructor constructs a phase response graph area.

public boolean draw_response()
draw_response draws the magnitude response of the signal on the screen.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

SPECTRUM ANALYSIS USING JAVA PAGE 18 OF 18
double GetAngle(double z_imag, double z_real)
GetAngle returns the angle of a complex number.

public boolean update_screen() {
update_screen sets the update_flag causing a repaint of the canvas.

public void run()
run is the body of the thread. it will update the display area when necessary.
The necessity is based on the condition of the update_flag.
EE 4012 SENIOR DESIGN PROJECT SPRING 1997

	APPENDIX A: SOURCE CODE DOCUMENTATION
	ABSTRACT
	1.�� INTRODUCTION
	2.�� MOTIVATION
	3.�� DESCRIPTION
	4.�� DESIGN AND IMPLEMENTATION
	4.1.�� Evaluation of the Problem
	4.2.�� Graphical User Interface (GUI)
	4.3.�� Input Classes
	4.4.�� Output Classes
	4.5.�� Data Class
	4.6.�� Threading
	4.7.�� Bringing It All Together

	5.�� TESTING AND VALIDATION
	6.�� CONCLUSION

	REFERENCES
	1 Flanagan, David. Java in a Nutshell. Sebastopol, California: O’Reilly and Associates, Inc., 1996.
	2 Naughton, Patrick and Herbert Schildt. Java: The Complete Reference. Berkeley, California: Osbo...
	3 Proakis, John G. and Dimitris G. Manolakis. Digital Signal Processing, 3rd ed. Upper Saddle Riv...
	4 Ziemer, Rodger E., William H. Tranter, and D. Ronald Fanin. Signals and Systems: Continuous and...

	Spectrum Analysis Using Java
	Janna M. Shaffer
	EE 4012 -- Senior Design Project
	Department of Electrical and Computer Engineering
	Mississippi State University
	Mississippi State, Mississippi 39762
	shaffer@isip.msstate.edu

