
n

e

s

he

y

ted

l

e

ed

e

e

GRAPHICAL CONVOLUTION IN JAVA

Erik S. Wheeler

EE 4012 -- Senior Design Project
Department of Electrical and Computer Engineering

Mississippi State University
Mississippi State, Mississippi 39762

wheeler@isip.msstate.edu
ABSTRACT

Convolution is a concept that escapes many

undergraduate engineering students. For years

we have been forced to try and visualize the

process with only limited success, but, with the

adven t o f the Wor ld Wide Web and

programming languages like Java, a tool for

performing graphical convolution for anyone

with an internet connection is now possible.

Imagine wondering what the convolution of a

Pi and a triangle function is and going to your

computer to see it performed right before your

eyes. This tool wil l not solve all of the

problems of learning or teaching convolution

but it should help some.

1. INTRODUCTION

A linear system is often described by the

output obtained when an impulse is placed o

the input. This is called the impulse respons

of that system, denoted h(t). Using thi

impulse response, the expected output of t

system to any input may be determined b

convolving that input with the system’s

impulse response. This process is represen

by the convolution integral:

Convolution is often taught using a graphica

convolution approach, in which the impuls

response or input signal is reversed and mov

to the left until there is no overlap of the two

curves. The reversed curve is then slid to th

right, positive time, across the other and th

y t() x λ()h t λ–() λd

∞–

∞

∫=
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 2

l

d

t

t.

n

t

nt

r

is

er

re

y

is

so

m

ld
area of the product of the overlapping curves is

calculated.

This sliding and summing of curves is often

hard for students to visualize, so a tool that can

perform this animation would probably help in

understanding the process.

This tool would have to allow the user to draw

the input and impulse response curves, then

show the result of the convolution as the

impulse response is moved across the input, or

visa versa.

2. IMPLEMENTATION APPROACHES

There were several possible implementation

approaches considered, including Matlab, C or

some other standard programming language,

and Java.

Matlab would have been very convenient in

that it has a built in convolution routine and

supports limited animation, but it could only

be used by people who have access to Matlab

and have a basic knowledge of Matlab

programming. Matlab would also require

multiple copies of the code for individuals

without accounts on the MSU Electrica

Engineering server.

A standard programming language woul

similarly require multiple copies of the code. I

would also not be platform independen

Although the code should be able to be run o

any machine it is compiled on, this is often no

the case. A completely platform independe

program could be run on any compute

architecture.

This left the immerging object-oriented

programming language called Java. Java

platform independent because the compil

generates bytecode instructions that a

accepted equally on any computer. It onl

requires one copy of the executable and Java

currently the only way to provide animation to

web pages. This last fact is the reason it is

popular right now. This means that a progra

written in Java and put on a homepage wou
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 3

le.

d

r

ty

e

e.

e

as

.

ge

g

rd

ts

te

,

f

be accessible to anyone with an internet

connection.

3. JAVA OVERVIEW

According to “The Java Language, A White

Paper,” Java is “A simple, object-oriented,

distributed, interpreted, robust, secure,

a rch i tec tu re neu t ra l , po r tab le , h igh-

performance, multithreaded, and dynamic

language” [2]. But, what does this really

mean?

Like the html language, Java is largely

intended to be a program-by-example

language in which the developer finds some

suitable code and incorporates it into his or her

program. This requires that the language be

relatively simple.

What the developers meant by simple is that

Java is based on C++ and has a smal l

interpreter and class support. The entire

language takes up about 40 kilobytes of

memory, but to someone who has never

written in an object-oriented programming

language, Java may not appear all that simp

The term “object-oriented”, along with

“surfing”, may be one of the most overuse

phrases in the computer community, but fo

Java, object-oriented is not just another emp

buzzword. Java was designed from th

beginning as an object-oriented languag

Unlike C++, which found its origins in C, Java

was not required to conform to many of th

non-object-oriented aspects of C.

What Sun means by distributed is that Java h

a se t o f bu i l t - i n c lasses tha t a l low

communication over the internet via URL’s

This feature is the main reason for Java’s hu

popularity.

Interpreted means that the programmin

environment does not go through the standa

compile and link process. Instead, it interpre

the code to bytecodes which can execu

directly on any machine. According to Sun

this should allow for faster development o

usable code.
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 4

he

a

y

t.

s

r

y

e

n

er

on

a

t

y

n

as

l

e

ed
To avoid common problems associated with

the pointer and pointer arithmetic used in C,

the entire ability to use pointers is eliminated

f rom the Java language. The memory

management in Java is also completely

handled by the language itself, with no chance

of code related errors. These two features add

to the language’s robustness.

The developers of Java spent extensive

amounts of time making sure that Java would

be a secure tool for communication over the

internet. There would be untold havoc if

someone were able to write a Java virus that

contaminates computer systems via their

homepages. Therefore, Java has a set of built-

in restrictions that attempt to circumvent such

acts. One of the main restrictions is the ability

of Java applets, an applet is the term used to

describe Java programs intended for internet

use, to write only to the file system of the host

computer. Although a hinderance, it is easy to

understand why this is an essential feature.

The reason Java is perfect for the internet is t

fact that it is architecture neutral. That is,

compiled Java program can be run on an

machine with the Java run-time environmen

It does this by generating bytecode instruction

which are handled equally in any compute

architecture. Architecture neutrality is a ke

feature to being a portable language. To b

truly portable, there can be no implementatio

dependant aspects of the language. In oth

words, an integer is always the same length

any machine.

The developers at Sun claim that Jav

performance is comparable to C or C++, bu

anyone who has run a Java program ma

disagree with this claim. In its base form as a

independent application, Java may be as fast

C++, but when running Java applets on htm

pages, Java can be mind-numbingly slow.

If you have ever run more than one Netscap

window at a t ime, you know what

multithreaded means. Java is a multithread
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 5

I

ed

a

d,

e

a

I

les

n

nd

d

-

n

e

re
language in that several separate processes can

occur s imul taneously and complete ly

independent of each other.

The Java language and run-time system are

dynamic during linking. Code is only linked

when necessary and updating of programs may

be performed transparently without ever

requiring upgrades for the user.

4. JAVA ENVIRONMENT

Sun provides the Java Development Kit (JDK

v1.0) f ree fo r anyone in te res ted in

programming in Java. The Java Development

Kit, which was still in beta release at the

beginning of this project, contains all of the

necessary tools for developing Java programs.

Some of the more important features of the

package are the Java language compiler, class

libraries, an applet viewer, and a debugger.

The debugger turned out to be almost

worthless, and after consultation with other

new Java programmers who agreed that the

debugger itself was so full of bugs that it

would cause more problems than solve,

decided to scrap it and debug the old fashion

way using the text editor. Borland has put out

graphical Java debugger, but it was not use

largely due to my lack of funds.

Sun a lso prov ides two very va luab le

programming aids in the Java languag

tu to r ia l [1] and the Java API

documentation [3], both available at the Jav

web s i te , java .sun .com. The AP

documentation contains a list of all of the

standard classes and the methods and variab

of those classes. Therefore, if any informatio

about the interaction between these classes a

their methods was desired, it could be foun

by checking this API.

Like many hot topics in the technical and non

technical world today, Java has its ow

newsgroup, comp.lang.java. Several of th

programming problems I encountered we

so lved by he lp fu l subscr ibers to th is

newsgroup. The book,Teach Yourself Java in
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 6

put

ys

ed

e

e

n

st

s

lt

d

e

er.

ur,

d

n

d

21 Days[4], also came highly recommended

by the newsgroup readers and was my main

source of information while learning the Java

language.

5. DESIGN PROCESS

The design process was taken one step at a

time in order to assure that something would

be working by the end of the semester. This

process went through several steps from the

most basic considerat ions of d iscrete

convolution to the addition of a graphical user

interface.

5.1. Discrete Convolution Considerations

The basic element used in Java animation is

the screen pixel. Using this as a discrete

increment of time and amplitude, several

parameters for discrete convolution could be

determined, including time and amplitude

scaling factors.

A width of 50 pixels for the time unit and 50

pixels for the amplitude unit was deemed

appropriate. This allowed for adequate

resolution while still leaving room on the

screen. The arrays used to represent the in

and impulse response curves would be arra

of integers in which each element represent

a pixel location. This definition gave rise to th

need for scaling of the input and impuls

response signals during the convolutio

routine in order to attain proper output width

and amplitude.

If the scaling factors are not taken into

consideration, as was the case in my fir

attempt, the convolution of two square wave

50 pixels high and 50 pixels long would resu

in a triangle wave 503 pixels high.

5.2. Convolution Animation

The next step was to display the animate

convolution of the two curves and updating th

result as one curve is moved across the oth

Several problems resulted from this endeavo

including determining the requirements an

restrictions of displaying animation in Java. I

order to reduce flicker a technique calle
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 7

he

r

rt

e

g

nd

g

e

e

e

he

n

e

e

g

of
double buffering was used. Double buffering is

the process in which screen images are first

painted in memory on an off-screen “canvas”,

then d isp layed when needed. The

representation of the moving, time reversed

input signal was displayed in this manner.

Unfortunately, if one canvas is placed on top of

another, the first canvas displayed is no longer

visible, so another approach was required for

the displaying of the overlapping curves. This

was accomplished using the polygon drawing

method of the Java graphics class. The

polygon representation, which displays

mult ip le l ine segments based on array

elements passed to it, was also helpful in

displaying the updated output signal, since the

amount of the polygon displayed could easily

be manipulated.

5.3. Drawing Tool

Once the problems with displaying the

animation were solved, the drawing tool had to

be created. Sami Shaio’s drawing demo,

DrawTest.java v1.14, provided with the JDK,

was used as a basis for the drawing tool. T

program had to be modified to not allow

infinite slope curves or defining two points fo

the same time increment. It also had to conve

the curves drawn into pixel locations to b

stored in their appropriate arrays. The drawin

areas were then labeled to indicate axes a

other important information.

5.4. Linking

After the animation program and the drawin

tool were working, they had to be linked

together. This link had to communicate th

animation start command, the contents of th

arrays representing the curves, and th

command to pause the animation. Once t

basic mechanism for communicating betwee

applets was established, the rest was trivial.

5.5. User Interface

The final step in developing the tool was th

addition of user interface. This included th

buttons to allow activities such as clearin

curves, pausing animation, and a group
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 8

s

n

If

r

r a

ds

e

re

n

d

s

be

of

lf.

et

et
predefined curves buttons for some hard to

draw functions.

The manner in which the convolution program

was written did not allow for easy addition of

user interface, so all buttons and checkboxes

had to be implemented in the drawing tool,

then passed to the animation program.

6. VERSION 1.0 FEATURES

The predefined curves described above include

a cosine wave, an exponential decay, a one

minus exponential decay, an approximation of

an impulse, and a Sinc function.

The freehand drawing tool allows all of the

considerations listed earlier plus the ability to

draw outside the bounds of the drawing area.

This feature is useful for approximating

impulses of unit area without making them too

wide. That is, an amplitude much higher than

the drawing limits can be obtained by releasing

the mouse button outside of the drawing limits.

The convolution area receives the curve

information in the form of an array, compute

the convolution and displays the animatio

loop of the graphical convolution process.

any changes are made, like new input o

impulse response curves, or a request fo

pause in the animation, the applet respon

accordingly.

7. EVALUATION

All tests performed on the program using th

Solaris or Sun versions of Netscape 2.0 we

successful without any problems, but when ru

on a Pent ium 120 compute r fo r the

demonstration, the convolution area woul

often not display correctly. The source of thi

bug was not able to be determined, but may

due to either a bug in the release version

Netscape 2.0 or in the convolution applet itse

Clearing the cache and reloading the appl

would usually alleviate this problem.

8. SUMMARY

The program accomplished all objectives s

forth in the initial scope of the project. The
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 9
latest version of the program may be tested by

connecting to the Institute for Signal and

Information Processing (ISIP) homepage, at

http://isip.msstate.edu/, and clicking on “Fun

Stuff”. The code is available for viewing or

copying at the same address.

REFERENCES

1 M. Campione and K. Walrath, “The Java

Language Tutorial: Object-Oriented

Programming for the Internet,” available at

http://java.sun.com/, Sun Microsystems,

January,1996.

2 J. Gosling and H. McGilton, “The Java

Language Environment: A White Paper,”

available at http://java.sun.com/, Sun

Microsystems, 1996.

3 Java API Documentation, available at http:/

/java.sun.com/, Sun Microsystems, 1996.

4 L. Lemay and C.L. Perkins,Teach Yourself

Java in 21 Days, Sams.net, Indianapolis, IN

1996.
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 10
APPENDIX A: CONVOLUTION.JAVA

/*
 * Convolution.java
 * Erik S. Wheeler
 * Mississippi State University
 * EE 4012 -- Senior Design Project
 *
 * Graphical Convolution in Java
 *
 */

import java.awt.*;
import java.applet.*;

public class Convolution extends java.applet.Applet implements Runnable {
 final int resol = 1;
 final int timeres = 2;
 final static int maxwidth = DrawCurves.maxwidth;
 final static int maxheight = DrawCurves.maxheight;
 final int pstart = 150;
 final double divconst = DrawCurves.divconst;
 final double timedivconst = DrawCurves.timedivconst;

 boolean pauseFlag = false;
 boolean startAnimation = false;
 boolean newCurves = false;
 int quarterwidth = (int)(maxwidth/4);
 int pend = pstart + maxwidth;
 int l1 = pstart + quarterwidth; // 1/4 thru
 int l2 = pstart + 2*quarterwidth; // 1/2 thru
 int l3 = pstart + 3*quarterwidth; // 3/4 thru
 int xarray[] = new int[(2*quarterwidth)];
 int harray[] = new int[(2*quarterwidth)];
 int yarray[] = new int[maxwidth];
 int revxarray[] = new int[(2*quarterwidth)];
 int hposh[] = new int[(2*quarterwidth)];
 int vposh[] = new int[(2*quarterwidth)];
 int hposy[] = new int[maxwidth];
 int vposy[] = new int[maxwidth];
 double fxarray[] = new double[(2*quarterwidth)];
 double fharray[] = new double[(2*quarterwidth)];
 double fyarray[] = new double[maxwidth];
 int currtime;

 Image RevXImg, fullImg;
 Graphics osG;
 Thread runner;

 public Convolution() {
 }
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 11
 public void init() {
 RevXImg=createImage(2*quarterwidth, maxheight);
 fullImg = createImage(4*maxwidth, 4*maxheight);
 }

 public void start() {
 if (runner == null) {
 runner = new Thread(this);
 runner.start();
 }
 }

 public void stop() {
 if (runner != null) {
 runner.stop();
 runner = null;
 }
 }

 public void run() {
 int i;

 osG = fullImg.getGraphics();

 setBackground(Color.white);

 while (true) {
 if (startAnimation) {

createX();
createH();
createRevX();
createY();
newCurves = false;

while (!newCurves) {
 for (currtime=pstart;
 currtime<(pend-timeres);currtime+=timeres) {
 repaint();
 if (newCurves) currtime=pend;
 while(pauseFlag) pause(500);
 pause(100);
 }
 pause(1000);
}

 }
 else {

pause(1000);
 }
 }
 }
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 12
 void updateParam(int[] xa,
 int[] ha) {

 startAnimation = true;
 newCurves = true;
 xarray = xa;
 harray = ha;
 }

 void createX() {
 int i;

 for (i = 0; i < 2*quarterwidth; i++) {
 fxarray[i] = xarray[i] / divconst;
 }
 }

 void createH() {
 int i;

 for (i = 0; i < 2*quarterwidth; i++) {
 fharray[i] = harray[i] / divconst;
 hposh[i] = l1 + i;
 vposh[i] = 20 + maxheight/2 - harray[i];
 }
 }

 void createRevX() {
 int i;
 Graphics offscreenG = RevXImg.getGraphics();

 offscreenG.clearRect(0,0,2*maxwidth,maxheight);
 offscreenG.setColor(Color.blue);

 for (i=0;i<(2*quarterwidth);i++) {
 revxarray[i] = xarray[(2*quarterwidth-i-1)];
 }

 for (i=0;i<(2*quarterwidth-resol);i+=resol) {
 offscreenG.drawLine(i,maxheight/2-revxarray[i],

 i+resol,maxheight/2-revxarray[(i+resol)]);
 }
 offscreenG.setColor(Color.red);
 offscreenG.drawLine(quarterwidth,maxheight/2-6,quarterwidth,maxheight/2+6);
 }

 void createY() {
 int i;

 Convolve();

 for (i=0;i<maxwidth;i++) {
 hposy[i] = i+pstart;
 vposy[i] = 20 + 2*maxheight - yarray[i];
 }
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 13
 }

 public void Convolve() {
 int i,j;
 for (i = 0;i < maxwidth;i++) fyarray[i]=0.0;
 for (i = 0;i < (2*quarterwidth);i++) {
 for (j = 0;j < (2*quarterwidth);j++) {

fyarray[i+j]=fyarray[i+j]+(fxarray[i]*fharray[j]);
 }
 }
 for (i = 0;i<maxwidth;i++) {
 fyarray[i] = fyarray[i] / timedivconst;
 yarray[i] = (int)(fyarray[i] * divconst);
 }
 }

 public void pause(int time) {
 try { Thread.sleep(time); }
 catch (InterruptedException e) { }
 }

 public void update(Graphics g) {
 g.clipRect(0,0,2*maxwidth,4*maxheight);
 prePaint();
 paint(g);
 }

 void prePaint() {
 Font f = new Font(“TimesRoman”,Font.PLAIN,10);
 int i;

 osG.setFont(f);
 osG.clearRect(0,0,2*maxwidth,4*maxheight);

 osG.setColor(Color.red);
 osG.drawImage(RevXImg,(currtime-quarterwidth),20,this);

 osG.drawLine(pstart,20+maxheight/2,pend,20+maxheight/2);
 osG.drawLine(l2,20,l2,20+maxheight);

 // ***** TIME *****
 osG.drawLine(pstart,20+2*maxheight,pend,20+2*maxheight);
 for (i=pstart;i<=pend;i+=timedivconst) {
 osG.drawLine(i,16+2*maxheight,i,24+2*maxheight);
 osG.drawString(String.valueOf((int)((i-l2)/timedivconst)),i,14+2*maxheight);
 }

 // ***** AMPLITUDE ******
 osG.drawLine(l2,60+maxheight,l2,3*maxheight);
 for (i=(int)(20+2*maxheight+divconst);i<=3*maxheight;i+=divconst) {
 osG.drawLine(l2-4,i,l2+4,i);
 osG.drawString(String.valueOf((int)((20+2*maxheight-i)/divconst)),

 l2+6,i);
 }
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 14
 for (i=(int)(20+2*maxheight-divconst);i>=60+maxheight;i-=divconst) {
 osG.drawLine(l2-4,i,l2+4,i);
 osG.drawString(String.valueOf((int)((20+2*maxheight-i)/divconst)),

 l2+6,i);
 }

 osG.setColor(Color.blue);
 osG.drawPolygon(hposy,vposy,currtime-pstart);
 osG.drawPolygon(hposh,vposh,vposh.length);
 }

 public void paint (Graphics g) {
 g.drawImage(fullImg,0,0,this);
 }

 public boolean handleEvent (Event e) {
 switch(e.id) {
 case Event.WINDOW_DESTROY:
 System.exit(0);
 return true;
 default:
 return false;
 }
 }
 public static void main (String args[]) {
 Frame f1 = new Frame(“Convolution”);
 Convolution conv = new Convolution();
 conv.init();
 conv.start();
 f1.add(conv);
 f1.resize(2*maxwidth, 4*maxheight);
 f1.show();
 }
}

EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 15
APPENDIX B: DRAWCURVES.JAVA

/*
 * DrawCurves.java
 * Erik S. Wheeler
 * Mississippi State University
 * EE 4012 -- Senior Design Project
 *
 * Graphical Convolution in Java
 *
 * DrawCurves and DrawPanel are modified versions of:
 *** @(#)DrawTest.java1.14 95/09/01 Sami Shaio ***
*** Copyright (c) 1994-1995 Sun Microsystems, Inc. All Rights Reserved. ***
 *
 *
 */
import java.lang.Math;
import java.awt.*;
import java.applet.*;
import java.util.Vector;

public class DrawCurves extends java.applet.Applet {
 public static final int maxwidth = 600;
 public static final int maxheight = 200;
 public static final double divconst = 50.0;
 public static final double timedivconst = 50.0;
 public DrawPanelArea xdpa;
 public DrawPanelArea hdpa;

 public void init() {
 Panel panelC = new Panel();
 xdpa = new DrawPanelArea();
 hdpa = new DrawPanelArea();

 setLayout(new BorderLayout());
 add(“Center”, panelC);

 panelC.setLayout(new GridLayout(1,2,5,5));
 panelC.add(xdpa);
 panelC.add(hdpa);

 add(“South”, new ControlPanel(this));
 }

 public boolean handleEvent (Event e) {
 switch(e.id) {
 case Event.WINDOW_DESTROY:
 System.exit(0);
 return true;
 default:
 return false;
 }
 }
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 16
 void startOverX () {
 xdpa.dp.lines.removeAllElements();
 xdpa.dp.xlast = 0;
 xdpa.dp.ylast = xdpa.dp.zeroY;
 for (int i=0;i<xdpa.dp.curveArray.length;i++) xdpa.dp.curveArray[i]=0;
 xdpa.dp.repaint();
 }

 void startOverH () {
 hdpa.dp.lines.removeAllElements();
 hdpa.dp.xlast = 0;
 hdpa.dp.ylast = hdpa.dp.zeroY;
 for (int i=0;i<hdpa.dp.curveArray.length;i++) hdpa.dp.curveArray[i]=0;
 hdpa.dp.repaint();
 }

 void execAnimation () {
 // get a hold of the receiver applet (Convolution)
 Convolution receiver=(Convolution)getAppletContext().getApplet(“receiver”);

 // update parameters and start animation of Convolution
 receiver.updateParam(xdpa.dp.curveArray, hdpa.dp.curveArray);
 }

 void handlePause (boolean pauseState) {
 Convolution receiver=(Convolution)getAppletContext().getApplet(“receiver”);
 receiver.pauseFlag = pauseState;
 }

 public static void main (String args[]) {
 Frame f1 = new Frame(“Draw Curves”);
 DrawCurves dCurves = new DrawCurves();
 dCurves.init();
 dCurves.start();
 f1.add(dCurves);
 f1.resize(maxwidth+20, maxheight+20);
 f1.show();
 }
}

class DrawPanelArea extends Panel {
 DrawPanel dp;

 public DrawPanelArea() {
 dp = new DrawPanel();
 setBackground(Color.white);
 setLayout(new BorderLayout());
 add(“Center”,dp);
 add(“South”, new DrawPanelControls(this));
 }
}

EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 17
class DrawPanel extends Panel {
 final int maxwidth = DrawCurves.maxwidth; // Class Variables
 final int maxheight = DrawCurves.maxheight;
 final double divconst = DrawCurves.divconst;
 final double timedivconst = DrawCurves.timedivconst;
 final int zeroY = (int)(maxheight / 2);
 final int zeroX = (int)(maxwidth / 4);

 int curveArray[] = new int[(int)(maxwidth/2)];
 // no need to init array b/c values default to zero
 Vector lines = new Vector();
 int x1, y1;
 int x2, y2;
 int xl, yl;
 int xlast = 0;
 int ylast = zeroY;

 public DrawPanel() {
 setBackground(Color.white);
 }

 public boolean handleEvent(Event e) {
 switch(e.id) {
 case Event.MOUSE_DOWN:
 x1 = xlast;
 y1 = ylast;
 x2 = -1;
 return true;
 case Event.MOUSE_UP:
 if (e.x > x1) {

xlast = e.x;
 } else {

xlast = x1 + 1;
 }
 x2 = xl = -1;
 ylast = e.y;
 lines.addElement(new Rectangle(x1, y1, xlast, ylast));
 fillArray();
 repaint();
 return true;
 case Event.MOUSE_DRAG:
 if (e.x > x1) {

x2 = e.x;
 } else {

x2 = x1 + 1;
 }
 xl = x2;
 yl = y2;
 y2 = e.y;
 repaint();
 return true;
 case Event.WINDOW_DESTROY:
 System.exit(0);
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 18
 return true;
 default:
 return false;
 }
 }

 public void paint(Graphics g) {
 Font f = new Font(“TimesRoman”,Font.PLAIN,10);
 int i;
 int np = lines.size();

 g.setFont(f);
 g.setColor(Color.blue);

 // AMPLITUDE
 for (i=0;i<=maxheight;i+=divconst) {
 g.setColor(Color.lightGray);
 g.drawLine(0,i,maxwidth,i);
 g.setColor(Color.blue);
 g.drawLine(zeroX-4,i,zeroX+4,i);
 // g.drawString(String.valueOf((int)((zeroY-i)/divconst)),zeroX+3,i+10);
 }

 // TIME
 for (i=0;i<=maxwidth;i+=timedivconst) {
 g.setColor(Color.lightGray);
 g.drawLine(i,0,i,maxheight);
 g.setColor(Color.blue);
 g.drawLine(i,zeroY-4,i,zeroY+4);
 // g.drawString(String.valueOf((int)((i-zeroX)/timedivconst)),i+3,zeroY+10);
 }

 g.drawLine(0,zeroY, maxwidth, zeroY);
 g.drawLine(zeroX,0,zeroX,maxheight-1);

 // draw the current lines
 g.setColor(getForeground());
 g.setPaintMode();
 for (i=0; i<np; i++) {
 Rectangle p = (Rectangle)lines.elementAt(i);
 g.setColor(Color.red);
 if (p.width != -1) {

g.drawLine(p.x, p.y, p.width, p.height);
 } else {

g.drawLine(p.x, p.y, p.x, p.y);
 }
 }
 g.setXORMode(getBackground());
 if (xl != -1) {
 // erase last line
 g.drawLine(x1, y1, xl, yl);
 }
 g.setColor(getForeground());
 g.setPaintMode();
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 19
 if (x2 != -1) {
 g.drawLine(x1, y1, x2, y2);
 }
 }

 void fillArray() {
 double slope = (double)(y1 - ylast) / (double)(xlast - x1);
 for (int i=x1; i<=xlast; i++) {
 if ((i>=0)&&(i<(int)(maxwidth/2))) {

curveArray[i]=(int)(slope*(i-x1)+(zeroY-y1));
 }
 else {

// ERROR !!!!
 }
 }
 }

 void drawSine() {
 int i;

 for (i=0;i<(maxwidth/2);i++) {
 curveArray[i] = (int)(divconst *

 Math.cos((double)(2*Math.PI*i/timedivconst)));
 }

 lines.removeAllElements();
 for (i=0;i<(maxwidth/2-1);i++) {
 lines.addElement(new Rectangle(i, zeroY-curveArray[i],

 i+1, zeroY-curveArray[i+1]));
 }
 xlast = maxwidth/2;
 repaint();
 }

 void drawSinc() {
 int i;

 for (i=0;i<zeroX;i++) {
 curveArray[i] = (int)(divconst *

 (Math.sin((double)(2*Math.PI*(i-zeroX)/timedivconst))) /
 (2*Math.PI*(i-zeroX) / timedivconst));

 }
 curveArray[zeroX] = (int)divconst;
 for (i=zeroX+1;i<(maxwidth/2);i++) {
 curveArray[i] = (int)(divconst *

 (Math.sin((double)(2*Math.PI*(i-zeroX)/timedivconst))) /
 (2*Math.PI*(i-zeroX) / timedivconst));

 }
 lines.removeAllElements();
 for (i=0;i<(maxwidth/2-1);i++) {
 lines.addElement(new Rectangle(i, zeroY-curveArray[i],

 i+1, zeroY-curveArray[i+1]));
 }
 xlast = maxwidth/2;
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 20
 repaint();
 }

 void drawExp() {
 int i;

 for (i=0;i<zeroX;i++) curveArray[i] = 0;
 for (i=zeroX;i<(maxwidth/2);i++) {
 curveArray[i] = (int)(divconst *

 Math.exp((double)((zeroX-i)/timedivconst)));
 }

 lines.removeAllElements();
 for (i=0;i<(maxwidth/2-1);i++) {
 lines.addElement(new Rectangle(i,zeroY-curveArray[i],

 i+1,zeroY-curveArray[i+1]));
 }
 xlast = maxwidth/2;
 repaint();
 }

 void draw1_Exp() {
 int i;

 for (i=0;i<zeroX;i++) curveArray[i] = 0;
 for (i=(int)maxwidth/4;i<(maxwidth/2);i++) {
 curveArray[i] = (int)(divconst *

 (1-Math.exp((double)((zeroX-i)/timedivconst))));
 }

 lines.removeAllElements();
 for (i=0;i<(maxwidth/2-1);i++) {
 lines.addElement(new Rectangle(i,zeroY-curveArray[i],

 i+1,zeroY-curveArray[i+1]));
 }
 xlast = maxwidth/2;
 repaint();
 }

 void drawImpulse() {
 int i;

 for (i=0;i<maxwidth/2;i++)
 curveArray[i] = 0;
 for (i=(int)(maxwidth/4-2);i<=maxwidth/4+2;i++)
 curveArray[i] = 500;

 lines.removeAllElements();
 lines.addElement(new Rectangle(0,zeroY,(int)(maxwidth/4-2),zeroY));
 lines.addElement(new Rectangle((int)(maxwidth/4-2),zeroY,

 (int)(maxwidth/4-2),0));
 lines.addElement(new Rectangle((int)(maxwidth/4-2),0,

 (int)(maxwidth/4+2),0));
EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 21
 lines.addElement(new Rectangle((int)(maxwidth/4+2),0,
 (int)(maxwidth/4+2),zeroY));

 lines.addElement(new Rectangle((int)(maxwidth/4+2),zeroY,
 (int)(maxwidth/2),zeroY));

 xlast = maxwidth/2;
 repaint();
 }

}

class DrawPanelControls extends Panel {
 DrawPanelArea target;

 public DrawPanelControls(DrawPanelArea target) {
 this.target = target;

 setLayout(new FlowLayout(FlowLayout.CENTER));
 setBackground(Color.lightGray);
 target.setForeground(Color.red);
 add (new Button(“Cos(2*pi*t)”));
 add (new Button(“exp(-t)”));
 add (new Button(“1-exp(-t)”));
 add (new Button(“Impulse”));
 add (new Button(“Sinc”));
 }

 public void paint(Graphics g) {
 Rectangle r = bounds();

 g.setColor(Color.lightGray);
 g.draw3DRect(0,0,r.width, r.height, false);
 }

 public boolean action (Event e, Object arg) {
 if (e.target instanceof Button) {
 if (((String)arg).equals(“Cos(2*pi*t)”)) {

target.dp.drawSine();
 } else if (((String)arg).equals(“exp(-t)”)) {

target.dp.drawExp();
 } else if (((String)arg).equals(“1-exp(-t)”)) {

target.dp.draw1_Exp();
 } else if (((String)arg).equals(“Impulse”)) {

target.dp.drawImpulse();
 } else if (((String)arg).equals(“Sinc”)) {

target.dp.drawSinc();
 } else {

// error
 }
 }
 return true;
 }
}

EE 4012 -- Senior Design Project Spring ’96

Graphical Convolution in Java Page 22
class ControlPanel extends Panel {
 DrawCurves target;

 public ControlPanel(DrawCurves target) {
 this.target = target;

 setLayout(new FlowLayout(FlowLayout.CENTER));
 setBackground(Color.lightGray);
 target.setForeground(Color.red);
 add (new Button(“Clear Input Signal (Left)”));
 add (new Button(“Start Animation”));
 add (new Button(“Clear Impulse Response (Right)”));
 add (new Checkbox(“Pause Animation”, null, false));
 }

 public void paint(Graphics g) {
 Rectangle r = bounds();

 g.setColor(Color.lightGray);
 g.draw3DRect(0,0,r.width, r.height, false);
 }

 public boolean action(Event e, Object arg) {
 if (e.target instanceof Button) {
 if (((String)arg).equals(“Start Animation”)) {

target.execAnimation();
 } else if (((String)arg).equals(“Clear Input Signal (Left)”)) {

target.startOverX();
 } else if (((String)arg).equals(“Clear Impulse Response (Right)”)) {

target.startOverH();
 } else {

// Unexpected Error
 }
 } else if (arg instanceof Boolean) {
 if (((Checkbox)e.target).getLabel().equals(“Pause Animation”)) {

target.handlePause(((Boolean)arg).booleanValue());
 }
 }
 return true;
 }
}

EE 4012 -- Senior Design Project Spring ’96

	APPENDIX A: CONVOLUTION.JAVA
	APPENDIX B: DRAWCURVES.JAVA
	ABSTRACT
	1.�� INTRODUCTION
	2.�� IMPLEMENTATION APPROACHES
	3.�� JAVA OVERVIEW
	4.�� JAVA ENVIRONMENT
	5.�� DESIGN PROCESS
	5.1.�� Discrete Convolution Considerations
	5.2.�� Convolution Animation
	5.3.�� Drawing Tool
	5.4.�� Linking
	5.5.�� User Interface

	6.�� VERSION 1.0 FEATURES
	7.�� EVALUATION
	8.�� SUMMARY

	REFERENCES
	1 M. Campione and K. Walrath, “The Java Language Tutorial: Object-Oriented Programming for the In...
	2 J. Gosling and H. McGilton, “The Java Language Environment: A White Paper,” available at http:/...
	3 Java API Documentation, available at http:/ /java.sun.com/, Sun Microsystems, 1996.
	4 L. Lemay and C.L. Perkins, Teach Yourself Java in 21 Days, Sams.net, Indianapolis, IN 1996.

	GRAPHICAL CONVOLUTION IN JAVA
	Erik S. Wheeler
	EE 4012 -- Senior Design Project
	Department of Electrical and Computer Engineering
	Mississippi State University
	Mississippi State, Mississippi 39762
	wheeler@isip.msstate.edu

