GRAPHICAL CONVOLUTION IN JAVA

Erik S. Wheeler
EE 4012 -- Senior Design Project
Department of Electrical and Computer Engineering
Mississippi State University

Mississippi State, Mississippi 39762
wheeler@isip.msstate.edu

ABSTRACT output obtained when an impulse is placed on
Convolution is a concept that escapes manyhe input. This is called the impulse response
undergraduate engineering students. For yearsf that system, denoted h(t). Using this
we have been forced to try and visualize thémpulse response, the expected output of the
process with only limited success, but, with thesystem to any input may be determined by
advent of the World Wide Web and convolving that input with the system’s
programming languages like Java, a tool forimpulse response. This process is represented
performing graphical convolution for anyone by the convolution integral:

with an internet connection is now possible.

[ee]

Y(H) = [X(A)h(t-2)d\

Imagine wondering what the convolution of a
Pi and a triangle function is and going to your

computer to see it performed right before your

. _ Convolution is often taught using a graphical
eyes. This tool will not solve all of the

_ _ ~convolution approach, in which the impulse
problems of learning or teaching convolution

_ response or input signal is reversed and moved
but it should help some.
to the left until there is no overlap of the two
1. INTRODUCTION curves. The reversed curve is then slid to the

A linear system is often described by theyjgnt, positive time, across the other and the

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java Page 2

area of the product of the overlapping curves igprogramming. Matlab would also require
calculated. multiple copies of the code for individuals

without accounts on the MSU Electrical
This sliding and summing of curves is often

Engineering server.
hard for students to visualize, so a tool that can

perform this animation would probably help in A standard programming language would
understanding the process. similarly require multiple copies of the code. It

would also not be platform independent.
This tool would have to allow the user to draw

Although the code should be able to be run on
the input and impulse response curves, then

any machine it is compiled on, this is often not
show the result of the convolution as the

the case. A completely platform independent
impulse response is moved across the input, or

program could be run on any computer
visa versa.

architecture.

2. IMPLEMENTATION APPROACHES

This left the immerging object-oriented
There were several possible implementation

programming language called Java. Java is
approaches considered, including Matlab, C or

platform independent because the compiler
some other standard programming language,

generates bytecode instructions that are
and Java.

accepted equally on any computer. It only

Matlab would have been very convenient inrequires one copy of the executable and Java is
that it has a built in convolution routine and currently the only way to provide animation to
supports limited animation, but it could only web pages. This last fact is the reason it is so
be used by people who have access to Matlapopular right now. This means that a program

and have a basic knowledge of Matlabwritten in Java and put on a homepage would

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java Page 3

be accessible to anyone with an internetanguage, Java may not appear all that simple.

connection.
The term “object-oriented”, along with

3. JAVA OVERVIEW “surfing”, may be one of the most overused
According to “The Java Language, A White phrases in the computer community, but for
Paper,” Java is “A simple, object-oriented, Java, object-oriented is not just another empty
distributed, interpreted, robust, securepuzzword. Java was designed from the
architecture neutral, portable, high-beginning as an object-oriented language.
performance, multithreaded, and dynamidJnlike C++, which found its origins in C, Java
language” [2]. But, what does this really was not required to conform to many of the

mean? non-object-oriented aspects of C.

Like the html language, Java is largely What Sun means by distributed is that Java has
intended to be a program-by-examplea set of built-in classes that allow
language in which the developer finds somecommunication over the internet via URL's.
suitable code and incorporates it into his or heiThis feature is the main reason for Java’s huge
program. This requires that the language bgopularity.

relatively simple.
Interpreted means that the programming

What the developers meant by simple is thaenvironment does not go through the standard
Java is based on C++ and has a smaltompile and link process. Instead, it interprets
interpreter and class support. The entirghe code to bytecodes which can execute
language takes up about 40 kilobytes ofdirectly on any machine. According to Sun,
memory, but to someone who has nevethis should allow for faster development of

written in an object-oriented programming usable code.

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java Page 4

To avoid common problems associated withThe reason Java is perfect for the internet is the
the pointer and pointer arithmetic used in C,fact that it is architecture neutral. That is, a
the entire ability to use pointers is eliminatedcompiled Java program can be run on any
from the Java language. The memorymachine with the Java run-time environment.
management in Java is also completelyit does this by generating bytecode instructions
handled by the language itself, with no chancevhich are handled equally in any computer
of code related errors. These two features addrchitecture. Architecture neutrality is a key
to the language’s robustness. feature to being a portable language. To be
truly portable, there can be no implementation

The developers of Java spent extensive

dependant aspects of the language. In other
amounts of time making sure that Java would

words, an integer is always the same length on
be a secure tool for communication over the

any machine.
internet. There would be untold havoc if
someone were able to write a Java virus thaThe developers at Sun claim that Java
contaminates computer systems via theiperformance is comparable to C or C++, but
homepages. Therefore, Java has a set of builenyone who has run a Java program may
in restrictions that attempt to circumvent suchdisagree with this claim. In its base form as an
acts. One of the main restrictions is the abilityindependent application, Java may be as fast as
of Java applets, an applet is the term used t€++, but when running Java applets on html
describe Java programs intended for internepages, Java can be mind-numbingly slow.
use, to write only to the file system of the host

If you have ever run more than one Netscape

computer. Although a hinderance, it is easy to
window at a time, you know what

understand why this is an essential feature.
multithreaded means. Java is a multithreaded

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java Page 5

language in that several separate processes carould cause more problems than solve, |
occur simultaneously and completelydecided to scrap it and debug the old fashioned
independent of each other. way using the text editor. Borland has put out a

graphical Java debugger, but it was not used,
The Java language and run-time system are

largely due to my lack of funds.
dynamic during linking. Code is only linked

when necessary and updating of programs magun also provides two very valuable
be performed transparently without everprogramming aids in the Java language
requiring upgrades for the user. tutorial [1] and the Java API

documentation [3], both available at the Java
4. JAVA ENVIRONMENT

web site, java.sun.com. The API
Sun provides the Java Development Kit (JDK

documentation contains a list of all of the
v1.0) free for anyone interested in

standard classes and the methods and variables
programming in Java. The Java Development

of those classes. Therefore, if any information
Kit, which was still in beta release at the

about the interaction between these classes and
beginning of this project, contains all of the

their methods was desired, it could be found
necessary tools for developing Java programs.

by checking this API.
Some of the more important features of the

package are the Java language compiler, clagske many hot topics in the technical and non-
libraries, an applet viewer, and a debugger. technical world today, Java has its own

newsgroup, comp.lang.java. Several of the
The debugger turned out to be almost

programming problems | encountered were
worthless, and after consultation with other

solved by helpful subscribers to this
new Java programmers who agreed that the

newsgroup. The booKeach Yourself Java in
debugger itself was so full of bugs that it

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java Page 6

21 Days[4], also came highly recommended resolution while still leaving room on the

by the newsgroup readers and was my maiscreen. The arrays used to represent the input
source of information while learning the Javaand impulse response curves would be arrays
language. of integers in which each element represented

a pixel location. This definition gave rise to the
5. DESIGN PROCESS

need for scaling of the input and impulse
The design process was taken one step at a

response signals during the convolution
time in order to assure that something would

routine in order to attain proper output width
be working by the end of the semester. This

and amplitude.
process went through several steps from the

most basic considerations of discretelf the scaling factors are not taken into
convolution to the addition of a graphical userconsideration, as was the case in my first
interface. attempt, the convolution of two square waves

50 pixels high and 50 pixels long would result
5.1. Discrete Convolution Considerations

in a triangle wave 50pixels high.
The basic element used in Java animation is

the screen pixel. Using this as a discretes.2. Convolution Animation

increment of time and amplitude, severalThe next step was to display the animated
parameters for discrete convolution could beconvolution of the two curves and updating the
determined, including time and amplituderesult as one curve is moved across the other.
scaling factors. Several problems resulted from this endeavour,
including determining the requirements and

A width of 50 pixels for the time unit and 50

. ' . restrictions of displaying animation in Java. In
pixels for the amplitude unit was deemed

_ _ order to reduce flicker a technique called
appropriate. This allowed for adequate

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java Page 7

double buffering was used. Double buffering iswas used as a basis for the drawing tool. The
the process in which screen images are firsprogram had to be modified to not allow
painted in memory on an off-screen “canvas”,infinite slope curves or defining two points for
then displayed when needed. Thethe same time increment. It also had to convert
representation of the moving, time reversedhe curves drawn into pixel locations to be
input signal was displayed in this manner.stored in their appropriate arrays. The drawing
Unfortunately, if one canvas is placed on top ofareas were then labeled to indicate axes and
another, the first canvas displayed is no longeother important information.

visible, so another approach was required for

5.4. Linking
the displaying of the overlapping curves. This

After the animation program and the drawing
was accomplished using the polygon drawing

tool were working, they had to be linked
method of the Java graphics class. The

together. This link had to communicate the
polygon representation, which displays

animation start command, the contents of the
multiple line segments based on array

arrays representing the curves, and the
elements passed to it, was also helpful in

command to pause the animation. Once the
displaying the updated output signal, since the

basic mechanism for communicating between
amount of the polygon displayed could easily

applets was established, the rest was trivial.
be manipulated.

5.5. User Interface
5.3. Drawing Tool

The final step in developing the tool was the
Once the problems with displaying the

addition of user interface. This included the
animation were solved, the drawing tool had to

buttons to allow activities such as clearing
be created. Sami Shaio’s drawing demo,

curves, pausing animation, and a group of
DrawTest.java v1.14, provided with the JDK,

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java Page 8

predefined curves buttons for some hard tanformation in the form of an array, computes
draw functions. the convolution and displays the animation

loop of the graphical convolution process. If
The manner in which the convolution program

any changes are made, like new input or
was written did not allow for easy addition of

impulse response curves, or a request for a
user interface, so all buttons and checkboxes

pause in the animation, the applet responds
had to be implemented in the drawing tool,

accordingly.
then passed to the animation program.

7. EVALUATION
6. VERSION 1.0 FEATURES

All tests performed on the program using the
The predefined curves described above include

Solaris or Sun versions of Netscape 2.0 were
a cosine wave, an exponential decay, a one

successful without any problems, but when run
minus exponential decay, an approximation of

on a Pentium 120 computer for the
an impulse, and a Sinc function.

demonstration, the convolution area would

The freehand drawing tool allows all of the often not display correctly. The source of this
considerations listed earlier plus the ability tobug was not able to be determined, but may be
draw outside the bounds of the drawing areadue to either a bug in the release version of
This feature is useful for approximating Netscape 2.0 or in the convolution applet itself.
impulses of unit area without making them tooClearing the cache and reloading the applet
wide. That is, an amplitude much higher thanwould usually alleviate this problem.
the drawing limits can be obtained by releasing

8. SUMMARY
the mouse button outside of the drawing limits.

The program accomplished all objectives set

The convolution area receives the curvesorth in the initial scope of the project. The

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java

latest version of the program may be tested by
connecting to the Institute for Signal and
Information Processing (ISIP) homepage, at
http://isip.msstate.edu/, and clicking on “Fun
Stuff”. The code is available for viewing or

copying at the same address.

REFERENCES

1 M. Campione and K. Walrath, “The Java
Language Tutorial: Object-Oriented
Programming for the Internet,” available at
http://java.sun.com/, Sun Microsystems,

January,1996.

2 J. Gosling and H. McGilton, “The Java
Language Environment: A White Paper,”
available at http://java.sun.com/, Sun

Microsystems, 1996.

3 Java API Documentation, available at http:/

/java.sun.com/, Sun Microsystems, 1996.

4 L. Lemay and C.L. Perkingeach Yourself
Java in 21 DaysSams.net, Indianapolis, IN

1996.

EE 4012 -- Senior Design Project

Page 9

Spring 96

Graphical Convolution in Java

APPENDIX A: CONVOLUTION.JAVA

* Convolution.java

* Erik S. Wheeler

* Mississippi State University

* EE 4012 -- Senior Design Project
*

*

*

Graphical Convolution in Java

import java.awt.*;
import java.applet.*;

public class Convolution extends java.applet.Applet implements Runnable {
final int resol = 1;
final int timeres = 2;
final static int maxwidth = DrawCurves.maxwidth;
final static int maxheight = DrawCurves.maxheight;
final int pstart = 150;
final double divconst = DrawCurves.divconst;
final double timedivconst = DrawCurves.timedivconst;

boolean pauseFlag = false;

boolean startAnimation = false;

boolean newCurves = false;

int quarterwidth = (int)(maxwidth/4);

int pend = pstart + maxwidth;

int |11 = pstart + quarterwidth; // 1/4 thru

int 12 = pstart + 2*quarterwidth; // 1/2 thru

int I3 = pstart + 3*quarterwidth; // 3/4 thru

int xarray[] = new int[(2*quarterwidth)];

int harray[] = new int[(2*quarterwidth)];

int yarray[] = new intf[maxwidth];

int revxarray[] = new int[(2*quarterwidth)];

int hposh[] = new int[(2*quarterwidth)];

int vposh[] = new int[(2*quarterwidth)];

int hposy[] = new intfmaxwidth];

int vposy[] = new int[maxwidth];

double fxarray[] = new double[(2*quarterwidth)];
double fharray[] = new double[(2*quarterwidth)];
double fyarray[] = new double[maxwidth];

int currtime;

Image RevXIimg, fulllmg;
Graphics 0sG;
Thread runner;

public Convolution() {

}

EE 4012 -- Senior Design Project

Page 10

Spring 96

Graphical Convolution in Java Page 11

public void init() {
RevXIimg=createlmage(2*quarterwidth, maxheight);
fulllmg = createlmage(4*maxwidth, 4*maxheight);

}

public void start() {
if (runner == null) {
runner = new Thread(this);
runner.start();

}
}

public void stop() {
if (runner !=null) {
runner.stop();

runner = null;
}
}
public void run() {
inti;

0sG = fulllmg.getGraphics();
setBackground(Color.white);

while (true) {
if (startAnimation) {
createX();
createH();
createRevX();
createY();
newCurves = false;

while ('newCurves) {
for (currtime=pstart;
currtime<(pend-timeres);currtime+=timeres) {
repaint();
if (newCurves) currtime=pend;
while(pauseFlag) pause(500);

pause(100);
}
pause(1000);
}
}
else {
pause(1000);
}
}
}

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java

void updateParam(int[] xa,
int[] ha) {
startAnimation = true;
newCurves = true;
xarray = xa;
harray = ha;

}

void createX() {
inti;

for (i = 0; i < 2*quarterwidth; i++) {
fxarray[i] = xarray[i] / divconst;
}
}

void createH() {
inti;

for (i = 0; i < 2*quarterwidth; i++) {
fharray[i] = harray[i] / divconst;

hposh[i] =11 +i;
vposh[i] = 20 + maxheight/2 - harrayfi;
}
}
void createRevX() {
int i

Graphics offscreenG = RevXImg.getGraphics();

offscreenG.clearRect(0,0,2*maxwidth,maxheight);
offscreenG.setColor(Color.blue);

for (i=0;i<(2*quarterwidth);i++) {
revxarray[i] = xarray[(2*quarterwidth-i-1)];

}

for (i=0;i<(2*quarterwidth-resol);i+=resol) {
offscreenG.drawLine(i,maxheight/2-revxarrayfi],
i+resol,maxheight/2-revxarray[(i+resol)]);
}
offscreenG.setColor(Color.red);
offscreenG.drawLine(quarterwidth,maxheight/2-6,quarterwidth,maxheight/2+6);

}

void createY() {
inti;
Convolve();
for (i=0;i<maxwidth;i++) {
hposy[i] = i+pstart;

vposy[i] = 20 + 2*maxheight - yarrayfi;
}

EE 4012 -- Senior Design Project

Page 12

Spring 96

Graphical Convolution in Java Page 13

}

public void Convolve() {
inti,j;
for (i = 0;i < maxwidth;i++) fyarray[i]=0.0;
for (i = 0;i < (2*quarterwidth);i++) {
for (j = 0;j < (2*quarterwidth);j++) {
fyarray[i+j]=fyarray[i+j]+(fxarray[i]*fharraylj]);
}
}
for (i = O;i<maxwidth;i++) {
fyarray[i] = fyarray[i] / timedivconst;
yarray[i] = (int)(fyarray[i] * divconst);
}
}

public void pause(int time) {
try { Thread.sleep(time); }
catch (InterruptedException e) {}

}

public void update(Graphics g) {
g.clipRect(0,0,2*maxwidth,4*maxheight);
prePaint();
paint(g);

}

void prePaint() {
Font f = new Font(“TimesRoman”,Font.PLAIN,10);
inti;

0sG.setFont(f);
0sG.clearRect(0,0,2*maxwidth,4*maxheight);

0sG.setColor(Color.red);
0sG.drawlmage(RevXImg,(currtime-quarterwidth),20,this);

0sG.drawLine(pstart,20+maxheight/2,pend,20+maxheight/2);
0sG.drawlLine(12,20,12,20+maxheight);

// *kkkk TIME *kkkk

0sG.drawLine(pstart,20+2*maxheight,pend,20+2*maxheight);

for (i=pstart;i<=pend;i+=timedivconst) {
0sG.drawLine(i,16+2*maxheight,i,24+2*maxheight);
0sG.drawsString(String.valueOf((int)((i-12)/timedivconst)),i,14+2*maxheight);

}

// *kkkk AMPLITUDE *kkkkk
o0sG.drawLine(12,60+maxheight,|2,3*maxheight);
for (i=(int)(20+2*maxheight+divconst);i<=3*maxheight;i+=divconst) {
0sG.drawLine(12-4,i,12+4,i);
0sG.drawString(String.valueOf((int)((20+2*maxheight-i)/divconst)),
12+6,i);

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java

for (i=(int)(20+2*maxheight-divconst);i>=60+maxheight;i-=divconst) {

0sG.drawLine(12-4,i,12+4,i);

0sG.drawString(String.valueOf((int)((20+2*maxheight-i)/divconst)),

12+6,i);
}

0sG.setColor(Color.blue);

0sG.drawPolygon(hposy,vposy,currtime-pstart);
0sG.drawPolygon(hposh,vposh,vposh.length);

}

public void paint (Graphics g) {
g.drawlmage(fullimg,0,0,this);
}

public boolean handleEvent (Event e) {
switch(e.id) {
case Event WINDOW_DESTROY:
System.exit(0);
return true;
default:
return false;

}
}

public static void main (String argsl]) {
Frame f1 = new Frame(“Convolution”);
Convolution conv = new Convolution();
conv.init();
conv.start();
fl.add(conv);
fl.resize(2*maxwidth, 4*maxheight);
f1.show();

EE 4012 -- Senior Design Project

Page 14

Spring 96

Graphical Convolution in Java

APPENDIX B: DRAWCURVES.JAVA

/*

* DrawCurves.java

* Erik S. Wheeler

* Mississippi State University

* EE 4012 -- Senior Design Project
*

*

*

Graphical Convolution in Java

* DrawCurves and DrawPanel are modified versions of:
*** @ (#)DrawTest.javal.14 95/09/01 Sami Shaio *kx

*** Copyright (c) 1994-1995 Sun Microsystems, Inc. All Rights Reserved. ***

*

*

import java.lang.Math;
import java.awt.*;
import java.applet.*;
import java.util.Vector;

public class DrawCurves extends java.applet.Applet {
public static final int maxwidth = 600;
public static final int maxheight = 200;
public static final double divconst = 50.0;

public static final double timedivconst = 50.0;
public DrawPanelArea xdpa;
public DrawPanelArea hdpa;

public void init() {
Panel panelC = new Panel();
xdpa = new DrawPanelArea();
hdpa = new DrawPanelArea();

setLayout(new BorderLayout());
add(“Center”, panelC);

panelC.setLayout(new GridLayout(1,2,5,5));
panelC.add(xdpa);
panelC.add(hdpa);

add(*South”, new ControlPanel(this));
}

public boolean handleEvent (Event e) {
switch(e.id) {
case Event WINDOW_DESTROY:
System.exit(0);
return true;
default:
return false;
}
}

EE 4012 -- Senior Design Project

Page 15

Spring 96

Graphical Convolution in Java

void startOverX () {
xdpa.dp.lines.removeAllElements();
xdpa.dp.xlast = 0;
xdpa.dp.ylast = xdpa.dp.zeroY;
for (int i=0;i<xdpa.dp.curveArray.length;i++) xdpa.dp.curveArray][i]=0;
xdpa.dp.repaint();
}

void startOverH () {
hdpa.dp.lines.removeAllElements();
hdpa.dp.xlast = 0;
hdpa.dp.ylast = hdpa.dp.zeroY;
for (int i=0;i<hdpa.dp.curveArray.length;i++) hdpa.dp.curveArray[i]=0;
hdpa.dp.repaint();
}

void execAnimation () {
/I get a hold of the receiver applet (Convolution)
Convolution receiver=(Convolution)getAppletContext().getApplet(“receiver”);

/I update parameters and start animation of Convolution
receiver.updateParam(xdpa.dp.curveArray, hdpa.dp.curveArray);

}

void handlePause (boolean pauseState) {
Convolution receiver=(Convolution)getAppletContext().getApplet(“receiver”);
receiver.pauseFlag = pauseState;

}

public static void main (String argsl]) {
Frame f1 = new Frame(“Draw Curves”);
DrawCurves dCurves = new DrawCurves();
dCurves.init();
dCurves.start();
fl.add(dCurves);
fl1.resize(maxwidth+20, maxheight+20);
f1.show();

}
}

class DrawPanelArea extends Panel {
DrawPanel dp;

public DrawPanelArea() {
dp = new DrawPanel();
setBackground(Color.white);
setLayout(new BorderLayout());
add(“Center”,dp);
add(“South”, new DrawPanelControls(this));

}
}

EE 4012 -- Senior Design Project

Page 16

Spring 96

Graphical Convolution in Java Page 17

class DrawPanel extends Panel {
final int maxwidth = DrawCurves.maxwidth; // Class Variables
final int maxheight = DrawCurves.maxheight;
final double divconst = DrawCurves.divconst;
final double timedivconst = DrawCurves.timedivconst;
final int zeroY = (int)(maxheight / 2);
final int zeroX = (int)(maxwidth / 4);

int curveArray[] = new int[(int)(maxwidth/2)];

/I no need to init array b/c values default to zero
Vector lines = new Vector();

int x1, y1;

int X2, y2;

int xI, yl;

int xlast = 0;

int ylast = zeroY;

public DrawPanel() {
setBackground(Color.white);

}

public boolean handleEvent(Event e) {
switch(e.id) {
case Event MOUSE_DOWN:

x1 = xlast;
yl =ylast;
X2 =-1;

return true;
case Event MOUSE_UP:

if (e.x >x1) {
xlast = e.x;
}else {
xlast = x1 + 1;
}
X2 =xl =-1;
ylast = e.y;
lines.addElement(new Rectangle(x1, y1, xlast, ylast));
fillArray();
repaint();

return true;
case Event. MOUSE_DRAG:
if (e.x >x1) {
X2 = e.x;
}else {

}
Xl =x2;
yl=y2;
y2=e.y;
repaint();
return true;
case Event WINDOW_DESTROY:
System.exit(0);

X2=x1+1;

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java Page 18

return true;
default:
return false;

}
}

public void paint(Graphics g) {
Font f = new Font(“TimesRoman”,Font.PLAIN,10);
inti;
int np = lines.size();

g.setFont(f);
g.setColor(Color.blue);

/I AMPLITUDE
for (i=0;i<=maxheight;i+=divconst) {

g.setColor(Color.lightGray);

g.drawLine(0,i,maxwidth,i);

g.setColor(Color.blue);

g.drawLine(zeroX-4,i,zeroX+4,i);

/I g.drawString(String.valueOf((int)((zeroY-i)/divconst)),zeroX+3,i+10);
}

/I TIME
for (i=0;i<=maxwidth;i+=timedivconst) {

g.setColor(Color.lightGray);

g.drawLine(i,0,i,maxheight);

g.setColor(Color.blue);

g.drawLine(i,zeroY-4,i,zeroY+4);

/I g.drawString(String.valueOf((int)((i-zeroX)/timedivconst)),i+3,zeroY+10);
}

g.drawLine(0,zeroY, maxwidth, zeroY);
g.drawLine(zeroX,0,zeroX,maxheight-1);

/I draw the current lines
g.setColor(getForeground());
g.setPaintMode();
for (i=0; i<np; i++) {
Rectangle p = (Rectangle)lines.elementAt(i);
g.setColor(Color.red);
if (p.width !=-1) {
g.drawLine(p.x, p.y, p.width, p.height);
}else {
g.drawLine(p.x, p.y, p-X, p.y);
}

}
g.setXORMode(getBackground());

if (xI''=-1){
Il erase last line
g.drawLine(x1, y1, xl, yl);
}
g.setColor(getForeground());
g.setPaintMode();

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java

if (x2 1= -1) {
g.drawLine(x1, y1, x2, y2);
}
}

void fillArray() {
double slope = (double)(y1l - ylast) / (double)(xlast - x1);
for (int i=x1; i<=xlast; i++) {
if ((i>=0)&&(i<(int)(maxwidth/2))) {
curveArray[i]=(int)(slope*(i-x1)+(zeroY-y1));

}
else {
// ERROR Il
}
}
}
void drawSine() {
inti;

for (i=0;i<(maxwidth/2);i++) {
curveArray[i] = (int)(divconst *
Math.cos((double)(2*Math.PI*i/timedivconst)));

}

lines.removeAllElements();
for (i=0;i<(maxwidth/2-1);i++) {
lines.addElement(new Rectangle(i, zeroY-curveArrayfi],
i+1, zeroY-curveArray[i+1]));
}
xlast = maxwidth/2;
repaint();

}

void drawSinc() {
inti;

for (i=0;i<zeroX;i++) {
curveArray[i] = (int)(divconst *
(Math.sin((double)(2*Math.PI*(i-zeroX)/timedivconst))) /
(2*Math.PI*(i-zeroX) / timedivconst));
}
curveArray[zeroX] = (int)divconst;
for (i=zeroX+1;i<(maxwidth/2);i++) {
curveArray[i] = (int)(divconst *
(Math.sin((double)(2*Math.PI*(i-zeroX)/timedivconst))) /
(2*Math.PI*(i-zeroX) / timedivconst));
}
lines.removeAllElements();
for (i=0;i<(maxwidth/2-1);i++) {
lines.addElement(new Rectangle(i, zeroY-curveArrayfi],
i+1, zeroY-curveArray[i+1]));

}

xlast = maxwidth/2;

EE 4012 -- Senior Design Project

Page 19

Spring 96

Graphical Convolution in Java

repaint();

}

void drawExp() {
int i

for (i=0;i<zeroX;i++) curveArray[i] = 0;
for (i=zeroX;i<(maxwidth/2);i++) {
curveArray[i] = (int)(divconst *
Math.exp((double)((zeroX-i)/timedivconst)));
}

lines.removeAllElements();
for (i=0;i<(maxwidth/2-1);i++) {
lines.addElement(new Rectangle(i,zeroY-curveArray[i],
i+1,zeroY-curveArray[i+1]));
}

xlast = maxwidth/2;
repaint();

}

void drawl_Exp() {
inti;

for (i=0;i<zeroX;i++) curveArray[i] = 0;
for (i=(int)maxwidth/4;i<(maxwidth/2);i++) {
curveArray[i] = (int)(divconst *
(1-Math.exp((double)((zeroX-i)/timedivconst))));
}

lines.removeAllElements();
for (i=0;i<(maxwidth/2-1);i++) {
lines.addElement(new Rectangle(i,zeroY-curveArrayli],
i+1,zeroY-curveArray[i+1]));

}
xlast = maxwidth/2;
repaint();

}

void drawlmpulse() {
inti;

for (i=0;i<maxwidth/2;i++)
curveArray[i] = 0;

for (i=(int)(maxwidth/4-2);i<=maxwidth/4+2;i++)
curveArray[i] = 500;

lines.removeAllElements();

lines.addElement(new Rectangle(0,zeroY,(int)(maxwidth/4-2),zeroY));

lines.addElement(new Rectangle((int)(maxwidth/4-2),zeroY,
(int)(maxwidth/4-2),0));

lines.addElement(new Rectangle((int)(maxwidth/4-2),0,
(int)(maxwidth/4+2),0));

EE 4012 -- Senior Design Project

Page 20

Spring 96

Graphical Convolution in Java Page 21

lines.addElement(new Rectangle((int)(maxwidth/4+2),0,
(int)(maxwidth/4+2),zeroY));

lines.addElement(new Rectangle((int)(maxwidth/4+2),zeroY,
(int)(maxwidth/2),zeraY));

xlast = maxwidth/2;

repaint();

}

class DrawPanelControls extends Panel {
DrawPanelArea target;

public DrawPanelControls(DrawPanelArea target) {
this.target = target;

setLayout(new FlowLayout(FlowLayout. CENTER));
setBackground(Color.lightGray);
target.setForeground(Color.red);

add (new Button(“Cos(2*pi*t)”));

add (new Button(“exp(-t)"));

add (new Button(“1-exp(-t)”));

add (new Button(“Impulse™));

add (new Button(“Sinc”));

}

public void paint(Graphics g) {
Rectangle r = bounds();

g.setColor(Color.lightGray);
g.draw3DRect(0,0,r.width, r.height, false);

}

public boolean action (Event e, Object arg) {
if (e.target instanceof Button) {

if (((String)arg).equals(“Cos(2*pi*t)”)) {
target.dp.drawSine();

} else if (((String)arg).equals(“exp(-t)”)) {
target.dp.drawExp();

} else if (((String)arg).equals(“1-exp(-1)")) {
target.dp.drawl_Exp();

} else if (((String)arg).equals(“Impulse”)) {
target.dp.drawimpulse();

} else if (((String)arg).equals(“Sinc”)) {
target.dp.drawSinc();

}else {
I error

}
}

return true;

}
}

EE 4012 -- Senior Design Project Spring 96

Graphical Convolution in Java

class ControlPanel extends Panel {
DrawCurves target;

public ControlPanel(DrawCurves target) {
this.target = target;

setLayout(new FlowLayout(FlowLayout. CENTER));
setBackground(Color.lightGray);
target.setForeground(Color.red);

add (new Button(“Clear Input Signal (Left)”));

add (new Button(“Start Animation”));

add (new Button(“Clear Impulse Response (Right)”));
add (new Checkbox(“Pause Animation”, null, false));

}

public void paint(Graphics g) {
Rectangle r = bounds();

g.setColor(Color.lightGray);
g.draw3DRect(0,0,r.width, r.height, false);

}

public boolean action(Event e, Object arg) {
if (e.target instanceof Button) {
if (((String)arg).equals(“Start Animation”)) {
target.execAnimation();
} else if (((String)arg).equals(“Clear Input Signal (Left)")) {

target.startOverX();

} else if (((String)arg).equals(“Clear Impulse Response (Right)”)) {
target.startOverH();

}else {
/l Unexpected Error

}

} else if (arg instanceof Boolean) {

if (((Checkbox)e.target).getLabel().equals(“Pause Animation™)) {
target.handlePause(((Boolean)arg).booleanValue());

}

}

return true;

}
}

EE 4012 -- Senior Design Project

Page 22

Spring 96

	APPENDIX A: CONVOLUTION.JAVA
	APPENDIX B: DRAWCURVES.JAVA
	ABSTRACT
	1.�� INTRODUCTION
	2.�� IMPLEMENTATION APPROACHES
	3.�� JAVA OVERVIEW
	4.�� JAVA ENVIRONMENT
	5.�� DESIGN PROCESS
	5.1.�� Discrete Convolution Considerations
	5.2.�� Convolution Animation
	5.3.�� Drawing Tool
	5.4.�� Linking
	5.5.�� User Interface

	6.�� VERSION 1.0 FEATURES
	7.�� EVALUATION
	8.�� SUMMARY

	REFERENCES
	1 M. Campione and K. Walrath, “The Java Language Tutorial: Object-Oriented Programming for the In...
	2 J. Gosling and H. McGilton, “The Java Language Environment: A White Paper,” available at http:/...
	3 Java API Documentation, available at http:/ /java.sun.com/, Sun Microsystems, 1996.
	4 L. Lemay and C.L. Perkins, Teach Yourself Java in 21 Days, Sams.net, Indianapolis, IN 1996.

	GRAPHICAL CONVOLUTION IN JAVA
	Erik S. Wheeler
	EE 4012 -- Senior Design Project
	Department of Electrical and Computer Engineering
	Mississippi State University
	Mississippi State, Mississippi 39762
	wheeler@isip.msstate.edu

