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The Challenge of Drug-Resistant Epilepsy (DRE)

Epilepsy is a Prevalent Neurological Disorder
Affects millions of people worldwide.
Up to one-third of patients develop Drug-Resistant
Epilepsy (DRE): failure of two tolerated and appropriate
anti-seizure medications [1].
Pooled prevalence of DRE is 36.3% in clinic-based
cohorts [2].

Surgery: The Best Hope for Focal DRE
For focal epilepsy, resective surgery offers the best path
to seizure freedom.
Seizure-free rates: 57.0% (surgical group) vs. 15.3%
(medical group) [3].

Figure: Temporal-lobe resection under an
operating microscope, illustrating surgical
treatment for focal DRE (photo: Mansi
Agrawal, CC-BY-SA 4.0).
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The Surgical Prerequisite: Finding the Epileptogenic Zone
The Central Problem
Surgical success is critically dependent on the accurate presurgical localization of the Epileptogenic
Zone (EZ): the area of cortex indispensable for generating seizures.

Figure: Routine axial Magnetic Resonance
Imaging (MRI) (left) appears normal,
whereas Fluid Attenuated Inversion Recovery
(FLAIR) (right) reveals a subtle Focal
Cortical Dysplasia (FCD) (photo: Kusama et
al., Neurology: Clinical Practice 2021, CC
BY 4.0).

“MRI-Negative” Epilepsy
15% to 40% of focal DRE patients are classified as
“MRI-negative” [4].
Routine radiological review of structural MRI fails to
identify a clear lesion.
This is a primary negative prognostic indicator for surgery
[5].
Most common underlying cause: FCD Type II, a subtle
malformation of cortical development.

The Imperative
We urgently need better imaging and computation to reveal hidden lesions [6].
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Tracing a Path of Innovation: A Three-Act Narrative

This analysis argues that progress in this field has followed a cohesive narrative arc, characterized
by the identification of a problem, the invention of an enabling technology, and their ultimate
synthesis into a modern solution.

Act I: Problem Definition
Hong et al. (2014, Neurology)

Defining the problem with classical Machine
Learning (ML) on clinical MRI.

Act II: Tool Invention
Ma et al. (2013, Nature)

Inventing a new tool for
rapid, quantitative

imaging.

Act III: Modern Synthesis
Ding et al. (2025, Neurology)

Synthesizing tool and problem with Deep
Learning (DL) for superior detection.
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Act I: Hong et al. (2014) - Automated Detection of FCD Type II [7]

Research Objective
To develop and validate a fully automated method to detect FCD Type II lesions in MRI-negative
patients using conventional T1-Weighted (T1w) MRI scans.

Key Innovation
Shift the paradigm from computer-aided visualization (requiring expert interpretation) to
computer-aided detection (providing an objective classification).

Table: Patient cohorts used in the study by Hong et al. (2014).

Group (N) Description

Primary Dataset (3.0 T, 1.0mm isotropic T1w)

Patients (19) MRI-negative with histopathologically confirmed FCD Type II
Healthy Controls (24) No history of neurological or psychiatric disease
Disease Controls (11) Seizure-free post-op for non-lesional Temporal Lobe Epilepsy (TLE)

Validation Dataset (1.5 T, 1.0mm isotropic T1w)

Patients (14) MRI-negative with histopathologically confirmed FCD
Healthy Controls (20) Matched to patient group
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Hong et al. Methodology: Handcrafted Features

The core of the method lies in extracting five biologically-informed, handcrafted features from a cortical
surface model derived from T1w MRI.

1 Cortical Thickness: Models cortical thickening
common in FCD.

2 Sulcal Depth: Captures lesions at the bottom
of abnormally deep sulci.

3 Mean Curvature: Models local changes in
cortical folding patterns.

4 Relative Intensity: Quantifies T1 relaxation
time (T1) signal hyperintensity in the cortical
ribbon.

5 Intensity Gradient: A proxy for the blurring of
the Gray Matter (GM)-White Matter (WM)
junction. Figure: T1w MRI (left) shows cortical thickening and GM-WM

blurring, while FLAIR (right) reveals matching subcortical
hyperintensity, typical of FCD Type II (photo: ©
RadiologyAssistant.nl, educational reuse).
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Hong et al. Methodology: A Two-Stage Classifier

This architecture is an engineered solution to the massive multiple comparisons problem inherent in
whole-brain, vertex-wise analysis.

Stage 1: Vertex-wise Classification
An Linear Discriminant Analysis (LDA) classifies each individual vertex (>80,000 per brain) as
“lesional” or “non-lesional” based on the 5-feature vector.
Result: High sensitivity, but an extremely high number of false-positives due to noise.

⇓
Stage 2: Cluster-wise Classification (The Innovation)

A second LDA classifies entire clusters of abnormal vertices from Stage 1.
Input: Statistical moments of each cluster (mean, std, skew, kurtosis of features).
Goal: Learns the multivariate profile of a true lesion, distinguishing it from noise.
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Hong et al. Key Findings

Figure: Surface projections for three MRI-negative
patients. Manual lesion labels are shown in green,
vertex-wise classification highlights multiple candidates
in red, and cluster-wise refinement removes false
positives, leaving only the cluster that aligns with the
manual label in blue.

Table: Classifier performance on the two datasets. Values in
parentheses represent 95% Confidence Intervals (CIs).

Primary (3.0 T) Validation (1.5 T)

Sensitivity 74% (54-94%) 71% (48-94%)
Specificity 100% (91-100%) 95% (85-100%)

A Key Clinical Caveat
In 50% of true-positive cases, additional “extralesional”
clusters also appeared, creating potential clinical
ambiguity.

Yusuf Qwareeq Lesion Detection in MRI-Negative Epilepsy 9 / 33



Hong et al. Key Findings

Figure: Surface projections for three MRI-negative
patients. Manual lesion labels are shown in green,
vertex-wise classification highlights multiple candidates
in red, and cluster-wise refinement removes false
positives, leaving only the cluster that aligns with the
manual label in blue.

Table: Classifier performance on the two datasets. Values in
parentheses represent 95% CIs.

Primary (3.0 T) Validation (1.5 T)

Sensitivity 74% (54-94%) 71% (48-94%)
Specificity 100% (91-100%) 95% (85-100%)

A Key Clinical Caveat
In 50% of true-positive cases, additional “extralesional”
clusters also appeared, creating potential clinical
ambiguity.

Yusuf Qwareeq Lesion Detection in MRI-Negative Epilepsy 9 / 33



Hong et al. Key Findings

Figure: Surface projections for three MRI-negative
patients. Manual lesion labels are shown in green,
vertex-wise classification highlights multiple candidates
in red, and cluster-wise refinement removes false
positives, leaving only the cluster that aligns with the
manual label in blue.

Table: Classifier performance on the two datasets. Values in
parentheses represent 95% CIs.

Primary (3.0 T) Validation (1.5 T)

Sensitivity 74% (54-94%) 71% (48-94%)
Specificity 100% (91-100%) 95% (85-100%)

A Key Clinical Caveat
In 50% of true-positive cases, additional “extralesional”
clusters also appeared, creating potential clinical
ambiguity.

Yusuf Qwareeq Lesion Detection in MRI-Negative Epilepsy 9 / 33



Act I: Critical Appraisal

Strengths and Contributions
Powerful Proof-of-Concept
(PoC): Showed that an
algorithm could automatically
detect lesions invisible to the
human eye.
Forced a Paradigm Shift:
Argued that “MRI-negative” is
a technological limitation, not
a biological diagnosis.
Clinical Utility: Provided an
objective, data-driven tool to
generate surgical hypotheses.

Limitations and Path Forward
Low Statistical Power: The small sample size (N=19) results in
very wide confidence intervals for sensitivity (e.g., 54-94%),
indicating major uncertainty in the true performance.
Validation Method: Leave-One-Out Cross-Validation (LOOCV)
was necessary for the small N but can have high variance; the
classifier itself is a heuristic, not a formal statistical test.
Spectrum Bias: The cohort was pre-selected, not a random
sample, which likely inflates reported performance.
Clinical Ambiguity: Extralesional clusters in 50% of true
positives limit diagnostic certainty.
Data-Limited: The classifier is constrained by a single,
qualitative T1w image, motivating the need for richer data
acquisition.
Model-Limited: The method’s success is bound by 5 handcrafted
features, motivating a shift to more powerful models.

These limitations clearly define the next steps needed: a better imaging tool and a more powerful
analytical model.

Yusuf Qwareeq Lesion Detection in MRI-Negative Epilepsy 10 / 33



Act I: Critical Appraisal

Strengths and Contributions
Powerful PoC: Showed that an
algorithm could automatically
detect lesions invisible to the
human eye.
Forced a Paradigm Shift:
Argued that “MRI-negative” is
a technological limitation, not
a biological diagnosis.
Clinical Utility: Provided an
objective, data-driven tool to
generate surgical hypotheses.

Limitations and Path Forward
Low Statistical Power: The small sample size (N=19) results in
very wide confidence intervals for sensitivity (e.g., 54-94%),
indicating major uncertainty in the true performance.
Validation Method: LOOCV was necessary for the small N but
can have high variance; the classifier itself is a heuristic, not a
formal statistical test.
Spectrum Bias: The cohort was pre-selected, not a random
sample, which likely inflates reported performance.
Clinical Ambiguity: Extralesional clusters in 50% of true
positives limit diagnostic certainty.
Data-Limited: The classifier is constrained by a single,
qualitative T1w image, motivating the need for richer data
acquisition.
Model-Limited: The method’s success is bound by 5 handcrafted
features, motivating a shift to more powerful models.

These limitations clearly define the next steps needed: a better imaging tool and a more powerful
analytical model.

Yusuf Qwareeq Lesion Detection in MRI-Negative Epilepsy 10 / 33



Act I: Critical Appraisal

Strengths and Contributions
Powerful PoC: Showed that an
algorithm could automatically
detect lesions invisible to the
human eye.
Forced a Paradigm Shift:
Argued that “MRI-negative” is
a technological limitation, not
a biological diagnosis.
Clinical Utility: Provided an
objective, data-driven tool to
generate surgical hypotheses.

Limitations and Path Forward
Low Statistical Power: The small sample size (N=19) results in
very wide confidence intervals for sensitivity (e.g., 54-94%),
indicating major uncertainty in the true performance.
Validation Method: LOOCV was necessary for the small N but
can have high variance; the classifier itself is a heuristic, not a
formal statistical test.
Spectrum Bias: The cohort was pre-selected, not a random
sample, which likely inflates reported performance.
Clinical Ambiguity: Extralesional clusters in 50% of true
positives limit diagnostic certainty.
Data-Limited: The classifier is constrained by a single,
qualitative T1w image, motivating the need for richer data
acquisition.
Model-Limited: The method’s success is bound by 5 handcrafted
features, motivating a shift to more powerful models.

These limitations clearly define the next steps needed: a better imaging tool and a more powerful
analytical model.

Yusuf Qwareeq Lesion Detection in MRI-Negative Epilepsy 10 / 33



Act II: Ma et al. (2013) - Magnetic Resonance Fingerprinting (MRF) [8]
Research Objective
To overcome the limitations of conventional MRI by inventing a new framework for rapid,
simultaneous, and quantitative measurement of multiple tissue properties from a single acquisition.

Table: A comparison of MRI paradigms, highlighting the Magnetic Resonance Fingerprinting (MRF) innovation.

Conventional Qualitative Conventional Quantitative Magnetic Resonance Finger-
printing

Primary Output Weighted images with arbitrary
units (a.u.)

Single quantitative map per
scan

Multiple, simultaneous quanti-
tative maps

Acquisition Steady-state signal Multiple steady-state scans Single, non-steady-state scan

Scan Time Fast per contrast Slow and time-prohibitive per
parameter

Very fast for all parameters

Robustness Low to artifacts and motion Low to patient motion and er-
rors

High to artifacts and motion

The Conceptual Leap
MRF is not just an incremental improvement; it is a fundamental reimagining of the entire MR
experiment. It is a foundational, “tool-building” technology.

Yusuf Qwareeq Lesion Detection in MRI-Negative Epilepsy 11 / 33



Act II: Ma et al. (2013) - Magnetic Resonance Fingerprinting (MRF) [8]
Research Objective
To overcome the limitations of conventional MRI by inventing a new framework for rapid,
simultaneous, and quantitative measurement of multiple tissue properties from a single acquisition.

Table: A comparison of MRI paradigms, highlighting the MRF innovation.

Conventional Qualitative Conventional Quantitative Magnetic Resonance Finger-
printing

Primary Output Weighted images with arbitrary
units (a.u.)

Single quantitative map per
scan

Multiple, simultaneous quanti-
tative maps

Acquisition Steady-state signal Multiple steady-state scans Single, non-steady-state scan

Scan Time Fast per contrast Slow and time-prohibitive per
parameter

Very fast for all parameters

Robustness Low to artifacts and motion Low to patient motion and er-
rors

High to artifacts and motion

The Conceptual Leap
MRF is not just an incremental improvement; it is a fundamental reimagining of the entire MR
experiment. It is a foundational, “tool-building” technology.

Yusuf Qwareeq Lesion Detection in MRI-Negative Epilepsy 11 / 33



Act II: Ma et al. (2013) - Magnetic Resonance Fingerprinting (MRF) [8]
Research Objective
To overcome the limitations of conventional MRI by inventing a new framework for rapid,
simultaneous, and quantitative measurement of multiple tissue properties from a single acquisition.

Table: A comparison of MRI paradigms, highlighting the MRF innovation.

Conventional Qualitative Conventional Quantitative Magnetic Resonance Finger-
printing

Primary Output Weighted images with arbitrary
units (a.u.)

Single quantitative map per
scan

Multiple, simultaneous quanti-
tative maps

Acquisition Steady-state signal Multiple steady-state scans Single, non-steady-state scan

Scan Time Fast per contrast Slow and time-prohibitive per
parameter

Very fast for all parameters

Robustness Low to artifacts and motion Low to patient motion and er-
rors

High to artifacts and motion

The Conceptual Leap
MRF is not just an incremental improvement; it is a fundamental reimagining of the entire MR
experiment. It is a foundational, “tool-building” technology.

Yusuf Qwareeq Lesion Detection in MRI-Negative Epilepsy 11 / 33



MRF Methodology: A Three-Step Process
1. Create Fingerprints 2. Build Dictionary 3. Match and Quantify

Figure: A sequence with pseudorandomly varying parameters (e.g., Flip Angle (FA), Repetition Time (TR)) creates a unique,
non-steady-state signal evolution for each tissue type – its “fingerprint.”
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MRF Methodology: A Three-Step Process
1. Create Fingerprints 2. Build Dictionary 3. Match and Quantify

Figure: A massive dictionary is pre-computed by simulating the Bloch equations for a vast range of tissue properties (T1, T2),
using the exact same sequence parameters from Step 1.
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MRF Methodology: A Three-Step Process
1. Create Fingerprints 2. Build Dictionary 3. Match and Quantify

Figure: The measured fingerprint from each voxel is matched to the best-fitting dictionary entry via normalized dot product.
Incoherent aliasing artifacts are inherently rejected.

Yusuf Qwareeq Lesion Detection in MRI-Negative Epilepsy 12 / 33



Ma et al. Key Findings: A Robust and Accurate Technology
Efficiency and Robustness

Generates multiple co-registered quantitative maps from a single scan of ∼12 s per slice.
Extremely robust to undersampling artifacts and bulk patient motion.

Figure: Motion-corrupted scans yield nearly identical quantitative maps (Concordance Correlation Coefficient (CCC) >0.97 after
±5mm motion).
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Ma et al. Key Findings: A A Robust and Accurate Technology
Accuracy and Precision

MRF measurements show excellent agreement with gold-standard methods.
CCC of 0.988 for T1 and 0.974 for T2.
High repeatability (precision) over time.

Figure: High correlation with standard methods (a, b) and high precision (e, f).
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Act II: Critical Appraisal

Strengths and Contributions
A Philosophical Shift: Moved MRI from a qualitative art to a quantitative science. The output is
now objective, reproducible physical constants.
The Ultimate Enabling Technology: MRF provides the ideal raw material for advanced
computational analysis: rich, multiparametric, quantitative, and perfectly co-registered data.

Limitation (Within This Narrative)
The paper by Ma et al. is a work of foundational physics and engineering. It invents the tool but
does not apply it to solve a specific, challenging clinical problem.

Ma et al. provided a powerful new instrument. This created the opportunity for the final act: using this
instrument to solve the clinical problem defined in Act I.
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Limitation (Within This Narrative)
The paper by Ma et al. is a work of foundational physics and engineering. It invents the tool but
does not apply it to solve a specific, challenging clinical problem.

Ma et al. provided a powerful new instrument. This created the opportunity for the final act: using this
instrument to solve the clinical problem defined in Act I.
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Act III: Ding et al. (2025) - The Synthesis of MRF and DL [9]

Research Objective
To develop an MRF-based DL framework for whole-brain FCD detection, leveraging quantitative
imaging to improve sensitivity and specificity, particularly for the most subtle lesion types.

This work represents the culmination of the narrative:

It addresses the clinical problem from Hong et al. (detecting subtle FCD).

It uses the advanced tool from Ma et al. (MRF) to acquire superior data.

It applies a modern algorithm (DL) that overcomes the limitations of classical ML.

The Key Advance: From Feature Engineering to Representation Learning
Instead of using a few pre-defined, handcrafted features, a Convolutional Neural Network (CNN) learns
the optimal discriminative features automatically and directly from the rich image data itself.
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Ding et al. Methodology: An Integrated Framework

1. The Data: Rich and
Multiparametric

Acquisition: Single ∼12min 3D MRF scan at
1.0mm³ isotropic resolution.
Input Maps: Quantitative T1/T2 relaxation
time (T2), tissue fractions, and morphometric
z-scores.
Cohort: 40 patients with diverse FCD
subtypes and 67 healthy controls.

2. The Model: Deep Learning
Architecture: A 3D no-new-U-Net
(nnU-Net) that processes data volumetrically.
Training Input: Supervised learning on
128x160x112-voxel 3D patches.
Validation: Assessed with a robust
patient-level LOOCV scheme.

The key advantage is the richness of the input data, as shown on the next slide...
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Framework Component: Multiparametric Input Maps
The Power of Quantitative Data
Note how different maps highlight different aspects of the pathology. This rich, multiparametric view
provides a far more informative substrate for a DL model than a single qualitative image.

Figure: A single MRF scan provides multiple quantitative views of the same lesion across four different FCD subtypes.
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The DL Framework: nnU-Net

Figure: The integrated workflow. A) Multiparametric maps from one MRF scan serve as input. B) The U-Shaped Convolutional
Network (U-Net) CNN processes the data, learning features at multiple scales. C) The model outputs a probabilistic lesion map.

Why U-Net?
The U-Net’s encoder-decoder architecture with “skip connections” is ideal for segmentation. It allows the model to combine deep,
abstract, contextual information (what the lesion is) with fine-grained, spatial detail (where the lesion is).
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Ding et al. Key Findings: State-of-the-Art Performance

Figure: Examples of successful automated detections. The model’s
prediction (yellow) accurately localizes the ground-truth lesion (green).

High Sensitivity with Low False
Positives (FPs)
The final MRF-DL framework achieved:

Patient-level sensitivity: 80% (32/40).
Clinically acceptable FP rate: 1.7
clusters/patient.

Crucial Benchmark Comparisons
The MRF-DL model dramatically
outperformed benchmarks:

vs. T1w + DL: 70% sens., 9.7
FPs/patient. Proves value of MRF data.
vs. MAP18: 50% sens., 4.6 FPs/patient.
Proves value of DL model.
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Act III: Critical Appraisal

Strengths and Contributions
A Powerful Synthesis: Successfully integrates a state-of-the-art imaging modality (MRF) with a
state-of-the-art analytical model (DL).
Superior Performance: Demonstrates a clear step-change in capability over prior methods,
including the one from Hong et al.
High Clinical Relevance: High sensitivity across heterogeneous lesion types with a manageable
false-positive rate.

Limitations and Next Steps
Lack of External Validation: The model was developed and tested on data from a single
institution. Its generalizability is unproven.
The “Black Box” Problem: The DL model provides a prediction but no explicit reasoning. This is
a significant barrier to clinical trust and adoption.
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The Evolutionary Trajectory Summarized

This narrative reveals a repeatable “Problem-Tool-Algorithm” paradigm for innovation in computational
medicine [10].

Table: A comparative summary of the three cornerstone papers.

Methodology Hong et al. (2014) Ma et al. (2013) Ding et al. (2025)

Role in Narrative The Problem The Tool The Solution

Primary Goal Detect MRI-negative FCD II Introduce MRF framework Detect heterogeneous FCDs

Imaging Modality Qualitative T1w MRI Quantitative MRF (PoC) Quantitative 3D MRF

Feature Engineering Handcrafted, surface-based N/A Automated via DL

Analysis Model Classical ML (LDA) Dictionary matching DL (nnU-Net)

Key Strength First automated method Simultaneous quantification High sensitivity, low FP rate

Key Limitation Brittle features, simple data No clinical application Single-center, “black-box”
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Future Directions: Immediate Next Steps

1. Rigorous External Validation
A large-scale, multicenter study is
essential to prove the framework’s
generalizability and robustness across
different scanners, protocols, and patient
populations.
This is a prerequisite for clinical
translation and regulatory approval [11,
12].

2. Opening the “Black Box”
Clinicians are rightly hesitant to trust an
algorithm that cannot explain its
reasoning [13, 14].
We must move toward Explainable
Artificial Intelligence (XAI):

I Creating saliency maps to show which
pixels/features drove the decision.

I Building more transparent models.
I Answering why the model flagged a

region [15].
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Future Directions: XAI in Practice

Figure: An XAI model explains its lesion detection (A) by generating saliency maps that visualize which features (B) and voxels
(C) were most influential (photo: Spitzer et al., Brain 2022, CC BY 4.0).
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Future Directions: The Next Frontier

Moving from Localization to Biological Characterization
The ultimate goal is not just to answer “Where is the lesion?” but to understand the molecular and
genetic nature of the epileptogenic network.

This requires a multi-modal systems-level approach:
Integrate Data Modalities: Create AI models that fuse data from [16]:

I Non-invasive imaging (MRF, Positron Emission Tomography (PET))
I Electrophysiology (Stereoelectroencephalography (SEEG), Magnetoencephalography (MEG))
I Genomics and transcriptomics

Personalized Brain Modeling: Use this integrated data to inform personalized computational
models (“virtual brains”) of a patient’s epilepsy [17].

Precision Medicine: This is the path toward true precision medicine – predicting surgical
outcomes, simulating interventions, and discovering novel therapeutic targets.
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Conclusion

This work has traced the evolution of computational methods for detecting epileptogenic lesions,
confronting a major challenge in clinical epileptology.
A clear narrative arc emerged, following a “Problem-Tool-Algorithm” paradigm:

1 Hong et al. established the problem and a PoC solution, highlighting the need for better data.

2 Ma et al. invented the enabling tool (MRF) that provided this rich, quantitative data.
3 Ding et al. synthesized these threads, using a modern algorithm (DL) to leverage the advanced tool and

solve the clinical problem with state-of-the-art performance.

The future of precision epileptology lies in the powerful, iterative, and symbiotic cycle between our
ability to visualize the brain’s structure with ever-increasing fidelity and our capacity to model its
complex dynamics [18].
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List of Acronyms I

CCC Concordance Correlation Coefficient.

CI Confidence Interval.

CNN Convolutional Neural Network.

DL Deep Learning.

DRE Drug-Resistant Epilepsy.

EZ Epileptogenic Zone.

FA Flip Angle.

FCD Focal Cortical Dysplasia.

FLAIR Fluid Attenuated Inversion Recovery.

FP False Positive.

GM Gray Matter.
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List of Acronyms II

LDA Linear Discriminant Analysis.

LOOCV Leave-One-Out Cross-Validation.

MEG Magnetoencephalography.

ML Machine Learning.

MRF Magnetic Resonance Fingerprinting.

MRI Magnetic Resonance Imaging.

nnU-Net no-new-U-Net.

PET Positron Emission Tomography.

PoC Proof-of-Concept.

SEEG Stereoelectroencephalography.
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List of Acronyms III

T1 T1 relaxation time.

T1w T1-Weighted.

T2 T2 relaxation time.

TLE Temporal Lobe Epilepsy.

TR Repetition Time.

U-Net U-Shaped Convolutional Network.

WM White Matter.

XAI Explainable Artificial Intelligence.
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Thank You Questions?
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