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1 Introduction 
We are training a machine learning (ML) model, the purpose of which is to mimic the 
behavior of a trained breast cancer pathologist. The trained model, which will annotate 
breast cancer biopsy slides, must be tested against annotations provided by a human 
pathologist. The model must also communicate its results to the user by means of an 
intuitive graphical user interface. The full list of functional requirements and design criteria 
is replicated in §2.  

 In this document, we will review each criterion and requirement, and describe the 
testing methodology used to determine whether the criterion or requirement has been 
satisfied. The document is organized into three sections: statistical testing methods (§3), 
qualitative testing methods (§4), and quantitative (non-statistical) testing methods (§5). 

2 Functional Requirements and Design Criteria 
Table 1: Functional Requirements 

Priority Requirement Metric Target Value/s 

Non-negotiable Inter-Rater Reliability 
Cohen’s kappa coefficient  

𝜅𝜅 ∈ [−1,1] 
𝜅𝜅 ≥ 0.6 

Non-negotiable Class-Dependent Performance 𝐹𝐹1 score ∈ [0,1] 𝐹𝐹1 ≥ 0.9 

Non-negotiable 
Whole-slide image (WSI) accuracy 

for each slide 
{Pass,Fail} 

 
Pass 

Non-negotiable Semi-Supervised Model 
Utilization of unlabeled  

images in final model (%) 
100% 

Non-negotiable 
Graphical user interface (GUI) 
shows reference annotations 

{Pass,Fail} 
 

Pass 

Non-negotiable GUI displays malignancy probability {Pass,Fail} Pass 

Non-negotiable GUI displays reference annotations {Pass,Fail} Pass 

Negotiable Time to train model 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (days) 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 3 days 
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Table 2: Design Criteria 

Priority Constraint Metric Target/Limit 

Non-negotiable 
Programming language must be 

Python 
{Pass,Fail} Pass 

Non-negotiable Data availability 
Available training data 

(bytes) 
1.2 Terabytes 

Non-Negotiable 
Adherence to ISIP standard for  

Python code formatting 
{Pass,Fail} Pass 

Negotiable 
Adherence to PEP8 Python standard  

for code formatting 
{Pass,Fail} Pass 

 

3 Statistical Testing Methods 
Rows 1 and 2 in Table 1 concern statistical methods. For each requirement (inter-rater 
reliability and class-dependent performance), model outputs are compared against the 
control group of pathologist annotations, observations are aggregated into a single statistic 
and each statistic is validated against the respective target value. 

3.1 Inter-Rater Reliability 
Inter-rater reliability is a correlation coefficient describing agreement between two raters. 
Raters are independent parties who sort, or assign numbers or labels, to data. In our case, 
the two raters are the trained ML model and the human pathologists who annotate biopsy 
slides at the Fox Chase Cancer Center pathology lab. 

Inter-rater reliability is analogous to the population correlation coefficient  

𝜌𝜌𝑥𝑥𝑥𝑥 =
𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

∈ [−1,1]. 

Equation 1: Population correlation coefficient, where 𝜎𝜎𝑥𝑥𝑥𝑥 is the covariance between populations 𝑥𝑥 and 𝑦𝑦, 𝜎𝜎𝑥𝑥 is the 
standard deviation of 𝑥𝑥 and 𝜎𝜎𝑦𝑦 is the standard deviation of 𝑦𝑦 

Indeed, if raters were assigning numbers to data, then we would use the Pearson 
correlation coefficient  
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𝑟𝑟𝑥𝑥𝑥𝑥 =
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦

∈ [−1,1]. 

Equation 2: Pearson/sample correlation coefficient, for sample covariance 𝑠𝑠𝑥𝑥𝑥𝑥, and sample standard deviations 𝑠𝑠𝑥𝑥 and 𝑠𝑠𝑦𝑦. 

However, because we are assigning unordered nominal values (i.e., labels) to frames of 
biopsy slides, which have no immediate numeric interpretation, we use Cohen’s kappa 
coefficient 𝜅𝜅 (Equation 3). 𝜌𝜌, 𝑟𝑟 and 𝜅𝜅 all map to real numbers ∈ [−1,1], where a value of 1 
indicates perfect agreement between populations/samples/raters, −1 indicates perfect 
disagreement, and 0 indicates no correlation.  

𝜅𝜅 =
𝑝𝑝𝑜𝑜 − 𝑝𝑝𝑒𝑒
1 − 𝑝𝑝𝑒𝑒

∈ [−1,1] 

Equation 3: Cohen’s kappa coefficient calculation. 

 The quantities 𝑝𝑝𝑜𝑜 and 𝑝𝑝𝑒𝑒  in Equation 3 are, respectively, the probability of observed 
agreement between raters, and the probability of expected agreement between raters. Both 
𝑝𝑝𝑜𝑜 and 𝑝𝑝𝑒𝑒  are calculated via relative frequency. To illustrate how they’re calculated, we’ll 
use a simple 2-class example of patients diagnosed as either healthy or sick by two 
different doctors.  

Out of 30 patients, doctor 1 diagnoses 17 as sick and 13 as healthy, and doctor 2 
diagnoses 15 as sick and 15 as healthy. Both agree that 13 of the patients are sick and 11 
are healthy, but disagree among the remainder of patients. The confusion matrix for their 
diagnoses is displayed in Table 3. 

Table 3: Confusion matrix for 2-class example; green suggests agreement between the raters and red suggests 
disagreement. Rows correspond to diagnoses made by doctor 1 and columns correspond to diagnoses made by doctor 2. 

 Doctor 2 

Doctor 1 

 Sick Healthy Sums across rows 
(doctor 1’s diagnoses) 

Sick 13 4 17 
Healthy 2 11 13 

Sums across columns 
(doctor 2’s diagnoses) 15 15 30 

 Note that diagonals in Table 3 indicate instances where both doctors agreed on a 
diagnosis. The observed probability of agreement between doctors 1 and 2, 𝑝𝑝𝑜𝑜, is the 
relative frequency of the sum along diagonals (Equation 4). 

𝑝𝑝𝑜𝑜 =
(13 + 11) [𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝]
30 [𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝] =

24
30

= 0.8. 

Equation 4: Observed probability of agreement 𝑝𝑝𝑜𝑜. 
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In contrast, if we considered both doctors’ diagnoses to be independent of one other (if, for 
example, we didn’t know which patients received which diagnosis), then our expected 
probability of agreement 𝑝𝑝𝑒𝑒  is the sum of products in Equation 5. 

𝑝𝑝𝑒𝑒 = 𝑝𝑝(𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + 𝑝𝑝(𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 
= 𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟1) ∙ 𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟2)

+ 𝑝𝑝(ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑦𝑦 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟1) ∙ 𝑝𝑝(ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑦𝑦 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟2)

= �
17
30
� �

15
30
� + �

13
30
� �

15
30
� = 0.283 + 0.217 = 0.5 

Equation 5: Expected probability of agreement 𝑝𝑝𝑒𝑒. 

Therefore, the inter-rater reliability between doctors 1 and 2, according to Cohen’s kappa 
coefficient, is calculated as follows (Equation 6). 

𝜅𝜅 =
𝑝𝑝𝑜𝑜 − 𝑝𝑝𝑒𝑒
1 − 𝑝𝑝𝑒𝑒

=
0.8 − 0.5
1 − 0.5

=
0.3
0.5

= 0.6 = 60%. 

Equation 6: Inter-rater reliability calculated by Cohen’s kappa coefficient for 2-class example.  

This implies there is 60% correlation between diagnoses between doctors 1 and 2 (not to 
be interpreted that they agree 60% of the time, but that in our observations, they agreed 
60% more than random chance; Equation 6 applies min-max normalization to the 
probability of agreement 𝑝𝑝). 

 When calculating Cohen’s kappa coefficient for our model, we apply a similar 
methodology. First, a biopsy slide is input to the trained model; the slide is segmented into 
frames and the model assigns labels to each frame from the list of cancer classifications 
(unlabeled, background, normal, null, artifact, non-neoplastic tissue, inflammation, 
suspicious tissue, ductal carcinoma in situ, and invasive ductal carcinoma; 10 possible 
labels in all).  

Secondly, the model label is compared to the human pathologist’s label for tissue in 
the frame area. For instance, our model may believe a biopsy slide frame to contain non-
neoplastic tissue, but the annotating pathologist may have indicated invasive ductal 
carcinoma tissue in the same frame area. The confusion matrix is constructed by summing 
every instance of every permutation of labels between the model and annotating 
pathologist. That is, a matrix similar to Table 3 is constructed, containing 10 columns and 
10 rows for each label, instead of a 2x2 matrix.  
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𝑝𝑝𝑜𝑜 =
1
𝑁𝑁
�𝑛𝑛𝑘𝑘𝑘𝑘

𝑁𝑁

𝑘𝑘=0

, 𝑝𝑝𝑒𝑒 =
1
𝑁𝑁2����𝑛𝑛𝑘𝑘,𝑗𝑗

𝑁𝑁

𝑗𝑗=0

���𝑛𝑛𝑖𝑖,𝑘𝑘

𝑁𝑁

𝑖𝑖=0

��
𝑁𝑁

𝑘𝑘=0

 

Equation 7: General form of probabilities in Cohen’s kappa coefficient (Equation 3), where 𝑛𝑛𝑖𝑖,𝑗𝑗  is the element 𝑛𝑛 at index 𝑖𝑖, 𝑗𝑗 
of the confusion matrix, and N is the number of labels or classes.  

Lastly, we apply the same calculations in Equation 4, Equation 5, and Equation 6 to 
determine our model’s inter-rater reliability. (The general form of 𝑝𝑝𝑜𝑜 and 𝑝𝑝𝑒𝑒, for any size 
confusion matrix, is provided by Equation 7.) Our target value is 𝜅𝜅 ≥ 0.6. This target was 
extracted from a similar study on whole-slide image classification [1]. The study used deep 
learning models and whole-slide image data augmented with molecular markers. The 
experiment’s three trials yielded kappa coefficients of 0.54, 0.61, and 0.58.  

3.2 Class-Dependent Performance 
An F-score is a measure of the predictive ability of a machine learning model. An 𝐹𝐹1 score is 
the harmonic mean of precision and recall (Equation 8).  

𝐹𝐹1 = 2
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

Equation 8: 𝐹𝐹1 score calculation. 

To understand why an 𝐹𝐹1 score is useful, we need to understand the meaning of precision 
and recall.  

Consider a 2-class example where a model is used to predict whether a patient is 
healthy or sick. Recall is the ratio of true positives to the sum of true positives + false 
negatives. In our 2-class example, this would be the ratio 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
=

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

. 

Equation 9: Recall in a 2-class example.  

Recall indicates the percentage of cases correctly identified as sick, with respect to all sick 
cases in the dataset.  

In contrast, precision is the ratio of true positives to the sum of true positives + false 
positives. In our 2-class example, this would be the ratio 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
=

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

. 

Equation 10: Precision in a 2-class example. 
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Precision indicates the percentage of cases correctly identified as sick, with respect to all 
cases believed by the model to be sick. Precision and recall for the 2-class example are 
illustrated in Figure 1. 

 
Figure 1: Precision and recall in Venn diagrams. 

 The two metrics, precision and recall, complement each other. If a model only 
predicted patients to be sick (i.e., a model that never predicts a patient to be healthy), then 
the model would have high recall but low precision. Conversely, if a model correctly 
predicts only one patient to be sick, but makes no other sick diagnoses (i.e., predicts all 
other patients to be healthy, regardless if they’re healthy or sick), then the model would 
have low recall but high precision. Recall concerns the span of the model’s ‘true’ 
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predictions over the input dataset, and precision concerns the model’s accuracy within its 
‘true’ predictions.  

An 𝐹𝐹1 score balances precision and recall. Both quantities must be significant for an 
𝐹𝐹1 score to be significant. If either precision or recall approaches 0 then the corresponding 
𝐹𝐹1 score also approaches 0.  

In the prior example, we used two classes (sick and healthy). For multi-class cases, 
we calculate precision and recall for each class, and subsequently average 𝐹𝐹1 scores over 
all classes [2]. For example, if we were using the non-neoplastic (NNeo) label as reference, 
the true positive rate would be the number of correctly classified NNeo frames, and the 
false negative rate would be the sum of NNeo frames incorrectly classified by another 
label. These would be used to calculate recall for NNeo, which would in turn be used to 
calculate the 𝐹𝐹1 score for NNeo, which would be averaged with 𝐹𝐹1 scores for other classes. 

We can derive true positive (TP), false positive (FP), false negative (FN), and true 
negative (TN) statistics for every class from the confusion matrix of all classes (Table 4).  

Table 4: Example confusion matrix.  

 Pathologist (True) 

Model 
(Predicted) 

Frame 
Labels Unlab Bckg Norm Null Artf Nneo Infl Susp Indc Dcis 

Sums 
across 
rows 

Unlab 20 1 4 1 7 6 7 0 4 6 56 
Bckg 6 30 1 3 5 2 4 7 3 3 64 
Norm 3 2 29 6 0 1 1 3 1 2 48 
Null 3 0 4 24 3 4 6 3 5 0 52 
Artf 5 6 4 7 29 3 6 2 3 3 68 

Nneo 1 6 6 1 3 21 5 3 3 5 54 
Infl 6 3 7 4 0 6 26 7 1 2 62 

Susp 6 4 6 4 5 3 6 22 0 6 62 
Indc 5 5 2 6 0 3 6 0 28 0 55 
Dcis 5 0 6 6 7 7 4 7 5 24 71 

Sums 
across 

columns 
60 57 69 62 59 56 71 54 53 51 592 

To illustrate, suppose we were deriving statistics for the NNeo class. The TP rate of NNeo is 
its position on the diagonal of the confusion matrix, highlighted in green in Table 4; the FN 
rate of NNeo is the sum of all elements highlighted in orange; the FP rate of NNeo is the 
sum of all elements highlighted in red; and the TN rate of NNeo is the sum of all elements 
highlighted in blue. Table 4 simplifies to Table 5. 
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Table 5: Simplified confusion matrix for nneo case. Green indicates TP; red indicates FP; orange indicates FN; blue 
indicates TN. 

 Pathologist (True) 

Model 
(Predicted) 

Frame Labels NNeo Not NNeo Sums across 
rows 

NNeo 21 33 TP+FP = 54 
Not NNeo 35 503 FN+TN = 538 

Sums across 
columns TP+FN = 56 FP+TN = 536 592 

The example NNeo 𝐹𝐹1 score for Table 5 is calculated as follows (Equation 11). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
=

21
21 + 33

= 0.389 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
=

21
21 + 35

= 0.375 

𝐹𝐹1 = 2
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

= 2
(0.389)(0.375)
0.389 + 0.375

= 0.382 

Equation 11: NNeo 𝐹𝐹1 score calculation. 

 Our target 𝐹𝐹1 score is 0.90. This target value was extracted from a similar 2019 study 
employing deep-learning models to classify whole-slide images [3]. The 𝐹𝐹1 score yielded by 
the study was 0.90.  

4 Qualitative Testing Methods 

4.1 Whole Slide Image (WSI) Accuracy 
The purpose of WSI accuracy is to allow us to compare our model to general machine 

learning models in industry. Since we are mostly focusing on detecting location and 
precision of patches of cancer, WSI accuracy isn’t the most important metric, but it is 
important to establish a baseline in comparison with other systems with different areas of 
focus. While the implementation of this feature satisfies the pass/fail requirement, we will 
be cross-referencing it with industry standards to benchmark our system later in the 
process which falls outside the scope of this project. The pass/fail metric for this functional 
requirement will be the ability to generate predictions for whole slides based on patch level 
classifiers. We will take a series of slides with annotations from our model and by 
categorizing these annotations graphically we will be able to ascertain whether our system 
successfully processes WSI predictions. 
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4.2 GUI Requirements 
The three GUI requirements will be pass/fail based on their presence on our graphical 

representation of the report. The reference and hypothesis annotations will be graphically 
evaluated, and we will compare the confidences to spreadsheets containing our 
information. Overall, the estimate of our GUIs functionality will be based on the ease of 
access of our program and the ability of a person unfamiliar with our program to easily 
parse through and understand the data [4]. 

 
Figure 2: Example Demo 
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4.3 Code Standards and Language Requirements 
The formatting of the code will be evaluated by Dr. Picone in combination with a 

graduate student, Claudia Dumitrescu. They will be using the ISIP bluebook standard [5] 
and existing sample code. Alongside this, we will be evaluating naming conventions, 
commenting style, and overall code style by cross referencing with the most recent1 PEP8 
style guide [6] and other example code. 

# Wrong: 
 
# Arguments on first line forbidden 
when not using vertical alignment. 
foo = long_function_name(var_one, 
var_two, 
    var_three, var_four) 
 
# Further indentation required as 
indentation is not distinguishable. 
def long_function_name( 
    var_one, var_two, var_three, 
    var_four): 
    print(var_one) 
 

# Correct: 
 
# Aligned with opening delimiter. 
foo = long_function_name(var_one, var_two,                           
                                                        var_three, var_four) 
 
# Add 4 spaces (an extra level of indentation) to 
distinguish arguments from the rest. 
def long_function_name( 
        var_one, var_two, var_three, 
        var_four): 
    print(var_one) 
 
# Hanging indents should add a level. 
foo = long_function_name( 
    var_one, var_two, 
    var_three, var_four) 
 

Figure 3: PEP8 Code Example 

5 Quantitative Non-Statistical Testing Methods 

5.1 Unsupervised Learning Model 
Currently we utilize a supervised learning model which leverages data that has been 

annotated by a pathologist. This creates a bottleneck where we are limited by the amount 
of data that has been processed by pathologists. While our model does take time to 
process training data, the time it takes for a pathologist to annotate these slides is much 
greater. This is where an unsupervised model comes in. An unsupervised model takes 
slides that have not been annotated and extracts features that it thinks are important by 
leveraging techniques based on the variance of the images. Once it’s categorized these 
features, it will utilize a smaller subset of labeled data to classify the different subsets of 
these features. This will allow us to utilize all the images we have even if a pathologist has 
not touched the data. It’s possible that by using a larger amount of information we can 
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build a more generalized model. While we will be testing these results to see if there is an 
improvement, it’s likely that extensive testing will fall outside the scope of this project, but 
we will be testing our ability to utilize this data by measuring the total amount of utilization 
of the data. We utilize catching exceptions and logs to see which data was used 
successfully and which failed. 

 
Figure 4: Unsupervised Learning Example 

5.2 Time to Train & Data Limitations 
Time to Train is a self-imposed limitation of less than 3 days due to the scope of our 

project. To run proper testing trials to refine our model we must limit the amount of time 
our trials take. With our data limitation of 1.2 Terabytes of annotated data [7], we need to 
limit our trial time to less than 3 days which gives us enough headroom to find a sweet spot 
where the model is accurate enough that the trials are significant but have a short enough 
trial time that we can try different parameters out. While we can run many trials in parallel 
due to the high performance compute (HPC) cluster [8], we will eventually be limited since 
this compute cluster is being utilized for other classes and other projects. We will, of 
course, measure this by timing our models by using the output of results from Slurm, a job 
manager on the cluster that covers metrics like CPU, GPU, and real time [9].  
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