ML IN DIGITAL PATHOLOGY

Yuan Nghiem Leo Grant Berman Albert Bulik

PROBLEM STATEMENT

The demand for cancer diagnosis is increasing.

YEAR (2022 to 2032)

As a result, time to treatment is increasing.

DIAGNOSIS YEAR (2004 to 2013)

SOURCE

SOURCE

TEMPLE UNIVERSITY HEALTH DIGITAL PATHOLOGY (TUHDP) CORPUS

LABELED DATA TYPES

Non-Cancerous Types

Carcinogenic-Signs Type

Cancerous Types

OUR PRODUCT

DESIGN CRITERIA / REQUIREMENTS

Classification

Source

Train Time < 3 Days

Functional GUI

- Show location of areas
- Show area's probability of malignancy

DESIGN CRITERIA / REQUIREMENTS

Cohen's Kappa > 60% Source

DEEPER LOOK AT F1 SCORE

F1 Score

TP

TP + .5 (FN) (FP)

Apples

True Positive = 4

False Negative =

Palse Positive =

f1 Score = 89%

Bananas

True Positive = 0

False Negative =

#alse Positive =

1 Score = 0%

PRELIMINARY DESIGN

PRELIMINARY DESIGN

TRAINING, TUNING, EVALUATION PIPELINES

PRELIMINARY DESIGN

2-DIMENSIONAL DCT

 Belongs in the pre-processor stage

 Converts colors to frequencies

 Allows us to retain fewer features

One-dimensional DCT

Horizontal pixel index

Two-dimensional DCT

Horizontal pixel index

2-DIMENSIONAL DCT

 Belongs in the pre-processor stage

 Converts colors to frequencies

 Allows us to retain fewer features

One-dimensional DCT

Horizontal pixel index

Two-dimensional DCT

Horizontal pixel index

2-DIMENSIONAL DCT

 Belongs in the pre-processor stage

 Converts colors to frequencies

 Allows us to retain fewer features

One-dimensional DCT

Horizontal pixel index

Two-dimensional DCT

Horizontal pixel index

PRINCIPAL COMPONENT ANALYSIS (PCA)

f1	f2	f4	f7
f3	f5	f8	f11
f6	f9	f12	f14
f10	f13	f15	f16

PRELIMINARY DESIGN

CONVOLUTIONAL NEURAL NETWORK

PRELIMINARY DESIGN

WINDOW TO PATCH

PATCH TO IMAGE LEVEL

PRELIMINARY DESIGN

FUTURE WORK

Image Classification

No Sobel/Laplacian Filters

QUESTIONS?

Acknowledgements:

Dr. Joseph Picone – Mentor & Data Coordinator Claudia Dumitrescu – Al Expert Phuykong Meng – GUI Planning & Scoring

For the curious

- <u>Benefits of Machine Learning in</u> Healthcare
- Machine Learning in Healthcare

- What is Machine Learning in Healthcare?
- <u>Significance of Machine Learning in</u> Healthcare
- <u>The Potential for Artificial Intelligence in</u> <u>Healthcare</u>

PROGRESS SINCE LAST PRESENTATION

 2D Discrete Cosine Transform (DCT)

 Principal Component Analysis (PCA)

 Convolutional Neural Network (CNN)

TUHDP BIOPSY SLIDE SAMPLE

WINDOW TO PATCH

TUHDP BIOPSY SLIDE SAMPLE

DEEPER LOOK AT MODEL I/O

CONVOLUTIONAL NEURAL NETWORK

RANDOM FOREST

Dataset

х	у
0	1
2	3
2	5

Isolation Tree

WHAT IS A MODEL?

- Three essential components for machine learning
 - Data
 - Model
 - Training algorithm
- Model
 - Mathematical representation of relationships in the data

- Training algorithm
 - Uses data
 - Adjusts variables in the model until output matches input

TEMPLE UNIVERSITY HEALTH DIGITAL PATHOLOGY CORPUS

3,505 Tissue Images 1.23 Terabytes

PRINCIPAL COMPONENT ANALYSIS (DIMENSION REDUCTION)

- After feature generation
- Also belongs in the pre-processor stage after digitizing/segmenting slides and before training
- Reduces the number of features while minimizing information lost from feature reduction
- Fewer features compared to no PCA or dimension reduction

TESTING GOALS

2-DIMENSIONAL DCT

- Part of feature generation
- Belongs in the pre-processor stage after digitizing/segmenting slides and before training
- Greater spectral/energy density than onedimensional DCT
- Therefore, fewer features compared to onedimensional DCT

2-DIMENSIONAL DCT

 Belongs in the preprocessor stage

 Converts colors to frequencies

 Allows us to retain fewer features

SCORING

- Find overlapping area between the model's predictions and the human pathologist's predictions
- Use overlapping area to construct a confusion matrix
- Use confusion matrix to generate F_1 scores and Cohen's kappa coefficients

OVERLAPPING AREA

Pathologist	(True
-------------	-------

	Frame Labels	Unlab	Bckg	Norm	Null	Artf	Nneo	Infl	Susp	Indc	Dcis	Sums across rows
	Unlab	20	1	4	1	7	6	7	0	4	6	56
	Bckg	6	30	1	3	5	2	4	7	3	3	64
	Norm	3	2	29	6	0	1	1	3	1	2	48
	Null	3	0	4	24	3	4	6	3	5	0	52
Model	Artf	5	6	4	7	29	3	6	2	3	3	68
(Predicted)	Nneo	1	6	6	1	3	21	5	3	3	5	54
	Infl	6	3	7	4	0	6	26	7	1	2	62
	Susp	6	4	6	4	5	3	6	22	0	6	62
	Indc	5	5	2	6	0	3	6	0	28	0	55
	Dcis	5	0	6	6	7	7	4	7	5	24	71
	Sums across columns	60	57	69	62	59	56	71	54	53	51	592

Model
(Predicted

Pathologist (True)						
	Frame Labels	NNeo	Not NNeo	Sums across		
	Tranio Edboto		110111100	rows		
	NNeo	21	33	TP+FP = 54		
	Not NNeo	35	503	FN+TN = 538		
	Sums across columns	TP+FN = 56	FP+TN = 536	592		

FILTERS

Original image

Filter "Laplace" applied

FRAME LEVEL EVALUATION RESULTS

	Dataset	Accuracy Rate [%]
	TRAIN	100.00
Random Forest	DEV	86.33
	EVAL	85.87

GITHUB AND THE SERVER

The Server GitHub

EXPLAIN TRAIN, DEV, AND EVAL IN THE PROCESS

Final Model

RNF CONFUSION MATRIX

RNF DECISION SURFACES

HOW THIS FITS

