
1

MACHINE LEARNING
APPLICATIONS IN DIGITAL

PATHOLOGY

Leo Berman
Albert Bulik

Yuan Nghiem

2

Table of Contents

1 Chosen Solution ... 4

1.1 Digitizing and Storing Biopsy Slides ... 4

1.2 Slide Segmentation ... 6

1.3 Feature Extraction ... 8

1.3.1 Frequency Analysis Overview .. 8

1.3.2 Feature extraction by frequency analysis .. 9

1.4 Dimension reduction ... 13

1.5 Principal Component Analysis (PCA) .. 15

1.6 Machine/Deep Learning Models ... 17

1.6.1 Random Forest (RNF) ... 18

1.6.2 Convolutional Neural Networks ... 20

2 Engineering Design Plan .. 26

2.1 Application of the Flood-Fill Algorithm and WSI Classification 26

2.2 Train, Dev, and Eval.. 30

2.3 Prediction Report & Example Use Case ... 32

2.4 Temple University Health Digital Pathology (TUHDP) Corpus 33

3 Engineering Design Immediate Goals ... 36

3.1 One to Two-Dimensional DCT .. 36

3.2 Implementing PCA .. 36

3.3 Implementing PyTorch CNN ... 37

3.4 Implementing GUIS ... 37

4 References ... 38

3

Table of Figures

Fig. 1: Example of the Train & Dev Cycle [1] ... 4
Fig. 2: Digitized biopsy slide with two tissue samples. .. 5
Fig. 3: Leica Biosystems Aperio AT2 biopsy slide scanner. .. 6
Fig. 4: Biopsy slide segmented into frames; frames are larger than 200x200 pixels to make
them easier to see. .. 7
Fig. 5: Borders of windows overlapping with adjacent windows and frames. 7
Fig. 6: Illustration of f_2N [n] (right) and f[n] as it is applied to a DFT (left) (the DFT is
identical to the discrete Fourier series of the periodic extension of the signal). 10
Fig. 7: Plot of test signal 𝑥𝑥𝑥𝑥 = 0.9𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛0.1𝜋𝜋𝑥𝑥,𝑥𝑥 ∈ 0,31. [3] .. 10
Fig. 8: Plot of real (a) and imaginary (b) parts of 32-point DFT of 𝑥𝑥𝑥𝑥 (pts 16-31 are mirrored).
Plot of 32-point DCT (c). [3] .. 11
Fig. 9: Example image reconstructed from k frequencies using 1D DCT-II (left) and 2D DCT-II
(right). [4] .. 13
Fig. 10: Example plot of weight vs. age of a population sample. 14
Fig. 11: PCA demonstration; vertical and horizontal axes represent two features, and each
point is a separate input. ... 16
Fig. 12: Variance (predictive ability of a PC) vs. PC number in a sorted list of PCs. 16
Fig. 13: Random Forest structure [7]. .. 18
Fig. 14: Bootstrapping example [9]. ... 19
Fig. 15: Random Forest example [10]. ... 20
Fig. 16: CNN structure [12]... 21
Fig. 17: Filter over image with depth 'c'. ... 22
Fig. 18: Usage of multiple filters in the convolutional layer [14]. 22
Fig. 19: Stacking feature maps [14]. .. 23
Fig. 20: ReLU activation function. ... 24
Fig. 21: CNN max pooling example [14]. .. 25
Fig. 22: Sample model output of Fig. 3 .. 27
Fig. 23: Flood fill applied to Fig. 22: Sample model output of .. 28
Fig. 24: Inverted flood-fill of Fig. 23. .. 29
Fig. 25: Original DCIS predictions with mask (Fig. 24) applied. .. 29
Fig. 26: Example of Train, Dev, Eval Split .. 30
Fig. 27: Example graphical representation ... 32
Fig. 28: Effects of Microns Per Pixel [20] .. 34
Fig. 29: Example of Signal Smoothing [22] ... 35
Fig. 30: Example of Outlined Regions [23] ... 36
Fig. 31: Example of GUI pipeline ... 37

4

1 Chosen Solution
Training a machine learning model to predict malignancy requires many interlocking
components. First, a biopsy slide is digitized by a pathologist at Temple University Health,
and the slide image is stored in the TUH Digital Pathology data store (1.1). The slide is then
segmented into frames and windows (1.2). An algorithm extracts the features of each
window (1.3), and the number of features is reduced using a dimension reduction
algorithm (1.4, 1.5). A model is trained on the windows (1.6), and the model output for a
test case (a segmented slide image) is postprocessed (2). Finally, the model is tuned and
evaluated (Fig. 1).

Fig. 1: Example of the Train & Dev Cycle [1]

1.1 Digitizing and Storing Biopsy Slides
The first job of any data analyst is to collect data. For the purpose of machine learning, data
must have clearly defined input and output. For example, if one were predicting height
based on age, height would be the output and age would be the input; we would collect and
record the height and age of a random sample of the population, and this dataset would
form the basis of our predictions. In our case, we are predicting the presence of malignant
tissue in a patient biopsy, so we require annotated photos of biopsy slides. The photos
themselves (or some aspect of each photo) will be the input for our model, and the
annotations will be the model's output. See for a representative example of a biopsy slide.

5

Fig. 2: Digitized biopsy slide with two tissue samples.

What do we mean by annotation? In Fig. 1, several shapes will have been traced over the
image by a pathologist. Each shape has a corresponding label with a specific meaning.
Each label and its meaning are listed in Tab. 1 by ascending order of urgency. The higher the
urgency, the more likely it is that tissue from the sample will develop into malignant tissue
(ductal carcinoma in situ, or DCIS).

Tab. 1: Slide labels, their meanings, and order of urgency.

Label Description Urgency
Unlab Unlabeled tissue area; non-annotated area of the biopsy slide. 0
Bckg Background stroma tissue surrounding lobules and ducts. 1
Norm Normal tissue, including lobules or ducts with empty spaces called

lumen (areas of the slide that allow light to shine through).
2

Null Indistinguishable tissue, often caused by poor cuts of the sample. 3
Artf Artifacts in the slide image, such as pen marks. 4
Nneo Non-neoplastic tissue, a non-malignant lesion. Includes fibrosis and

hyperplasia. May develop into a malignancy.
5

Infl Inflammation, high concentration of small dots typically found
around stroma.

6

Susp Suspicious tissue, at risk for developing into DCIS. 7
Indc Invasive ductal carcinoma in situ, cancer tissue, freeform malignant

tissue invading stroma.
8

Dcis Ductal carcinoma in situ, dense and tightly enclosed cancer tissue. 9

6

Fig. 3: Leica Biosystems Aperio AT2 biopsy slide scanner.

Biopsy slides are prepared and scanned by the pathology lab at Temple University Health
(TUH) using a Leica Biosystems Aperio AT2 (Fig. 3). All identifying patient information is
removed and the slides are stored in the TUH Digital Pathology database in Scanscope
Virtual Slide (SVS) format. An SVS file contains the labels for each slide annotation and the
slide image at multiple resolutions (1:1, 4:1, 16:1, 32:1). The images are compressed using
JPEG 2 (Joint Photographic Experts Group) compression with three color values per pixel
(red, green, and blue, or, 'RGB'); the full resolution of a biopsy slide is 50,000 x 50,000
pixels.

1.2 Slide Segmentation
Unlike machine learning (ML) models that focus on whole-slide image (WSI) classification,
our approach is unique in that we segment slide images into smaller areas called frames.
Our ML model is trained on frames, and makes predictions on (i.e., assigns labels from Tab.
1 to) frames. The benefit of this approach is that it allows a reviewing pathologist to quickly
localize the affected area of a malignancy. For each slide in the training dataset, the slide is
divided into a uniform grid of 200 x 200 pixels per frame (Fig. 4).

7

Fig. 4: Biopsy slide segmented into frames; frames are larger than 200x200 pixels to make them easier to see.

When we pass frames as input to the training algorithm, we allow some overlap between
adjacent frames. Prior to training, frame boundaries are extended by 25 pixels on every
side. The extended 250 x 250 area is what we call a window (Fig. 5). The amount of overlap
is a non-negative number set by the training engineer, and the reason that we desire
overlap is that it encodes context into the training data.

Fig. 5: Borders of windows overlapping with adjacent windows and frames.

8

Context is a broad subject in machine learning but is, in essence, the surrounding
information or environment that may affect a prediction. For instance, in language
processing certain letters are more likely to appear in certain positions in a word, and
words have different meanings depending on their position in a sentence.

In our application, context is correlation between adjacent frames. If one frame is
classified DCIS, then incorporating context raises the likelihood that adjacent frames are
classified DCIS as well. This allows us to keep predictions relatively consistent.

1.3 Feature Extraction
In machine learning lingo, features are subsets of an input datum. If we were predicting
height based on weight and age, weight and age would be features of the input data. For
simple examples like this, features are often readily apparent. For the purpose of predicting
label classifiers from bitmap images, the features are not readily apparent. The question of
extracting features is analogous to the question of determining what aspects the data yield
the most predictive ability and information for our model. Our input datum (the smallest
unit of input) to the training algorithm is a bitmap image for a single window, extracted from
a biopsy slide. Each bitmap image is separated into 3 layers (one per color) and each layer
is a 250 x 250 matrix, encoding color intensity per pixel. How can we organize the color
matrices into useful features for our training algorithm?

The most obvious way to extract features for a bitmap image is to consider each pixel value
a separate feature. For one window we would have 250x250x3 = 187,500 features. As
simple and direct as this method is, it often yields surprising results when training a
convolutional neural network (CNN). We discuss CNNs and scoring metrics in later
sections, but to put the performance of this method into context, a CNN trained directly on
image data yielded 86.64% accuracy and an 89.00% F1 score in a study of 400 slide
images; the best results in the same study and dataset were 96.00% accuracy and 96.00%
F1 score yielded by a CNN trained on statistics from a contourlet transform and
histograms. [2]

We don't want to limit ourselves to one method of feature extraction; the best method
varies by application. Let's consider other methods of characterizing input data.

1.3.1 Frequency Analysis Overview
Before discussing alternative methods of feature extraction, we’ll briefly introduce the
math behind frequency transforms. Any signal 𝑓𝑓 can be decomposed into frequencies 𝐹𝐹.
The relationship is one-to-one; if we know 𝐹𝐹, then 𝑓𝑓 can be fully reconstructed. This means
that every signal is a superposition of periodic functions, and the frequency spectrum

9

encodes magnitude and phase for every frequency necessary to reconstruct 𝑓𝑓. It's worth
noting that each window matrix in our training set is a sequence of discrete values (color
intensity per pixel). This allows us to leverage aspects of discrete series that we would
otherwise not be able to do for continuous signals.

Consider a simple sequence of bits 𝑓𝑓 = {1,0,1,1}. We note that the sequence contains 𝑁𝑁 =
4 bits, so it requires 4 steps to traverse—𝑁𝑁 is the fundamental period of this bit sequence.
Therefore, the fundamental frequency 𝜔𝜔0 = 2𝜋𝜋/4 = 𝜋𝜋/2 corresponds to a quarter rotation
of a circle. It can be shown that only 4 frequencies are required to reconstruct the signal

�0, 𝜋𝜋
2

,𝜋𝜋, 3𝜋𝜋
2
� when 𝑓𝑓 is applied to a discrete Fourier transform (DFT). The transform pair of a

DFT is provided in Eqn. 1.

𝐹𝐹[𝑘𝑘] = �𝑓𝑓[𝑥𝑥]
𝑁𝑁−1

𝑛𝑛=0

𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑛𝑛, 𝑓𝑓[𝑥𝑥] =

1
𝑁𝑁
� 𝐹𝐹[𝑘𝑘]𝑒𝑒𝑗𝑗

2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑛𝑛

𝑁𝑁−1

𝑘𝑘=0

,

Equation 1: Discrete Fourier transform analysis (left) and synthesis (right) equations.

where 𝑥𝑥 is the index of 𝑓𝑓, 𝑁𝑁 is the fundamental period of 𝑓𝑓, and 𝐹𝐹[𝑘𝑘] is the 𝑘𝑘𝑡𝑡ℎ harmonic in
frequency spectrum 𝐹𝐹. If 𝑟𝑟 is an integer, then substituting 𝑘𝑘 + 𝑟𝑟𝑁𝑁 for 𝑘𝑘 yields the same
analysis expression (Eqn. 2).

𝐹𝐹[𝑘𝑘 + 𝑟𝑟𝑁𝑁] = �𝑓𝑓[𝑥𝑥]
𝑁𝑁−1

𝑛𝑛=0

𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 (𝑘𝑘+𝑟𝑟𝑁𝑁)𝑛𝑛 = �𝑓𝑓[𝑥𝑥]

𝑁𝑁−1

𝑛𝑛=0

𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑛𝑛𝑒𝑒−𝑗𝑗

2𝜋𝜋
𝑁𝑁 (𝑟𝑟𝑁𝑁)𝑛𝑛 = �𝑓𝑓[𝑥𝑥]

𝑁𝑁−1

𝑛𝑛=0

𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑛𝑛

Equation 2: Substituting a sum of harmonic k and integer multiple of the fundamental rN.

This implies that harmonics ≥ 𝑁𝑁 are copies of harmonics in [0,𝑁𝑁 − 1], because 𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁

(𝑟𝑟𝑁𝑁)𝑛𝑛
can only be a multiple of 𝑒𝑒−𝑗𝑗2𝜋𝜋 = 1.

The DFT transforms a series of length 𝑁𝑁 to a frequency spectrum of equal length 𝑁𝑁. The
DFT of a 2-dimensional matrix is more involved but the result is the same. If we apply a 2D
DFT to a 250x250 window matrix of pixels, then we receive a 250x250 matrix of every
combination of horizontal and vertical harmonics. This will become important later when
discussing dimension reduction.

1.3.2 Feature extraction by frequency analysis
Our choice of frequency transform is the discrete cosine transform II (DCT-II). The DCT-II
𝐹𝐹𝑐𝑐2 is related to the DFT of 𝑓𝑓 if 𝑓𝑓 were mirrored on its final value and 2𝑁𝑁-points long (Eqn.
3). The way 𝑓𝑓 is mirrored is illustrated in Fig. 6.

10

𝐹𝐹𝑐𝑐2[𝑘𝑘] = 2ℜ𝑒𝑒 �𝐹𝐹2𝑁𝑁[𝑘𝑘]𝑒𝑒−
𝑗𝑗𝜋𝜋
2𝑁𝑁𝑘𝑘� = 2 �𝑓𝑓2𝑁𝑁[𝑥𝑥]

𝑁𝑁−1

𝑛𝑛=0

cos�
𝜋𝜋𝑘𝑘(2𝑥𝑥 + 1)

2𝑁𝑁
�,

Equation 3: Relationship between DCT-II 𝐹𝐹𝑐𝑐2[𝑘𝑘] and DFT 𝐹𝐹2𝑁𝑁[𝑘𝑘] analysis equation.

𝑓𝑓2𝑁𝑁[𝑥𝑥] = �
1
2
𝐹𝐹𝑐𝑐2[0] + �𝐹𝐹𝑐𝑐2[𝑘𝑘] cos�

𝜋𝜋𝑘𝑘(2𝑥𝑥 + 1)
2𝑁𝑁

�
𝑁𝑁−1

𝑘𝑘=1

�
2
𝑁𝑁

Equation 4: Synthesis equation of DCT-II.

Fig. 6: Illustration of f_2N [n] (right) and f[n] as it is applied to a DFT (left) (the DFT is identical to the discrete Fourier series

of the periodic extension of the signal).

Mirroring the signal gives DCT-II an advantage over DFT: the DCT-II frequency spectrum is
much more compact than DFT. Fig. 6 compares the DFT and DCT-II spectra for the series in
Fig. 7. Note that DCT-II coefficients approach zero much quicker than DFT coefficients.

The spectral compaction of DCT-II is desirable because every frequency is a feature of our
model. The more features we can remove without losing information about the signal, the
better our model's predictive and computational performance will be.

Fig. 7: Plot of test signal 𝑥𝑥[𝑥𝑥] = 0.9𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛(0.1𝜋𝜋𝑥𝑥) ,𝑥𝑥 ∈ [0,31]. [3]

11

Fig. 8: Plot of real (a) and imaginary (b) parts of 32-point DFT of 𝑥𝑥[𝑥𝑥] (pts 16-31 are mirrored). Plot of 32-point DCT (c). [3]

Worth noting is that the synthesis equation of DCT-II (Equation 3) is not orthogonal.
Orthogonality is a property of matrices that simplifies calculations. The inverse of an

orthogonal matrix 𝑪𝑪−1 is its transpose 𝑪𝑪𝑇𝑇. If we substitute � 1
4𝑁𝑁
𝑓𝑓2𝑁𝑁[0] for 𝑓𝑓2𝑁𝑁[0] and

� 1
2𝑁𝑁
𝑓𝑓2𝑁𝑁[𝑥𝑥] for 𝑓𝑓2𝑁𝑁[𝑥𝑥], 𝑥𝑥 ≠ 0, Eqn. 3 simplifies to Eqn. 5.

𝐹𝐹𝑐𝑐2[𝑘𝑘] = �1
𝑁𝑁
𝑓𝑓2𝑁𝑁[0] + �𝑓𝑓2𝑁𝑁[𝑥𝑥]�

2
𝑁𝑁

cos�
𝜋𝜋𝑘𝑘(2𝑥𝑥 + 1)

2𝑁𝑁
�

𝑁𝑁−1

𝑛𝑛=1

Equation 5: Orthogonal variant of DCT-II analysis equation.

12

Equation 5 can be rewritten as the product of an orthogonal matrix 𝑪𝑪 (Eqn. 6) and the signal
column vector 𝑓𝑓2𝑁𝑁[𝑥𝑥], 𝑭𝑭 = 𝑪𝑪𝑪𝑪. The signal may be reconstructed by the inverse operation,
𝑪𝑪 = 𝑪𝑪−𝟏𝟏𝑭𝑭 = 𝑪𝑪𝑻𝑻𝑭𝑭.

𝑪𝑪𝑘𝑘,𝑛𝑛 =

⎩
⎪
⎨

⎪
⎧ �1

𝑁𝑁
, 𝑘𝑘 = 0

�2
𝑁𝑁

cos�
𝜋𝜋𝑘𝑘(2𝑥𝑥 + 1)

2𝑁𝑁
� , 0 < 𝑘𝑘 < 𝑁𝑁

Equation 6: Orthogonal matrix representation of DCT-II analysis equation.

In two dimensions, we simply apply the one-dimensional DCT-II along the columns and
rows of 𝑪𝑪; 𝑭𝑭 = 𝑪𝑪𝑻𝑻𝑪𝑪𝑪𝑪. And to reconstruct the signal, we repeat the operation in reverse
order, 𝑪𝑪 = 𝑪𝑪𝑭𝑭𝑪𝑪𝑻𝑻. (This may also be done via Kronecker product, 𝑣𝑣𝑒𝑒𝑛𝑛(𝑪𝑪) = 𝑪𝑪⊗ 𝑪𝑪𝑣𝑣𝑒𝑒𝑛𝑛(𝑭𝑭).)

We may apply either 2D DCT-II or 1D DCT-II to a window matrix. In the one-dimensional
case, all rows of a window matrix would concatenate to form a single vector. Changes in
columns of pixels would be encoded as harmonics of the larger vector, so why use 2D DCT-
II at all?

The advantage of 2D DCT-II is that it has the greatest spectral compaction of all frequency
transforms discussed thus far. It encodes greater information in fewer frequencies than
either 1D DCT-II or DFT, and we seek to eliminate redundant features. Compare the
reconstructed images for 2D DCT-II in Fig. 9 to those of 1D DCT-II in Fig. 8. For 10 ≤ 𝑘𝑘 ≤ 20
frequencies, the 1D DCT-II reconstruction degrades significantly.

13

Fig. 9: Example image reconstructed from k frequencies using 1D DCT-II (left) and 2D DCT-II (right). [4]

1.4 Dimension reduction
After extracting the features of each window, we can begin training. However, if we were to
apply our features as-is, we would run into a problem in science and mathematics known
as the curse of dimensionality. Models used for classification make predictions by dividing
the feature space into label-specific regions. For example, if age and weight were used to
predict heart disease, then the coordinate plane of age on one axis, and weight on the other

Albert Nikolay Bulik
This section will need to be tightened up.

14

axis, would be divided into separate regions of heart disease and not heart disease (Fig.
10). A trained model would predict whether a person has heart disease based on where
their age and weight locate a point on the plane.

Fig. 10: Example plot of weight vs. age of a population sample.

The line (or decision surface) that separates the red and green regions in Fig. 10 can be
extended to 3 dimensions (for example, if height were a feature), or n dimensions for n
features in 𝑅𝑅𝑛𝑛. In 3 dimensions the decision surface would be a plane, and for >3
dimensions, the decision surface would be a hyperplane.

The curse of dimensionality states that in higher dimensions, every point in a dataset is
approximately the same distance to every other point. [5] This is troublesome for training
because we prefer each class in the training data to be tightly separated in feature space
from every other class. The question then becomes, how many dimensions is too many for
the training data?

A good rule of thumb is to use fewer features than the square root of training inputs. Let 𝑝𝑝
be the number of features in a window, and 𝑥𝑥 be the number of windows in our training set;
we desire 𝑝𝑝 < √𝑥𝑥. We have 3,505 tissue images, and each image is 50,000x50,000 pixels.

15

These are segmented into 200x200 frames for classification and extended to windows.

Therefore, we have 𝑥𝑥 = (3,505[𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑛𝑛]) �50,0002

2002
�𝑤𝑤𝑤𝑤𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑤𝑤𝑠𝑠𝑤𝑤𝑤𝑤𝑠𝑠
�� = 219,062,500 windows in our

training set. We must limit ourselves to 𝑝𝑝 < �219,062,500 or 𝑝𝑝 < 14,800 features.

This poses a problem; we need fewer than 14,800 features, but bitmap images and
frequency transformations for each window both yield 250x250x3 = 187,500 features. We
need to reduce the number of features from 187,500 to 14,800. We mentioned in passing in
section 1.3.2 that we desire frequency-based feature extraction methods with the greatest
spectral compaction. We may prune frequencies above a threshold to constrain the
number of features, but we may also apply linear or non-linear transforms to reduce that
number even further. There is a tradeoff between the number of features pruned and the
predictive ability of features lost to pruning. This is a subject of data analysis known as
dimension reduction.

1.5 Principal Component Analysis (PCA)
The most popular method of dimension reduction is principal component analysis (PCA).
The idea behind PCA is relatively simple: we find the line of best fit between every two
features, and best-fit lines (eigenvectors) become our new axes in the principal component
(PC) space. Each datapoint in feature space is projected onto the eigenvector (Fig. 11).
Principal components subsequently replace the original features for training.

While PCA produces the same number of principal components as features, and
ostensibly does nothing to reduce dimensionality, it allows the analyst to neatly prune PCs.
This is because PCA orders PCs by variance, and half of all principal components have
greater variance than the features from which they’re derived. If two features are highly
correlated, then one PC axis will have high variance (datapoints far from the mean), and the
other PC will have low variance (datapoints concentrated around the mean).

Variance is our metric of predictive ability with respect to features and principal
components. Low-variance principal components can be safely removed without losing
useful information for training. In practice, PCA leads to substantial dimension reduction
as the variance of principal components decays geometrically. Fig. 12 displays the
normalized variance of each PC for a high-resolution test image applied to PCA.

16

Fig. 11: PCA demonstration; vertical and horizontal axes represent two features, and each point is a separate input.

Fig. 12: Variance (predictive ability of a PC) vs. PC number in a sorted list of PCs.

17

PCA operates by computing the eigenvectors of the covariance matrix of training data. If we
have a matrix 𝑾𝑾 for which each row 𝒘𝒘 is a window, and each feature is a column of this
matrix, then we average each row to form the mean vector 𝒘𝒘� . We construct the mean

matrix 𝑾𝑾��� = �
1
⋮
1
�𝒘𝒘� , subtract means to center each feature, 𝑩𝑩 = 𝑾𝑾−𝑾𝑾���, and compute the

covariance matrix 𝑪𝑪 = 𝑩𝑩𝑇𝑇𝑩𝑩. Each eigenvector of the covariance matrix 𝒗𝒗𝑤𝑤 is determined by
maximizing the eigenvalue respective to 𝒗𝒗𝑤𝑤𝑇𝑇𝑪𝑪𝒗𝒗𝑤𝑤, and the eigenvectors 𝒗𝒗𝑤𝑤 ∈ 𝑽𝑽 form the basis
of our principal component space. The rows of 𝑾𝑾 are projected onto 𝑽𝑽 to map features to
principal components. In practice, more efficient matrix factorization methods are
employed.

We also plan to test Uniform Manifold Approximation and Projection (UMAP) as an
alternative dimension reduction algorithm. Much as principal components are linear
combinations of features, UMAP components are non-linear functions of features. UMAP is
shown to provide better class-clustering in feature space and better computational
performance on large datasets.

1.6 Machine/Deep Learning Models
When we are satisfied with the dimensionality of our features, we begin training on
windows of biopsy slides. Machine learning diverges from traditional computer programs in
that the computer program is learned from available data. There are three essential
components to machine learning: the data, the mathematical model, and the training
algorithm. [6] We’ve already talked about data, so let’s clarify what we mean by model and
training.

The model is a mathematical representation of different relationships inherent to the
training data. Data is fed to the model and variables of the model are continuously adjusted
so its output agrees with its input. In a broad sense, the model may be thought of as a
control system. When we train a model, we assess the error between input and output. In
machine learning, error is evaluated by means of a loss function. A loss function may be as
simple as the sum of squared errors, or as involved as cross-entropy.

All machine learning output is, in some sense, an average of training data. Polynomial
regression fits a polynomial to data trends, neural networks superimpose activation
functions, decision trees divide the feature space into averages of constituent points, and
k-nearest-neighbors compute averages directly for points nearest to the input. The model
chosen for any particular application should reflect the behavior of training data. For this
reason, we survey a number of models and assess their ability to predict trends and
converge in reasonable amounts of time.

Albert Nikolay Bulik
Insert more equations into this section? Do they really need to know about covariance matrices and eigenvectors?

18

1.6.1 Random Forest (RNF)
One of the most commonly used machine learning models is Random Forest (RNF), also
known as Random Decision Trees. This model is a supervised ensemble learning model,
made up of many weaker models, or Decision Trees, that collaboratively creates a stronger
model and trains on labeled data. The structure of an RNF model can be seen in Fig. 13.
Overall, it resembles a forest that has x number of trees. Starting from one point, it splits to
multiple tree-like diagrams, and each tree will continue to branch out, all reaching a unique
endpoint. The first part of an RNF model is the sample, or the root node. This root node is
the very first node at the top of the forest, which starts with a dataset – the set of features
generated and extracted from one of the previously mentioned feature extraction
processes.

Fig. 13: Random Forest structure [7].

Bootstrapping
Because the sample is limited in quantity, RNF implements a method called bootstrapping
to quantize the sample. Bootstrapping takes the sample and resamples it over and over
with subsets of the sample. The subsets are random parts of the original data with
replacement and equal distribution. In other words, some subsets may contain multiple of
the same feature, and each of the features have an equal probability of getting selected. [8]
Fig. 14 below is an example of bootstrapping, or resampling with replacement. Because the
original sample on the left has only a few datapoints, there is a limited number of
combinations that can be made when sampling. In this case, there are three blue, two
orange, two green, and two yellow data points. However, when resampling with

19

replacement, more combinations can be made since datapoints are reused. In Sample 1, it
reuses a yellow datapoint, and in Sample 3, it reuses blue datapoints and does not use the
green datapoints. In general, bootstrapping gives a model more samples to train on.

Fig. 14: Bootstrapping example [9].

For each time the sample is split into random subsets, each set marks the beginning of a
decision tree stemming from the root node. Based on the features, each decision tree will
branch out to some sort of possibility, also called a decision node, and it will continue
doing so until each tree reaches a point that it cannot make any more decisions. This stage
is called a prediction. In short, this model builds decisions off decisions recursively until all
trees reach a prediction.

Bagging (Bootstrap Aggregation)
Because each tree is handling random subsets of the overall sample data, there will be
multiple different predictions. A quarter of the predictions may want to classify a frame as
INFL, while the rest of the predictions think it may be DCIS. RNF deals with different
weights of prediction using the bagging method, also called bagging aggregation. Just as
the name implies, after the bootstrapping method, all the predictions are aggregated, and
the final prediction is chosen based on a majority vote of all the predictions. This final
prediction is the classification of the frame.

An example of bagging is shown below in Fig. 15. If our model is trained to classify different
fruits, the sample would be features of a specific fruit. The features would undergo the
bootstrapping methods, so the model has many different combinations to train on.
Eventually, each tree will produce a prediction: Tree 1 and Tree 2 will predict the fruit is an
apple, and Tree 3 will predict it is a banana. The bagging method will combine all the
predictions. In this case, two out of three predictions are apples, so by majority vote, the
fruit in question is classified as an apple.

20

Fig. 15: Random Forest example [10].

RNF models have their own set of benefits that set them apart from other Machine Learning
models. If the data were trained only on a decision tree model, the tree would keep
branching, with each split eventually becoming too specific to the original training data.
This is called overfitting. Since RNF is one big model combined with many decision trees,
there would be multiple predictions, resulting in a smaller chance of overfitting and lower
variance. However, depending on how large the dataset is, this may lead to a more complex
algorithm with a longer runtime, as the data for each decision tree is computed. [11]

How was RNF used in our project so far?
There are three main hyperparameters: the node size, number of trees, and the number of
features sampled. Using the Python’s SKLearn library, it already has a random forest
function built-in. There are many modifiable parameters, however, for our project, we have
not set any parameters and hyperparameters. At the moment, we have only input our data
into the RNF model to see if it works. By not inserting any parameters, the parameters may
have been the default settings. Of course, the results were not what we wanted, but it gave
us a baseline to know where we should start and what we should look into tuning.

1.6.2 Convolutional Neural Networks
Unlike Random Forest, Convolutional Neural Networks (CNN) is a deep learning model that
is an extended version of the machine learning model Artificial Neural Networks (ANN).
ANN is a model that holds units called neurons. These neurons receive an input, does
some sort of computation, and provide an output, and those outputs will become inputs to

21

the next outputs. Just like a brain, these neurons are all intertwined, forming a complex
structure that provides highly accurate classifications. However, as ANN is used for a wide
range of tasks, not specifically dedicated in one area, CNN builds off ANN and specializes
in image recognition and classification. CNN has three types of layers: input layer, hidden
layer, and output layer.

Fig. 16: CNN structure [12].

Input Layer
The input layer takes one image at a time. Usually, images have three channels: red, green,
and blue, which is why in Fig.15, the input layer has three dimensions. These refer to the
channels. In our case, our training data consists of images in RGBA format, which means
there will be four dimensions in the input: red, green, blue, and alpha. In addition, the
images are 50k×50k pixels. Since they are quite large, rather than the whole image, the
input will be provided with windows of the images containing only the extracted features.

Hidden Layer
The hidden layer has three main types of layers: a convolutional layer, pooling layer, and
dense layer. At the end of a convolutional layer, a very important step before moving onto
the pooling layer is applying the activation function.

Convolutional Layer
The convolutional layer takes the features from the input layer and performs linear
transformations, specifically convolution, using a filter – a matrix with weights. Since the
image has three dimensions (the last dimension depth of 3 channels: RGB), the filter must

22

also have three dimensions with a depth of 3. A typical filter would usually have a height
and width of three 3 pixels, while the depth is the same as the image. It would resemble Fig.
17, where c is the depth (i.e., number of channels). The height and width of the filter must
be significantly smaller compared to the input as there would be too many weights
resulting in too many connections if the filter was the same size.

Fig. 17: Filter over image with depth 'c'.

The filter will start by positioning itself to the top-left of the image, and the dot product of
the filter and the features laying underneath will be calculated. The filter will move in
strides (which can be adjusted) and iterates through each row of the image. Once the
whole image is swept through, it will output a feature map, a matrix containing all of the
scalars from the dot product computations. [13] There can be multiple filters in a
convolutional layer, which will result in multiple feature maps. Multiple filters are used to
extract different features (e.g., edges, textures, color), and each of those filters will work on
the same input image. In Fig. 18, you can see that the number of feature maps outputted is
the same as the number of filters that run through the image. It should be noted that filters
and kernels are interchangeable, and feature maps and activation maps are
interchangeable.

Fig. 18: Usage of multiple filters in the convolutional layer [14].

23

The feature maps are all 2-dimensional, but when stacked together in the depth axis, it
creates a 3-dimensional output, as shown in Fig. 19.

Fig. 19: Stacking feature maps [14].

In addition, there can be multiple convolutional layers, where the next layer takes the
feature map of the previous layer as the input. Using multiple layers helps improve
efficiency and accuracy since the layers build off one after another, extracting more
complex features from the previous features.

Activation Function
The activation function is a nonlinear function that is applied to each feature map of every
convolutional layer. The activation function is an important step of the CNN model
because it produces only the meaningful parts of the data. One of the most common
activation functions is the rectified linear unit (ReLU). Fig. 20 below shows a plot of the
ReLU function. As you can see, when x is negative, y is equal to 0, and when x is positive, y
is equal to x. When this function is applied to the input, the negative elements of the matrix
are zeroed while the positive elements are kept the same. In other words, It turns off the
negative elements, and only keeps the elements that seem important. This allows the
model to learn complex relationships with the input and output. Afterwards, the resulting
matrix is sent as the input to the next convolutional layer or the pooling layer if there are no
more convolutional steps.

24

Fig. 20: ReLU activation function.

1.6.2.1.1.1 Pooling Layer
After the last convolutional layer, the pooling layer takes the feature maps and
downsamples, or compresses, them using a filter and send it to the output array. When
compressing the feature map, it summarizes the features by combining multiple features
throughout the image, which removes a lot of the fluctuation between them. This helps the
model to not “overreact” and misclassify the frame. The filter must be smaller than the
feature maps. If the feature map is 250 × 250 pixels and the filter is 2×2 pixels, for every 2×2
position of the feature map, it would compress those values into a single value using max
pooling or average pooling. [15] The size of the pooled feature map depends on the stride.
In Fig. 21, it shows an example of max pooling the input matrix with a stride of 1 and 2.
Higher strides lead to smaller matrices as it sweeps through the input faster, as well as
downsampling more, while lower strides lead to bigger matrices, retaining a bit more
information. This is also the same for the filter size too. When picking the filter size and
stride, there will be chances of oversampling or undersampling, so a middle ground has to
be considered.

25

Fig. 21: CNN max pooling example [14].

1.6.2.1.1.2 Dense (Fully-connected) Layer
Before reaching the dense layer, the feature maps received from the pooling layers for each
hidden layer must be condensed into one-dimensional vectors and then fed into the dense
layer, specifically, each neuron of the dense layer. Each neuron will do computations to the
input vector, which helps the neurons connect to each element of all of the feature maps.
These computations consist of a weighted sum plus a bias term as Eqn. 7 below.

𝑧𝑧 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯+ 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏

Equation 7: Weighted sum plus bias.

This layer also makes use of activation functions as it would be applied to the output of the
above equation. Each neuron in the layer would produce a scalar. The scalars would be
placed into a vector with size m, where m is the number of neurons in the layer. An
activation function would be applied to this vector (Eqn. 8).

𝑎𝑎 = [𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … ,𝑎𝑎𝑚𝑚]

Equation 8: Vector of computed scalars from each dense layer neuron.

As there can be multiple convolutional, there can also be multiple dense layers. The output
vector of the first dense layer would be fed into the second dense layer. Lastly, the outputs
of the last dense layer would be sent to the outer layer.

26

Outer Layer
Just like the hidden layer, the outer layer may also contain a dense layer. However, this
dense layer would finalize everything and output a score. Using the same process as above
(computing the weighted sum plus a bias), we may use a different type of activation
function. There are multiple options but the most common activation functions that
produce a score is the sigmoid function and softmax function. If we plan to classify frames
by checking for each classification type individually (e.g., “Is this NULL type?”, “No.” “Is this
DCIS type?”, “Yes.”), then it’s better to use sigmoid as it classifies only with two symbols: 0
(no) and 1 (yes). The second option is classifying frames by checking all of the classification
types in once process. In this case, it would be better to use the softmax function since it
can use multiple symbols: 0 to 9 (e.g., 0: Unlab, 1: BCKG, 2: NULL, etc.) If there is a higher
probability of a certain class, then the output would produce the score of the probability
and the classification.

Using this model over Random Forest would provide many advantages. Since this model
specializes in image recognition and classification, this would be more ideal to use as it
provides more accurate classifications and is more efficient for what our project is
intended to do. It also handles noise and variation much better since the input would go
through many pooling layers and activation functions for combining and downsampling.
However, CNN models are more difficult to train as they are very complex and require a lot
of computational resources. In addition, the outputs of the overall model or individual
layers may be difficult to interpret, that it would take some time figuring out how to finetune
the model. [16]

2 Engineering Design Plan

2.1 Application of the Flood-Fill Algorithm and WSI Classification
Consider Fig. 22 and suppose the frames highlighted in green were predicted by the model
to contain ductal carcinoma in situ (DCIS).

27

Fig. 22: Sample model output of Fig. 3

If a tumor has extended to the region in green, then naturally the interior must be malignant
as well. We identify and reclassify the interior frame with the appropriate DCIS class by
means of a flood-fill algorithm.

Flood-fill algorithms are commonly used in graphics editors and more colloquially known
as ‘paint-bucket’ tools. The purpose of a flood-fill algorithm is to fill an area of an image or
array with some value (be it a color or label) while respecting the boundaries of existing
values. Flood fill may be used to locate interior regions of DCIS predictions in the following
manner. First, we apply flood fill to the entire biopsy slide starting at a boundary frame (e.g.,
the top-left frame in Fig. 23).

28

Fig. 23: Flood fill applied to Fig. 22: Sample model output of

We invert DCIS predictions such that non-DCIS frames are classified DCIS and vice versa
(Fig. 24). Finally, we apply the inverted array in Fig. 24 as a mask to the generating array in
Fig. 21. The result is an array of predictions with interior regions of DCIS classifications
consistent with adjacent frames (Fig. 25).

To classify whole-slide images, we apply the label with the highest urgency according to
Tab. 1. If a slide image contains DCIS, the entire image is classified as DCIS. However, if
only non-neoplastic, inflamed, and normal tissue were identified in a biopsy slides’ frame
classifications, then the slide image would be classified with the highest urgency label
(INFL).

29

Fig. 24: Inverted flood-fill of Fig. 23.

Fig. 25: Original DCIS predictions with mask (Fig. 24) applied.

30

2.2 Train, Dev, and Eval
To train a model, we must first initially train the model on a subset of the data. Afterwards,
we refine parameters by utilizing a separate subset of the data. Finally, we take this trained
and refined model and evaluate it on a third separate subset of the data. The reason we do
this is to reduce overfitting. Overfitting happens when we put too much weight on attributes
of the data that couldn’t be generalized from the size of the available data. For example, if
our first subset of the data has a particular feature that is very pronounced in the artifact
label, the model is going to attribute that feature to recognizing the artifact labels. However,
if this feature doesn’t normally exist within the artifact label, we hope that when we
compare with a second subset of the data, the model will pick up that this isn’t a feature
that is normally present in the artifact label. Finally, we utilize a third subset of the data to
validate that our model hadn’t overfitted to either of the previous two subsets of the data. A
graphical representation of this can be shown below in Fig. 26 . We call the first, second,
and third subsets of the data Train, Dev, and Eval respectively. [17]

Fig. 26: Example of Train, Dev, Eval Split

To have this method be effective, we need to have both an even distribution of the labels
through all the datasets, and a proper ratio of data in the Train, Dev, and Eval set. It’s
standard to have 80% of the data in the Train set, 10% in the Dev set, and 10% in the Eval
set. However, as seen in Tab. 2 below, we have a slightly different ratio of around 60% for
Train, 20% for Dev, and 20% for Eval. The reason this is slightly different from what is
standard is due to the imbalance of labels, such as inflammation (INFL), that only make up
a small amount of the total labelled regions. It’s possible that if there was an 80:10:10 split
followed, there wouldn’t have been an even distribution of such labels.

31

Tab. 2: Train, Dev, and Eval Label Distribution [18]

Label Train Dev Eval Total

artf 17,147 6,513 6,881 30,541

bckg 329,404 110,425 110,599 550,428

dcis 5,626 1,945 1,900 9,471

indc 6,574 2,528 2,599 11,701

infl 1,144 473 457 2,074

nneo 15,183 5,684 5,770 26,637

norm 4,524 1,755 1,745 8,024

susp 15,445 5,768 5,607 26,820

We have now established well defined Train, Dev, and Eval datasets. We then need to do
two things to each image within the data. We need to segment it as shown in Fig. 4 and
perform some preprocessing as shown in Fig. 6. However, for some use cases that need
the full context of the entire image before performing something like a 2D DCT. What this
means is that sometimes the preprocessing will be done before the segmentation, and
sometimes it will be done after. The combinations of these are shown in Fig. 11 & Fig. 9.

After the image has been segmented and undergone some pre-processing, we now have
our features. However, this means that we could be sending window_size2 floats for each
window. This is too much for the model to handle and for it to analyze each of those
numbers is something that we don’t have time for especially when we can perform feature
reduction. Doing something like PCA as seen in Fig. 11 allows us to reduce the amount of
information the model has to process, and as a result, the amount of time the model takes
to train.

Once we have established a dataset of features, we need to take the train set and fit the
model. This involves feeding the data into a CNN as mentioned above. Once we have fit the
model to the train set, we are then going to have the model make predictions on the
development set. Using these predictions, we can attempt to optimize the model and
remove some symptoms of overfitting inherited from the train set. This process can be seen
in Fig. 1. Finally, we validate our model on the eval set. Once we are happy with our results,
this leaves us with a trained and refined model.

With a finished model, we can effectively generate predictions for individual frames.
However, we need to bring these individual predicted frames together to make a predicted

32

region, like the annotations made in Fig. 30. This amounts to an inverse operation of the
slide segmentation algorithm described in section 1.2. By aggregating frame predictions in
a slide, we can form a prediction for the slide as a whole and ensure consistency among
frame predictions in regions of a slide.

2.3 Prediction Report & Example Use Case
Having a trained, refined, and tested model allows us to start making predictions in a
production environment. In order, to make our predictions useful to end users unfamiliar
with our system, we must have a Graphical User Interface (GUI). This is essentially a slightly
higher-level view of the results. This includes an overlay of the predicted regions over the
image of the tissue fed in, the type of tissue of these regions, and an overall report of
cancer for the image. This can be seen below in Fig. 27.

Fig. 27: Example graphical representation

33

One use case for these reports is to be used in an urgency system. If the volume of biopsied
tissue slides that need to be reviewed is greater than the amount of work that pathologists
can do, it’s possible for there to be a buildup of these images. A hospital may be able to
utilize the predictions to organize the quote of images, so the highest risk patients are
evaluated first. Due to the inherent aggressiveness of breast cancer, evaluating these
higher risk patients can reduce their time to treatment and therefore their overall risk factor.
Once a pathologist gets the chance to evaluate an image processed by the model, the
pathologist can utilize the prediction report shown above in Fig. 27 to validate their
diagnosis.

2.4 Temple University Health Digital Pathology (TUHDP) Corpus
To train a model, we must start with data. Temple University has a large open-source
dataset being developed for a variety of diverse types of tissue. The subset of data we are
focusing on is a 3,505 images (1.23 terabyte) collection of breast tissue. For each tissue
image, there is an associated annotations file that contains the following information:
microns per pixel, height, width, and labeled regions. [18]

Microns per pixel is a floating-point number that represents a mapping. This is calculated
by taking the size of the object being scanned and mapping it to the resolution of the image
being stored. This allows us to create a mapping of each pixel of the image to an actual
physical representation of what was being scanned originally. This is vital to the success of
precise image analysis for machine learning. It will eventually allow us to normalize the
images, allowing us to analyze various images taken with different from various devices.
[19] As you can see below in

34

,
knowing the microns per pixel will allow us to understand what kind of information and how
much we are getting.

Fig. 28: Effects of Microns Per Pixel [20]

The height and width of the image are measured in pixels and allow us to segment the
image for consistent analysis. We plan to separate the image into many overlapping
windows. The reason for this overlap is that it may allow us to avoid noise when processing
individual frames. It is a commonly known phenomenon that by having an overlap of at
least 50% when analyzing a signal, it is possible to reduce random noise due to the
included context of the previous frame. It is analogous to teaching a guitar player to play
the mandolin to eventually teach them the violin. If you gave a guitar player the violin
directly, they would have had to learn the new note layout of the strings and the new
physical techniques of how to hold the bow and place their fingers at the same time.
However, since the mandolin features a similar playing technique to the guitar and the

35

same note layout of the strings as the violin, the guitar player would have an intermediate
step to understand the context of the violin. As seen in Fig. 29 below, this is the kind of
smoothing we are hoping for. Opening the analysis up in this way allows for less signal
noise. [21] Without testing, we are not sure if this will provide benefit to our processing, but
we will perform rigorous tests to see what level of overlap works best for our use case.

Fig. 29: Example of Signal Smoothing [22]

Finally, we need to move onto the labeled regions. Firstly, it’s important to understand what
regions are in this context. A region is simply an outlined portion of the image identified by a
list of coordinates and associated with a label. See Fig. 30 below for an example of what an
actual region outlined on an image of breast tissue may look like. The two dark textboxes
are labels. These are abbreviated version of tissue types shown below in Fig. 30 taken
directly from a TUHDP TUBR abstract of the previous model trained to identify these
regions.

36

Fig. 30: Example of Outlined Regions [23]

3 Engineering Design Immediate Goals

3.1 One to Two-Dimensional DCT
Currently, our system is extracting all RGB values from the image into separate vectors
containing each color. This essentially leaves us with 3 vectors of length (window height
[pixels] * window width [pixels) containing integers between 0 and 255. On each vector, we
then perform a one-dimensional DCT and keep an arbitrary number of the most significant
frequencies. This essentially performs an analysis on the color spectrum for the window
and ignores the rest of the context in the window. Moving forward, we want to perform a
two-dimensional DCT as mentioned above in section 1.3.2.

3.2 Implementing PCA
As mentioned in section 3.1, we are arbitrarily selecting a frequency cutoff. The reason we
implement this is due to speed and memory of the machine, as well as the optimization of
the algorithm to train the model. By keeping only the most significant frequencies of the
color spectrum, we are able to keep a good portion of the information without taking up
very much memory and reducing compute time. However, since we are selecting feature

37

extraction arbitrarily, this method will fail to two things. One, It will lose the position. The
only way to do this on a matrix would be to randomly pick sections of the frame, so position
wouldn’t be kept, and we would lose continuity. Secondly, as it is doing now, we are failing
to consider what is worth keeping and what isn’t worth keeping. To maximize efficacy, we
need to keep the maximize amount of information while keeping a reasonable compute
time. One way to do this is using PCA as mentioned in section 1.5.

3.3 Implementing PyTorch CNN
Our system is currently utilizing a Python library Sci-kit Learn for establishing a base model
as mentioned in section 1.6.1. This is a Machine Learning model, but we want to add an
option for deep learning to explore the affects it has on making predictions. In order to do
this, we are going to be utilizing a Python library PyTorch which allows us to more easily
create a pipeline for deep learning models such as a CNN. While the detailed explanation
of how to use a CNN for PyTorch is outside the scope of this paper, the first step is to take
our processed frames and feed them into something called a DataSet. This allows us to
increase the maximum training set size as it allows us to train the model off disk instead of
from memory as was done with the Random Forest implementation. After we load the data
into a DataSet, we explicitly declare some of the parameters talked about in section 1.6.2.
Explicitly setting some of these parameters such as the types of layers, number of layers,
epochs, etcetera. Allow us to significantly manipulate how the model trains, and as a result
the model’s precision and accuracy on general data.

3.4 Implementing GUIS
Now that we have a functional pipeline that takes from an image to fully formed regions, we
want to be able to showcase something like what is shown in Fig. 27. Furthermore, we want
a person unfamiliar with our system to be able to enter an image. To do this, we must
implement a sort of drag-and-drop image functionality so the user will be able to drop an
image in and get the showcased image and some information back as shown below in Fig.
31.

Fig. 31: Example of GUI pipeline

38

4 References

[1] "The ABC of Machine Learning," aiplanet.com, [Online]. Available:
https://aiplanet.com/learn/5-week_Data_Science_Bootcamp/week-2/162/the-abc-
of-machine-learning. [Accessed 1 October 2024].

[2] Y. K. Abdullah-Al Nahid, "Histopathological Breast-Image Classification Using Local
and Frequency Domains by Convolutional Neural Network," Information-Centered
Healthcare, 2017.

[3] R. W. S. Alan V. Oppenheim, "The Discrete Cosine Transform," in Discrete-Time Signal
Processing, Pearson, 2010, pp. 680-681.

[4] Yumi, "Yumi's Blog," 19 July 2019. [Online]. Available: https://fairyonice.github.io/1D-
DCT-vs-2D-DCT.html. [Accessed 4 October 2024].

[5] N. Matloff, The Art of Machine Learning: A Hands-On Guide to Machine Learning with
R, No Starch Press, 2024.

[6] N. W. F. L. T. B. S. Andreas Lindholm, Machine Learning A First Course for Engineers
and Scientists, Cambridge University Press, 2022.

[7] R. Yehoshua, "Random Forests," 24 March 2023. [Online]. Available:
https://medium.com/@roiyeho/random-forests-98892261dc49.

[8] J. Frost, "Introduction to Bootstrapping in Statistics with an Example," [Online].
Available: https://statisticsbyjim.com/hypothesis-testing/bootstrapping/.

[9] P. Galdi and R. Tagliaferri, "Data Mining: Accuracy and Error Measures for
Classification and Prediction," in Reference Module in Life Sciences, Elsevier, 2018.

[10] M. Chaudhary, "Random Forest Algorithm - How It Works & Why It’s So Effective,"
[Online]. Available: https://www.turing.com/kb/random-forest-algorithm.

[11] IBM, "What is random forest?," [Online]. Available:
https://www.ibm.com/topics/random-
forest#:~:text=Random%20forest%20is%20a%20commonly,both%20classification
%20and%20regression%20problems..

39

[12] Raycad, "Convolutional Neural Network (CNN)," 14 November 2017. [Online].
Available: https://medium.com/@raycad.seedotech/convolutional-neural-network-
cnn-8d1908c010ab.

[13] L. Craig, "convolutional neural network (CNN)," [Online]. Available:
https://www.techtarget.com/searchenterpriseai/definition/convolutional-neural-
network.

[14] A. Rosebrock, "Convolutional Neural Networks (CNNs) and Layer Types," 14 May
2021. [Online]. Available: https://pyimagesearch.com/2021/05/14/convolutional-
neural-networks-cnns-and-layer-
types/#:~:text=The%20last%20layer%20of%20a,understanding%20its%20different
%20layer%20types.

[15] Y. Gavrilova, "Convolutional Neural Networks for Beginners," 2 August 2021. [Online].
Available: https://serokell.io/blog/introduction-to-convolutional-neural-networks.

[16] GeeksforGeeks, "Convolutional Neural Network (CNN) in Machine Learning," 13
March 2024. [Online]. Available: https://www.geeksforgeeks.org/convolutional-
neural-network-cnn-in-machine-learning/#.

[17] T. Shah, "About Train, Validation and Test Sets in Machine Learning," Medium, 6
December 2017. [Online]. Available: https://towardsdatascience.com/train-
validation-and-test-sets-
72cb40cba9e7#:~:text=The%20validation%20set%20is%20also%20known%20as%
20the%20Dev%20set. [Accessed 1 October 2024].

[18] B. D. N. J. I. A. I. O. J. P. Z. Wevodaur, "The Temple University Digital Pathology Corpus:
The Breast Tissue Subset," 2021. [Online]. Available:
extension://bfdogplmndidlpjfhoijckpakkdjkkil/pdf/viewer.html?file=https%3A%2F%2
Fisip.piconepress.com%2Fpublications%2Fconference_presentations%2F2021%2Fi
eee_spmb%2Fdpath%2Fabstract_v22_with_poster_v12.pdf. [Accessed 1 October
2024].

[19] "What is the resolution of my microscope in microns and image scale in microns per
pixel?," Celestron, 18 December 2013. [Online]. Available:
https://www.celestron.com/blogs/knowledgebase/what-is-the-resolution-of-my-
microscope-in-microns-and-image-scale-in-microns-per-
pixel?srsltid=AfmBOopJrlmOj7PSmBwnIdOcZRctqUWSlYcwjVt8ulMmY_XIcZSkZnAs.
[Accessed 1 October 2024].

40

[20] A. Corning, "Honey, I Shrunk the Display: Measuring Small LEDs, Pixels, and
Subpixels," RADIANT Vision Systems, 22 July 2019. [Online]. Available:
https://www.radiantvisionsystems.com/blog/honey-i-shrunk-display-measuring-
small-leds-pixels-and-subpixels. [Accessed 1 October 2024].

[21] "Understanding FFT Overlap Processing Fundamentals," Tektronix, [Online].
Available: https://www.tek.com/en/documents/primer/understanding-fft-overlap-
processing-fundamentals-0. [Accessed 1 October 2024].

[22] S. Kahn, "Smoothing a Noisy Signal with a Savitsky-Golay Filter," Maplesoft, 17
December 2019. [Online]. Available:
https://www.maplesoft.com/Applications/Detail.aspx?id=154593. [Accessed 1
October 2024].

[23] Z. W. B. D. I. O. J. P. J. Simons, "The Temple University Hospital DPATH Corpus:,"
Temple University Hospital DPATH Corpus, 15 January 2021. [Online]. Available:
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fisip.piconepre
ss.com%2Fpublications%2Freports%2F2021%2Ftuh_dpath%2Fannotations%2Fann
otation_guidelines_v10.docx&wdOrigin=BROWSELINK. [Accessed 1 October 2024].

	1 Chosen Solution
	1.1 Digitizing and Storing Biopsy Slides
	1.2 Slide Segmentation
	1.3 Feature Extraction
	1.3.1 Frequency Analysis Overview
	1.3.2 Feature extraction by frequency analysis

	1.4 Dimension reduction
	1.5 Principal Component Analysis (PCA)
	1.6 Machine/Deep Learning Models
	1.6.1 Random Forest (RNF)
	Bootstrapping
	Bagging (Bootstrap Aggregation)
	How was RNF used in our project so far?

	1.6.2 Convolutional Neural Networks
	Input Layer
	Hidden Layer
	Convolutional Layer
	Activation Function
	1.6.2.1.1.1 Pooling Layer
	1.6.2.1.1.2 Dense (Fully-connected) Layer

	Outer Layer

	2 Engineering Design Plan
	2.1 Application of the Flood-Fill Algorithm and WSI Classification
	2.2 Train, Dev, and Eval
	2.3 Prediction Report & Example Use Case
	2.4 Temple University Health Digital Pathology (TUHDP) Corpus

	3 Engineering Design Immediate Goals
	3.1 One to Two-Dimensional DCT
	3.2 Implementing PCA
	3.3 Implementing PyTorch CNN
	3.4 Implementing GUIS

	4 References

