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1 Chosen Solution 
Training a machine learning model to predict malignancy requires many interlocking 
components. First, a biopsy slide is digitized by a pathologist at Temple University Health, 
and the slide image is stored in the TUH Digital Pathology data store (1.1). The slide is then 
segmented into frames and windows (1.2). An algorithm extracts the features of each 
window (1.3), and the number of features is reduced using a dimension reduction 
algorithm (1.4, 1.5). A model is trained on the windows (1.6), and the model output for a 
test case (a segmented slide image) is postprocessed (2). Finally, the model is tuned and 
evaluated (Fig. 1). 

 
Fig. 1: Example of the Train & Dev Cycle [1] 

1.1 Digitizing and Storing Biopsy Slides 
The first job of any data analyst is to collect data. For the purpose of machine learning, data 
must have clearly defined input and output. For example, if one were predicting height 
based on age, height would be the output and age would be the input; we would collect and 
record the height and age of a random sample of the population, and this dataset would 
form the basis of our predictions. In our case, we are predicting the presence of malignant 
tissue in a patient biopsy, so we require annotated photos of biopsy slides. The photos 
themselves (or some aspect of each photo) will be the input for our model, and the 
annotations will be the model's output. See for a representative example of a biopsy slide.  
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Fig. 2: Digitized biopsy slide with two tissue samples. 

What do we mean by annotation? In Fig. 1, several shapes will have been traced over the 
image by a pathologist. Each shape has a corresponding label with a specific meaning. 
Each label and its meaning are listed in Tab. 1 by ascending order of urgency. The higher the 
urgency, the more likely it is that tissue from the sample will develop into malignant tissue 
(ductal carcinoma in situ, or DCIS).  

Tab. 1: Slide labels, their meanings, and order of urgency. 

Label Description Urgency 
Unlab Unlabeled tissue area; non-annotated area of the biopsy slide. 0 
Bckg Background stroma tissue surrounding lobules and ducts.  1 
Norm Normal tissue, including lobules or ducts with empty spaces called 

lumen (areas of the slide that allow light to shine through).  
2 

Null Indistinguishable tissue, often caused by poor cuts of the sample. 3 
Artf Artifacts in the slide image, such as pen marks.  4 
Nneo Non-neoplastic tissue, a non-malignant lesion. Includes fibrosis and 

hyperplasia. May develop into a malignancy.  
5 

Infl Inflammation, high concentration of small dots typically found 
around stroma.  

6 

Susp Suspicious tissue, at risk for developing into DCIS.  7 
Indc Invasive ductal carcinoma in situ, cancer tissue, freeform malignant 

tissue invading stroma.  
8 

Dcis Ductal carcinoma in situ, dense and tightly enclosed cancer tissue. 9 
 



6 
 

   
 

 
Fig. 3: Leica Biosystems Aperio AT2 biopsy slide scanner. 

Biopsy slides are prepared and scanned by the pathology lab at Temple University Health 
(TUH) using a Leica Biosystems Aperio AT2 (Fig. 3). All identifying patient information is 
removed and the slides are stored in the TUH Digital Pathology database in Scanscope 
Virtual Slide (SVS) format. An SVS file contains the labels for each slide annotation and the 
slide image at multiple resolutions (1:1, 4:1, 16:1, 32:1). The images are compressed using 
JPEG 2 (Joint Photographic Experts Group) compression with three color values per pixel 
(red, green, and blue, or, 'RGB'); the full resolution of a biopsy slide is 50,000 x 50,000 
pixels. 

1.2 Slide Segmentation 
Unlike machine learning (ML) models that focus on whole-slide image (WSI) classification, 
our approach is unique in that we segment slide images into smaller areas called frames. 
Our ML model is trained on frames, and makes predictions on (i.e., assigns labels from Tab. 
1 to) frames. The benefit of this approach is that it allows a reviewing pathologist to quickly 
localize the affected area of a malignancy. For each slide in the training dataset, the slide is 
divided into a uniform grid of 200 x 200 pixels per frame (Fig. 4). 
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Fig. 4: Biopsy slide segmented into frames; frames are larger than 200x200 pixels to make them easier to see. 

When we pass frames as input to the training algorithm, we allow some overlap between 
adjacent frames. Prior to training, frame boundaries are extended by 25 pixels on every 
side. The extended 250 x 250 area is what we call a window (Fig. 5). The amount of overlap 
is a non-negative number set by the training engineer, and the reason that we desire 
overlap is that it encodes context into the training data.  

 
Fig. 5: Borders of windows overlapping with adjacent windows and frames. 
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Context is a broad subject in machine learning but is, in essence, the surrounding 
information or environment that may affect a prediction. For instance, in language 
processing certain letters are more likely to appear in certain positions in a word, and 
words have different meanings depending on their position in a sentence.  

In our application, context is correlation between adjacent frames. If one frame is 
classified DCIS, then incorporating context raises the likelihood that adjacent frames are 
classified DCIS as well. This allows us to keep predictions relatively consistent. 

1.3 Feature Extraction 
In machine learning lingo, features are subsets of an input datum. If we were predicting 
height based on weight and age, weight and age would be features of the input data. For 
simple examples like this, features are often readily apparent. For the purpose of predicting 
label classifiers from bitmap images, the features are not readily apparent. The question of 
extracting features is analogous to the question of determining what aspects the data yield 
the most predictive ability and information for our model. Our input datum (the smallest 
unit of input) to the training algorithm is a bitmap image for a single window, extracted from 
a biopsy slide. Each bitmap image is separated into 3 layers (one per color) and each layer 
is a 250 x 250 matrix, encoding color intensity per pixel. How can we organize the color 
matrices into useful features for our training algorithm? 

The most obvious way to extract features for a bitmap image is to consider each pixel value 
a separate feature. For one window we would have 250x250x3 = 187,500 features. As 
simple and direct as this method is, it often yields surprising results when training a 
convolutional neural network (CNN). We discuss CNNs and scoring metrics in later 
sections, but to put the performance of this method into context, a CNN trained directly on 
image data yielded 86.64% accuracy and an 89.00% F1 score in a study of 400 slide 
images; the best results in the same study and dataset were 96.00% accuracy and 96.00% 
F1 score yielded by a CNN trained on statistics from a contourlet transform and 
histograms. [2] 

We don't want to limit ourselves to one method of feature extraction; the best method 
varies by application. Let's consider other methods of characterizing input data. 

1.3.1 Frequency Analysis Overview 
Before discussing alternative methods of feature extraction, we’ll briefly introduce the 
math behind frequency transforms. Any signal 𝑓𝑓 can be decomposed into frequencies 𝐹𝐹. 
The relationship is one-to-one; if we know 𝐹𝐹, then 𝑓𝑓 can be fully reconstructed. This means 
that every signal is a superposition of periodic functions, and the frequency spectrum 
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encodes magnitude and phase for every frequency necessary to reconstruct 𝑓𝑓. It's worth 
noting that each window matrix in our training set is a sequence of discrete values (color 
intensity per pixel). This allows us to leverage aspects of discrete series that we would 
otherwise not be able to do for continuous signals.  

Consider a simple sequence of bits 𝑓𝑓 = {1,0,1,1}. We note that the sequence contains 𝑁𝑁 =
4 bits, so it requires 4 steps to traverse—𝑁𝑁 is the fundamental period of this bit sequence. 
Therefore, the fundamental frequency 𝜔𝜔0 = 2𝜋𝜋/4 = 𝜋𝜋/2 corresponds to a quarter rotation 
of a circle. It can be shown that only 4 frequencies are required to reconstruct the signal 

�0, 𝜋𝜋
2

,𝜋𝜋, 3𝜋𝜋
2
� when 𝑓𝑓 is applied to a discrete Fourier transform (DFT). The transform pair of a 

DFT is provided in Eqn. 1.  

𝐹𝐹[𝑘𝑘] = �𝑓𝑓[𝑥𝑥]
𝑁𝑁−1

𝑛𝑛=0

𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑛𝑛, 𝑓𝑓[𝑥𝑥] =

1
𝑁𝑁
� 𝐹𝐹[𝑘𝑘]𝑒𝑒𝑗𝑗

2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑛𝑛

𝑁𝑁−1

𝑘𝑘=0

, 

Equation 1: Discrete Fourier transform analysis (left) and synthesis (right) equations. 

where 𝑥𝑥 is the index of 𝑓𝑓, 𝑁𝑁 is the fundamental period of 𝑓𝑓, and 𝐹𝐹[𝑘𝑘] is the 𝑘𝑘𝑡𝑡ℎ harmonic in 
frequency spectrum 𝐹𝐹. If 𝑟𝑟 is an integer, then substituting 𝑘𝑘 + 𝑟𝑟𝑁𝑁 for 𝑘𝑘 yields the same 
analysis expression (Eqn. 2).  

𝐹𝐹[𝑘𝑘 + 𝑟𝑟𝑁𝑁] = �𝑓𝑓[𝑥𝑥]
𝑁𝑁−1

𝑛𝑛=0

𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 (𝑘𝑘+𝑟𝑟𝑁𝑁)𝑛𝑛 = �𝑓𝑓[𝑥𝑥]

𝑁𝑁−1

𝑛𝑛=0

𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑛𝑛𝑒𝑒−𝑗𝑗

2𝜋𝜋
𝑁𝑁 (𝑟𝑟𝑁𝑁)𝑛𝑛 = �𝑓𝑓[𝑥𝑥]

𝑁𝑁−1

𝑛𝑛=0

𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑛𝑛 

Equation 2: Substituting a sum of harmonic k and integer multiple of the fundamental rN. 

This implies that harmonics ≥ 𝑁𝑁 are copies of harmonics in [0,𝑁𝑁 − 1], because 𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁

(𝑟𝑟𝑁𝑁)𝑛𝑛 
can only be a multiple of 𝑒𝑒−𝑗𝑗2𝜋𝜋 = 1. 

The DFT transforms a series of length 𝑁𝑁 to a frequency spectrum of equal length 𝑁𝑁. The 
DFT of a 2-dimensional matrix is more involved but the result is the same. If we apply a 2D 
DFT to a 250x250 window matrix of pixels, then we receive a 250x250 matrix of every 
combination of horizontal and vertical harmonics. This will become important later when 
discussing dimension reduction. 

1.3.2 Feature extraction by frequency analysis 
Our choice of frequency transform is the discrete cosine transform II (DCT-II). The DCT-II 
𝐹𝐹𝑐𝑐2 is related to the DFT of 𝑓𝑓 if 𝑓𝑓 were mirrored on its final value and 2𝑁𝑁-points long (Eqn. 
3). The way 𝑓𝑓 is mirrored is illustrated in Fig. 6. 
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𝐹𝐹𝑐𝑐2[𝑘𝑘] = 2ℜ𝑒𝑒 �𝐹𝐹2𝑁𝑁[𝑘𝑘]𝑒𝑒−
𝑗𝑗𝜋𝜋
2𝑁𝑁𝑘𝑘� = 2 �𝑓𝑓2𝑁𝑁[𝑥𝑥]

𝑁𝑁−1

𝑛𝑛=0

cos�
𝜋𝜋𝑘𝑘(2𝑥𝑥 + 1)

2𝑁𝑁
�, 

Equation 3: Relationship between DCT-II 𝐹𝐹𝑐𝑐2[𝑘𝑘] and DFT 𝐹𝐹2𝑁𝑁[𝑘𝑘] analysis equation. 

𝑓𝑓2𝑁𝑁[𝑥𝑥] = �
1
2
𝐹𝐹𝑐𝑐2[0] + �𝐹𝐹𝑐𝑐2[𝑘𝑘] cos�

𝜋𝜋𝑘𝑘(2𝑥𝑥 + 1)
2𝑁𝑁

�
𝑁𝑁−1

𝑘𝑘=1

�
2
𝑁𝑁

 

Equation 4: Synthesis equation of DCT-II. 

 
Fig. 6: Illustration of f_2N [n] (right) and f[n] as it is applied to a DFT (left) (the DFT is identical to the discrete Fourier series 

of the periodic extension of the signal). 

Mirroring the signal gives DCT-II an advantage over DFT: the DCT-II frequency spectrum is 
much more compact than DFT. Fig. 6 compares the DFT and DCT-II spectra for the series in 
Fig. 7. Note that DCT-II coefficients approach zero much quicker than DFT coefficients.  

The spectral compaction of DCT-II is desirable because every frequency is a feature of our 
model. The more features we can remove without losing information about the signal, the 
better our model's predictive and computational performance will be.  

 
Fig. 7: Plot of test signal 𝑥𝑥[𝑥𝑥] = 0.9𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛(0.1𝜋𝜋𝑥𝑥) ,𝑥𝑥 ∈ [0,31]. [3] 
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Fig. 8: Plot of real (a) and imaginary (b) parts of 32-point DFT of 𝑥𝑥[𝑥𝑥] (pts 16-31 are mirrored). Plot of 32-point DCT (c). [3] 

Worth noting is that the synthesis equation of DCT-II (Equation 3) is not orthogonal. 
Orthogonality is a property of matrices that simplifies calculations. The inverse of an 

orthogonal matrix 𝑪𝑪−1 is its transpose 𝑪𝑪𝑇𝑇. If we substitute � 1
4𝑁𝑁
𝑓𝑓2𝑁𝑁[0] for 𝑓𝑓2𝑁𝑁[0] and 

� 1
2𝑁𝑁
𝑓𝑓2𝑁𝑁[𝑥𝑥] for 𝑓𝑓2𝑁𝑁[𝑥𝑥], 𝑥𝑥 ≠ 0, Eqn. 3 simplifies to Eqn. 5.  

𝐹𝐹𝑐𝑐2[𝑘𝑘] = �1
𝑁𝑁
𝑓𝑓2𝑁𝑁[0] + �𝑓𝑓2𝑁𝑁[𝑥𝑥]�

2
𝑁𝑁

cos�
𝜋𝜋𝑘𝑘(2𝑥𝑥 + 1)

2𝑁𝑁
�

𝑁𝑁−1

𝑛𝑛=1

 

Equation 5: Orthogonal variant of DCT-II analysis equation. 
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Equation 5 can be rewritten as the product of an orthogonal matrix 𝑪𝑪 (Eqn. 6) and the signal 
column vector 𝑓𝑓2𝑁𝑁[𝑥𝑥], 𝑭𝑭 = 𝑪𝑪𝑪𝑪. The signal may be reconstructed by the inverse operation, 
𝑪𝑪 = 𝑪𝑪−𝟏𝟏𝑭𝑭 = 𝑪𝑪𝑻𝑻𝑭𝑭. 

𝑪𝑪𝑘𝑘,𝑛𝑛 =

⎩
⎪
⎨

⎪
⎧ �1

𝑁𝑁
, 𝑘𝑘 = 0

�2
𝑁𝑁

cos�
𝜋𝜋𝑘𝑘(2𝑥𝑥 + 1)

2𝑁𝑁
� , 0 < 𝑘𝑘 < 𝑁𝑁

 

Equation 6: Orthogonal matrix representation of DCT-II analysis equation. 

In two dimensions, we simply apply the one-dimensional DCT-II along the columns and 
rows of 𝑪𝑪; 𝑭𝑭 = 𝑪𝑪𝑻𝑻𝑪𝑪𝑪𝑪. And to reconstruct the signal, we repeat the operation in reverse 
order, 𝑪𝑪 = 𝑪𝑪𝑭𝑭𝑪𝑪𝑻𝑻. (This may also be done via Kronecker product, 𝑣𝑣𝑒𝑒𝑛𝑛(𝑪𝑪) = 𝑪𝑪⊗ 𝑪𝑪𝑣𝑣𝑒𝑒𝑛𝑛(𝑭𝑭).) 

We may apply either 2D DCT-II or 1D DCT-II to a window matrix. In the one-dimensional 
case, all rows of a window matrix would concatenate to form a single vector. Changes in 
columns of pixels would be encoded as harmonics of the larger vector, so why use 2D DCT-
II at all?  

The advantage of 2D DCT-II is that it has the greatest spectral compaction of all frequency 
transforms discussed thus far. It encodes greater information in fewer frequencies than 
either 1D DCT-II or DFT, and we seek to eliminate redundant features. Compare the 
reconstructed images for 2D DCT-II in Fig. 9 to those of 1D DCT-II in Fig. 8. For 10 ≤ 𝑘𝑘 ≤ 20 
frequencies, the 1D DCT-II reconstruction degrades significantly.  
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Fig. 9: Example image reconstructed from k frequencies using 1D DCT-II (left) and 2D DCT-II (right). [4] 

1.4 Dimension reduction  
After extracting the features of each window, we can begin training. However, if we were to 
apply our features as-is, we would run into a problem in science and mathematics known 
as the curse of dimensionality. Models used for classification make predictions by dividing 
the feature space into label-specific regions. For example, if age and weight were used to 
predict heart disease, then the coordinate plane of age on one axis, and weight on the other 

Albert Nikolay Bulik
This section will need to be tightened up.
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axis, would be divided into separate regions of heart disease and not heart disease (Fig. 
10). A trained model would predict whether a person has heart disease based on where 
their age and weight locate a point on the plane.  

 
Fig. 10: Example plot of weight vs. age of a population sample. 

The line (or decision surface) that separates the red and green regions in Fig. 10 can be 
extended to 3 dimensions (for example, if height were a feature), or n dimensions for n 
features in 𝑅𝑅𝑛𝑛. In 3 dimensions the decision surface would be a plane, and for >3 
dimensions, the decision surface would be a hyperplane. 

The curse of dimensionality states that in higher dimensions, every point in a dataset is 
approximately the same distance to every other point. [5] This is troublesome for training 
because we prefer each class in the training data to be tightly separated in feature space 
from every other class. The question then becomes, how many dimensions is too many for 
the training data?  

A good rule of thumb is to use fewer features than the square root of training inputs. Let 𝑝𝑝 
be the number of features in a window, and 𝑥𝑥 be the number of windows in our training set; 
we desire 𝑝𝑝 < √𝑥𝑥. We have 3,505 tissue images, and each image is 50,000x50,000 pixels. 
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These are segmented into 200x200 frames for classification and extended to windows. 

Therefore, we have 𝑥𝑥 = (3,505[𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑛𝑛]) �50,0002

2002
�𝑤𝑤𝑤𝑤𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑤𝑤𝑠𝑠𝑤𝑤𝑤𝑤𝑠𝑠
�� = 219,062,500 windows in our 

training set. We must limit ourselves to 𝑝𝑝 < �219,062,500 or 𝑝𝑝 < 14,800 features. 

This poses a problem; we need fewer than 14,800 features, but bitmap images and 
frequency transformations for each window both yield 250x250x3 = 187,500 features. We 
need to reduce the number of features from 187,500 to 14,800. We mentioned in passing in 
section 1.3.2 that we desire frequency-based feature extraction methods with the greatest 
spectral compaction. We may prune frequencies above a threshold to constrain the 
number of features, but we may also apply linear or non-linear transforms to reduce that 
number even further. There is a tradeoff between the number of features pruned and the 
predictive ability of features lost to pruning. This is a subject of data analysis known as 
dimension reduction. 

1.5 Principal Component Analysis (PCA) 
The most popular method of dimension reduction is principal component analysis (PCA). 
The idea behind PCA is relatively simple: we find the line of best fit between every two 
features, and best-fit lines (eigenvectors) become our new axes in the principal component 
(PC) space. Each datapoint in feature space is projected onto the eigenvector (Fig. 11). 
Principal components subsequently replace the original features for training.  

While PCA produces the same number of principal components as features, and 
ostensibly does nothing to reduce dimensionality, it allows the analyst to neatly prune PCs. 
This is because PCA orders PCs by variance, and half of all principal components have 
greater variance than the features from which they’re derived. If two features are highly 
correlated, then one PC axis will have high variance (datapoints far from the mean), and the 
other PC will have low variance (datapoints concentrated around the mean).  

Variance is our metric of predictive ability with respect to features and principal 
components. Low-variance principal components can be safely removed without losing 
useful information for training. In practice, PCA leads to substantial dimension reduction 
as the variance of principal components decays geometrically. Fig. 12 displays the 
normalized variance of each PC for a high-resolution test image applied to PCA. 
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Fig. 11: PCA demonstration; vertical and horizontal axes represent two features, and each point is a separate input. 

 
Fig. 12: Variance (predictive ability of a PC) vs. PC number in a sorted list of PCs. 
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PCA operates by computing the eigenvectors of the covariance matrix of training data. If we 
have a matrix 𝑾𝑾 for which each row 𝒘𝒘 is a window, and each feature is a column of this 
matrix, then we average each row to form the mean vector 𝒘𝒘� . We construct the mean 

matrix 𝑾𝑾��� = �
1
⋮
1
�𝒘𝒘� , subtract means to center each feature, 𝑩𝑩 = 𝑾𝑾−𝑾𝑾���, and compute the 

covariance matrix 𝑪𝑪 = 𝑩𝑩𝑇𝑇𝑩𝑩. Each eigenvector of the covariance matrix 𝒗𝒗𝑤𝑤 is determined by 
maximizing the eigenvalue respective to 𝒗𝒗𝑤𝑤𝑇𝑇𝑪𝑪𝒗𝒗𝑤𝑤, and the eigenvectors 𝒗𝒗𝑤𝑤 ∈ 𝑽𝑽 form the basis 
of our principal component space. The rows of 𝑾𝑾 are projected onto 𝑽𝑽 to map features to 
principal components. In practice, more efficient matrix factorization methods are 
employed.  

We also plan to test Uniform Manifold Approximation and Projection (UMAP) as an 
alternative dimension reduction algorithm. Much as principal components are linear 
combinations of features, UMAP components are non-linear functions of features. UMAP is 
shown to provide better class-clustering in feature space and better computational 
performance on large datasets. 

1.6 Machine/Deep Learning Models 
When we are satisfied with the dimensionality of our features, we begin training on 
windows of biopsy slides. Machine learning diverges from traditional computer programs in 
that the computer program is learned from available data. There are three essential 
components to machine learning: the data, the mathematical model, and the training 
algorithm. [6] We’ve already talked about data, so let’s clarify what we mean by model and 
training.  

The model is a mathematical representation of different relationships inherent to the 
training data. Data is fed to the model and variables of the model are continuously adjusted 
so its output agrees with its input. In a broad sense, the model may be thought of as a 
control system. When we train a model, we assess the error between input and output. In 
machine learning, error is evaluated by means of a loss function. A loss function may be as 
simple as the sum of squared errors, or as involved as cross-entropy.  

All machine learning output is, in some sense, an average of training data. Polynomial 
regression fits a polynomial to data trends, neural networks superimpose activation 
functions, decision trees divide the feature space into averages of constituent points, and 
k-nearest-neighbors compute averages directly for points nearest to the input. The model 
chosen for any particular application should reflect the behavior of training data. For this 
reason, we survey a number of models and assess their ability to predict trends and 
converge in reasonable amounts of time.  

Albert Nikolay Bulik
Insert more equations into this section? Do they really need to know about covariance matrices and eigenvectors?
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1.6.1 Random Forest (RNF) 
One of the most commonly used machine learning models is Random Forest (RNF), also 
known as Random Decision Trees. This model is a supervised ensemble learning model, 
made up of many weaker models, or Decision Trees, that collaboratively creates a stronger 
model and trains on labeled data. The structure of an RNF model can be seen in Fig. 13. 
Overall, it resembles a forest that has x number of trees. Starting from one point, it splits to 
multiple tree-like diagrams, and each tree will continue to branch out, all reaching a unique 
endpoint. The first part of an RNF model is the sample, or the root node. This root node is 
the very first node at the top of the forest, which starts with a dataset – the set of features 
generated and extracted from one of the previously mentioned feature extraction 
processes.  

 
Fig. 13: Random Forest structure [7]. 

Bootstrapping 
Because the sample is limited in quantity, RNF implements a method called bootstrapping 
to quantize the sample. Bootstrapping takes the sample and resamples it over and over 
with subsets of the sample. The subsets are random parts of the original data with 
replacement and equal distribution. In other words, some subsets may contain multiple of 
the same feature, and each of the features have an equal probability of getting selected. [8] 
Fig. 14 below is an example of bootstrapping, or resampling with replacement. Because the 
original sample on the left has only a few datapoints, there is a limited number of 
combinations that can be made when sampling. In this case, there are three blue, two 
orange, two green, and two yellow data points. However, when resampling with 
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replacement, more combinations can be made since datapoints are reused. In Sample 1, it 
reuses a yellow datapoint, and in Sample 3, it reuses blue datapoints and does not use the 
green datapoints. In general, bootstrapping gives a model more samples to train on. 

 
Fig. 14: Bootstrapping example [9]. 

For each time the sample is split into random subsets, each set marks the beginning of a 
decision tree stemming from the root node. Based on the features, each decision tree will 
branch out to some sort of possibility, also called a decision node, and it will continue 
doing so until each tree reaches a point that it cannot make any more decisions. This stage 
is called a prediction. In short, this model builds decisions off decisions recursively until all 
trees reach a prediction. 

Bagging (Bootstrap Aggregation) 
Because each tree is handling random subsets of the overall sample data, there will be 
multiple different predictions. A quarter of the predictions may want to classify a frame as 
INFL, while the rest of the predictions think it may be DCIS. RNF deals with different 
weights of prediction using the bagging method, also called bagging aggregation. Just as 
the name implies, after the bootstrapping method, all the predictions are aggregated, and 
the final prediction is chosen based on a majority vote of all the predictions. This final 
prediction is the classification of the frame. 

An example of bagging is shown below in Fig. 15. If our model is trained to classify different 
fruits, the sample would be features of a specific fruit. The features would undergo the 
bootstrapping methods, so the model has many different combinations to train on. 
Eventually, each tree will produce a prediction: Tree 1 and Tree 2 will predict the fruit is an 
apple, and Tree 3 will predict it is a banana. The bagging method will combine all the 
predictions. In this case, two out of three predictions are apples, so by majority vote, the 
fruit in question is classified as an apple. 
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Fig. 15: Random Forest example [10]. 

RNF models have their own set of benefits that set them apart from other Machine Learning 
models. If the data were trained only on a decision tree model, the tree would keep 
branching, with each split eventually becoming too specific to the original training data. 
This is called overfitting. Since RNF is one big model combined with many decision trees, 
there would be multiple predictions, resulting in a smaller chance of overfitting and lower 
variance. However, depending on how large the dataset is, this may lead to a more complex 
algorithm with a longer runtime, as the data for each decision tree is computed. [11] 

How was RNF used in our project so far? 
There are three main hyperparameters: the node size, number of trees, and the number of 
features sampled. Using the Python’s SKLearn library, it already has a random forest 
function built-in. There are many modifiable parameters, however, for our project, we have 
not set any parameters and hyperparameters. At the moment, we have only input our data 
into the RNF model to see if it works. By not inserting any parameters, the parameters may 
have been the default settings. Of course, the results were not what we wanted, but it gave 
us a baseline to know where we should start and what we should look into tuning. 

1.6.2 Convolutional Neural Networks 
Unlike Random Forest, Convolutional Neural Networks (CNN) is a deep learning model that 
is an extended version of the machine learning model Artificial Neural Networks (ANN). 
ANN is a model that holds units called neurons. These neurons receive an input, does 
some sort of computation, and provide an output, and those outputs will become inputs to 
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the next outputs. Just like a brain, these neurons are all intertwined, forming a complex 
structure that provides highly accurate classifications. However, as ANN is used for a wide 
range of tasks, not specifically dedicated in one area, CNN builds off ANN and specializes 
in image recognition and classification. CNN has three types of layers: input layer, hidden 
layer, and output layer. 

 
Fig. 16: CNN structure [12]. 

Input Layer 
The input layer takes one image at a time. Usually, images have three channels: red, green, 
and blue, which is why in Fig.15, the input layer has three dimensions. These refer to the 
channels. In our case, our training data consists of images in RGBA format, which means 
there will be four dimensions in the input: red, green, blue, and alpha. In addition, the 
images are 50k×50k pixels. Since they are quite large, rather than the whole image, the 
input will be provided with windows of the images containing only the extracted features. 

Hidden Layer 
The hidden layer has three main types of layers: a convolutional layer, pooling layer, and 
dense layer. At the end of a convolutional layer, a very important step before moving onto 
the pooling layer is applying the activation function. 

Convolutional Layer 
The convolutional layer takes the features from the input layer and performs linear 
transformations, specifically convolution, using a filter – a matrix with weights. Since the 
image has three dimensions (the last dimension depth of 3 channels: RGB), the filter must 
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also have three dimensions with a depth of 3. A typical filter would usually have a height 
and width of three 3 pixels, while the depth is the same as the image. It would resemble Fig. 
17, where c is the depth (i.e., number of channels). The height and width of the filter must 
be significantly smaller compared to the input as there would be too many weights 
resulting in too many connections if the filter was the same size. 

 
Fig. 17: Filter over image with depth 'c'. 

The filter will start by positioning itself to the top-left of the image, and the dot product of 
the filter and the features laying underneath will be calculated. The filter will move in 
strides (which can be adjusted) and iterates through each row of the image. Once the 
whole image is swept through, it will output a feature map, a matrix containing all of the 
scalars from the dot product computations. [13] There can be multiple filters in a 
convolutional layer, which will result in multiple feature maps. Multiple filters are used to 
extract different features (e.g., edges, textures, color), and each of those filters will work on 
the same input image. In Fig. 18, you can see that the number of feature maps outputted is 
the same as the number of filters that run through the image. It should be noted that filters 
and kernels are interchangeable, and feature maps and activation maps are 
interchangeable.  

 
Fig. 18: Usage of multiple filters in the convolutional layer [14]. 
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The feature maps are all 2-dimensional, but when stacked together in the depth axis, it 
creates a 3-dimensional output, as shown in Fig. 19. 

 
Fig. 19: Stacking feature maps [14]. 

In addition, there can be multiple convolutional layers, where the next layer takes the 
feature map of the previous layer as the input. Using multiple layers helps improve 
efficiency and accuracy since the layers build off one after another, extracting more 
complex features from the previous features. 

Activation Function 
The activation function is a nonlinear function that is applied to each feature map of every 
convolutional layer. The activation function is an important step of the CNN model 
because it produces only the meaningful parts of the data. One of the most common 
activation functions is the rectified linear unit (ReLU). Fig. 20 below shows a plot of the 
ReLU function. As you can see, when x is negative, y is equal to 0, and when x is positive, y 
is equal to x.  When this function is applied to the input, the negative elements of the matrix 
are zeroed while the positive elements are kept the same. In other words, It turns off the 
negative elements, and only keeps the elements that seem important. This allows the 
model to learn complex relationships with the input and output. Afterwards, the resulting 
matrix is sent as the input to the next convolutional layer or the pooling layer if there are no 
more convolutional steps. 
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Fig. 20: ReLU activation function. 

1.6.2.1.1.1 Pooling Layer 
After the last convolutional layer, the pooling layer takes the feature maps and 
downsamples, or compresses, them using a filter and send it to the output array. When 
compressing the feature map, it summarizes the features by combining multiple features 
throughout the image, which removes a lot of the fluctuation between them. This helps the 
model to not “overreact” and misclassify the frame. The filter must be smaller than the 
feature maps. If the feature map is 250 × 250 pixels and the filter is 2×2 pixels, for every 2×2 
position of the feature map, it would compress those values into a single value using max 
pooling or average pooling. [15] The size of the pooled feature map depends on the stride. 
In Fig. 21, it shows an example of max pooling the input matrix with a stride of 1 and 2. 
Higher strides lead to smaller matrices as it sweeps through the input faster, as well as 
downsampling more, while lower strides lead to bigger matrices, retaining a bit more 
information. This is also the same for the filter size too. When picking the filter size and 
stride, there will be chances of oversampling or undersampling, so a middle ground has to 
be considered. 
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Fig. 21: CNN max pooling example [14]. 

1.6.2.1.1.2 Dense (Fully-connected) Layer 
Before reaching the dense layer, the feature maps received from the pooling layers for each 
hidden layer must be condensed into one-dimensional vectors and then fed into the dense 
layer, specifically, each neuron of the dense layer. Each neuron will do computations to the 
input vector, which helps the neurons connect to each element of all of the feature maps. 
These computations consist of a weighted sum plus a bias term as Eqn. 7 below. 

𝑧𝑧 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯+ 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏 

Equation 7: Weighted sum plus bias. 

This layer also makes use of activation functions as it would be applied to the output of the 
above equation. Each neuron in the layer would produce a scalar. The scalars would be 
placed into a vector with size m, where m is the number of neurons in the layer. An 
activation function would be applied to this vector (Eqn. 8). 

𝑎𝑎 = [𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … ,𝑎𝑎𝑚𝑚] 

Equation 8: Vector of computed scalars from each dense layer neuron. 

As there can be multiple convolutional, there can also be multiple dense layers. The output 
vector of the first dense layer would be fed into the second dense layer. Lastly, the outputs 
of the last dense layer would be sent to the outer layer. 
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Outer Layer 
Just like the hidden layer, the outer layer may also contain a dense layer. However, this 
dense layer would finalize everything and output a score. Using the same process as above 
(computing the weighted sum plus a bias), we may use a different type of activation 
function. There are multiple options but the most common activation functions that 
produce a score is the sigmoid function and softmax function. If we plan to classify frames 
by checking for each classification type individually (e.g., “Is this NULL type?”, “No.” “Is this 
DCIS type?”, “Yes.”), then it’s better to use sigmoid as it classifies only with two symbols: 0 
(no) and 1 (yes). The second option is classifying frames by checking all of the classification 
types in once process. In this case, it would be better to use the softmax function since it 
can use multiple symbols: 0 to 9 (e.g., 0: Unlab, 1: BCKG, 2: NULL, etc.) If there is a higher 
probability of a certain class, then the output would produce the score of the probability 
and the classification. 

Using this model over Random Forest would provide many advantages. Since this model 
specializes in image recognition and classification, this would be more ideal to use as it 
provides more accurate classifications and is more efficient for what our project is 
intended to do. It also handles noise and variation much better since the input would go 
through many pooling layers and activation functions for combining and downsampling. 
However, CNN models are more difficult to train as they are very complex and require a lot 
of computational resources. In addition, the outputs of the overall model or individual 
layers may be difficult to interpret, that it would take some time figuring out how to finetune 
the model. [16] 

2 Engineering Design Plan 

2.1 Application of the Flood-Fill Algorithm and WSI Classification 
Consider Fig. 22 and suppose the frames highlighted in green were predicted by the model 
to contain ductal carcinoma in situ (DCIS).  
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Fig. 22: Sample model output of Fig. 3 

If a tumor has extended to the region in green, then naturally the interior must be malignant 
as well. We identify and reclassify the interior frame with the appropriate DCIS class by 
means of a flood-fill algorithm. 

Flood-fill algorithms are commonly used in graphics editors and more colloquially known 
as ‘paint-bucket’ tools. The purpose of a flood-fill algorithm is to fill an area of an image or 
array with some value (be it a color or label) while respecting the boundaries of existing 
values. Flood fill may be used to locate interior regions of DCIS predictions in the following 
manner. First, we apply flood fill to the entire biopsy slide starting at a boundary frame (e.g., 
the top-left frame in Fig. 23). 
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Fig. 23: Flood fill applied to Fig. 22: Sample model output of  

We invert DCIS predictions such that non-DCIS frames are classified DCIS and vice versa 
(Fig. 24). Finally, we apply the inverted array in Fig. 24 as a mask to the generating array in 
Fig. 21. The result is an array of predictions with interior regions of DCIS classifications 
consistent with adjacent frames (Fig. 25).  

To classify whole-slide images, we apply the label with the highest urgency according to 
Tab. 1. If a slide image contains DCIS, the entire image is classified as DCIS. However, if 
only non-neoplastic, inflamed, and normal tissue were identified in a biopsy slides’ frame 
classifications, then the slide image would be classified with the highest urgency label 
(INFL). 
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Fig. 24: Inverted flood-fill of Fig. 23. 

 
Fig. 25: Original DCIS predictions with mask (Fig. 24) applied. 
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2.2 Train, Dev, and Eval 
To train a model, we must first initially train the model on a subset of the data. Afterwards, 
we refine parameters by utilizing a separate subset of the data. Finally, we take this trained 
and refined model and evaluate it on a third separate subset of the data. The reason we do 
this is to reduce overfitting. Overfitting happens when we put too much weight on attributes 
of the data that couldn’t be generalized from the size of the available data. For example, if 
our first subset of the data has a particular feature that is very pronounced in the artifact 
label, the model is going to attribute that feature to recognizing the artifact labels. However, 
if this feature doesn’t normally exist within the artifact label, we hope that when we 
compare with a second subset of the data, the model will pick up that this isn’t a feature 
that is normally present in the artifact label. Finally, we utilize a third subset of the data to 
validate that our model hadn’t overfitted to either of the previous two subsets of the data. A 
graphical representation of this can be shown below in Fig. 26 . We call the first, second, 
and third subsets of the data Train, Dev, and Eval respectively. [17]  

 
Fig. 26: Example of Train, Dev, Eval Split 

To have this method be effective, we need to have both an even distribution of the labels 
through all the datasets, and a proper ratio of data in the Train, Dev, and Eval set. It’s 
standard to have 80% of the data in the Train set, 10% in the Dev set, and 10% in the Eval 
set. However, as seen in Tab. 2 below, we have a slightly different ratio of around 60% for 
Train, 20% for Dev, and 20% for Eval. The reason this is slightly different from what is 
standard is due to the imbalance of labels, such as inflammation (INFL), that only make up 
a small amount of the total labelled regions. It’s possible that if there was an 80:10:10 split 
followed, there wouldn’t have been an even distribution of such labels. 
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Tab. 2: Train, Dev, and Eval Label Distribution [18] 

Label Train Dev Eval Total 

artf 17,147 6,513 6,881 30,541 

bckg 329,404 110,425 110,599 550,428 

dcis 5,626 1,945 1,900 9,471 

indc 6,574 2,528 2,599 11,701 

infl 1,144 473 457 2,074 

nneo 15,183 5,684 5,770 26,637 

norm 4,524 1,755 1,745 8,024 

susp 15,445 5,768 5,607 26,820 
 

We have now established well defined Train, Dev, and Eval datasets. We then need to do 
two things to each image within the data. We need to segment it as shown in Fig. 4 and 
perform some preprocessing as shown in Fig. 6. However, for some use cases that need 
the full context of the entire image before performing something like a 2D DCT. What this 
means is that sometimes the preprocessing will be done before the segmentation, and 
sometimes it will be done after. The combinations of these are shown in Fig. 11 & Fig. 9.  

After the image has been segmented and undergone some pre-processing, we now have 
our features. However, this means that we could be sending window_size2 floats for each 
window. This is too much for the model to handle and for it to analyze each of those 
numbers is something that we don’t have time for especially when we can perform feature 
reduction. Doing something like PCA as seen in Fig. 11 allows us to reduce the amount of 
information the model has to process, and as a result, the amount of time the model takes 
to train. 

Once we have established a dataset of features, we need to take the train set and fit the 
model. This involves feeding the data into a CNN as mentioned above. Once we have fit the 
model to the train set, we are then going to have the model make predictions on the 
development set. Using these predictions, we can attempt to optimize the model and 
remove some symptoms of overfitting inherited from the train set. This process can be seen 
in Fig. 1. Finally, we validate our model on the eval set. Once we are happy with our results, 
this leaves us with a trained and refined model. 

With a finished model, we can effectively generate predictions for individual frames. 
However, we need to bring these individual predicted frames together to make a predicted 
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region, like the annotations made in Fig. 30. This amounts to an inverse operation of the 
slide segmentation algorithm described in section 1.2. By aggregating frame predictions in 
a slide, we can form a prediction for the slide as a whole and ensure consistency among 
frame predictions in regions of a slide.  

2.3 Prediction Report & Example Use Case 
Having a trained, refined, and tested model allows us to start making predictions in a 
production environment. In order, to make our predictions useful to end users unfamiliar 
with our system, we must have a Graphical User Interface (GUI). This is essentially a slightly 
higher-level view of the results. This includes an overlay of the predicted regions over the 
image of the tissue fed in, the type of tissue of these regions, and an overall report of 
cancer for the image. This can be seen below in Fig. 27. 

 
Fig. 27: Example graphical representation 
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One use case for these reports is to be used in an urgency system. If the volume of biopsied 
tissue slides that need to be reviewed is greater than the amount of work that pathologists 
can do, it’s possible for there to be a buildup of these images. A hospital may be able to 
utilize the predictions to organize the quote of images, so the highest risk patients are 
evaluated first. Due to the inherent aggressiveness of breast cancer, evaluating these 
higher risk patients can reduce their time to treatment and therefore their overall risk factor. 
Once a pathologist gets the chance to evaluate an image processed by the model, the 
pathologist can utilize the prediction report shown above in Fig. 27 to validate their 
diagnosis. 

2.4 Temple University Health Digital Pathology (TUHDP) Corpus 
To train a model, we must start with data. Temple University has a large open-source 
dataset being developed for a variety of diverse types of tissue. The subset of data we are 
focusing on is a 3,505 images (1.23 terabyte) collection of breast tissue. For each tissue 
image, there is an associated annotations file that contains the following information: 
microns per pixel, height, width, and labeled regions. [18] 

Microns per pixel is a floating-point number that represents a mapping. This is calculated 
by taking the size of the object being scanned and mapping it to the resolution of the image 
being stored. This allows us to create a mapping of each pixel of the image to an actual 
physical representation of what was being scanned originally. This is vital to the success of 
precise image analysis for machine learning. It will eventually allow us to normalize the 
images, allowing us to analyze various images taken with different from various devices. 
[19] As you can see below in  
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, 
knowing the microns per pixel will allow us to understand what kind of information and how 
much we are getting. 

 
Fig. 28: Effects of Microns Per Pixel [20] 

The height and width of the image are measured in pixels and allow us to segment the 
image for consistent analysis. We plan to separate the image into many overlapping 
windows. The reason for this overlap is that it may allow us to avoid noise when processing 
individual frames. It is a commonly known phenomenon that by having an overlap of at 
least 50% when analyzing a signal, it is possible to reduce random noise due to the 
included context of the previous frame. It is analogous to teaching a guitar player to play 
the mandolin to eventually teach them the violin. If you gave a guitar player the violin 
directly, they would have had to learn the new note layout of the strings and the new 
physical techniques of how to hold the bow and place their fingers at the same time. 
However, since the mandolin features a similar playing technique to the guitar and the 
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same note layout of the strings as the violin, the guitar player would have an intermediate 
step to understand the context of the violin. As seen in Fig. 29 below, this is the kind of 
smoothing we are hoping for. Opening the analysis up in this way allows for less signal 
noise. [21]  Without testing, we are not sure if this will provide benefit to our processing, but 
we will perform rigorous tests to see what level of overlap works best for our use case. 

 
Fig. 29: Example of Signal Smoothing [22] 

Finally, we need to move onto the labeled regions. Firstly, it’s important to understand what 
regions are in this context. A region is simply an outlined portion of the image identified by a 
list of coordinates and associated with a label. See Fig. 30 below for an example of what an 
actual region outlined on an image of breast tissue may look like. The two dark textboxes 
are labels. These are abbreviated version of tissue types shown below in Fig. 30 taken 
directly from a TUHDP TUBR abstract of the previous model trained to identify these 
regions.  
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Fig. 30: Example of Outlined Regions [23] 

3 Engineering Design Immediate Goals 

3.1 One to Two-Dimensional DCT 
Currently, our system is extracting all RGB values from the image into separate vectors 
containing each color. This essentially leaves us with 3 vectors of length (window height 
[pixels] * window width [pixels) containing integers between 0 and 255. On each vector, we 
then perform a one-dimensional DCT and keep an arbitrary number of the most significant 
frequencies. This essentially performs an analysis on the color spectrum for the window 
and ignores the rest of the context in the window. Moving forward, we want to perform a 
two-dimensional DCT as mentioned above in section 1.3.2. 

3.2 Implementing PCA 
As mentioned in section 3.1, we are arbitrarily selecting a frequency cutoff. The reason we 
implement this is due to speed and memory of the machine, as well as the optimization of 
the algorithm to train the model. By keeping only the most significant frequencies of the 
color spectrum, we are able to keep a good portion of the information without taking up 
very much memory and reducing compute time.  However, since we are selecting feature 
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extraction arbitrarily, this method will fail to two things. One, It will lose the position. The 
only way to do this on a matrix would be to randomly pick sections of the frame, so position 
wouldn’t be kept, and we would lose continuity. Secondly, as it is doing now, we are failing 
to consider what is worth keeping and what isn’t worth keeping. To maximize efficacy, we 
need to keep the maximize amount of information while keeping a reasonable compute 
time. One way to do this is using PCA as mentioned in section 1.5. 

3.3 Implementing PyTorch CNN 
Our system is currently utilizing a Python library Sci-kit Learn for establishing a base model 
as mentioned in section 1.6.1. This is a Machine Learning model, but we want to add an 
option for deep learning to explore the affects it has on making predictions. In order to do 
this, we are going to be utilizing a Python library PyTorch which allows us to more easily 
create a pipeline for deep learning models such as a CNN. While the detailed explanation 
of how to use a CNN for PyTorch is outside the scope of this paper, the first step is to take 
our processed frames and feed them into something called a DataSet. This allows us to 
increase the maximum training set size as it allows us to train the model off disk instead of 
from memory as was done with the Random Forest implementation. After we load the data 
into a DataSet, we explicitly declare some of the parameters talked about in section 1.6.2. 
Explicitly setting some of these parameters such as the types of layers, number of layers, 
epochs, etcetera. Allow us to significantly manipulate how the model trains, and as a result 
the model’s precision and accuracy on general data. 

3.4 Implementing GUIS 
Now that we have a functional pipeline that takes from an image to fully formed regions, we 
want to be able to showcase something like what is shown in Fig. 27. Furthermore, we want 
a person unfamiliar with our system to be able to enter an image. To do this, we must 
implement a sort of drag-and-drop image functionality so the user will be able to drop an 
image in and get the showcased image and some information back as shown below in Fig. 
31. 

 
Fig. 31: Example of GUI pipeline 
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