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Introduction

Neurological Disorders Magnetic Resonance Quantitative Analysis and
Imaging Machine Learning

Neurological disorders encompass a wide range of conditions affecting the nervous system, demanding accurate diagnosis
for effective treatment planning and patient care.

Over the past decades, magnetic resonance imaging (MRI) has transformed the landscape of neurological diagnosis.

Clinicians traditionally rely on qualitative visual inspection of MRl images, a method with inherent limitations in capturing
subtle changes.

Quantitative analysis of MRI images aims to overcome these limitations by extracting precise measurements and
quantitative metrics from imaging data.

Machine learning (ML) automates image analysis tasks, uncovering subtle patterns and biomarkers indicative of
neurological abnormalities.
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Magnetic Resonance Imaging (1)

® Developed in the 1970s, with the first human MRI scan performed in 1977.

® Utilizes strong magnetic fields and radio waves to generate detailed images of the body's
internal structures.

® Non-invasive and does not involve ionizing radiation.

First human MRI scan




Magnetic Resonance Imaging (2)

@ When the human body, rich in hydrogen atoms found in water, enters the magnetic field of
MRI machine, the field aligns atoms along its direction (Longitudinal magnetic field).

@ Radiofrequency pulses are then emitted, disrupting this alignment temporarily (Transverse
magnetic field).

® Once these pulses cease, the atoms realign with the magnetic field, emitting energy in the
form of radiofrequency signals.

e I hese emitted signals are detected by the MRI machine's receiver coils and processed by a
computer to generate detailed images of the body's internal structures.
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Magnetic Resonance Imaging (3)

@® Pulse sequences are series of radiofrequency pulses with varying parameters.

® By adjusting these parameters, pulse sequences can generate different types of MRI images
with specific contrasts and features, including Structural MRI, Diffusion MRI, Functional MRI
(fMRI), and more.

Functional MRl
Structural MRI

Diffusion MRI




Structural MRI (1)

® Structural imaging techniques provide detailed anatomical information.

® T1 and T2-weighted images are fundamental structural imaging types used in neuroimaging,
capturing different tissue contrasts based on the relaxation properties.

Relaxation (Return to equilibrium of net magnetization)

Longitudinal magnetization = Transverse magnetization

recovery decay
T1 relaxation refers to the process T2 relaxation is the process by
by which protons return to their which the transverse
equilibrium alignment with the main components of magnetization

magnetic field. decay or dephase.




Structural MRI (2)

® T1-weighted images: Emphasize differences in the longitudinal relaxation time (T1) of tissues.

® T2-weighted images: Highlight differences in the transverse relaxation time (T2) of tissues.

Tissue Type Tlimage | T2 Image

Water or Fluid Tissue Dark Bright
Fat Tissue Bright Bright
Some Bones (no free protons) Dark Dark

T1-weighted T2-weighted




Diffusion MRI

® Diffusion MRI is a specialized imaging technique that measures the random motion of water
molecules within tissues, offering unique insights into tissue microstructure and
connectivity.

® By quantifying the magnitude and directionality of water diffusion, Diffusion MRI provides
valuable information about the organization of cellular structures in the brain and other
organs.

® There are different ways to mathematically describe water diffusion, generating different
types of Diffusion MRI.




Diffusion Tensor Imaging (1)

® Diffusion Tensor Imaging (DTI) is a mathematical model describing the magnitude and
direction of water diffusion in three dimensions.

® DTI enables the visualization of white matter tracts

® DTI generates diffusion metrics, including Fractional Anisotropy (FA), Mean Diffusivity (MD),

Radial Diffusivity (RD), and Axial Diffusivity (AD), which offer quantitative measures of tissue
microstructure and integrity.

Voxel: Basic unit of a three-dimensional image obtained from MRI.
Diffusion ellipsoid Diffusion tensor
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Diffusion Tensor Imaging (2)

® FA: Quantifies the degree of anisotropy of water diffusion, reflecting the directionality of
fiber tracts within tissues.

e MD: Average rate of water diffusion within tissues, regardless of directionality.

e RD and AD: Quantify diffusion perpendicular and parallel to the primary axis of fiber tracts.

FA= \ﬁ O R+ (=22 + (s - A2
2
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Diffusion Tensor Imaging (3)

® Tractography algorithms utilize directional information of DTI to visualize and reconstruct
the three-dimensional pathways of white matter tracts in the brain and spinal cord using.




Neurite Orientation Dispersion and Density Imaging (1)

® NODDI is another advanced MRI technique that provides more :
detailed insights into the microstructural organization of body
tissues. \

® NODDI disentangles microscopic tissue compartments
affecting water diffusion by modeling the density of neurites
(dendrites and axons) and the dispersion of their orientations

within a tissue voxel. _
Sticks

(restricted)




Neurite Orientation Dispersion and Density Imaging (2)

® The Intra-cellular Volume Fraction (VIC): Quantifies the proportion of a voxel's volume

occupied by neurites.
VIC reflects the density of neurites within a specific region, providing information about the
abundance of neuronal processes in the tissue.

® Orientation Dispersion Index (ODI): Quantifies the dispersion of neurite orientations within a
voxel. ODI measures the degree to which neurites are oriented in different directions within
the voxel.

' VIC Decrease
ODI Decrease




Summary

Structural

Diffusion

Technique
T1l-weighted Images
T2-weighted Images

Technique

DTI

NODDI

Metric

Fractional Anisotropy (FA)
Mean Diffusivity (MD)
Radial Diffusivity (RD)

Axial Diffusivity (AD)

The Intra-cellular Volume Fraction (VIC)

Orientation Dispersion Index (ODI)

Measurement
Degree of diffusion directionality

Average diffusion magnitude

Diffusion magnitude

perpendicular to primary axis
Diffusion magnitude along
primary axis

Fraction of intracellular water

volume for a given voxel
Angular variation of neuritis

orientation
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A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans

T Objective ™ T Subjects T www== Data Type == = Method ™
Develop and validate a deep A total of 289 patients with DCM. Structural (T2-weighted) MRI Deep convolutional neural
learning model for the detection scans of patients undergoing network (CNN), ResNet50, was
of Degenerative Cervical surgery for DCM trained using axial images, to
Myelopathy (DCM) using MRI classify compressed and non-

scans. compressed cervical spinal cord

images.




Paper 1 T TEMP

NIVERSITY

A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans
/"\ \

EGA
Degenerative Cervical Myelopathy

Myelopathy * A common condition characterized by compression of

: j the spinal cord in the neck region (cervical spine)
- « Caused by degenerative changes, leads to narrowing
of the spinal canal and compression of neural
structures.
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Compressed Cervical Spine

Normal Cervical Spine



Paper 1

A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans

=== Subjects ==

Patients with DCM 18 years or older
n = 605 Imaging evidence DCM

Total Subjects n = 289

Symptomatic DCM
No prior spine surgery

Baseline clinical data MRI : T2-weighted
Standard measure of DCM symptoms
that measures the severity of it.

modified Japanese orthopedic

association (mJOA) score Demographic information




Paper 1

A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans

=== Subjects ==

Dataset was divided into training/validation and holdout datasets.

Used t-tests to compare training/validation and holdout dataset.

Total Subjects n = 289

Age (median)
Training/Validation Holdout

Gender (male)

Baseline mJOA (median)
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A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans

- | abeling ===

In cases of
Senior neurosurgical residents &k O disagreement in labels, labelers
>4 years experience interpreting MRI scan ~ reviewed and decided images
& 1 together.
7
- 0
B .
1
g 0
: : 1
3D T2-weighted Series of Axial
DICOM Images JPEG images ‘compressed’

‘non-compressed’ @ 1




Paper 1

A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans

== Model ==

Pre-trained ResNet50 was used for classification task.

Output Labels

0

* ResNet, short for Residual Network, is a type of deep neural
network architecture.

- Introduced by Microsoft Research in 2015, it addressed the

o e

1

problem of vanishing gradients in deep networks. +H H H H Moot ton
Traditional deep networks suffer from the vanishing gradient T S R ook
° ra Dropout
SO -+ -+ o
problem, where gradients diminish as they propagate (1256)(1,256) (1512)(L512)  (1,1024)(1,1024) esidua
backward through many layers, hindering training.
- ResNet introduces skip connections, or shortcuts, that allow X
gradients to bypass several layers, mitigating the vanishing ayer ]
gradient problem. F(x) ! identity
| layer

x + F(x)




Paper 1

A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans

=== Model Selection ==

The model's initial weights were transferred from the pre-trained weights developed on ImageNet.

The fully connected layers were replaced by one or two fully connected layers, with 256 to 2048 neurons, with or
without dropout layers, with randomly initialized weights.

Dropout layers were employed to mitigate overfitting during training.

The best performing model architecture was evaluated on the holdout dataset.

0.9
B B I ifClayer 92.41% 55 239
Output Labels . 2 FC layer
0 0.9 91.53%
91.09%

90.95%

' "*@x@@x@@@@“{gl

>
(&}
©
3 90.78%
(8]
<
< 0.9
2
0,
5 89.88%
1 2 3 4 s
A
B Maxpool 0.9
(1.256) (1,512 (1,2048)
B Fully Conn.
5 6 7
i Dropout
(1,256)(1,256) [1,512)(1,512)f (1,1024)(1,1024) hiesioua! 0.9

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 21




Paper 1

A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans

== Results =

1
Area Under the Curve (SD) | p-value
Entire Holdout Dataset (n=288) 0.94 (0.08)
Age (years)
<40 (n=9) 0.88 (0.14) 0.12
Q 40-65 (n=63) 0.95 (0.06) 0.78
% >65 (n=16) 0.92 (0.09) 0.45
:% mJOA
= 18 (n=2) 1.00 (0) 0.94
E 15-17 (n=22) 0.96 (0.04) 0.67
12-14 (n=39) 0.92 (0.09) 0.62
<12 (n=25) 0.95 (0.07) 0.77
MRI Scanner Manufacturer
. ' ' ' ' ] GE Medical Systems (n=52) 0.94 (0.07) 0.82
0 False Positive Rate 1 Siemens (n=25) 0.93 (0.06) 0.71
Philips Medical Systems (n=11) 0.95 (0.08) 0.74

For each patient in the holdout dataset the classification output of the deep learning
model for each slice was compared to the class labels.

A ROC curve and AUC metric was generated for each patient by comparing the
predicted and actual classes for each slice.

Sensitivity of 0.88, Specificity of 0.89, and f1-score of 0.82. 29
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A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans

== Results =

Class activation maps were generated for both correctly classified (true positives) and incorrectly classified (false negatives)
example images.

True Positive False Negative

Class Activation Map (CAM) is a visualization technique used in deep
‘ I learning to interpret and understand the decisions made by
convolutional neural networks (CNNs) for image classification tasks.
Provides a spatial map highlighting the regions of an input image that
‘ I contribute most significantly to the prediction of a particular class by
the CNN.




Paper 1

A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans

=== Conclusion ===

The study focused on training and testing an image-based model for detecting spinal cord
compression in cervical spine structural MRI scans.

Used series of 2D structural images to identify compressed and non-compressed parts of the spinal
cord in DCM patients.

High performance was achieved, with an AUC of 0.94 on a heterogeneous patient population.
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging

Objective Subjects

Analyze the ability of data-driven A total of 59 subjects
analysis of DTl and NODDI to experiencing chronic symptoms

develop biomarkers to infer caused by a mild traumatic brain

symptom severity of Traumatic injury.

brain injury and determine

whether they outperform

conventional T1-weighted
imaging.

Data

DTI, NODDI and structural T1-
image was obtained for all
subjects.

Clinical assessments, the trail
making test, were performed on
the same day as the imaging

study.

Method

Using decision tree and K-NN
models for feature selection and
classification model to predict
clinical outcomes of cTBI using
DTI, NODDI and T1-images.



mal | :.'7':." TMDPI R

Paper 2 [

Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging

Traumatic brain injury

Traumatic Brain Injury (TBI) is a severe medical condition resulting Mild TBI Severe TBI
from sudden trauma or impact to the head, leading to the disturbance
of normal brain function.

It has contributed to approximately 1 million deaths in the United States
over the last two decades.

Conventional T1-weighted imaging often appears normal in cases of
mild-to-moderate injury.

To enhance diagnosis and monitor both acute and chronic effects of
TBI, researchers are actively investigating advanced neuroimaging
biomarkers.
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging

=== Subjects ==

59 subjects with mild
traumatic brain injury

Clinical Assessment MRI: DTI, NODDI and
Trail Making (A, and B) test T1-weighted images

Part A
0 9 e o e Stop timing when the Trail is
completed, or when maximum
iy time is reached (150 seconds =
o e e o @ 2.5 min)
®» ® © ©
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging

=== Labeling ==

Subjects were classified as having favorable or unfavorable outcomes in each the tested outcomes, depending on
whether their individual score was lower or higher than the mean value of the entire cohort.

Favorable | Unfavorable
All patients
outcome outcome
Trail making A (sec) |72:]°) 22.9 (n=40) 43.9 (n=19)

Trail making B (sec) |57/ 52.9 (n=38) 92.7 (n=21)
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging

=== Pre-Processing ===

Segmentation of anatomical regions was done using Johns Hopkins University white matter tractography atlas, which
divides the brain into 20 regions.

Within each segmented region, DTI, NODDI and T1 parameters were computed.

- T1 FA AD RD MD ODI Vic

R2

R20
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging

e Model e

ML-Based Classification Pipeline:

Developed using a feature selection decision tree followed by a K-NN model.

Decision trees generated for each task and parameter using the Gini Impurity method.
From the trained trees, the six brain regions with the lowest impurity scores were selected.

These selected regions were used for classification task using KNN model .

Trail A T1 FA AD RD MD ODI Vic
T1 FA AD MD RD Vic ODI

R1 T1 SR1
R2 SR2
PS — ™~ SR6

/ "\ /N ST 7\

R20
Favorable / \
/N VS

B

30
D
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging

= Model e

Decision Tree and K-NN

T1 Trail Making A Cingulum (cingulate gyrus) L, Cingulum (cingulate gyrus) R, Cingulum (hippocampus) L, Forceps
Th e n u S i n g th e Se | ected reg iO n S Of th e b ra i n a n d a K_ major, Inferior fronto-occipital fasciculus L, Superior longitudinal fasciculus (temporal part) L
T1 Trail Making B Corticospinal tract L, Cingulum (hippocampus) L, Forceps major, Superior longitudinal fasciculus R,

N N mOdel (K: 1 0) the CI aSSifi Cation for Trail A a nd B iS Superior longitudinal fasciculus (temporal part) L, Superior longitudinal fasciculus (temporal part) R

done =
' FA Trail Making A Anterior thalamic radiation L, Corticospinal tract R, Forceps major, Inferior longitudinal fasciculus L,
Inferior longitudinal fasciculus R, Superior longitudinal fasciculus R
FA Trail Making B Anterior thalamic radiation L, Corticospinal tract R, Forceps major, Inferior longitudinal fasciculus
R, Superior longitudinal fasciculus R, Superior longitudinal fasciculus (temporal part) R
AD Trail Making A Corticospinal tract R, Forceps major, Forceps minor, Superior longitudinal fasciculus L, Superior
2 > . N longitudinal fasciculus R, Superior longitudinal fasciculus (temporal part) L
A FA AD MD RD B ODI Vic c T ¢ e i ¢ - ikl
AD Trail Making B Corticospinal tract R, Forceps minor, Superior longitudinal fasciculus L, Superior longitudinal
fasciculus R, Uncinate fasciculus R, Superior longitudinal fasciculus (temporal part) L
MD Trail Making A Forceps major, Inferior fronto-occipital fasciculus R, Superior longitudinal fasciculus L, Superior
longitudinal fasciculus R, Uncinate fasciculus L, Superior longitudinal fasciculus (temporal part) R
MD Trail Making B Corticospinal tract R, Forceps minor, Inferior fronto-occipital fasciculus R, Superior longitudinal
fasciculus R, Uncinate fasciculus L, Uncinate fasciculus R
RD Trail Making A Cingulum (cingulate gyrus) L, Cingulum (hippocampus) R, Inferior fronto-occipital fasciculus R,
Superior longitudinal fasciculus L, Superior longitudinal fasciculus R, Uncinate fasciculus L
. ; RD Trail Making B Anterior thalamic radiation L, Cingulum (hippocampus) R, Superior longitudinal fasciculus R,
Uncinate fasciculus L, Uncinate fasciculus R, Superior longitudinal fasciculus (temporal part) L
Feature ranking results for DTI (A), NODDI (B), and T1 (C) regions. Features NODDI
are displayed if they were ranked as significant for both trail making A and B. o _ T _ ) , _
oDI Trail Making A Anterior thalamic radiation L, Cingulum (hippocampus) L, Cingulum (hippocampus) R, Inferior
longitudinal fasciculus R, Uncinate fasciculus L, Superior longitudinal fasciculus (temporal part) R
ODI Trail Making B Corticospinal tract L, Cingulum (hippocampus) L, Cingulum (hippocampus) R, Inferior longitudinal
fasciculus R, Superior longitudinal fasciculus R, Uncinate fasciculus L
Vic Trail Making A Cingulum (hippocampus) L, Inferior longitudinal fasciculus L, Superior longitudinal fasciculus R,
Uncinate fasciculus L, Uncinate fasciculus R, Superior longitudinal fasciculus (temporal part) L
Vic Trail Making B Inferior longitudinal fasciculus L, Corticospinal tract L, Cingulum (hippocampus) L, Forceps major,

Inferior longitudinal fasciculus R, Uncinate fasciculus R 3 1
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging

Results

] ]
Trail Making A
0.8
Trail-making task completion time (seconds) 0.7 73% — 71%
was used as an indicator of cognitive z 0.7 66% L 66%65% 64%
impairment. g 06 58% 58%
§ 0.6 5%
0.5 7%
. . 0.5
Feature ranking using the DT method, 04
identifying the top 33% of important features, | AD FA RD T1
improved mean accuracy by approximately Reduced Feature KNN et Mok B
114% .KNN rai akKing
0.8
0.7 72%71%
> 0.7 08%
- : s ) 64%
DTI models exhibited the higher accuracy, S 06 e 61% S %eon
outperforming structural based model. Z 06 1 55%
2 05 50%
0.5
AD FA ODI RD Vic
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging

= Results —_—

Also trained other models including Linear regression, Decision tree, Random Forest, SVM, and averaged their
accuracy for each biomarker for both tasks.

Results show that models trained using DTl and NODDI biomarkers outperform T1-based models significantly.

LR 0627 0.643 0.593 0.643 0.593 0.643 0.643
DT o056 0.44 0.61 0.59 0577 0.507 Vean Mean PAVEIIT
TrailsA = RF o543 0.577 0.61 0.557 0477 0.473 A;acy Accura cy
by 4
KNN 0.51 0.543 0.497 0.597 0.593 0.49 0.48 ° 55 1%
SVM | os43 0.643 0.643 0.643 0.643 0.627 0.643 0.6
LR | 0627 0.66 0.61 0.627 0677 0.627 0.643 0.5 m 61.5% 0.009
DT | 0647 0.593 0.597 063 0.543 0.493 0.553
Trails B 4 RF 0.63 - 0.597 0.613 0.593 0.49 0.64
KNN 0.58 0.513 0.557 0.42 0.51 0.42 0.503
H (o)
SVM 0.66 0.66 0.66 0.66 0.66 0.627 0.66 59.0% 0.036
AD FA MD  ODI RD T1 Vic m 67.7% 0.001
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging

=== Conclusion ===

This study pioneered the use of ML-based classification algorithm using DTl and NODDI for the diagnosis
of chronic traumatic brain injury (cTBI) within a real clinical setting.

DTl and NODDI consistently outperformed T1-weighted imaging across various ML algorithms.

Feature reduction techniques, particularly the DT method, significantly improved the performance of the K-
NN model, suggesting localized effects of cTBI on specific brain regions.
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Paper 3

Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography

= Objective ™= TR Subjects T Data = Method ™=

Investigate the clinical usefulness Sixty-one subjects with traumatic DTI scan before and after Using Statistical analysis to
DTI and tractography in the cervical SCIl were randomly surgery was performed for each uncover the usefulness DTI
prediction of outcomes after assigned to preop or postop subject based on their groups. outcomes prediction after SCI

traumatic cervical spinal cord groups and received DTI Neurological status and and the effect of the time of the

injury (SCI) and to assess accordingly. functional status were assessed scan on its ability for prediction.

whether the predictability is at 4 and 8 weeks after SCI.
different before and after surgery.
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Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography

Spinal Cord Injury

A devastating condition resulting from trauma to the spinal cord, often leading to partial or complete loss of motor and
sensory function

Predicting outcomes after SCI is crucial for treatment planning and rehabilitation, but conventional imaging methods
often lack the sensitivity to assess subtle changes in the spinal cord.

DTI has been extensively used in the brain to predict outcomes in various neurological conditions, but its application in
spinal cord injury is less explored.

Timing of imaging acquisition can significantly impact the predictability of DTI, particularly in the context of spinal cord
injury where the pathological processes evolve rapidly, especially around the time of surgery.

Understanding the clinical utility of DTI and tractography, in addition to the best time for image acquisition for predicting
outcomes after traumatic cervical SCI is essential for optimizing patient management and rehabilitation strategies.
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Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography

= Subjects =

SCI patients from Dankook

University Hospital
n =89 Neurological levels of injury
corresponding to C1 to C7

18 years or older SCI Patients

n=61

Imaging data: DTI Clinical Assessments:

Neurological and Functional

n=30 n=31

Post-operation

Pre-operation

(Day of Injury) (4 weeks after injury) (8 weeks after injury)
(4 weeks after injury)
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Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography

== Neurological Assessments ===

Utilized the International Standards for the Neurological
Classification of Spinal Cord Injury (ISNCSCI), a protocol
established by the American Spinal Injury Association
(ASIA).

Evaluation parameters encompassed:

Upper and lower extremity motor function (0-50)

Light touch and pinprick sensory responses across upper
and lower extremity dermatomes (0-112)

SENSORY
RIGHT  «astis  xevsensorreonts
Light Touch (LTR) Pin Prick (PPR)

c2

c3

C4
Ebow flexors C5
UER Wrist exfensors C6
WUpper Extremity Righ) £ houy extensors CT
Finger flexors C8

Finger abductors (fttle finger) T1 )

Comments (Noney Misck? Reason for NT? Pain? 12

Nor-SC conditon?). T3

T4

T5

T6

17

T8

9

T10

™

T12

L1
Hip flexors |2
LER Knee extensors L3
(Lower Extramity Right) Ankle dorstlexors L4
Long foe extensors LS
Anide plantar flexors S1

S2

: S3

(VAC) Voluntary Anal Contraction
(Yes/No) $4-5
RIGHT TOTALS | |
(MAXIMUM)  (50) (56) (56)

MOTOR SUBSCORES

Uer[_|wueL[ |s=uemstora[ | e[ J+iel[ | s=iewsvora[ |

MAX (25) (25) (50)

MAX (25) (25)

SENSORY

KEY SENSORY POINTS KE’cng?ES L E FT
Light Touch (LTL) Pin Prick (PPL)
c2
c3
c4
C5 Ebow flexors
C6 Wrist extensors UEL
C7 Ebowextensors  (Upper Extremity LeR)
C8 Finger flexors
T1 Finger abductors (it finger)
L MOTOR
3 {SCORING ON REVERSE SIDE)
T4 7
5
T6
L
™[ e
T9
T10 SENSORY
™ (SCORING ON REVERSE SIDE)
T2
L1
L2 Hip flexors
L3 Knee extensors LEL
L4 Ankle dorsiiexors  (Lower Extremity Left)
L5 Long foe extensors
S1 Ankle plantar flexors
S2
&3 (DAP) Deep Anal Pressure
s D (Yes/No)
| cerr romacs
(56) 56) (50)  (MAXIMUN)
SENSORY SUBSCORES
R |+ [ J=wrrorac[ | eer[_ Jepet[ | =peroTac[ |
(50) MAX  (56) (56) 12 MAX (56) (36) (112)

NEUROLOGICAL R L

_LEVE‘ Ls y 1. SENSORY
o 2. MOTOR

3. NEUROLOGICAL

LEVELOFINJURY [____|

(NL)

R L

00 Inuries with atsent mokr OR sermcry furion In S48 ony)
‘4 l.JOMPLETE ORIHCWPLETE? D 6 ZONE OF PARTIAL SENSORVE B
PRESERVATION
Most caudal kevels vtnn,.gnn‘eo\ MOTOR

5. ASIA IMPAIRMENT SCALE (s) [ |

38
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=== Functional Assessments ===

Utilized the Modified Barthel Index (MBI) and Functional ot e
Independence Measure (FIM) at baseline and follow-up oo vt NO HELPER
evaluations. :
E ! HELPER Modified Barthel Index
MBI: Assess functional independence in activities of daily g S
living, scored from 0 (completely dependent) to 100 ; g -
(independent in basic ADLS). il fff o
: e : - H B
FIM: Assessment tool in rehabilitation settings, comprising 1t
items across six areas graded based on independence levels e e Y e
from 1 (total assistance required) to 7 (complete @ e S Bz BHe || | we
independence). ek == RN == =
Cognitive Subtotal Score i) I | Juiic
: N e
For this study, total MBI score, total FIM score (FIM total) and Sl e |
motor scores (FIM motor: self-care, sphincter control, and R i
transfer/locomotion) were utilized.




Paper 3 T

Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography

=== (Clinical Assessments ===

For each subject in preop and post groups the baseline and followup clinical assessments was performed.

Features Range Baselin Followup

Upper extremity motor 0-56

Upper extremity Sensory (Light touch) 0-112

Upper extremity Sensory (Pinprick) 0-112

Neurological Upper extremity Sensory (Total) 0-112
Scores Lower extremity motor 0-56

Lower extremity Sensory (Light touch) 0-112

Lower extremity Sensory (Pinprick) 0-112

Lower extremity Sensory (Total) 0-112

MBI 0-100
Functional FIM(Self-care) 0-42
FIM(Sphincter control) 0-14
Scores FIM(Transfer/locomotion) 0-35

FIM(total) 0-91
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——= Data Preprocessing ==

DTI metrics, including FA, MD, and fibers tracts were computed from DTI images.
Biomarkers were localized to different levels of the spine, from C3 to C7, including the level of injury, to assess regional
variations in microstructural alterations.

FA MD Number of Fibers Crossing Fibers from C3 to
C3 -
e C4
C5
C6
C7
Level of injury
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— Analysis e

DTI biomarkers and clinical scores was analyzed using to explore functional and neurological changes, impact of
surgery on DTI parameters, and correlations between DTI metrics and assessment scores in both groups, all performed
using the Mann-Whitney U test for comparison between two groups.

FA' M Number of Crossing Fibers from C3
c3 -
c4
P reo DTI cs
p Biomarkers 0
c7
Level of
Features Baseline Followup
Upper extremity motor
Upper extremity Sensory (Light touch)
Upper extremity Sensory (Pinprick)
Neurologica UPper extremity Sensory (Total)
L. | Scores Lower extremity motor
Clinical Lower extremity Sensory (Light touch)
Scores Lower extremity Sensory (Pinprick)
Lower extremity Sensory (Total)
MBI

FIM(Self-care)
FIM(Sphincter control)

Scores ;
FIM(Transfer/locomotion)
FIM(total)

Functional

Postop w
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Analysis: Neurologic and Functional Changes from Baseline to Followup

Comparison of baseline and follow-up evaluations to assess functional and neurological changes over time.

Evaluation of differences between the two groups.

Both groups Showed Significant Improvements in UEM,
MBI, and all FIM subscales from baseline to Followup.

No significant differences between preop and
postop in improvements except for pinprick.

Neurologic and functional changes between the preop and postop groups

Upper extremity
Motor
Sensory
Light touch
Pinprick
Total
Lower extremity
Motor
Sensory
Light touch
Pinprick
Total
K-MBI
FIM
Self-care
Sphincter control
Transfer/locomo-
tion
Total

Preop group (n=24)

Postop group (n=14)

p-value”
(preop vs. postop)

Baseline

29.25+13.53

14.04+3.98
15.58+4.38
29.63+7.82

39.88+17.19

16.96+4.39
17.21+4.13
34.17+8.30
30.13+28.82

12.46+7.18
8.88+5.09
10.71+£7.17

65.58+19.99

Follow-up Jg-value"’

36.78+13.44 0.000*
15.87+4.33 0.012*
16.78+4.38 0.100
32.65+8.20 0.012*
40.52+17.41 0.440
16.87+5.29 0.888
16.78+5.55 0.750
33.65+10.77

53.41+34.7 0.000*
18.73+12.11 0.001*
11.27+4.59 0.008*
17.91i11.23| 0.001*
82.23+27.6() 0.000*

Baseline

31.29+12.29 39.57+9.14

0.001*

12.79+4.34 14.43+4.60
12.86+4.29 14.43+4.60
25.64+8.63 28.86+9.21

44.00+£10.55 48.21+3.73

14.64+4.99 14.64+4.99
14.64+4.99 14.64+4.99
29.29+9.97 29.29+9.97
47.36+38.23 71.44+31.28

18.64+13.77 28.67+14.97
9.64+4.80 12.44%3.13
17.86+12.37 23.78+12.12

81.36+29.10 98.56130.34 0.043*

0.068
0.109
0.144

0.068

1.000
1.000

—L.000__
0.028*

0.042*
0.039*

0.042*

Follow-up B—value" Baseline Follow-up

0.422 0.851
8228 0.301
0.045* 0.118
U.1U4 0.314
0.363 0.321
0.168 0.145
0.128 0.145
0.161 0.185
0.113 0.184
0.314 0.052
0.705 0.532
0.123 0.203
0.130 0.191

_
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Analysis: Effect of surgery on DTl Biomarkers

Examination of DTI parameters for both preoperative and postoperative groups to assess the impact of surgery on DTI
metrics and failure rates.

DTI parameters between the preop and postop groups

FA
Cc3
C6
Cc7
Cinj
MD
Cc3
C4
C5
C6
Cc7
Cinj
Fiber No.
C3
C4
C5
C6
C7
Crossing fiber No.
C3-5
C3-6
C3-7

Preop group (n=24)

0.772+0.078
0.700+0.102
0.664+0.102
0.609+0.134
0.676+0.125
0.621+0.110

0.845+0.133
0.877+0.179
0.893+0.184
0.926+0.251
0.777+0.346
0.902+.0241

1245.78+279.24
1267.48+294.06
1262.09+313.31
1157.044293.19

813.65+430.23

348.48+300.92
235.70+275.26
49.61+128.45

Postop group (n=14)

0.606+0.112
0.568+0.136
0.612+0.120
0.604+0.153
0.573+0.173
0.607+0.171

1.165+0.396
1.202+0.394
1.133+0.381
1.084+0.347
1.134+0.372
1.178+0.432

874.361+415.10
736.36+477.08
618.57+440.89
432.794373.51
288.71+299.86

259.43+275.32
143.93+236.59
63.64+155.04

p-value

0.000*
0.006*

0.066
0.873
0.085
0.575

0.001*
0.003*
0.016*

0.060
P —

0.009*

0.015*

0.009*
0.001*
0.000*
0.000*

0.000*
S —
0.363
0.137
0.484

Failure rate (due to metal interference) was
significantly higher in the postop group (41.5%) than
in the preop group (20%).

Significant Differences Observed between Preop
and Postop groups in terms of quantitative DTI
biomarkers

1) DTI and tractographic findings before surgery showed a
lower failure rate for interpretation than those taken after

surgery.
44
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Analysis: Correlations between DTI parameters and baseline/follow-up evaluations (1)

Determination of which correlations are more significant for potential outcome predictions.

Correlation analysis between follow-up clinical findings and DTI parameters in the preop group

FA MD E Fiber No. Lrossing noer iNo.

"C3 © C6 C C7 € C C GC C7 € C& C €6 C7 I35 c36 C37 Baseline: No significant correlation!

UE_FU
Motor  -0.021 0.079 -0.138 0.021 -0.172 0.004 0.075 0.207 0.011 0.338 0.296 0.101 0.219 0.042 0.387 [0.221 0.130 0.165
Sensory

Light  0.161 .181 -0.142 -0.248 -0.142 -0.622*-0.071 0.055 0.406 0.082 0.071 0.121 0.170 0.334 0.089 0.007 0.091

touch

Pinprick 0.073 0.213 -0.003 -0.285 0.046 -0.121 -0.355 0.051 0.086 0.038 0.394 0.317 0216 0211 0375 [0.201 0.007 0.041 . Q: =g .

Total  0.084 0.466 0.206 -0.118 -0.108 -0.198 .051 0.006 0.025 0.191 0.148 0.127 0.125 0.345 0.071 -0.060 0.-007 ::O"(I)WUP Slgnlflcant Correlation at some
LE_FU evels
Motor  -0.044 0.019 -0.258 -0.224 -0.441 0.192 0.207 | 0.504" Jo.284] 0.582°) 0.124 0.143 0.116 -0.056 0.168 10.004 0.007 0.016 .
Sensory

Light  0.113 -0.035 0.019 -0.146 -0.171 0.020 0.061 0.362 0.228 0317 0.254 0212 0.196 0.126 0.226 |0.038 -0.027 -0.135

touch

Pinprick 0.078 0.017 0.106 0.045 -0.101 -0.101 -0.026 0.205 -0.014 0.213 0.364 0.378 0.257 0.077 0.288 [0.072 -0.064 -0.135

Total  0.095 -0.032 -0.007 -0.075 -0.170 -0.018 0.007 0.324 0.105 0.025 0.364 0319 0.215 0.097 0.200 -0.004 -0.010 -0.072

K-MBI_FU 0.280 0.128 0.149 0.060 0.035 -0.255 0.161 0.215 0.007 0.156 0.333 0.353 0.358 0.420 §0.457* } 0.233 0.211 0.152

FIM_FU
Self-care 0.190 0.053 0.142 0.126 0.089 -0.193 0.262 0.157 0.012 0.101 0.323 0.299 0.361 § 0.480* 0.461*} 0.317 0.325 0.312

Sphincter  0.002 0.037 0.081 -0.117 0.039 0.030 0.233 0.247 0.262 0.249 0.083 0.188 0.167 0.146 0.256 -0.080 -0.048 -0.076
control

Transfer ~ 0.228 -0.006 -0.111 -0.210 0.048 -0.210 0.219 0.381 0.165 0.099 0.312 0.359 0.307 0.308 0.381 10.115 0.084 0.041
Total 0331 0.106 0.110 -0.040 0.078 -0.278 0.172 0.275 0.065 0.093 0.310 0.342 0.3290.454* 0.482°§10.195 0.213 0.186
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Analysis: Correlations between DTI parameters and baseline/follow-up evaluations (2)

Determination of which correlations are more significant for potential outcome predictions.

Baseline: Many Slgmflcant correlation Correlation analysis between follow-up clinical findings and DTI parameters in the postop group
specially with baseline functional scores! A D Fiber No. Criimdiog Aee o
C3 C4 C5 C6 Cc7 C3 C4 C5 C6 C7 C3 Cc4 C5 C6 C7 C3-5 C3-6 C3-7
UE
Motor .138 0.331 0.284 0.204 -0.366 0.325 0.096 0.185 -0.143 0.150 0.148 0.355 0.273 0.152 0.239 0.314 0.341
Sensory
Light 0.035 -0.334 -0.366 -0.174 0.016 -0.211 0.407 0.344 0.265 -0.006 0.095 0.116 0.198 0.044 0.054 0.142 0.059 0.123
touch

Pinprick -0.006 -0.391 -0.469 -0.253 -0.012 -0.126 0.295 0.228 0.156 0.000 -0.027 -0.027 0.059 -0.095 0.024 0.020 -0.032 0.071
Total -0.006 -0.391 -0.469 -0.253 -0.012 -0.126 0.295 0.228 0.156 0.000 -0.027 -0.027 0.059 -0.095 0.024 0.020 -0.032 0.071
LE

FO”OWUp: Slgnlflcant Correlatlon at some Motor 0.007 -0.074 0.104 -0.026 -0.163 0.264 0.617* 0.576* 0.535 0.171 |0.548't).496 F.SBO' 0.619:‘0.372 |0.534’|0.491 0.396
levels i
- Light -0.342 0.064 -0.150 0.257 0.321 0.150 -0.214 0.000 -0.235 -0.150 0.504 0.339 0.305 0.192 0.287 0.380 0.358 0.271
touch

Pinprick -0.342 0.064 -0.150 0.257 0.321 0.150 -0.214 0.000 -0.235 -0.150 0.504 0.339 0.305 0.192 0.287 0.380 0.358 0.271
Total -0.342 0.064 -0.150 0.257 0.321 0.150 -0.214 0.000 -0.235 -0.150 0.504 0.339 0.305 0.192 0.287 0.380 0.358 0.271
K-MBI 0.366 0.149 0.292 0.022 -0.333 -0.033 0.311 0.096 0.245 0.426 0.460 F,535' 0.690* 0.563"0.099 F.SQQ‘ 0.539"0.522

FIM
Self-care .096 0.202 0.094 -0.161 -0.348 0.305 0.136 0.296 0.283 232 0.550*
. Sphincter "0.150 0.252 0.402 0.122 -0.287 0.113 0.153 0.023 0.107 0.408 IO.GZI‘ 0.694* 0.804* o.ssz'i.ug ﬁ.me' 0.628"0.501
2) Postoperative DTI parameters better reflected control
. . Transfer  0.348 0.084 0.262 -0.042 -0.435 -0.095 0.318 0.117 0.295 0.510 0.413 0.528 J0.662* 0.566°§0.123 || 0.576*§0.516 [.577*
CI|n|Ca| StateS. Total 0.338 0.132 0.264 -0.006 -0.360 -0.105 0.261 0.085 0.261 0.476 0.451 0.607 -0.011 § 0.608* 0.548* 0.56:

46
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=== Conclusion ===

Notable differences were observed in DTI parameters before and after surgery.

Preoperative DTI and tractography demonstrated lower interpretation failure rates than those
obtained after surgery.

Postoperative data significantly reflected the patient’s clinical state at the time of evaluation.

DTI and tractography could be useful in predicting clinical outcomes after traumatic cervical SCI and
should be interpreted separately before and after spine surgery.
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Explored Questions

MRI integration with quantitative analysis and ML methods advances neurological disorder
detection.

Structural and DTI MRI Images can be used to train ML models achieve high accuracy in classifying
neurological disorders, and predict functional outcomes.

Preoperative DTI exhibits lower failing rate, while postoperative data better reflects clinical status
and can be used for outcome prediction for spinal cord related abnormalities.




Unexplored Questions and Future Works

Structural images have demonstrated high accuracy in classifying spinal cord disorders, while DTI has shown
superior information over structural imaging in brain studies. Additionally, predictive capabilities of DTI in
various neurological conditions.

' | Future research can involve training DTI-based models for spinal cord disorders classification.

‘ | ML techniques can be employed for outcome prediction, particularly in spinal cord disorders.

‘ Exploring multimodal approaches, such as combining structural imaging and DTI, could enhance
diagnostic accuracy and outcome prediction in neurological disorders.
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