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Imaging
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Neurological disorders encompass a wide range of conditions affecting the nervous system, demanding accurate diagnosis 
for effective treatment planning and patient care. 

Over the past decades, magnetic resonance imaging (MRI) has transformed the landscape of neurological diagnosis.

Clinicians traditionally rely on qualitative visual inspection of MRI images, a method with inherent limitations in capturing 
subtle changes.

Quantitative analysis of MRI images aims to overcome these limitations by extracting precise measurements and 
quantitative metrics from imaging data.

Machine learning (ML) automates image analysis tasks, uncovering subtle patterns and biomarkers indicative of 
neurological abnormalities.
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Magnetic Resonance Imaging (1)
Developed in the 1970s, with the first human MRI scan performed in 1977.
Utilizes strong magnetic fields and radio waves to generate detailed images of the body's 
internal structures.
Non-invasive and does not involve ionizing radiation.
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Dr. Raymond Damadian’s and the first full-body MRI 

scanner.

First human MRI scan
A modern MRI Scanner room



Magnetic Resonance Imaging (2)
When the human body, rich in hydrogen atoms found in water, enters the magnetic field of 
MRI machine, the field aligns atoms along its direction (Longitudinal magnetic field).

Radiofrequency pulses are then emitted, disrupting this alignment temporarily (Transverse 
magnetic field).

Once these pulses cease, the atoms realign with the magnetic field, emitting energy in the 
form of radiofrequency signals.

These emitted signals are detected by the MRI machine's receiver coils and processed by a 
computer to generate detailed images of the body's internal structures.
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Magnetic Resonance Imaging (3)
Pulse sequences are series of radiofrequency pulses with varying parameters. 

By adjusting these parameters, pulse sequences can generate different types of MRI images 
with specific contrasts and features, including Structural MRI, Diffusion MRI, Functional MRI 
(fMRI), and more.
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Structural MRI (1)
Structural imaging techniques provide detailed anatomical information.

T1 and T2-weighted images are fundamental structural imaging types used in neuroimaging,  
capturing different tissue contrasts based on the relaxation properties.

T1 relaxation refers to the process 
by which protons return to their 
equilibrium alignment with the main 
magnetic field.

T2 relaxation is the process by 
which the transverse 
components of magnetization 
decay or dephase. 

Relaxation (Return to equilibrium of net magnetization)

Longitudinal magnetization 
recovery

Transverse magnetization 
decay
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Structural MRI (2)

T2-weighted images: Highlight differences in the transverse relaxation time (T2) of tissues.

T1-weighted images: Emphasize differences in the longitudinal relaxation time (T1) of tissues.

Tissue Type T1 Image T2 Image

Water or Fluid Tissue Dark Bright
Fat Tissue Bright Bright
Some Bones (no free protons) Dark Dark
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Diffusion MRI 
Diffusion MRI is a specialized imaging technique that measures the random motion of water 
molecules within tissues, offering unique insights into tissue microstructure and 
connectivity.

By quantifying the magnitude and directionality of water diffusion, Diffusion MRI provides 
valuable information about the organization of cellular structures in the brain and other 
organs.

There are different ways to mathematically describe water diffusion, generating different 
types of Diffusion MRI.
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Diffusion Tensor Imaging (1)
Diffusion Tensor Imaging (DTI) is a mathematical model describing the magnitude and 
direction of water diffusion in three dimensions.

DTI enables the visualization of white matter tracts

DTI generates diffusion metrics, including Fractional Anisotropy (FA), Mean Diffusivity (MD), 
Radial Diffusivity (RD), and Axial Diffusivity (AD), which offer quantitative measures of tissue 
microstructure and integrity.
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Voxel: Basic unit of a three-dimensional image obtained from MRI.



Diffusion Tensor Imaging (2)
FA: Quantifies the degree of anisotropy of water diffusion, reflecting the directionality of 
fiber tracts within tissues.

MD: Average rate of water diffusion within tissues, regardless of directionality.

RD and AD: Quantify diffusion perpendicular and parallel to the primary axis of fiber tracts.
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Diffusion Tensor Imaging (3)
Tractography algorithms utilize directional information of DTI to visualize and reconstruct 
the three-dimensional pathways of white matter tracts in the brain and spinal cord using.
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Neurite Orientation Dispersion and Density Imaging (1) 

NODDI is another advanced MRI technique that provides more 
detailed insights into the microstructural organization of body 
tissues.

NODDI disentangles microscopic tissue compartments 
affecting water diffusion by modeling the density of neurites 
(dendrites and axons) and the dispersion of their orientations 
within a tissue voxel.
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Neurite Orientation Dispersion and Density Imaging (2)
The Intra-cellular Volume Fraction (VIC): Quantifies the proportion of a voxel's volume 
occupied by neurites.
VIC reflects the density of neurites within a specific region, providing information about the 
abundance of neuronal processes in the tissue.

Orientation Dispersion Index (ODI): Quantifies the dispersion of neurite orientations within a 
voxel. ODI measures the degree to which neurites are oriented in different directions within 
the voxel.
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Summary

Diffusion

Structural
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Technique Metric Measurement

DTI

Fractional Anisotropy (FA) Degree of diffusion directionality

Mean Diffusivity (MD) Average diffusion magnitude 

Radial Diffusivity (RD)
Diffusion magnitude 
perpendicular to primary axis

Axial Diffusivity (AD)
Diffusion magnitude along 
primary axis

NODDI
The Intra-cellular Volume Fraction (VIC)

Fraction of intracellular water 
volume for a given voxel

Orientation Dispersion Index (ODI)
Angular variation of neuritis 
orientation

Technique
T1-weighted Images
T2-weighted Images
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Develop and validate a deep 
learning model for the detection 

of Degenerative Cervical 
Myelopathy (DCM) using MRI 

scans.

Objective

Structural (T2-weighted) MRI 
scans of patients undergoing 

surgery for DCM

Data Type

A total of 289 patients with DCM.

Subjects

Deep convolutional neural 
network (CNN), ResNet50, was 
trained using axial images, to 
classify compressed and non-

compressed cervical spinal cord 
images.

Method

A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans
Paper 1
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\\

• A common condition characterized by compression of 
the spinal cord in the neck region (cervical spine)

• Caused by degenerative changes, leads to narrowing 
of the spinal canal and compression of neural 
structures.

Degenerative Cervical Myelopathy
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A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans
Paper 1

Normal Cervical Spine Compressed Cervical Spine 



Subjects

Patients with DCM  
n = 605 Total Subjects n = 289

MRI : T2-weightedBaseline clinical data

Demographic information
modified Japanese orthopedic 

association (mJOA) score

Standard measure of DCM symptoms 
that measures the severity of it.

18 years or older
Imaging evidence DCM

Symptomatic DCM 
No prior spine surgery
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A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans
Paper 1



A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans
Paper 1

Total Subjects n = 289

Training/Validation Holdout

Training/
Validation (n= 201)

Holdout 
(n=88)

P-value

Age (median) 55 56 0.65
Gender (male) 63% 66% 0.53
Baseline mJOA (median) 13 13 0.72

75% 25%
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Subjects

Dataset was divided into training/validation and holdout datasets.

Used t-tests to compare training/validation and holdout dataset.



3D T2-weighted 
DICOM Images

Series of Axial 
JPEG images ‘compressed’ 

‘non-compressed’

Senior neurosurgical residents
>4 years experience interpreting MRI scan

0

1

0

In cases of 
disagreement in labels, labelers 
reviewed and decided images 

together.

0

1

0

0

1

1

Labeling
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A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans
Paper 1



Pre-trained ResNet50 was used for classification task.
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A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans
Paper 1

Model

• ResNet, short for Residual Network, is a type of deep neural 
network architecture.

• Introduced by Microsoft Research in 2015, it addressed the 
problem of vanishing gradients in deep networks.

• Traditional deep networks suffer from the vanishing gradient 
problem, where gradients diminish as they propagate 
backward through many layers, hindering training.

• ResNet introduces skip connections, or shortcuts, that allow 
gradients to bypass several layers, mitigating the vanishing 
gradient problem.
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A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans
Paper 1

Model Selection

The model's initial weights were transferred from the pre-trained weights developed on ImageNet.
The fully connected layers were replaced by one or two fully connected layers, with 256 to 2048 neurons, with or 
without dropout layers, with randomly initialized weights.
Dropout layers were employed to mitigate overfitting during training.
The best performing model architecture was evaluated on the holdout dataset.

1 FC layer

2 FC layer

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7



For each patient in the holdout dataset the classification output of the deep learning 
model for each slice was compared to the class labels. 
A ROC curve and AUC metric was generated for each patient by comparing the 
predicted and actual classes for each slice.  
Sensitivity of 0.88, Specificity of 0.89, and f1-score of 0.82.

Results

22

A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans
Paper 1



Class Activation Map (CAM) is a visualization technique used in deep 
learning to interpret and understand the decisions made by 
convolutional neural networks (CNNs) for image classification tasks.

Provides a spatial map highlighting the regions of an input image that 
contribute most significantly to the prediction of a particular class by 
the CNN.

True Positive False Negative

Class activation maps were generated for both correctly classified (true positives) and incorrectly classified (false negatives) 
example images.
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A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans
Paper 1

Results



Conclusion
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A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans
Paper 1

The study focused on training and testing an image-based model for detecting spinal cord 
compression in cervical spine structural MRI scans.

Used series of 2D structural images to identify compressed and non-compressed parts of the spinal 
cord in DCM patients.

High performance was achieved, with an AUC of 0.94 on a heterogeneous patient population.
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging
Paper 2

Analyze the ability of data-driven 
analysis of DTI and NODDI to 
develop biomarkers to infer 

symptom severity of Traumatic 
brain injury and determine 
whether they outperform 
conventional T1-weighted 

imaging.

Objective

DTI, NODDI and structural T1-
image was obtained for all 

subjects.
Clinical assessments, the trail 

making test, were performed on 
the same day as the imaging 

study.

Data

A total of 59 subjects 
experiencing chronic symptoms 
caused by a mild traumatic brain 

injury.

Subjects

Using decision tree and K-NN 
models for feature selection and 

classification model to predict 
clinical outcomes of cTBI using 

DTI, NODDI and T1-images.

Method

Muller, J. J., Wang, R., Milddleton, D., and others (2023). Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging. Frontiers in Neuroscience, 17 , 1182509.
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Traumatic Brain Injury (TBI) is a severe medical condition resulting 
from sudden trauma or impact to the head, leading to the disturbance 
of normal brain function.

It has contributed to approximately 1 million deaths in the United States 
over the last two decades.

Conventional T1-weighted imaging often appears normal in cases of 
mild-to-moderate injury.

To enhance diagnosis and monitor both acute and chronic effects of 
TBI, researchers are actively investigating advanced neuroimaging 
biomarkers.

Traumatic brain injury

Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging
Paper 2
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59 subjects with mild 
traumatic brain injury

MRI: DTI, NODDI and 
T1-weighted images

Clinical Assessment 
Trail Making (A, and B) test

Stop timing when the Trail is 
completed, or when maximum 
time is reached (150 seconds = 
2.5 min)

Subjects

Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging
Paper 2

T1 FA AD RD MD ODI Vic
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All patients Favorable 
outcome

Unfavorable 
outcome

Trail making A (sec) 29.9 22.9 (n=40) 43.9 (n=19)
Trail making B (sec) 67.1 52.9 (n=38) 92.7 (n=21)

Label

Data

Favorable

A

B

Subjects were classified as having favorable or unfavorable outcomes in each the tested outcomes, depending on 
whether their individual score was lower or higher than the mean value of the entire cohort.

Labeling

Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging
Paper 2
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging
Paper 2

Pre-Processing
Segmentation of anatomical regions was done using Johns Hopkins University white matter tractography atlas, which 
divides the brain into 20 regions. 

Within each segmented region, DTI, NODDI and T1 parameters were computed.

FA AD RD MD ODI VicT1
R1
R2

R20

. 

. 

.
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ML-Based Classification Pipeline:

Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging
Paper 2

Model

Developed using a feature selection decision tree followed by a K-NN model. 

Decision trees generated for each task and parameter using the Gini Impurity method. 

From the trained trees, the six brain regions with the lowest impurity scores were selected. 

These selected regions were used for classification task using KNN model .

Trail A
T1

FA AD RDMD ODIVicT1
R1
R2

R20

. 

. 

.

Favorable

A

B

SR1

SR6

. . .

SR2

T1 FA AD RD MD ODI Vic
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging
Paper 2

Model

Then using the selected regions of the brain and a K-
NN model (K=10) the classification for Trail A and B is 
done.
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Decision Tree and K-NN

Feature ranking results for DTI (A), NODDI (B), and T1 (C) regions. Features 
are displayed if they were ranked as significant for both trail making A and B.
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging
Paper 2

Results

Trail Making B
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KNN
Reduced Feature KNN

Trail-making task completion time (seconds) 
was used as an indicator of cognitive 
impairment. 

Feature ranking using the DT method, 
identifying the top 33% of important features, 
improved mean accuracy by approximately 
11.4% 

DTI models exhibited the higher accuracy, 
outperforming structural based model.
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Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging
Paper 2

Results
Also trained other models including Linear regression, Decision tree, Random Forest, SVM, and averaged their 
accuracy for each biomarker for both tasks.  

Results show that models trained using DTI and NODDI biomarkers outperform T1-based models significantly.

Mean 
Accuracy

P-Value

T1 55.1% -
FA 61.0% 0.030
AD 61.5% 0.009
MD 61.0% 0.005
RD 61.0% 0.004
Vic 59.0% 0.036
ODI 67.7% 0.001
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Conclusion

This study pioneered the use of ML-based classification algorithm using DTI and NODDI for the diagnosis 
of chronic traumatic brain injury (cTBI) within a real clinical setting.

DTI and NODDI consistently outperformed T1-weighted imaging across various ML algorithms.

Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging
Paper 2

Feature reduction techniques, particularly the DT method, significantly improved the performance of the K-
NN model, suggesting localized effects of cTBI on specific brain regions.
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Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3

Investigate the clinical usefulness 
DTI and tractography in the 
prediction of outcomes after 
traumatic cervical spinal cord 

injury (SCI) and to assess 
whether the predictability is 

different before and after surgery.

Objective

Sixty-one subjects with traumatic 
cervical SCI were randomly 
assigned to preop or postop 

groups and received DTI 
accordingly.

Subjects

DTI scan before and after 
surgery was performed for each 
subject based on their groups. 

Neurological status and 
functional status were assessed 

at 4 and 8 weeks after SCI.

Data

Using Statistical analysis to 
uncover the usefulness DTI  

outcomes prediction after SCI 
and the effect of the time of the 
scan on its ability for prediction.

Method

Park, G. S., Kim, T. U., Lee, S. J., Hyun, J. K., & Kim, S. Y. (2022). Quantitative analysis in cervical spinal cord injury patients using diffusion tensor imaging and tractography. Annals of Rehabilitation Medicine, 46 (4), 172.
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A devastating condition resulting from trauma to the spinal cord, often leading to partial or complete loss of motor and 
sensory function

Predicting outcomes after SCI is crucial for treatment planning and rehabilitation, but conventional imaging methods 
often lack the sensitivity to assess subtle changes in the spinal cord.

DTI has been extensively used in the brain to predict outcomes in various neurological conditions, but its application in 
spinal cord injury is less explored.

Timing of imaging acquisition can significantly impact the predictability of DTI, particularly in the context of spinal cord 
injury where the pathological processes evolve rapidly, especially around the time of surgery.

Understanding the clinical utility of DTI and tractography, in addition to the best time for image acquisition for predicting 
outcomes after traumatic cervical SCI is essential for optimizing patient management and rehabilitation strategies.

Spinal Cord Injury

Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3
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Imaging data: DTI

Post-operationPre-operation

Clinical Assessments: 
Neurological and Functional 

Baseline Follow Up

SCI Patients 
n = 61

Subjects

Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3

(Day of Injury)
(4 weeks after injury)

n=30 n=31

(4 weeks after injury) (8 weeks after injury)

SCI patients from Dankook 
University Hospital  

n = 89

18 years or older

Neurological levels of injury 
corresponding to C1 to C7
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Neurological Assessments

Utilized the International Standards for the Neurological 
Classification of Spinal Cord Injury (ISNCSCI), a protocol 
established by the American Spinal Injury Association 
(ASIA).

Evaluation parameters encompassed:
Upper and lower extremity motor function (0-50)
Light touch and pinprick sensory responses across upper 
and lower extremity dermatomes (0-112)

Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3
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Utilized the Modified Barthel Index (MBI) and Functional 
Independence Measure (FIM) at baseline and follow-up 
evaluations. 

MBI: Assess functional independence in activities of daily 
living, scored from 0 (completely dependent) to 100 
(independent in basic ADLs). 

FIM: Assessment tool in rehabilitation settings, comprising 
items across six areas graded based on independence levels 
from 1 (total assistance required) to 7 (complete 
independence). 

For this study, total MBI score, total FIM score (FIM total) and 
motor scores (FIM motor: self-care, sphincter control, and 
transfer/locomotion) were utilized. 

Functional Assessments 

Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3
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Clinical Assessments

Features Range Baselin
e

Followup

Neurological 
Scores

Upper extremity motor 0-56 
Upper extremity Sensory (Light touch) 
) 

0-112
Upper extremity Sensory (Pinprick) 0-112
Upper extremity Sensory (Total) 0-112
Lower extremity motor 0-56 
Lower extremity Sensory (Light touch) 
) 

0-112
Lower extremity Sensory (Pinprick) 0-112
Lower extremity Sensory (Total) 0-112

Functional 
Scores

MBI 0-100
FIM(Self-care) 
FIM() FIM()

0-42
FIM(Sphincter control) 
)

0-14
FIM(Transfer/locomotion) 
)

0-35
FIM(total) 0-91

Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3

For each subject in preop and post groups the baseline and followup clinical assessments was performed.
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FA MD Number of Fibers Crossing Fibers from C3 to 
C3 -
C4
C5
C6
C7
Level of injury

Data Preprocessing

Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3

DTI metrics, including FA, MD, and fibers tracts were computed from DTI images.
Biomarkers were localized to different levels of the spine, from C3 to C7, including the level of injury, to assess regional 
variations in microstructural alterations.
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Analysis

Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3

DTI biomarkers and clinical scores was analyzed using to explore functional and neurological changes, impact of 
surgery on DTI parameters, and correlations between DTI metrics and assessment scores in both groups, all performed 
using the Mann-Whitney U test for comparison between two groups.
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FA M
D

Number of 
Fibers

Crossing Fibers from C3 
to C3 -

C4
C5
C6
C7
Level of 
injury

Features Baseline Followup

Neurologica
l Scores

Upper extremity motor
Upper extremity Sensory (Light touch) 
) Upper extremity Sensory (Pinprick)
Upper extremity Sensory (Total) 
Lower extremity motor
Lower extremity Sensory (Light touch) 
) Lower extremity Sensory (Pinprick)
Lower extremity Sensory (Total) 

Functional 
Scores

MBI
FIM(Self-care) 
FIM() FIM()FIM(Sphincter control) 
)FIM(Transfer/locomotion) 
)FIM(total)

DTI 
Biomarkers

Clinical 
Scores

Preop

Postop



Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3

Analysis: Neurologic and Functional Changes from Baseline to Followup 

Both groups Showed Significant Improvements in UEM, 
MBI, and all FIM subscales from baseline to Followup.

No significant differences between preop and 
postop in improvements except for pinprick.
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Comparison of baseline and follow-up evaluations to assess functional and neurological changes over time.
Evaluation of differences between the two groups.

Neurologic and functional changes between the preop and postop groups



Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3

Failure rate (due to metal interference) was 
significantly higher in the postop group (41.5%) than 
in the preop group (20%).

Significant Differences Observed between Preop 
and Postop groups in terms of quantitative DTI 
biomarkers

1) DTI and tractographic findings before surgery showed a 
lower failure rate for interpretation than those taken after 
surgery.
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MD

Analysis: Effect of surgery on DTI Biomarkers

Examination of DTI parameters for both preoperative and postoperative groups to assess the impact of surgery on DTI 
metrics and failure rates.

DTI parameters between the preop and postop groups



Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3

Analysis: Correlations between DTI parameters and baseline/follow-up evaluations (1)

Baseline: No significant correlation!

Followup: Significant Correlation at some 
levels.
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MD

Determination of which correlations are more significant for potential outcome predictions.

Correlation analysis between follow-up clinical findings and DTI parameters in the preop group



Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3

Followup: Significant Correlation at some 
levels.

Baseline: Many significant correlation 
specially with baseline functional scores!

2) Postoperative DTI parameters better reflected 
clinical states.
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MD

Analysis: Correlations between DTI parameters and baseline/follow-up evaluations (2)

Correlation analysis between follow-up clinical findings and DTI parameters in the postop group

Determination of which correlations are more significant for potential outcome predictions.



Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Paper 3

Conclusion

Notable differences were observed in DTI parameters before and after surgery.

Preoperative DTI and tractography demonstrated lower interpretation failure rates than those 
obtained after surgery.

Postoperative data significantly reflected the patient’s clinical state at the time of evaluation.

DTI and tractography could be useful in predicting clinical outcomes after traumatic cervical SCI and 
should be interpreted separately before and after spine surgery.
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Explored Questions

MRI integration with quantitative analysis and ML methods advances neurological disorder 
detection.

Structural and DTI MRI Images can be used to train ML models achieve high accuracy in classifying 
neurological disorders, and predict functional outcomes.

Preoperative DTI exhibits lower failing rate, while postoperative data better reflects clinical status 
and can be used for outcome prediction for spinal cord related abnormalities.
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Unexplored Questions and Future Works
Structural images have demonstrated high accuracy in classifying spinal cord disorders, while DTI has shown 
superior information over structural imaging in brain studies. Additionally, predictive capabilities of DTI in 
various neurological conditions.

ML techniques can be employed for outcome prediction, particularly in spinal cord disorders.

Future research can involve training DTI-based models for spinal cord disorders classification.

49

Exploring multimodal approaches, such as combining structural imaging and DTI, could enhance 
diagnostic accuracy and outcome prediction in neurological disorders.
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