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ABSTRACT

Advancements in MRI-Based Techniques for Neurological Disorder Diagnosis: A
Review of Machine Learning Approaches

by

Zahra Sadeghi Adl

Neurological disorders are a major global burden on healthcare systems, requiring

timely and precise diagnosis. Magnetic Resonance Imaging (MRI) has emerged as

a cornerstone in the assessment of neurological disorders, offering non-invasive visu-

alization of anatomical structures and pathological changes. This report provides a

overview of current advancements in MRI-based techniques for diagnosis and progno-

sis of neurological disorders, focusing on machine learning approaches. We investigate

the following recently published papers: ”A deep learning model for detection of cer-

vical spinal cord compression in MRI scans,” ”Machine learning-based classification of

chronic traumatic brain injury using hybrid diffusion imaging,” along with ”Quantita-

tive Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging

and Tractography.” Every publication is thoroughly reviewed, explaining the authors’

approaches, conclusions, and contributions to the field. To further facilitate future

research, the report identifies important research limitations and challenges.
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CHAPTER 1

Introduction: Deciphering Hidden Insights in MRI

Neurological disorders represent a wide range of medical conditions that have a

substantial impact on the nervous system. These conditions frequently cause major

impairments in everyday functioning and quality of life. Early detection and accurate

diagnosis of these disorders are pivotal for effective treatment and management [Khalil

et al. (2018)]. Magnetic Resonance Imaging (MRI), in contrast to other imaging

modalities including computed tomography (CT) scan, provides detailed non-invasive

imaging of the brain and spinal cord with greater soft tissue contrast, making it an

important instrument in the diagnosis of neurological disorders [Hu et al. (2022)].

While MRI has been instrumental in providing anatomical insights into neuro-

logical disorders, traditional MRI techniques primarily offer qualitative assessments

of tissue characteristics, relying on visual interpretation by radiologists. These tech-

niques are inherently subjective and may lack sensitivity to subtle changes in tissue

properties. However, recent advancements in quantitative analysis have revolution-

ized the field, enabling objective measurements of tissue-specific parameters. This

quantitative approach has the potential to provide deeper insights into tissue mi-

crostructure, function, and pathology, enhancing diagnostic accuracy and treatment

decisions [Davatzikos (2019)].

In recent years, the potential of quantitative analysis of MRI has been further

enhanced by machine learning (ML) methods [S. Wang & Summers (2012)]. These

advanced techniques can extract hidden information from MRI images, enabling a

more comprehensive understanding of neurological disorders. By analyzing these
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imaging data, subtle patterns and associations that may not be apparent to the

human eye can be identified. This capability has the potential to improve diagnosis

and prognosis, as well as treatment strategies for neurological disorders [Chan &

Siegel (2018)].

The objectives of this report are threefold. First, to provide a brief review of

neurological disorders, MRI technology, and fundamentals of ML. Second, to analyze

the methodologies, findings, and implications of three key research papers in this

area, namely ”A deep learning model for detection of cervical spinal cord compres-

sion in MRI scans” [Merali et al. (2021)], ”Machine learning-based classification of

chronic traumatic brain injury using hybrid diffusion imaging” [Muller et al. (2023)],

and ”Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion

Tensor Imaging and Tractography” [Park et al. (2022)]. Third, to discuss potential

future directions for research and clinical applications of MRI-based techniques for

neurological disorder detection, based on the gaps and limitations identified in the

existing literature. By achieving these objectives, this report aims to contribute to

the ongoing advancement of MRI-based techniques for neurological disorder detection

and diagnosis.
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CHAPTER 2

Overview: Neurological Disorders

Neurological disorders encompass a wide range of conditions affecting the central

and peripheral nervous systems, leading to significant morbidity and mortality glob-

ally. The impact of neurological disorders on individuals and society as a whole is

profound, often leading to significant disability, diminished quality of life, and in-

creased healthcare expenditure. Diagnosis and management of neurological disorders

pose considerable challenges due to the complexity of the nervous system and the

diverse nature of these conditions [Khalil et al. (2018)].

In this chapter, we provide a brief overview of the human nervous system and

common neurological disorders. By understanding the fundamentals of nervous sys-

tem and common neurological disorders, we can better understand challenges and

complexities of assessment in neurological patients, including MRI-based methods.

2.1 Neurological Disorder Categories

Neurological disorders are categorized based on their primary location affected,

the primary type of dysfunction involved, and the primary type of cause. This classi-

fication helps in understanding the underlying pathology and in devising appropriate

treatment strategies.

The causes of neurological disorders are multifactorial and can include trauma,

infections, genetic factors, and environmental influences. For instance, traumatic

brain injuries, are a leading cause of disability and death worldwide, with long-term

consequences on cognitive and motor functions [L. G. Smith et al. (2019)]. Infections
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like meningitis and encephalitis can result in severe neurological complications, high-

lighting the importance of early diagnosis and treatment. Moreover, genetic factors

play a significant role in conditions such as Alzheimer’s disease and autism spectrum

disorder, emphasizing the need for further research in genomics to understand these

complex disorders [Mai & Paxinos (2011)].

While numerous neurological disorders exist, we focus on three specific conditions

that have been the subject of the papers that will be explored in this report: chronic

Traumatic Brain Injury (cTBI), Spinal Cord Injury (SCI), and Degenerative Cervical

Myelopathy (DCM). Each of these disorders poses unique clinical and scientific ques-

tions, driving investigation into their underlying mechanisms, diagnostic modalities,

and therapeutic interventions.

2.1.1 Chronic Traumatic brain injury

Traumatic Brain Injury (TBI) is a multifaceted and often life-altering condition

with numerous potential acute and chronic neurological consequences, contributing

to approximately 1 million deaths in the United States over the last two decades

[Daugherty (2021)]. This condition can result from various causes, including falls,

motor vehicle accidents, sports injuries, and assaults. The effects of TBI can be di-

verse and may include physical, cognitive, emotional, and behavioral changes. These

effects can vary depending on the severity and location of the injury, as well as the

individual’s age, health, and other factors [L. G. Smith et al. (2019)]. The neu-

ropathology of chronic traumatic brain injury (cTBI) consists of a primary injury

that is a direct consequence of traumatic insult and a secondary injury that results

from a cascade of molecular and cellular events, including cell death, axonal injury,

and inflammation [Jordan (2000)].

The Trail Making Test (TMT) is a valuable tool for assessing cognitive impair-

ments in individuals with TBI. TMT-A primarily evaluates visual attention and pro-
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cessing speed, while TMT-B assesses higher-order cognitive functions such as cogni-

tive flexibility and task switching. In TBI assessment, longer completion times and

increased error rates on both parts of the test indicate greater cognitive dysfunction,

reflecting challenges in attention, processing speed, and executive functions. TMT

results provide clinicians with objective measures to diagnose TBI-related cognitive

impairments, tailor interventions, monitor treatment progress, and evaluate rehabili-

tation outcomes.

2.1.2 Spinal cord injury

Spinal Cord Injury (SCI) is a traumatic event with profound and life-altering

consequences. It occurs when the spinal cord sustains damage, typically from a

sudden blow or impact to the spine. This damage can result in a loss of sensation,

movement, and function below the level of the injury. Beyond this, there are social,

emotional, and economic consequences for patients, their families, and society at

large (eg, employment, relationships, community access, isolation) [Kirshblum et al.

(2007)].

The American Spinal Injury Association (ASIA) Impairment Scale (AIS) and in-

jury level are crucial elements in the assessment and classification of SCI patients

[Aarabi et al. (2017)]. The ASIA score provides a standardized method for evaluat-

ing the severity of SCI based on motor and sensory function, while the injury level

indicates the specific vertebral level affected by the injury. The ASIA score categorizes

SCI into five grades:

1. AIS A: Complete loss of motor and sensory function below the level of injury.

2. AIS B: Sensory function preserved, but no motor function below the neurological

level, including the sacral segments S4-S5.

3. AIS C: Motor function preserved below the neurological level, and more than
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Figure 1: The ASIA examination to evaluate motor and sensory function in a patient
with spinal cord injury. The ASIA test helps classify the severity of in-
jury and guides treatment decisions for optimal patient care [Aarabi et al.
(2017)].

half of the key muscles below the neurological level have a muscle grade lower

than median score.

4. AIS D: Motor function preserved below the neurological level, and at least half

of the key muscles below the neurological level have a muscle grade of higher

than median score.

5. AIS E: Normal motor and sensory function.

The injury level indicates the specific vertebral level affected by the spinal cord

injury. It is determined based on the neurological level of injury (NLI), which cor-

responds to the most caudal segment of the spinal cord with normal sensory and

motor function on both sides of the body. The NLI is determined through sensory

and motor examination following the ISNCSCI (International Standards for Neuro-

logical Classification of Spinal Cord Injury) guidelines (Figure 1). The ASIA score
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Figure 2: MRI images showing (A) normal spinal cord, (B) partial spinal cord com-
pression, and (C) circumferential spinal cord compression [Merali et al.
(2021)].

and injury level provide valuable information for clinicians to establish prognosis,

guide treatment decisions, monitor patient progress, and evaluate the effectiveness of

interventions.

2.1.3 Degenerative Cervical Myelopathy

Degenerative Cervical Myelopathy (DCM), also referred to as cervical spondylotic

myelopathy, is a prevalent and progressive neurological condition. It occurs when

the spinal cord in the neck becomes compressed due to degenerative changes in the

cervical spine. This compression can result from a variety of factors, including disc

herniation, bone spurs, and thickening of ligaments [Karadimas et al. (2013)]. Figure

2 shows normal and compressed spinal cord due to DCM.

2.2 Summary

Neurological disorders encompass a diverse range of conditions affecting both the

central and peripheral nervous systems, imposing significant burdens globally. In this

chapter, we explored the complexities of the human nervous system and common neu-
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rological disorders, focusing on their classification, causes, and clinical presentations.

The human nervous system, consisting of the central nervous system (CNS) and

peripheral nervous system (PNS), regulates vital physiological functions. Understand-

ing these systems’ organization is crucial for grasping neurological disorder pathophys-

iology.

Neurological disorders are classified based on location, dysfunction type, and

causes, requiring tailored assessment and treatment. Traumatic brain injury (TBI),

spinal cord injury (SCI), and degenerative cervical myelopathy (DCM) are notable

examples due to their prevalence and profound impacts. TBI, resulting from various

traumas, leads to diverse physical, cognitive, and emotional changes, necessitating

comprehensive management. SCI, often caused by spinal trauma, results in sensory

and motor loss, requiring specialized care. DCM, marked by spinal cord compression,

poses diagnostic and therapeutic challenges, underscoring the importance of early

intervention.
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CHAPTER 3

Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that has

revolutionized the field of neurology, providing clinicians with unparalleled insights

into the structure and function of the brain and spinal cord [Hu et al. (2022)]. In this

chapter, we go through fundamentals of MRI, exploring its diverse sequences, clinical

applications, challenges encountered, and its profound impact on modern healthcare.

3.1 Principles of MRI

MRI works by harnessing the natural magnetic properties of atoms within the

body, particularly hydrogen atoms, which are abundant in water and fat molecules.

At its core, MRI relies on the interaction between radio waves and the magnetic field

created by a large magnet. When a patient is placed within the MRI machine, their

body’s hydrogen atoms align with this magnetic field. Radiofrequency pulses are

then applied, causing these hydrogen atoms to temporarily deviate from their aligned

position.

Once the radiofrequency pulse is turned off, the hydrogen atoms gradually return

to their original alignment with the magnetic field. As they do so, they emit signals

that are picked up by the MRI machine’s receiver coils. These signals are then

processed by a computer to generate detailed images of the body [Hu et al. (2022)].
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Figure 3: Spin echo sequences of brain [Trifan et al. (2017)].

3.2 MRI Sequences

MRI sequences are diverse imaging techniques designed to highlight specific tissue

characteristics and physiological processes. These sequences are essential for gener-

ating high-quality images used in the diagnosis and management of various medical

conditions. Understanding the principles and applications of MRI sequences is crucial

for optimizing image acquisition protocols and interpreting results accurately.

At the core of MRI sequences lies the manipulation of magnetic field gradients

and radiofrequency pulses to generate image contrast. By altering these parameters,

MRI sequences can selectively highlight different tissue properties, such as relaxation

times, diffusion rates, and perfusion characteristics [Hu et al. (2022)].

3.2.1 Spin Echo Sequences

One of the most commonly used categories of MRI sequences is spin echo se-

quences. These include T1-weighted and T2-weighted imaging techniques, each pro-
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viding unique contrast properties (Figure 3).

T1-weighted imaging is a MRI technique that offers detailed anatomical infor-

mation about the brain and spinal cord. The term ”T1-weighted” indicates that the

image is weighted to emphasize differences in the T1 relaxation times of various tis-

sues. T1 relaxation time, also known as spin-lattice relaxation time, is the time it

takes for the protons in a tissue to realign with the magnetic field after being per-

turbed by radiofrequency (RF) pulses during an MRI scan. It reflects the rate at

which energy is transferred from excited protons back to the surrounding lattice or

”spin lattice”. In T1-weighted images, cerebrospinal fluid (CSF) typically appears

dark, while gray matter and white matter appear bright. This characteristic makes

T1-weighted images particularly useful for identifying abnormalities such as tumors,

hemorrhages, and lesions. These abnormalities can cause discernible alterations in the

appearance of gray and white matter in the image, aiding in diagnostic interpretation

and treatment planning.

T2-weighted imaging is another MRI technique used to visualize anatomical

structures within the brain and spinal cord. Similar to T1-weighted imaging, T2-

weighted images are named as such because they are weighted to highlight differences

in the T2 relaxation times of various tissues. T2 relaxation time, also known as

spin-spin relaxation time, is the time it takes for the transverse magnetization (or

”spin-spin” interactions) to decay after RF pulses are applied during an MRI scan.

It reflects the rate at which energy is lost through interactions between neighboring

protons. In T2-weighted images, cerebrospinal fluid (CSF) appears bright, while

gray matter and white matter exhibit varying shades of gray. This characteristic

makes T2-weighted imaging particularly useful for detecting abnormalities such as

edema, inflammation, and demyelination. These pathological changes often manifest

as alterations in the signal intensity of gray and white matter, enabling clinicians to

identify and evaluate conditions like multiple sclerosis, infections, and vascular lesions
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[Hu et al. (2022)].

3.2.2 Diffusion Sequences

Diffusion-weighted imaging (DWI) is a MRI technique that captures the motion

of water molecules within biological tissues. By measuring the random Brownian

motion of water molecules, DWI provides insights into tissue microstructure and in-

tegrity. In healthy tissue, water molecules exhibit relatively unrestricted movement,

whereas in regions with barriers such as cell membranes or fiber tracts, water diffu-

sion is constrained. DWI detects these variations in water diffusion by quantifying

the magnitude and direction of diffusion within each voxel of the image. The de-

gree of diffusion restriction is measured using a parameter known as the apparent

diffusion coefficient (ADC), which reflects tissue microstructural properties. Areas

with high cellularity, such as tumors, typically exhibit lower ADC values due to in-

creased cellular density and restricted water diffusion. Conversely, regions of free

water diffusion, such as cerebrospinal fluid-filled spaces, display higher ADC values.

By analyzing these diffusion characteristics, DWI provides clinicians with valuable

information about tissue integrity and pathology, facilitating the early detection and

characterization of various neurological disorders, including strokes, tumors, and de-

myelination in conditions such as multiple sclerosis .

Diffusion Tensor Imaging (DTI) is an extension of DWI that specifically

focuses on mapping the orientation and direction of water diffusion within tissues.

DTI essentially acts as a compass, discerning not only how water moves but also

its preferred directionality within biological structures (4). This capability allows

for the visualization and mapping of white matter tracts in the brain, crucial for

understanding brain connectivity. DTI achieves this by applying multiple diffusion-

sensitizing gradients in different directions, which enable the estimation of a diffusion

tensor at each voxel in the image. The diffusion tensor represents the magnitude and

12



Figure 4: White matter fiber tracts in the adult human brain [Saygin et al. (2017)].

directionality of water diffusion, providing information about the underlying tissue

microstructure and organization. By analyzing the principal eigenvector of the diffu-

sion tensor, DTI can determine the primary direction of water diffusion within each

voxel, thus facilitating the reconstruction of white matter fiber tracts. This ability to

map white matter pathways is particularly valuable in studying various neurological

conditions, including traumatic brain injury and neurodegenerative diseases, where

alterations in white matter integrity are evident [Hu et al. (2022)].

Within DTI, metrics like Fractional Anisotropy (FA), Mean Diffusivity (MD),

Radial Diffusivity (RD), and Axial Diffusivity (AD) are commonly analyzed. FA

quantifies the degree of anisotropy of water diffusion, particularly in white matter.

Anisotropy refers to the directional dependence of diffusion, indicating the extent to

which water molecules preferentially diffuse along specific orientations rather than

equally in all directions. It ranges from 0 to 1, where 0 represents isotropic diffusion

(equal diffusion in all directions) and 1 represents perfectly anisotropic diffusion (dif-
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fusion along a single direction). MD reflects the average diffusion magnitude in all

directions within a voxel. It is sensitive to changes in tissue microstructure, such as

alterations in cell density, edema, or tissue damage. Increased MD values are often

associated with tissue pathology, inflammation, or neuronal loss. RD measures dif-

fusion perpendicular to fiber bundles and is indicative of myelin integrity. Elevated

RD values may suggest demyelination or damage to the myelin sheath surrounding

axonal fibers. AD measures diffusion along fiber bundles, reflecting axonal integrity.

Changes in AD values can indicate axonal degeneration, regeneration, or alterations

in axonal density. Decreased AD values may signify axonal loss, while increased AD

values may suggest axonal regeneration or compensatory changes in response to in-

jury or disease. Together, FA, MD, RD, and AD provide comprehensive insights into

white matter microstructure, crucial for understanding neurological conditions and

assessing treatment efficacy [Hu et al. (2022)].

Neurite Orientation Dispersion and Density Imaging (NODDI) is a so-

phisticated MRI technique that goes beyond DTI by providing detailed information

about tissue microstructure. NODDI distinguishes between different types of barri-

ers that restrict water movement, such as cell membranes and myelin, and quantifies

the density and orientation of neurites (axons and dendrites) within the brain. By

characterizing the complexity of tissue microstructure, NODDI contributes to our

understanding of neurological disorders such as Alzheimer’s disease, offering insights

into alterations in neuronal architecture beyond what DWI and DTI can provide.

NODDI introduces metrics like Orientation Dispersion Index (ODI) and Volume

Fraction of Cerebrospinal Fluid (Vic), which further enhance our ability to assess

tissue composition and understand neuroplasticity and structural changes in neu-

rological conditions. ODI quantifies the dispersion of neurite orientations within a

voxel. Higher ODI values suggest greater complexity or dispersion of neurite orien-

tations, potentially indicating increased neuroplasticity or structural alterations in
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neurological disorders. ODI is particularly useful for assessing white matter integrity,

as changes in neurite orientation dispersion may reflect alterations in axonal den-

sity or myelination. Vic represents the volume fraction of cerebrospinal fluid within a

voxel. Vic shows how much of the MRI voxel is filled with isotropic tissue components,

like CSF or regions with freely moving water molecules, versus tissue with organized

structures like neurites. Higher Vic values indicate a larger proportion of isotropic

tissue, suggesting areas with low cellular density or high extracellular space. These

NODDI metrics offer valuable insights into the underlying microstructural changes

associated with neurological disorders, aiding in diagnosis, prognosis, and treatment

evaluation [Zhang et al. (2012)].

3.3 MRI in Clinical Applications

MRI is indispensable in clinical practice for diagnosing and monitoring neurologi-

cal disorders [Stewart et al. (1992)]. Various MRI sequences are being used for specific

clinical scenarios, each offering unique advantages for evaluating different neurologi-

cal conditions. For example, T1-weighted images are ideal for assessing anatomy and

detecting structural abnormalities, while T2-weighted and FLAIR (Fluid-attenuated

inversion recovery) sequences are sensitive to pathology such as edema, inflammation,

and demyelination.

The interpretation of MRI findings extends beyond visual inspection of images; it

involves integrating imaging data with clinical information and ancillary tests to for-

mulate accurate diagnoses and prognoses. Quantitative analysis techniques, such as

volumetry and texture analysis, provide objective measures of tissue characteristics

and disease burden, facilitating disease monitoring and treatment response assess-

ment. For example, in patients with multiple sclerosis (MS), volumetric analysis of

brain lesions can quantify the extent of disease progression and assess treatment effi-

cacy. Additionally, texture analysis of MRI images can differentiate between different
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tissue types and provide insights into tissue heterogeneity, aiding in the characteri-

zation of tumors and predicting treatment outcomes. Furthermore, machine learning

algorithms trained on large datasets can aid in automated lesion segmentation and

classification, accelerating image analysis and reducing inter-observer variability. For

instance, in the context of brain tumor diagnosis, machine learning models trained on

annotated MRI images can automatically segment tumors and classify different tumor

subtypes based on their imaging features. This not only streamlines the diagnostic

process but also enhances consistency and accuracy in lesion identification, leading

to more reliable treatment planning and patient management [Davatzikos (2019)].

Despite technological advancements, MRI remains susceptible to various artifacts

that can confound image interpretation. Understanding the underlying causes of ar-

tifacts and employing appropriate mitigation strategies are essential for obtaining

diagnostically accurate images. For instance, motion artifacts, which are commonly

encountered in pediatric or claustrophobic patients, can be minimized through proper

patient preparation and sedation techniques. For example, pediatric patients may re-

quire sedation to reduce movement during scanning, while claustrophobic patients

may benefit from pre-scan counseling and the use of open MRI systems to allevi-

ate anxiety and minimize motion. Moreover, advanced motion correction techniques

integrated into MRI scanners, such as prospective motion correction and real-time

tracking, can further mitigate motion artifacts by adjusting imaging parameters dur-

ing data acquisition to compensate for patient movement. Susceptibility artifacts are

another common issue, often arising from metallic implants or air-tissue interfaces.

For instance, in patients with dental implants or orthopedic hardware, susceptibility

artifacts can cause signal distortion, making it challenging to assess nearby anatomical

structures. In such cases, careful sequence selection and optimization are necessary to

minimize artifacts. Techniques like using specialized sequences such as susceptibility-

weighted imaging (SWI) or adjusting imaging parameters to reduce susceptibility
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effects can help mitigate signal distortion and improve image quality. Additionally,

employing alternative imaging modalities like CT or ultrasound may be considered

for certain patients with metallic implants to avoid MRI-related artifacts altogether.

Furthermore, the use of advanced post-processing algorithms, such as artifact correc-

tion algorithms or image reconstruction techniques, can aid in reducing susceptibility

artifacts and enhancing image quality, particularly in challenging cases [T. B. Smith

(2010)].

3.4 Summary

MRI is a versatile imaging modality widely used in clinical practice for evaluat-

ing neurological disorders. Understanding the principles of MRI sequences and their

clinical applications is crucial for interpreting imaging findings accurately. Spin Echo

sequences provide detailed anatomical information, while diffusion sequences offer

insights into tissue microstructure and pathology. MRI plays a central role in di-

agnosing and monitoring neurological conditions, providing valuable information for

treatment planning and patient management.
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CHAPTER 4

Machine Learning Fundamentals

Machine learning (ML) is a subfield of artificial intelligence (AI) that focuses on

the development of algorithms and models capable of learning from data to make

predictions or decisions without being explicitly programmed. ML techniques have

become increasingly prevalent across various industries due to their ability to extract

insights from large datasets and automate complex tasks. In this chapter, we provide

a brief overview of machine learning fundamentals, covering both traditional machine

learning techniques and deep learning methods [P. Wang et al. (2021)]. For each

method, we will explore specific examples of machine learning algorithms utilized in

the papers summarized in this report in the following chapter.

4.1 Traditional Machine Learning

Traditional machine learning methods are algorithms that learn patterns and make

predictions based on input data. These methods often rely on statistical techniques to

identify relationships and patterns in the data. Here, we discuss some fundamental

traditional ML algorithms, including Support Vector Machines (SVM), k-Nearest

Neighbors (KNN), and Linear Regression.

4.1.1 Support Vector Machines

Support Vector Machines (SVM) is a supervised learning algorithm used for classi-

fication tasks. In SVM, the algorithm aims to find the hyperplane that best separates

the data points into different classes in feature space. The hyperplane is chosen to

18



maximize the margin, which is the distance between the hyperplane and the nearest

data points from each class, also known as support vectors [Chandra & Bedi (2021)].

For linearly separable data, the decision boundary is represented by the equation

of a hyperplane:

f(x) = wTx+ b, (4.1-1)

Where:f(x) is the decision function, w is the weight vector, x is the input feature

vector, and b is the bias term.

The optimization objective of SVM is to maximize the margin while minimizing

the classification error. This optimization problem can be formulated as a convex

quadratic programming problem.

4.1.2 k-Nearest Neighbors

k-Nearest Neighbors (KNN) is a simple and intuitive algorithm used for both

classification and regression tasks. In KNN, the prediction for a new data point is

based on the majority class (for classification) or the average value (for regression) of

its k nearest neighbors in feature space [Guo et al. (2003)].

For classification, the predicted class label of a new data point is determined by

a majority vote among its k nearest neighbors. The distance metric used to measure

the similarity between data points is typically Euclidean distance, although other

distance metrics such as Manhattan or Minkowski distance can also be used.

The value of k is a hyperparameter that needs to be tuned during model training.

A smaller value of k results in a more flexible model with higher variance, while a

larger value of k leads to a smoother decision boundary with lower variance.

4.1.3 Linear Regression

Linear Regression is a supervised learning algorithm used for predicting continuous

target variables based on one or more input features [Su et al. (2012)]. In linear
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regression, the relationship between the input features X and the target variable y is

modeled using a linear function:

y = β0 + β1x1 + ...+ βnxn, (4.1-2)

Where y is the target variable, x1, x2, ..., xn are the input features, and β0, β1, β2, ..., βn

are the coefficients (parameters) of the model.

The goal of linear regression is to learn the values of the coefficients that minimize

the residual sum of squares between the observed and predicted values of the target

variable. Linear regression assumes a linear relationship between the input features

and the target variable, which may not always hold true in practice. However, it re-

mains a powerful and widely used algorithm due to its simplicity and interpretability.

4.1.4 Decision Trees

Decision Trees are a versatile and interpretable supervised learning algorithm used

for both classification and regression tasks. In decision trees, the data is split recur-

sively into subsets based on the values of input features, with the goal of maximizing

the homogeneity (purity) of the resulting subsets [Suthaharan (2016)].

At each node of the tree, the algorithm selects the feature and the split point

that best separates the data into different classes (for classification) or reduces the

variance of the target variable (for regression). This process is repeated recursively

until a stopping criterion is met, such as reaching a maximum tree depth or minimum

number of data points in a leaf node.

The decision tree algorithm creates a tree-like structure where each internal node

represents a decision based on a feature, each branch represents the outcome of the

decision, and each leaf node represents the predicted class label or value of the target

variable.
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4.1.5 Random Forests

Random Forests are an ensemble learning technique that combines multiple deci-

sion trees to improve the predictive performance and robustness of the model [Rigatti

(2017)]. In a Random Forest, each decision tree is trained on a random subset of the

training data and a random subset of the input features.

During training, each decision tree is built independently, and the final prediction

is obtained by aggregating the predictions of all trees (e.g., taking the majority vote

for classification or averaging the predictions for regression).

4.2 Deep Learning

Deep learning is a subset of machine learning that uses artificial neural networks

with multiple layers to learn complex patterns in large amounts of data. Deep learn-

ing algorithms have shown remarkable performance in various tasks such as image

recognition, natural language processing, and speech recognition. Here, we discuss

two fundamental deep learning architectures: Convolutional Neural Networks (CNN)

and Residual Networks (ResNet) [P. Wang et al. (2021)].

4.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep neural networks par-

ticularly well-suited for processing and analyzing structured grid data, such as images

[O’shea & Nash (2015)]. CNNs are composed of multiple layers, including convolu-

tional layers, pooling layers, and fully connected layers.

Convolutional layers are the building blocks of CNNs and consist of filters (also

known as kernels) that slide over the input image, performing convolution operations

to extract local features. Each filter detects specific patterns or features in the input

image, such as edges, textures, or shapes.
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Considering a convolutional layer with L filters and denoting the input of the con-

volutional layer by C, we can express the lth convolutional map, O(l), corresponding

to the lth filter as

O(l) = σ(C ∗ f (l)), (4.2-3)

where ‘∗’ denotes 2-D convolution, σ is the activation function, and f (l) is the lth 2-D

convolutional filter.

Pooling layers are used to reduce the spatial dimensions of the feature maps while

preserving the most important information. Max pooling and average pooling are

common pooling operations used in CNNs. Fully connected layers are used to make

predictions based on the high-level features extracted by the convolutional and pooling

layers. These layers connect every neuron in one layer to every neuron in the next

layer.

4.2.2 Residual Networks

Residual Networks (ResNet) are a type of deep neural network architecture in-

troduced to address the vanishing gradient problem in very deep neural networks.

The key innovation of ResNet is the use of skip connections, also known as identity

mappings, to enable the flow of information through the network more effectively

[Koonce (2021)].

In a standard feedforward neural network, each layer learns a mapping from its in-

put to its output. However, as the network becomes deeper, it becomes increasingly

difficult to optimize the training objective due to the vanishing gradient problem.

Vanishing gradient is a phenomenon that occurs during the training of deep neural

networks, where the gradients of the loss function with respect to the network pa-

rameters become very small as they propagate backward through the network layers.

This can significantly slow down or even halt the training process, as small gradients

lead to negligible updates to the network weights, making it difficult for the model
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to learn meaningful representations from the data.

Backpropagation is the primary algorithm used to train neural networks by iter-

atively updating the network parameters (weights) based on the gradients of the loss

function with respect to those parameters. During backpropagation, gradients are

computed by recursively applying the chain rule of calculus to propagate the error

from the output layer back through the network layers.

The vanishing gradient problem arises when the gradients diminish as they prop-

agate backward through many layers of the network. This is often caused by the use

of activation functions with limited range, such as sigmoid or tanh functions, which

saturate for large or small inputs, leading to gradients close to zero. As a result,

the updates to the weights in earlier layers become negligible, hindering the training

process.

Residual Networks (ResNet) address the vanishing gradient problem by introduc-

ing skip connections, also known as identity mappings, that bypass one or more layers

and directly feed the input of a layer to its output. This allows the network to learn

residual mappings, capturing the difference between the desired output and the in-

put to the skipped layers. By enabling the flow of information through the network

more effectively, ResNet architectures can effectively train very deep networks without

suffering from the vanishing gradient problem.

Mathematically, the output of a residual block in a ResNet can be expressed as

follows:

y = F (x,W ) + x, (4.2-4)

Where x is the input to the residual block, F (x,W ) is the residual mapping learned

by the block, and W are the parameters (weights) of the block.

ResNet architectures typically consist of several residual blocks stacked on top of

each other, with shortcut connections (skip connections) between blocks. This allows

ResNet to effectively train very deep networks, with hundreds or even thousands of
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layers, without suffering from the vanishing gradient problem.

4.3 Summary

In this chapter, we have explained the fundamentals of machine learning (ML),

a vital subset of artificial intelligence (AI) revolutionizing various industries. We ex-

plored traditional ML techniques such as Support Vector Machines (SVM), k-Nearest

Neighbors (KNN), Linear Regression, Decision Trees, and Random Forests, each of-

fering unique strengths in pattern recognition and prediction tasks. Additionally, we

introduced deep learning methodologies, focusing on Convolutional Neural Networks

(CNNs) and Residual Networks (ResNet), which excel in processing complex data

structures like images and sequences.
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CHAPTER 5

Machine Learning and MRI Analysis

As discussed in previous chapters, MRI scans serve as a key indicator for clini-

cal decision-making about neurological disorders. Traditional methods for diagnosing

neurological disorders rely on clinical assessment, manual interpretation of radiologi-

cal imaging, and neurological examination. For instance, consider a patient presenting

with symptoms suggestive of Degenerative Disc Disease (DDD). Clinicians may con-

duct a physical examination and order an MRI scan to assess the severity of spinal

cord compression. However, manually analyzing MRI images to differentiate between

benign age-related changes and pathological compression can be challenging. More-

over, variations in interpretation among radiologists can further complicate diagnosis

[S. Wang & Summers (2012)].

Quantitative analysis of MRI represents a powerful approach for extracting ob-

jective measurements of tissue properties and physiological parameters from MRI

data [Tofts (2005)]. There is growing recognition that computer models may assist

in the initial interpretation of medical imaging studies and rapidly flag studies with

pathologic findings. Machine learning (ML) methods have been demonstrated to be

effective for various medical purposes [Chong et al. (2015), Mohamed et al. (2022),

VergaraVictor et al. (2017)]. These techniques offer a promising approach to enhance

the detection and characterization of neurological disorders from MRI scans. Machine

learning models can automatically extract relevant features from MRI images and be

helpful for diagnosis. These models can also aid in quantifying the degree of severity

of disorders, providing valuable information for treatment planning and monitoring

25



disease progression [Lundervold & Lundervold (2019).

In this chapter, we explain the principles, techniques, and clinical applications

of quantitative analysis in MRI, highlighting its significance in advancing medical

diagnostics and research.

5.1 Structural MRI

As discussed in Chapter 3, structural MRI images are widely used in clinical prac-

tice for diagnosing and monitoring neurological disorders due to their high resolution

and ability to provide detailed anatomical information. In recent years, there has

been a growing interest in using these images for developing models to better under-

stand the structure of the nervous system and predict neurological disorders. These

models leverage machine learning algorithms to analyze large datasets of structural

images and identify patterns associated with specific conditions. In this section, we

will provide an overview of related works by going through a recently published pa-

per, ”A deep learning model for detection of cervical spinal cord compression in MRI

scans” [Merali et al. (2021)] and analyze the method, findings, and implications. At

the end of this section, we will explore the gaps in structural image-based models.

5.1.1 Background

Machine learning techniques have garnered significant attention in recent years for

their potential to enhance the analysis of structural MRI (sMRI) images in various

neurological and psychiatric disorders [Lundervold & Lundervold (2019)].

Brain disorders, such as Alzheimer’s disease and Parkinson’s disease, are among

the most common and extensively studied neurological conditions. Structural MRI

plays a crucial role in diagnosing and monitoring these disorders, as it can detect

changes in brain structure and volume that are characteristic of these conditions.

Spinal cord disorders, on the other hand, are less studied and often overlooked in

26



neuroimaging research. This is partly due to the technical challenges associated with

imaging the spinal cord, which is smaller and more susceptible to motion artifacts

compared to the brain. However, recent advancements in MRI technology, such as

high-resolution imaging and motion correction techniques, have made it possible to

obtain high-quality images of the spinal cord. As a result, there is a growing interest

in using structural MRI to study spinal cord disorders.

Deep convolutional neural networks have shown promise in this area and have been

tested in a variety of pathology categories. Researchers have made use of convolutional

neural networks (CNNs) for automated segmentation of spinal imaging [Michopoulou

et al. (2009)]. In addition, previous studies have utilized computer vision methods,

including CNNs, to extract quantitative parameters from cervical spinal cord MRI

scans [Jin et al. (2016)]. The majority of studies have focused on classifying MRI

images of the lumbar spine [Castro-Mateos et al. (2014)].

5.1.2 Case-Study 1: DCM Classification

As explained in chapter 2, degenerative cervical myelopathy (DCM) is a preva-

lent condition characterized by progressive compression of the cervical spinal cord,

resulting in substantial functional impairment and diminished quality of life for af-

fected individuals. With the increasing volume of medical imaging data, there is a

growing recognition of the potential for deep learning models to assist in interpreting

MRI scans, particularly in primary-care settings. In this section, we will explain a

recently published paper, ”A deep learning model for detection of cervical spinal cord

compression in MRI scans” [Merali et al. (2021)]. This study aimed to develop and

validate a deep learning model specifically for detecting cervical spinal cord compres-

sion in MRI scans, with the potential to improve the efficiency and objectivity of

interpretation.
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Data Acquisition

T2-weighted MRI data were obtained retrospectively from 605 patients enrolled

in the AO Spine CSM North America (CSM-NA) or AO Spine CSM International

(CSM-I) clinical studies. These studies had prior institutional research ethics board

approval and were conducted in accordance with relevant guidelines. Eligible patients,

meeting specific criteria including age, evidence of cervical spinal cord compression,

and symptomatic DCM, were included (289 patients). MRI studies were collected in

DICOM format, accompanied by baseline clinical data such as demographic informa-

tion and modified Japanese Orthopedic Association (mJOA) scores, a standardized

measure used to assess the severity of symptoms in patients with DCM.

Data Pre-processing and Labeling

A comprehensive data pre-processing protocol was implemented to prepare the

MRI data for analysis. This included anonymization of MRI studies, conversion of

axial T2-weighted sequences into JPEG images, and normalization of pixel values.

The anonymization process removed patient identifiers using specialized software,

ensuring data privacy. The acquired MRI images were then converted into JPEG

format and down-sampled to a uniform size of 299× 299 pixels. Subsequently, pixel

values were normalized between 0 and 1 to facilitate consistent analysis. Importantly,

the heterogeneity in the number of MRI slices was preserved to maintain dataset

diversity.

Following pre-processing, two senior neurosurgical residents independently exam-

ined each image to label spinal cord compression as ”compressed” or ”non-compressed.”

Inter-rater reliability was assessed using Cohen’s kappa metric, and discrepancies were

resolved through consensus discussion. This rigorous labeling process ensured the ac-

curacy and reliability of the labeled dataset, serving as the ground-truth reference for

model development and validation.

28



Table 1: Demographics of patients and scanner parameters in the training/validation
and holdout datasets.

Two distinct patient cohorts were defined: a training/validation dataset and a

holdout dataset. The training/validation dataset comprised 75% of patients from

each site (201 patients), chosen randomly, while the remaining 25% constituted the

holdout dataset (88 patients). Demographic information from each dataset is seen

in Table 1. Patient age, gender, baseline mJOA, MRI scanner manufacturer, and

MRI image parameters, did not significantly differ between the Training/Validation

Dataset and the Holdout Dataset.

Model Architecture and Training

The ResNet-50 convolutional neural network architecture was utilized in this

study. Transfer learning was employed, where the initial weights for the network

were adapted from those developed during the ImageNet competition Russakovsky

et al. (2014). Transfer learning involves initializing model weights from a pre-trained

model, facilitating faster tuning of the model for specific tasks. In this case, the

weights from a model trained on a different larger dataset will be used to start the

training, instead of radom initialization, leveraging the learned representations of

simple image features like edges.

The fully connected layers of the ResNet-50 network were replaced with a set of

fully connected layers with randomly initialized weights. The number of neurons in

these fully connected layers was varied to explore different network configurations.
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Figure 5: Overview of the convolutional neural network model architecture. The
convolutional layers (orange) were derived from the Resnet-50 model, while
the fully connected layers were modified for the classification task. Seven
separate model configurations were tested as shown.

Dropout layers were also incorporated to mitigate overfitting during training. Figure

5 shows the model.

Several network configurations were tested, each varying in the number of fully

connected layers and neurons, as well as the dropout rate. These configurations

were evaluated using the training/validation dataset, with performance metrics such

as binary cross-entropy loss and accuracy monitored during training. The Adam

optimizer was used during model training, with hyperparameters such as learning

rate and momentum tuned using a random search strategy.

After training, the best performing model architecture was selected based on its

performance on the validation set. This model was then tested on a holdout dataset,

and various performance metrics including area under the receiver operating charac-

teristic curve (AUC), sensitivity, specificity, and f1 score were calculated.

Additionally, class activation maps (CAMs) were generated to visualize the regions

of the image that contributed most to the model’s classification decisions. CAMs help

to interpret the model’s behavior and identify relevant image features associated with

each class.
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Table 2: Comparison of model performance during training.

Results

The Training/Validation Dataset, consisting of 201 patients, was utilized for model

training. Seven neural network configurations were trained, with Model 6 achieving

the highest accuracy and lowest binary cross-entropy loss on the validation set (Table

2). Model 6, based on the ResNet-50 CNN architecture, included two fully connected

layers with 512 neurons each and two dropout layers with 30% dropout 5. Model

6 was tested on the holdout dataset, achieving an AUC of 0.94, sensitivity of 0.88,

specificity of 0.89, and f1-score of 0.82. For each patient in the holdout dataset, the

model’s classification output was compared to human labelers’ assignments, with a

median AUC of 0.94 across patients (Table 3).

Class activation maps (CAMs) were generated to visualize the features contribut-

ing to the model’s classifications. True positive examples showed activation over

clinically relevant areas such as the spinal cord and cerebrospinal fluid (CSF) spaces,

while false negatives sometimes relied on features outside the spinal canal or focused

on relevant areas but resulted in incorrect classifications (Figure 6). The successful

development and validation of the deep learning model represent a significant advance-

ment in automated diagnostic tools for spinal disorders. By leveraging a large dataset

of cervical spine MRI scans, the study has demonstrated the feasibility of training

an existing convolutional neural network for this novel medical imaging classification

task. The model’s high performance metrics underscore its potential to enhance di-

31



Table 3: Model performance on the holdout dataset stratified by patient characteris-
tics and MRI scanner manufacturer.

Figure 6: Class activation maps were generated for both correctly classified (true
positives) and incorrectly classified (false negatives) example images. Blue
indicates no activation, while red indicates maximal activation. In true
positive cases, maximal activation typically occurred over the spinal canal
and spinal cord. However, false negatives sometimes showed activation over
irrelevant areas like paraspinal muscles or vascular structures. In some false
negatives, activation occurred over the spinal cord and canal, but also over
seemingly unrelated areas of the image.
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agnostic workflows in clinical settings, providing rapid and accurate interpretation of

MRI scans to aid clinical decision-making.

Limitations

The study’s reliance on a dataset primarily composed of patients with confirmed

Degenerative Cervical Myelopathy (DCM) who underwent surgical intervention could

limit the generalizability of the model. This patient population may not fully repre-

sent the spectrum of DCM severity and may exclude asymptomatic or mildly symp-

tomatic individuals who opt for conservative management. Additionally, the exclusion

of patients who did not undergo surgical treatment may introduce selection bias and

hinder the model’s applicability to a broader patient cohort.

Furthermore, the study’s binary classification system, which categorizes spinal

cord segments as either compressed or non-compressed, may oversimplify the complex-

ity of spinal cord compression severity. This dichotomous approach fails to account

for variations in compression degree and the nuanced impact on clinical outcomes.

Incorporating more nuanced classification schemes or severity scoring systems could

provide a more comprehensive assessment of spinal cord compression severity and

improve the model’s predictive accuracy.

The study’s reliance on subjective interpretations by radiologists for labeling may

introduce variability and potential biases into the dataset. Objective measures or

advanced imaging techniques, such as quantitative analysis algorithms or diffusion

tensor imaging, could provide more standardized and reliable assessments of spinal

cord abnormalities. Additionally, the use of healthy segments from patients’ cords

as normal labels may not fully capture the potential impact of spinal cord injuries

on adjacent regions. Future studies should consider including healthy controls to

establish a more robust baseline for comparison and enhance diagnostic accuracy.
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5.2 Diffusion MRI

Traditional neuroimaging techniques such as structural MRI provide valuable

anatomical information but often lack the sensitivity to detect subtle microstruc-

tural changes in the brain. Diffusion imaging techniques, including diffusion tensor

imaging (DTI) and neurite orientation dispersion and density imaging (NODDI),

offer unique insights into tissue microarchitecture and white matter integrity. By

leveraging machine learning (ML) algorithms, researchers aim to harness the rich in-

formation encoded in diffusion images to improve the understanding and management

of neurological disorders.

In this section, we will provide an overview of related works in the field,and then we

will go through two recently published papers, ”Machine learning-based classification

of chronic traumatic brain injury using hybrid diffusion imaging” [Muller et al. (2023)]

and ”Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion

Tensor Imaging and Tractography” [Park et al. (2022)] and analyze the method,

findings, and implications. At the end of this section, we will explore the limitations

of these studies.

5.2.1 Background

Previous studies have demonstrated the potential of biomarkers derived from diffu-

sion data, such as NODDI and DTI, in combination with machine learning techniques,

for detecting neurodegenerative diseases like Alzheimer’s abnormalities [Prasuhn et

al. (2020)]. However, there is a notable gap in research regarding the application of

machine learning to infer cognitive deficits in patients with chronic traumatic brain

injury (cTBI). Current algorithms often lack the capability to make predictions with-

out age-matched controls or neglect to explore the diagnostic potential of higher-order

diffusion models, such as NODDI [Qu et al. (2021)]. Thus, there exists a need for

further investigation into the development of machine learning models that can effec-
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tively analyze diffusion data to infer cognitive impairments in cTBI patients.

5.2.2 Case-Study 2: TBI Classification

As explianed in chapter 2, traumatic brain injury (TBI) is a significant public

health concern, often leading to chronic impairments and disabilities. Conventional

neuroimaging methods, such as T1-weighted imaging, may not adequately capture the

underlying neuropathology of chronic TBI. Therefore, there is a growing interest in

leveraging advanced imaging techniques, such as diffusion tensor imaging (DTI) and

neurite orientation dispersion imaging (NODDI), to develop biomarkers for detecting

and monitoring chronic TBI. In this study, machine learning (ML) algorithms were

employed to analyze hybrid diffusion imaging (HYDI) data and develop biomarkers

for inferring symptom severity in chronic TBI patients.

Data Acquisition

A total of 59 subjects were recruited for this study, comprising 17 men and 42

women, with an average age of 47 ± 15 years, all experiencing chronic symptoms

resulting from concussion-induced mild traumatic brain injury (mTBI) (Malec et

al., 2007). Among the 59 cTBI subjects, 22 had sustained a single concussion. All

subjects met criteria for mild traumatic brain injury, including no significant amnesia,

and no structural brain injury evident on MRI, such as hematoma, contusion, or brain

stem injury. Symptoms emerging after TBI could include headache, hypersensitivity

to auditory or visual stimuli, balance problems, cognitive problems, or emotional

problems (e.g., depression or anxiety).

Clinical assessment of TBI subjects included a battery of self-reported measures

and cognitive tests, administered on the same day as the imaging study. Subjects

were classified based on individual scores compared to the mean value of the entire

cohort for each of the 21 tested neuropsychological outcomes, categorized as favor-
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able or unfavorable outcomes. Only two of the tests were utilized in this paper for

classification.

Data Pre-processing and Labeling

The initial preprocessing of raw DICOM data involved correcting susceptibility-

induced distortion. The output was then used to align all volumes to the b0 image

for eddy current correction. B0, or the ”b-zero” image, refers to a specific type

of image acquired during diffusion magnetic resonance imaging (dMRI). In dMRI,

different images are obtained using varying magnetic field gradients, which provide

information about the diffusion properties of water molecules in tissues. The b0

image is acquired with no diffusion weighting, meaning that it does not sensitively

measure water diffusion and serves as a reference or baseline image. Prior to fitting

the DTI and NODDI models, denoising was performed, which utilizes dMRI noise

level estimation and denoising based on random matrix theory.

DTI parameter maps, including fractional anisotropy (FA), mean diffusivity (MD),

axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity. Higher-order

diffusion metrics, such as axonal density (intra-cellular volume fraction, Vic) and

orientation dispersion index (ODI), were computed from the NODDI component of

the analysis.

Diffusion and T1-weighted images were aligned to a common template in Montreal

Neurological Institute (MNI152) standard space. Region-based metrics were then

calculated for each subject by averaging the diffusion and T1 metrics within each of

the 20 regions from the Johns Hopkins University white matter tractography atlas. As

a result, for each metric (FA, MD, AD, RD, ODI, Vic, T1), 20 feature was generated

representing that feature in corresponding region of the brain.

Subjects’ outcomes were classified as favorable or unfavorable based on their per-

formance in neuropsychological tests, specifically Trail making A (sec) and Trail mak-
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ing B (sec). In Trail Making A, participants are instructed to connect a sequence of

numbers as quickly as possible, while in Trail Making B, they are required to alternate

between numbers and letters in ascending order. For both tests, shorter completion

times indicate better cognitive function. Each subject’s score was compared to the

mean value of the entire cohort, with scores lower than the mean considered favorable

and scores higher than the mean considered unfavorable. Participants with missing

values or scores were excluded from the final analysis.

Model Architecture and Training

First, a feature selection was performed using DT, to select the most important

regions for the classification. Feature extraction and ranking preceded the training

of machine learning models, a crucial step aimed at enhancing inference accuracy

while mitigating overfitting risks. The proposed classification pipeline consisted of a

feature ranking module followed by a classification model. Notably, the decision tree

(DT) module ranked brain regions based on feature occurrence frequency, with the

top six features selected for subsequent classification. K-nearest neighbors (K-NN)

was chosen as the classifier due to its equitable treatment of features based on sample

distance, aligning with the objective of the study.

Evaluation of machine learning models was conducted through a K-fold cross-

validation (CV) approach, a standard practice in the assessment of model perfor-

mance, particularly in scenarios with limited datasets [Anguita et al. (2012)]. This

approach involved splitting the dataset into training and testing sets, with K sub-

sets generated for iterative testing. The models were trained on the training set and

evaluated using the testing set, ensuring consistent evaluation conditions across it-

erations (Figure 7). By employing this rigorous evaluation methodology, the study

aimed to ascertain the robustness and generalizability of the machine learning-based

classification model in predicting TBI severity based on imaging metrics. The accu-
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Figure 7: Flow chart representing ML approach for cTBI classification, including im-
age acquisition, preprocessing, image normalization and skeletonization us-
ing TBSS, and atlas registration. The dataset was divided into training and
test datasets for K-fold CV, calculating the mean accuracy of each model.

racy of classification models based on DTI, NODDI, and T1-weighted imaging was

compared.

Results

First, five ML algorithms were employed, including support vector machine (SVM),

k-nearest neighbors (K-NN), logistic regression (LR), random forest (RF), and deci-

sion tree (DT), to classify outcomes of Trail making A (sec) and Trail making B (sec)

as favorable or unfavorable based on the DTI, NODDI, and T1 extracted features in

all 20 regions of the brain. The scikit-learn library in Python was utilized for model

development. The results are shown in Figure 8. This shows how DTI, and NODDI

features are better metrics for predicting outcomes in TBI.

Then the proposed method was tested using the extracted metrics. ML-based

models utilizing DTI and NODDI metrics demonstrated significantly higher accuracy
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Figure 8: Heatmap showing mean accuracy performance of different ML algorithms
for a trail making A and B. All 20 regions are used as features for the above
figure. Mean accuracy results based on T1 inferences are highlighted in red
and are expressed in percentages.

Table 4: Performance across all ML algorithms, including LR, DT, RF, K-NN, SVM,
and combined feature selection with K-NN.
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Figure 9: Feature ranking results for DTI (A), NODDI (B), and T1 (C) regions. Fea-
tures are displayed if they were ranked as significant for both trail making
A and B. Results of 6-feature KNN are displayed in light blue, compared
with 20-feature KNN results in dark blue (D).

in classifying chronic TBI compared to conventional T1-weighted imaging. Across ML

algorithms, the mean accuracy ranged from 58.7% to 73.0% for DTI-based models

and 64.0% to 72.3% for NODDI-based models (Table 4). Feature selection using DT

methods improved classification accuracy by approximately 11% (Figure 9).

This study highlights the potential of ML algorithms to utilize advanced diffu-

sion imaging techniques for inferring symptom severity in chronic TBI patients. DTI

and NODDI metrics outperformed conventional T1-weighted imaging in predicting

cognitive impairment, suggesting their utility as biomarkers for chronic TBI. Fea-

ture selection methods, such as DT, offer a promising approach to improve model

performance and identify relevant brain regions associated with clinical outcomes.

Limitations

One of the primary limitations of many studies in this field, including the present

study, is the reliance on predefined metrics rather than directly utilizing the images
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themselves. Incorporating image-based models alongside traditional metrics could

enhance the understanding and accuracy of outcomes assessment.

While ML algorithms offer powerful tools for analyzing complex imaging data,

the interpretability of model predictions remains a challenge. Understanding the

underlying features and mechanisms driving classification decisions is essential for

gaining insights into the pathophysiology of chronic TBI and translating research

findings into actionable clinical interventions. Future studies should prioritize the

development of interpretable ML models that provide clinically relevant insights.

Current studies often focus solely on analyzing imaging features, overlooking

the potential synergies between clinical and imaging features. Integrating multi-

modal data, including neuropsychological assessments, clinical symptoms, and imag-

ing biomarkers, could enhance the predictive accuracy and clinical utility of ML

models.

Furthermore, using mean values as the sole metric for defining favorable and

unfavorable outcomes may introduce sensitivity to the data, particularly in small

sample sizes. Alternative approaches, such as robust statistical methods or machine

learning techniques for outcome classification, may offer more reliable metrics for

outcome assessment in future studies.

5.2.3 Case-Study 3: Cervical SCI Outcome Prediction

Spinal cord injury (SCI) is a debilitating condition with profound implications for

patients’ neurological and functional outcomes. Conventional MRI has limitations

in assessing the microstructural changes within the spinal cord tissue, necessitating

the use of advanced imaging techniques such as DTI and tractography. This section

critically analyzes a study investigating the clinical utility of DTI and tractography

in predicting outcomes after traumatic cervical SCI. The study also assesses whether

the predictability differs before and after surgery.
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Figure 10: Flowchart of a schematic representation of the clinical study design.

Data Acquisition

A prospective randomized clinical trial involving acute-stage cervical spinal cord

injury (SCI) patients with American Spinal Injury Association impairment scale (AIS)

of B, C, and D was conducted. Inclusion criteria included acute traumatic injuries,

AIS B, C, and D, neurological levels of injury (NLI) corresponding to C7 or higher, and

receipt of surgical management. Exclusion criteria comprised combined or preexist-

ing brain lesions, combined peripheral nerve injuries, and patients with artifact-laden

images. Of the 89 initially enrolled patients, 28 were excluded, resulting in a total

of 61 subjects. Patients were randomly assigned to preoperative or postoperative

groups, with those undergoing DTI before surgery assigned to the former and those

examined four weeks after surgery to the latter. Patients who underwent DTI before

surgery and repeated the examination eight weeks post-injury were included in the

follow-up group. The final analysis included data from 38 patients with cervical SCI

(preop, n=24; postop, n=14; follow-up, n=10). The flowchart of patient enrollment

and the clinical trial design is depicted in Figure 10. Neurological assessment was per-

formed according to the International Standards for the Neurological Classification of

Spinal Cord Injury (ISNCSCI) developed by the American Spinal Injury Association
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Figure 11: Example of tractographic analysis.

(ASIA). Baseline evaluation occurred at four weeks post-injury, followed by a follow-

up assessment eight weeks later. AIS and NLI were determined for all patients, and

upper extremity motor scores (UEMSs) and lower extremity motor scores (LEMSs)

were evaluated. Sensory scores for light touch (LT) and pinprick (PP) were recorded

separately for upper and lower extremity dermatomes.

Activities of daily living (ADL) performance was evaluated using the Korean

version of the Modified Barthel Index (K-MBI) and Functional Independence Measure

(FIM) at four and eight weeks post-injury. The K-MBI consists of 10 items, and the

FIM assesses function in six areas, generating total, motor, and cognitive scores.

Multiplanar MRI of the cervical spine was acquired on a 1.5T MR scanner using a

T2-weighted fast spin-echo sequence. DTI was obtained via diffusion-weighted single-

shot echo-planar imaging (EPI) between spinal levels C2 and T1.

Data Pre-processing and Labeling

Rotationally invariant parameters such as fractional anisotropy (FA) and apparent

diffusion coefficient (ADC) values were calculated on a voxel-by-voxel basis. Trac-
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tography reconstructed fiber projections throughout the white matter, producing a

voxelwise map of fiber orientation (Figure 11).

Statistical Analysis

Statistical analyses were conducted using PASW Statistics(IBM Corp, Armonk,

NY, USA). The Mann-Whitney U test was employed to compare numerical data be-

tween two groups. The Pearson chi-square test was utilized to analyze baseline cate-

gorical data such as sex, cause, initial NLI and AIS, and the failure rate of DTI anal-

ysis between the preoperative (preop) and postoperative (postop) groups. Changes in

neurologic scores, functional scores, and quantitative DTI parameters between initial

and follow-up statuses of patients in the follow-up group were compared using the

Wilcoxon signed-rank test.

Spearman correlation analysis was performed to delineate the relationships be-

tween neurologic and functional assessments and quantitative DTI parameters (FA,

ADC, fiber numbers, and connection rate) at each cervical level. A p-value less than

0.05 was considered statistically significant.

Results

In this study, an analysis was conducted to investigate changes in neurologic,

functional, and diffusion tensor imaging (DTI) parameters following surgery compared

to preoperative statuses in cervical spinal cord injury (SCI) patients. Between the

preoperative (preop) and postoperative (postop) groups, no significant differences

were found in demographic characteristics or surgical approaches.

Both groups demonstrated significant improvements in upper extremity motor

scores (UEMS), Korean version of the Modified Barthel Index (K-MBI), and total

Functional Independence Measure (FIM) scores after 4 weeks. Additionally, signifi-

cant improvements were observed in sensory scores and total FIM scores in the preop
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Table 5: DTI parameters between the preop and postop groups.

Table 6: Correlation analysis between follow-up (FU) neurologic and functional find-
ings and DTI parameters in the preop group.
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Table 7: Correlation analysis between baseline neurologic and functional findings and
DTI parameters in the postop group

group. However, no significant differences were noted between the preop and postop

groups in these assessments.

Comparing quantitative DTI parameters between the two groups revealed signifi-

cant differences. The preop group exhibited higher fractional anisotropy (FA) values

at C3 and C4 levels and lower apparent diffusion coefficient (ADC) values at C3, C4,

C5, and C7 levels compared to the postop group. Moreover, the preop group showed

higher fiber numbers at all levels and lower failure rates in DTI analysis. Spear-

man correlation analysis indicated significant associations between preoperative DTI

parameters and baseline neurologic and functional scores, with FA and ADC values

correlating with motor and sensory scores, respectively (Table 5).

Postoperative DTI parameters were significantly correlated with baseline clin-

ical statuses and functional outcomes. Lower FA values and higher ADC values

postoperatively suggested axonal membrane damage and disorganization within fiber

tracts. Fiber numbers and crossing fiber numbers significantly decreased postoper-

atively compared to preoperative values. Correlation analyses revealed associations

between postoperative DTI parameters and clinical scores, with significant correla-

46



tions observed particularly between postoperative fiber numbers and functional scores

(Table 6 and 7).

While the study had limitations including sample size and varied surgical ap-

proaches, it highlights the significance of preoperative and postoperative DTI in pre-

dicting neurological and functional outcomes in cervical SCI patients. The findings

emphasize the importance of interpreting DTI separately before and after surgery for

a comprehensive understanding of patient prognosis.

Limitations

The study’s sample size was relatively small, and the follow-up period was rel-

atively short. Larger cohort studies with longer follow-up durations are needed to

validate the findings and better understand the long-term prognostic value of DTI

and tractography in cervical SCI.

The diverse array of surgical approaches utilized in treating cervical SCI patients

introduces variability in postoperative DTI findings. Future studies could explore the

impact of different surgical techniques on DTI parameters and establish standardized

protocols for surgical interventions to minimize confounding factors in DTI analysis.
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CHAPTER 6

Discussion

6.1 Explored Questions

Through the analysis of these three papers, it becomes evident that machine learn-

ing (ML) holds significant promise in enhancing both structural and diffusion tensor

imaging (DTI) classifications. Studies focusing on structural MRI showed the capabil-

ity of ML algorithms to distinguish between different neurological disorders with high

accuracy, enabling early and precise diagnoses. Moreover, the application of ML in

DTI analysis showcases its potential in predicting functional outcomes in conditions

like traumatic brain injury (TBI), where traditional imaging methods may fall short.

Interestingly, while ML has been extensively utilized in various medical imaging do-

mains, its application for spinal cord classifications remains relatively understudied,

presenting a significant area for exploration and potential improvement. Using ML

techniques for spinal cord classifications could offer valuable insights into neurological

disorders affecting the spine, paving the way for more accurate diagnoses and tailored

treatment strategies.

The choice of imaging sequences plays a crucial role in the accuracy and efficacy

of diagnostic models. DTI has emerged as a particularly valuable sequence, offering

insights into tissue microarchitecture and white matter integrity. Studies examining

TBI highlight the enhanced accuracy achieved by incorporating DTI metrics such

as fractional anisotropy and mean diffusivity into predictive models, enabling more

precise assessments of neurological recovery and guiding personalized rehabilitation

strategies. Additionally, the utility of T2-weighted images in degenerative cervical
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myelopathy (DCM) classification underscores the importance of leveraging diverse

imaging sequences to capture comprehensive anatomical and pathological informa-

tion. Integrating multiple imaging modalities, including DTI and T2-weighted imag-

ing, can enhance diagnostic accuracy and provide a more holistic understanding of

neurological disorders.

The timing of imaging acquisitions, particularly in relation to surgical inter-

ventions, significantly influences the interpretation and predictive value of imaging

data. Studies focusing on traumatic cervical spinal cord injury (SCI) underscore

the importance of interpreting preoperative and postoperative DTI and tractography

data separately. Preoperative DTI and tractography demonstrate superior fractional

anisotropy (FA) and apparent diffusion coefficient (ADC) values, with lower interpre-

tation failure rates compared to postoperative data. However, postoperative DTI and

tractography data more accurately reflect the patient’s clinical state at the time of

evaluation. This highlights the critical role of timing in imaging acquisitions and sug-

gests that DTI and tractography should be interpreted in the context of the patient’s

surgical history to predict clinical outcomes effectively.

6.2 Unexplored Questions and Future Works

Despite significant advancements in the application of machine learning (ML) and

neuroimaging techniques, several questions remain unexplored, offering avenues for

future research. Understanding the impact of demographic factors, such as age, on

imaging biomarkers and predictive models is essential for tailoring treatment strate-

gies to individual patients. Moreover, addressing challenges related to reducing arti-

fact effects in imaging data and identifying optimal ML methods for different imaging

modalities can further enhance the accuracy and reliability of diagnostic models. Ex-

ploring these uncharted territories holds promise for refining existing techniques and

developing novel approaches to neuroimaging analysis.
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The influence of age on neuroimaging biomarkers and predictive models is a crit-

ical area that warrants further investigation. Age-related changes in brain structure

and function may impact the interpretation of imaging data and the efficacy of diag-

nostic models. Understanding how age influences the relationship between imaging

metrics and clinical outcomes can inform the development of age-specific diagnostic

algorithms and treatment strategies. Future studies should explore the role of age as

a potential confounding factor in neuroimaging analysis and incorporate age-related

considerations into predictive models for neurological disorders.

Artifacts in neuroimaging data can significantly compromise the accuracy and

reliability of diagnostic models. Addressing artifact effects requires comprehensive

strategies for data preprocessing and quality control to minimize their impact on

imaging analysis. Techniques such as motion correction, spatial filtering, and artifact

detection algorithms can help mitigate artifact effects and improve the robustness of

neuroimaging analyses. Future research should focus on developing advanced arti-

fact reduction methods tailored to specific imaging modalities and optimizing pre-

processing pipelines to ensure high-quality imaging data for accurate diagnosis and

prediction.

Choosing the most appropriate machine learning (ML) method for neuroimaging

analysis depends on various factors, including the nature of the data, the complex-

ity of the task, and the desired clinical outcomes. Different ML algorithms, such

as support vector machines, neural networks, decision trees, and ensemble methods,

offer unique advantages and may be more suitable for specific applications. Compar-

ative studies evaluating the performance of different ML methods on neuroimaging

datasets can help identify the most effective approaches for different tasks. Addition-

ally, incorporating domain knowledge and expert input into ML model development

can enhance interpretability and clinical relevance. Future research should explore

the strengths and limitations of various ML methods in neuroimaging analysis and
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establish guidelines for selecting the optimal approach based on specific diagnostic

and prognostic objectives.
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CHAPTER 7

CONCLUSION

The integration of magnetic resonance imaging (MRI) with advanced quantita-

tive analysis techniques and machine learning (ML) methods represents a significant

advancement in the field of neurological disorder detection and diagnosis. MRI has

become a cornerstone in the imaging evaluation of neurological disorders, offering

detailed anatomical insights into the brain and spinal cord.

Traditionally, MRI has relied on qualitative assessments by radiologists, which

may be subjective and lack sensitivity to subtle changes in tissue properties. How-

ever, recent advancements in quantitative analysis have transformed MRI into a pow-

erful tool for objective measurement of tissue-specific parameters. This quantitative

approach has the potential to provide deeper insights into tissue microstructure, func-

tion, and pathology, thereby enhancing diagnostic accuracy and informing treatment

decisions.

These ML-based methods further enhances the capabilities of MRI-based tech-

niques for neurological disorder detection. ML algorithms can extract hidden patterns

and associations from MRI data, enabling a more comprehensive understanding of

neurological disorders. By leveraging ML, MRI has the potential to improve diagnosis,

prognosis, and treatment strategies for neurological disorders, ultimately benefiting

patients and healthcare providers alike.

Through the analysis of key research papers and discussions on the current state

of the art in MRI-based techniques for neurological disorder detection, this report

explored the potential and challenges in this rapidly evolving field. While significant
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progress has been made, there are still unexplored questions and opportunities for

future research.

Moving forward, addressing questions such as the impact of age on imaging

biomarkers, strategies for reducing artifact effects, and the selection of optimal ML

methods will be crucial for further advancing MRI-based techniques for neurological

disorder detection. Collaborative efforts between researchers, clinicians, and industry

partners will be essential for translating these advancements into tangible benefits for

patients and healthcare providers.
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