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Abstract 
Heart disease stands as the foremost cause of mortality worldwide, particularly in developing 
countries where access to cardiologists remains scarce. While low-cost electrocardiogram (ECG) 
machines are accessible in these areas, these machines lack the capacity to comprehensively 
assess health factors of the patient such as age, weight, and medical history. In pursuit of an 
automated diagnostic approach for six potential cardiovascular diseases, a Convolutional Neural 
Network (CNN) underwent training on a dataset comprising 250,000 electrocardiogram (ECG) 
examinations supplied by the Telehealth Network of Minas Gerais. The performance of this 
neural network was compared to a published Deep Neural Network (DNN), as referenced in 
“Automatic diagnosis of the 12-lead ECG using a deep neural network,” by Antônio H. Ribeiro 
et. Al., and diagnoses from medical students and residents, employing the F1 score metric. The 
results indicate the CNN surpassed the diagnostic abilities of medical students and residents but 
fell short of the performance of the DNN detailed in the referenced study. 
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Section 1: Problem Statement  
Within developing countries, there is a pressing issue of inadequate access to 

cardiovascular healthcare, primarily due to the severe shortage of cardiologists. For instance, in 
Brazil in 2022, there were only 8.40 cardiologists for every 100,000 individuals, while in Africa, 
a continent with a population of approximately 1.2 billion people, there are only about 2,000 
recorded cardiologists. This alarming scarcity of official cardiologists requires the urgent need 
for innovative solutions, and although low-cost electrocardiogram (ECG) machines are available 
in these regions, they fall short in providing comprehensive diagnoses due to their reliance on 
classical and naïve algorithms. These machines often lack the capacity to comprehend a wider 
range of present cardiovascular disease indictors, reducing their effectiveness in detecting 
indicators of cardiovascular diseases.  

To address this gap, our team proposes the development of a supervised machine learning 
model tailored for cardiovascular disease detection – specifically of the following diseases: 1st 
Degree Atrioventricular Block (1dAVb), Right Bundle Branch Block (RBBB), Left Bundle 
Branch Block (LBBB), Sinus Bradycardia (SB), Atrial Fibrillation (AF), and Sinus Tachycardia 
(ST). Our model will analyze a diverse range of signal variations to emulate the diagnostic 
capabilities of experienced medical professionals. This approach allows us to proceed in the 
correct direction to enhance diagnostic accuracy and expand access to cardiovascular healthcare 
in resource-constrained environments.   

Furthermore, our project aligns closely with several United Nations Sustainable 
Development Goals (SDG) that emphasize the importance of social responsibility and ethical 
conduct. Specifically, by striving to improve access to cardiovascular healthcare in developing 
countries, our project directly contributes to SDG No. 3: Good Health and Well-Being as our 
team is aiming to reduce healthcare inequalities and promote a healthier well-being for 
individuals in need. (https://sdgs.un.org/goals, 2024). Moreover, our work also aligns with SDG 
No. 10: Reduce inequality within and among countries. (https://sdgs.un.org/goals, 2024). As we 
work towards creating equal access to cardiovascular healthcare, we directly accomplish this 
specific SDG goal. By contributing to reducing these disparities and promoting healthcare 
equity, our project highlights our commitment to social responsibility and ethical practices in 
software.  

Section 2: Design Criteria 
The table below outlines the design criteria for this project. The primary goal is to 

replicate the performance metrics outlined in "Automatic diagnosis of the 12-lead ECG using a 
deep neural network," by Antônio H. Ribeiro et al. Performance metrics derived from an 
evaluation dataset are provided for a deep neural network system, two 4th year cardiologist 
residents, two 3rd year emergency residents, and two 5th year medical students. For the students 

https://sdgs.un.org/goals
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and residents, each student or resident was responsible for the annotation of one half of the 
evaluation dataset. This project’s design criteria hinge on comparing the performance of our 
team’s model to the performance from the previously mentioned published paper’s model. 

 

Criteria Negotiable/Non-Negotiable 

Exceed performance of study’s Deep Neural Network Negotiable 

Exceed performance of 4th year cardiologist residents Non-Negotiable 

Exceed performance of 3rd year emergency residents Non-Negotiable 

Exceed performance of 5th year medical students Non-Negotiable 

Packaged with compact and easy to use software Non-Negotiable 

Compatible with standard ECG file formats 
(PHYSIONET, WFDB) Non-Negotiable 

 

Table 2.1: Design Criteria 

 In terms of comparing our trained classifier’s performance to the metrics published in the 
chosen paper, exceeding the performance of the 4th year cardiologist residents, 3rd year 
emergency residents, and the 5th year medical students is labeled as non-negotiable. This is 
because the goal of the project is to produce a classifier that acts as a cardiologist would, which 
requires outperforming the results of residents and students. Exceeding the performance of the 
study’s published neural network was labeled as negotiable, as it is our belief that the neural 
network’s training was optimized for performance over a specific evaluation dataset, and 
matching the results of the study’s neural network would be unrealistic. 

 There are also two additional non-negotiable design criteria. The first is that our software 
must be packaged with compact and easy to use software. This will require the development of 
Python tool scripts for data processing, training, and decoding, along with README documents 
to accompany these scripts. This is non-negotiable because if our software is to be used by other 
groups, well-documented and packaged code will make sure no time is wasted attempting to set-
up our software.  

 The second additional non-negotiable component of our design criteria is that our 
software must be compatible with standard ECG file formats, which include PHYSIONET and 
WFDB file formats. This will be implemented by ensuring the software we use to read ECG 
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exams is compatible with both file formats, and that the ECG data will be converted to a 
consistent format, regardless of its source file formatting. This is non-negotiable because our 
goal for the future work of this project is to make it possible to implement our software in 
hospitals worldwide, where the source file formatting of the ECG exams can vary. 

Section 3: Potential Solutions 
In the field of machine learning classifiers and algorithms, there are numerous 

approaches available to pursue, where each one offers its own methodology of complexity. Some 
machine learning models can be developed using a simple classifier, while some are developed 
using more complex classifiers, such as deep neural networks. In our project, we opted to explore 
both non-neural network and neural network systems to conduct a comparative preliminary 
analysis, before ultimately choosing one system to fully pursue for our machine learning model 
after determining each systems’ performance in terms of their F1 score.  

3.1: Random Forest Classifier 
The Random Forest classifier (RNF) is a versatile machine learning algorithm known for 

its effectiveness in classification tasks. It operates by constructing multiple decision trees during 
its training phase, where each decision tree of the forest is built by using a random subset of the 
features and training data. During classification, input data is passed through each of the decision 
trees, and the final classification is determined by a majority vote or averaging of the individual 
tree predictions. Random Forest classifiers provide insight into the feature importance of the 
data, which makes them valuable tools for classification tasks across diverse application 
domains, as they provide informed decision-making and predictive accuracy. To ensure the 
relevance of the RNF in the context of this study, it is crucial to preprocess the data in a manner 
that standardizes all Electrocardiograms (ECGs). This involves converting each ECG from its 
raw 8 leads to the complete set of 12 leads. Subsequently, the signals were flattened, arranging 
all twelve leads of the ECG signal sequentially within each row of the training table. Each row 
then had had a corresponding annotation which is a .csv file containing 6 columns representing 
the presence or absence of a disease in that exam.  
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Figure 3.1.1: RNF Preprocessing 

 

 

Figure 3.1.2: Graphic of Random Forest classifier system 

 

3.2: Convolutional Neural Networks 
In Senior Design I, our advisor, Dr. Joseph Picone, directed our attention to a published 

paper titled, “Automatic diagnosis of the 12-lead ECG using a deep neural network,” authored 
by Antonio H. Ribeiro et al. This study presents a comprehensive exploration of a complex 
convolutional neural network (CNN) for the detection of cardiovascular diseases using 
electrocardiogram (ECG) data. To train their CNN, the authors utilized a large dataset comprised 
of 2,322,513 million labelled exams sourced from the Telehealth Network of Minas Gerais 
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(TNMG). (Ribeiro, 2020). This dataset is gathered from a diverse pool of 1,676,384 different 
patients of 811 counties within the state of Brazil. (Ribeiro, 2020). Given the diversity dataset, 
our team reached out to the authors to request permission for utilizing the same data in our deep 
neural network, and we were able to receive their consent.  

After conducting research about neural networks, our team opted to pursue a 
convolutional neural network as our second system to evaluate. Convolutional Neural Networks 
(CNN) are a class of deep learning algorithms that are specifically designed for processing 
images and time-series data. The architecture of CNNs is characterized by convolutional layers, 
which extract features from input data through the application of filters or kernels. These layers 
are typically followed by pooling layers, which ultimately down sample the feature maps to 
reduce computational complexity and extract the most important features. The main benefit of 
CNNs is their ability to automatically learn hierarchical representations of features directly from 
the raw data that it is given. The overall structure of CNNs make them optimal for wide ranges 
of applications, but most importantly, medical diagnoses.  

 

 

Figure 3.2.1: Graphical representation of CNN structure 
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Section 4: Engineering Design 
4.1: Fully Balanced Dataset 
 When analyzing the full dataset provided by the published paper, the team found that the 
full dataset is biased heavily towards the diagnosis of No Disease. Out of the 2.3 million exams, 
No Disease takes up approximately 88.50% of the full data set, while the other six cardiac 
abnormalities take up the remaining 11.50%. In other words, one class is being overemphasized 
in the training process, which ultimately decreases the fairness in cardiovascular disease 
detection amongst the remaining classes. A model trained on this full dataset would lead to a 
heavily unbalanced model that may detect No Diseases more frequently than the other cardiac 
abnormalities. By cutting down on the 2.3 million exams to create a fully balanced dataset, the 
model will be trained on equal exam amounts of each disease, which would lead to less bias 
towards one singular classification. Furthermore, utilizing a fully balanced dataset would reduce 
the possibility of undertraining and overtraining one specific disease.  

 Therefore, to create the fully balanced dataset, we found the total amount of instances of 
each disease within the 2.3 million data set. The following findings were:  

 

Disease Disease Prevalence 

1dAVb 35,759 (1.5%) 

RBBB 63,528 (2.7%) 

LBBB 39,842 (1.7%) 

SB 37,949 (1.6%) 

AF 41,862 (1.8%) 

ST 49,872 (2.1%) 

No Disease 2,053,701 (88.6%) 

 

Table 4.1.1: Cardiovascular disease prevalence of full dataset 

Analyzing Table 1, 1st Degree AV Block (1dAVb) has the lowest prevalence of 35,759 
instances in the full dataset. Therefore, in the fully balanced dataset, the remaining five 
cardiovascular diseases (RBBB, LBBB, SB, AF, ST, No Disease) would be truncated down 
35,759 instances, so that each class would have the same amount of training exams and can now 
be trained in a non-biased manner.   
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Figure 4.1.1: Comparison of unbalanced versus balanced dataset 

 

While training with a balanced data set promotes fairness, it also results in a decrease in 
the number of training examples compared to an unbalanced data set. This decrease did raise 
concerns within the group regarding model undertraining, considering that the general principle 
in machine learning is that higher volumes of input data lead to better model performance. 
Despite this concern, we anticipate minimal impact on F1 scores, given the already low 
prevalence of diseases compared to non-disease instances in the full data set. After careful 
consideration, our team has chosen to proceed with training the model using a balanced dataset 
approach. 

4.2: Confusion Matrices 
4.2.1: Binary Annotations 
 Once the chosen machine learning model is trained, we need to test the performance of 
the classifier. The first step in assessing the performance of our cardiovascular disease detection 
machine learning models is to run a set of predictions over a validation dataset. A validation 
dataset is a set of ECG tracings that also include the ground truth binary disease annotations 
associated with each exam. An example of a binary disease annotation can be seen below in 
Figure 4.1: 

 

Figure 4.2.1: Example Binary Disease Annotation String 
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 Each column of the binary string represents the state of one of the six cardiovascular 
diseases our model is going to be trained to detect. In Figure 2.1, there is a one in the column 
labeled RBBB (short for Right Bundle Branch Block) and the column labeled SB (short for 
Sinus Bradycardia), with zeros in every other column. This means the diseases present in this 
ECG exam are Right Bundle Branch Block and Sinus Bradycardia.  

4.2.2: Example of Confusion Matrices 
 Using the binary disease annotations, and their corresponding ECG tracings, we can run a 
machine learning prediction across a validation dataset. In these predictions, the machine 
learning model will generate a matrix of float values representing the likelihood that the disease 
is present in each exam. After this, the program performs what is called “thresholding”, where 
the program selects the cutoffs for these float values where the prediction will either be 
considered a positive prediction (1) or a negative prediction (0). An example of one of these float 
matrices and its threshold values can be seen below: 

 

Figure 4.2.2: Example Prediction Float Matrix 
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Figure 4.2.3 Example Threshold Vector 

 In Figure 4.2, each row represents a specific ECG exam that the machine learning 
predicted over. Each column holds the prediction float value for each disease classification. The 
values highlighted in green are the values that exceed the threshold values (depicted in Figure 
4.2.3) for their corresponding disease type and are labeled as positive predictions. All other 
values are labeled negative predictions. These threshold values are essentially generated by trial 
and error in a computer program, where the program will test different threshold values and 
select the ones with the best performance. 

After the thresholding process, a program will mark whether the machine learning model 
was right or wrong for each exam. The output of this process is what is known as a confusion 
matrix. An example of a confusion matrix for one cardiovascular disease can be seen below in 
Figure 4.2.4: 

 

Figure 4.2.4: Sample Confusion Matrix for Single Disease 
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 This confusion matrix depicts how the machine learning model predicted right and wrong 
across the validation dataset. This sample confusion matrix was generated from a validation 
dataset of 797 samples.  

Each cell of the matrix represents the number of predictions that fall into each category. 
The first category, shown in the top left of the matrix, is the number of times the machine 
learning model correctly predicted that no disease was present in the validation dataset. This is 
known as a “True Negative” prediction, and there were 795 in this sample matrix. The next 
category, shown in the bottom left of the matrix, is the number of times the machine learning 
model incorrectly predicted that no disease was present, also known as a “False Negative” 
prediction. The next category, shown in the top right cell, is the number of times the machine 
learning model incorrectly predicted the disease was present in the exam. This is known as a 
“False Positive” prediction. Lastly, the category depicted in the bottom right cell is the number 
of times the machine learning model correctly predicted that the disease was present in the exam. 
This is known as a “True Positive” prediction. 

The example confusion matrix shown in Figure 4.2.4 is for a single disease’s 
classifications. The full output of the machine learning predictions are confusion matrices for 
each disease combined into one matrix. An example of a full confusion matrix is shown in the 
following figure: 

 

Figure 4.2.5: Full Confusion Matrix 

 In Figure 4.2.5, an example of a full confusion matrix is shown. This matrix contains the 
confusion matrices from each disease type, and they are stacked vertically.  
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4.3: Precision, Recall, and Specificity 
4.3.1: Precision 

Once the predictions are placed into a confusion matrix, the counts for each category of 
prediction are extracted to be used for the next set of calculations. Using set theory, three values 
are calculated from the confusion matrix. These three values are known as precision, recall, and 
specificity.  

 The first value to calculate from the confusion matrices is precision, which is “defined as 
the probability that an object is relevant given that it is returned by the system” (David E. 
Losada, 2005). In this case, a relevant object is a positive disease prediction, so precision 
represents the probability that the model will predict that the specified disease is present. 
Precision is calculated using the following equation: 

𝑝𝑝 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

Equation 4.3.1: Precision Calculation Formula (David E. Losada, 2005) 

 In Equation 4.3.1, TP represents the number of True Positive predictions, while FP 
represents the number of False Positive predictions. Using this equation, precision can be 
interpreted as the “True Positive Rate”, or the number of True Positive predictions divided by the 
total number of positive predictions. This essentially tells us how accurate the machine learning 
model is for detecting positive disease categories.  

4.3.2: Recall 
 The next value to calculate from the confusion matrices is recall, which describes the 
“probability that a relevant object is returned” (David E. Losada, 2005). Recall is calculated 
using the following equation: 

𝑟𝑟 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

Equation 4.3.2: Recall Calculation Formula (David E. Losada, 2005) 

 In Equation 4.3.2, TP represents the number of True Positive predictions, and FN 
represents the number of False Negative predictions. This tells us how many positive disease 
cases the machine learning detected out of all positive disease cases of that disease type. This is 
helpful, as it essentially depicts the volume of the machine learning model’s positive disease 
predictions. 
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4.3.3: Specificity 
 The next value to calculate is specificity, which describes the accuracy of the machine 
learning model for identifying negative disease cases (Lekhtman, 2019). The formula for 
specificity can be seen below: 

𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇
 

Equation 4.3.3: Specificity Calculation Formula (Lekhtman, 2019) 

 In Equation 4.3.3, TN represents the number of True Negative predictions for a single 
disease type, while FP represents the number of False Positive predictions. This essentially 
divides the number of True Negative predictions by the total number of negative classifications 
for the disease. This is similar to recall, but for negative disease classifications, meaning 
specificity depicts the volume of the machine learning model’s negative disease predictions. 
Specificity is very helpful, as recall and precision deal with the model’s performance when it 
comes to positive disease predictions, while specificity tells us the model’s performance for its 
negative disease predictions. 

 

4.4: F1 Scores 
4.4.1: Introduction to F1 Scores 
 While these values are useful on their own, precision and recall can be used to calculate 
what is known as the F1 Score of the machine learning model. A F1 Score is a number ranging 
from 0 to 1 that describes the performance of the machine learning model. A zero is the worst-
case score, meaning the model did not get a single prediction correct, while a one is a perfect 
score.  

4.4.2: Harmonic Means and F1 Score Calculations 
F1 Score is the harmonic means of precision and recall. A harmonic mean is type of 

average that is preferable when dealing with values that represent rates (Harmonic Mean, 2024). 
The formula for a harmonic mean can be seen below: 

𝐻𝐻 =
𝑛𝑛

1
𝑥𝑥1

+ 1
𝑥𝑥2

+ 1
𝑥𝑥3

+ ⋯+ 1
𝑥𝑥𝑛𝑛

  

Equation 4.4.1: Harmonic Mean Formula (Harmonic Mean, 2024) 

 In Equation 4.4.1, H represents the harmonic mean of a dataset (𝑥𝑥1, 𝑥𝑥2𝑥𝑥3, … , 𝑥𝑥𝑛𝑛) 
containing n points. This formula is the number of points in the dataset divided by the sum of the 
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reciprocals of the datapoints. Taking the harmonic mean of precision and recall yields this 
equation for F1 Score: 

𝐹𝐹1 =  
2

1
𝑇𝑇𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑛𝑛 + 1

𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅
 

Equation 4.4.2: Harmonic Mean of Precision and Recall (Frank, 2023) 

 This can be rationalized to yield this formula: 

𝐹𝐹1 =  
2 ∗ 𝑇𝑇𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑛𝑛 ∗ 𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑛𝑛 + 𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅

 

Equation 4.4.2: F1 Score Formula (Frank, 2023) 

 Using the definitions of precision and recall, we can better understand what an F1 Score 
means. Precision depicts how often the machine learning model correctly detects positive disease 
cases, and recall depicts how often model detects disease cases out of all the positive disease 
cases. Precision can be interpreted as the “quality” of the model’s disease predictions, while 
recall can be interpreted as the “quantity” of the model’s disease predictions. Taking the 
harmonic mean of these values essentially generates a metric for evaluating both the volume of 
the model’s predictions and the accuracy of the predictions. This is the main purpose of the F1 
Score: to represent the machine learning model’s performance for identifying one of the six 
disease types as a single number that is both intuitive and accurate.  

When assessing the performance of a machine learning model across a validation dataset, 
an F1 Score will be generated for each of the six disease classifications. This will tell us how 
well the model detects each disease and will help us to identify any issues in our training data, 
such as overtraining. 

Section 5: Evaluation - Test Methods & Results 
To achieve alignment with the outcomes of the referenced study, extensive testing is 

imperative in this project's pursuit. Utilizing a deep neural network underscores the necessity for 
thorough examination due to its inherent complexity and non-linear nature. Variability in results, 
arising from factors like network architecture, hyperparameters, and dataset characteristics, 
mandates comprehensive evaluation. Rigorous testing protocols, encompassing closed-loop 
testing and evaluation dataset analysis, are crucial to validate the model's generalizability and 
performance consistency. Techniques such as dropout and regularization serve to counter 
overfitting and enhance model stability. Through meticulous testing and validation procedures, 
this project endeavors to attain results closely mirroring the referenced study, thereby bolstering 
confidence in the reliability of the developed model. 
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5.1: Closed Loop Testing 
To test our machine learning models, there are two routes that can be taken to analyze the 

trained model’s performance. One way is via closed loop testing, which essentially consists of 
testing the model’s performance on the same data that it was trained on. By doing so, we can 
analyze the level of “absorption” that the model picked up on from training on its input data. On 
another note, closed loop testing allows us to pinpoint which portion of the training process 
needs attention. For example, by analyzing this table below, the utilization of closed loop testing 
can be demonstrated: 

Disease Type 5k 10k 15k 20k 

1dAVB 0.320 0.900 0.910 0.910 

RBBB 0.910 0.970 0.970 0.970 

LBBB 0.920 0.970 0.970 0.970 

SB 0.640 0.960 0.960 0.960 

AF 0.750 0.970 0.960 0.960 

ST 0.380 0.930 0.930 0.940 

 

Table 5.1.1: Closed Loop Testing as Function of Exams 

 In this table, we can see that for 10k, 15k, and 20k exams, the average F1 scores for these 
categories are very high considering that the value of 1.00 is the highest possible for a F1 score. 
Yet, for 5k, the F1 scores are unstable and low. By testing these models on their own training 
data, we can conclude that 10k, 15k, and 20k trained models have strong capabilities to diagnose 
the six diseases: 1dAVB, RBBB, LBBB, SB, AF, and ST due to their high absorption of the data. 
In terms of 5k, these values are likely a result of a very small sample size – therefore, the models 
for 5k were not able to absorb enough information. 

 In conclusion, by utilizing closed loop testing on our project, we can analyze our trained 
models in an alternative perspective that allows us to observe how much data a trained model is 
able to pick up on.  

 

5.2: Evaluation Data Set Testing 
When testing a trained model on an evaluation dataset, we are essentially testing the 

model on data that the model has never seen before. By doing so, the true cardiac disease 
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diagnosing ability of the trained model can be computed and analyzed. In other words, with 
closed loop testing, the model is being tested with information it has been exposed to before. 
With evaluation testing, the model is being tested with information it has never been exposed to 
before, allowing for the model to be evaluated in terms of its diagnosing accuracy. For example, 
by analyzing this table below, the utilization of evaluation dataset testing can be demonstrated: 

 

Disease Type 5k 10k 15k 20k 

1dAVB 0.090 0.580 0.570 0.560 

RBBB 0.840 0.830 0.830 0.820 

LBBB 0.880 0.900 0.870 0.910 

SB 0.400 0.760 0.770 0.710 

AF 0.040 0.040 0.050 0.030 

ST 0.320 0.100 0.090 0.090 

 

Table 5.2.1: Evaluation Dataset Testing as a Function of Exams  

In this table, we can see that the F1 scores for all exam sample sizes are not as close to 
1.00 as closed loop testing was. The large fluctuations in F1 scores can be due to several reasons, 
including perhaps the respective sample size is still too low. But the main factor to why these 
numbers are not as high as closed loop testing is because the model is being introduced to 
completely new ECG exams and must make blind predictions. Evaluation datasets often contain 
a wider range of examples or ECG instances that the model hasn’t encountered during training. 
This blind variability can challenge the model’s ability to generalize its learned patterns to 
unseen/new ECG data, which can lead to lower performance. In conclusion, by utilizing 
evaluation dataset testing on a trained model, we can analyze the model’s ability to predict the 
six cardiac diseases when presented with new data. 

 

5.3: Preliminary Random Forest Testing Results (Evaluation Set) 
 To test the implementation of the Random Forest classifier, we utilized an approach 
identical to the testing methods used in Section 5.2. Four Random Forest classifiers were trained 
using 5k, 10k, 15k, and 20k ECG exams, respectively. These four classifiers were then tested 
using the evaluation dataset, yielding the following results: 
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Disease Type 5k 10k 15k 20k 

1dAVB 0.047 0.060 0.069 0.050 

RBBB 0.052 0.036 0.053 0.056 

LBBB 0.097 0.055 0.122 0.078 

SB 0.040 0.042 0.056 0.044 

AF 0.035 0.038 0.041 0.030 

ST 0.043 0.045 0.015 0.000 

 

Table 5.3.1: Random Forest Testing Results (F1 Scores) 

 The F1 scores shown in the table are exceptionally low, and there is very little 
improvement in performance as the number of exams in the training dataset increases. Based on 
these results, we deemed our Random Forest classification system not ideal for this project and 
decided to test the Convolutional Neural Network. 

 

5.4: Preliminary CNN Testing Results (Evaluation Set) 
 To test the performance of the Convolutional Neural Network (CNN), we trained four 
CNNs using the strategy outlined in Section 5.2. Then, we tested each CNN over the evaluation 
set and calculated the F1 score for each disease, for each CNN, yielding the following results: 

Disease Type 5k 10k 15k 20k 

1dAVB 0.090 0.840 0.880 0.400 

RBBB 0.580 0.830 0.900 0.760 

LBBB 0.570 0.830 0.870 0.770 

SB 0.560 0.820 0.910 0.710 

AF 0.090 0.840 0.880 0.400 

ST 0.580 0.830 0.900 0.760 

 

Table 5.4.1: Convolutional Neural Network Testing Results (F1 Scores) 
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 These results are much more encouraging compared to the Random Forest results shown 
in Table 5.3. Although there was a drop in performance as the number of exams in the training 
set increased from 15k to 20k, there is still a general trend of improvement as the number of 
exams increases. Based on these results, we decided to proceed using CNN as our chosen 
classifier, and train a model using the full 250k exam, balanced dataset. 

 

5.5: Final CNN Results 
 After training a CNN using the full 250k exam dataset containing balanced instances of 
each disease, we decoded the evaluation dataset, and calculated the F1 scores for each disease. 
The resulting F1 scores can be seen in the following table: 

 

Model Architecture 1dAVB RBBB LBBB SB AF ST 

CNN 0.868 0.939 0.984 0.857 0.933 0.700 

 

Table 5.5.1: Final CNN Evaluation Results (F1 Scores) 

 Comparing these results to our design criteria metrics yields the following table: 

 

 Disease Type 

Classifier 1dAVB RBBB LBBB SB AF ST 

Cardio. 0.776 0.917 0.947 0.882 0.769 0.882 

Emerg. 0.719 0.852 0.912 0.848 0.696 0.946 

Stud. 0.732 0.928 0.915 0.750 0.706 0.873 

DNN 0.897 0.944 1.000 0.882 0.870 0.960 

Our CNN (250k) 0.868 0.939 0.984 0.857 0.933 0.700 

 

Table 5.5.2: Final CNN F1 Scores vs. Design Criteria 

 The results from our CNN trained on 250k exams are strong for all disease classifications 
except for ST, which only has an F1 score of 0.700. This likely because in our dataset, 
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occurrences of ST are often paired with instances of other disease as well, making it difficult to 
isolate this disease to sufficiently train the CNN. Our CNN’s performance for all other disease 
types meets our non-negotiable design criteria of matching or exceeding the F1 scores of the 
cardiology residents, emergency residents, and medical students. Our CNN obtains a higher F1 
score than the DNN published in "Automatic diagnosis of the 12-lead ECG using a deep neural 
network" when classifying AF. Other than for this disease, our CNN does not meet the 
performance of the study’s published DNN. 

 

Section 6: Standards & Specifications 
6.1: Standards & Specifications 

For our analysis, we will evaluate the performance of our machine learning model using 
F1 Scores, a widely accepted metric in assessing machine learning models. This approach aligns 
with the methodology of the study we are replicating, titled "Automatic diagnosis of the 12-lead 
ECG using a deep neural network" (2020), which has garnered significant recognition with over 
one hundred citations (National Library of Medicine, 2024). Moreover, recent machine learning 
studies like "Auto-detection of the coronavirus disease by using deep convolutional neural 
networks and X-ray photographs" (2024) and "Improving deep neural network generalization 
and robustness to background bias via layer-wise relevance propagation optimization" (2024) 
have also utilized F1 scores, highlighting its relevance and effectiveness in model evaluation. F1 
scores offer a comprehensive evaluation by combining precision and recall into a single 
normalized metric, providing a succinct characterization of model performance. 

Another standard procedure we intend to implement involves converting file types to 
adhere to the Institute of Image Signal Processing (ISIP) standard for medical signal storage. 
Initially provided in the form of .dat and .hea files, where .dat files contain binary data 
representing ECG voltage waveforms and .hea files hold crucial metadata like sampling 
frequency and signal duration, we plan to merge each pair into .edf files. These .edf files, 
standard for storing EEG signals at ISIP (N. Capp, 2018), offer the advantage of consolidating 
signal data and metadata into a single file format, thereby streamlining Python file input/output 
operations. Leveraging ISIP's NEURONIX server, equipped with specialized signal processing 
tools like the NEDC EEG Annotation System and the EDF Browser (ISIP, Open Source EEG 
Resources, 2024), tailored for .edf files, enhances our ability to manipulate and analyze ECG 
signals efficiently. 

Moreover, to ensure consistency and clarity in our project, all code will adhere to ISIP 
laboratory standards. This entails meticulous commenting and adherence to guidelines for 
function, file, and variable naming (ISIP, Programming Style, n.d.). Additionally, we will 
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provide detailed documentation outlining the purpose and functionality of all scripts, facilitating 
portability and comprehension for future users. 

Section 7: Project Costs 
To train the array of machine learning models utilized in our research project, we 

leveraged the NEURONIX cluster provided by the Institute of Image and Signal Processing at 
Temple University. This high-performance cluster is housed within the Joint Data Center (JDC) 
at Temple University's TECH Center. While precise energy consumption figures are unavailable 
due to limited access to the university's financial data, we can approximate the associated costs 
by considering the GPUs employed in the process. Each node in the cluster contains four GPUs 
of the same model: 

Node GPU Model 

nedc_007 NVIDIA GeForce GTX 1070 

nedc_008 Tesla P40 

nedc_011 NVIDIA GeForce RTX 2080 

nedc_012 NVIDIA A40 

 

Table 7.1: Node GPU’s 

Most of the training was done on the node nedc_012. This node contained the fastest GPU’s 
which were the NVIDIA A40. 

 

Figure 7.1: NVIDIA A40 
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The following are the GPU specifications in terms of their max power consumption 
gathered from the respective manufacturer’s websites: 

GPU Model Max Power Consumption (kWh) 

NVIDIA GeForce GTX 1070 0.150 

Tesla P40 0.250 

NVIDIA GeForce RTX 2080 0.215 

NVIDIA A40 0.300 

 

Table 7.2: GPU Power Consumption 

According to the U.S. Bureau of Labor Statistics, the average price per kWh in 
Philadelphia for February 2024 was $ 0.201. With the architecture used to generate our 250k 
exam balanced model, it took approximately 25 hrs. (Statistics, 2024) 

𝐶𝐶𝑃𝑃𝑃𝑃𝑆𝑆 ($) =   (𝑇𝑇𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑆𝑆𝑟𝑟 𝑘𝑘𝑘𝑘ℎ) ∗ (4 𝐺𝐺𝑇𝑇𝐺𝐺𝑃𝑃 𝑝𝑝𝑆𝑆𝑟𝑟 𝐹𝐹𝑃𝑃𝑁𝑁𝑆𝑆) ∗ (𝐺𝐺𝑇𝑇𝐺𝐺 𝑇𝑇𝑃𝑃𝑃𝑃𝑆𝑆𝑟𝑟 𝐶𝐶𝑃𝑃𝑛𝑛𝑃𝑃𝐶𝐶𝐶𝐶𝑝𝑝𝑆𝑆𝑆𝑆𝑃𝑃𝑛𝑛) ∗ (𝑇𝑇𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑅𝑅𝐶𝐶 𝑅𝑅𝐶𝐶𝑛𝑛 𝑇𝑇𝑆𝑆𝐶𝐶𝑆𝑆) 

Equation 7.1: Cost Estimate Equation 

 

GPU Model Total Cost ($) 

NVIDIA GeForce GTX 1070 2.90 

Tesla P40 4.83 

NVIDIA GeForce RTX 2080 4.15 

NVIDIA A40 5.79 

 

Table 7.3: Cost of 250k Exam Model 

The overall expense incurred in training these machine learning models, factoring in 
GPU power consumption, remains relatively modest. However, it's important to acknowledge 
that these figures do not encompass the power consumption associated with operating the 
compute nodes and clustering infrastructure itself. Furthermore, it's worth highlighting that the 
models underwent multiple training iterations, with a significant portion of server time allocated 
to software development tasks. Actual model training constituted only a fraction of the total 
server runtime. 
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Section 8: Summary and Conclusions 
This senior design project aimed to investigate various approaches and optimize existing 

solutions for detecting cardiovascular diseases in 12-Lead ECG signals. Our implementation of 
the studies pre-existing Convolutional Neural Network (CNN) demonstrated superior 
performance compared to 4th year cardiologist residents, 3rd year emergency residents, and 
medical students, as measured by F1 scores. Despite using a balanced dataset containing 250,000 
exams, significantly smaller than the 2 million exams used in previous studies, our CNN still 
surpassed the performance of medical professionals. While we did not outperform the studies' 
Deep Neural Network (DNN), further experimentation as well as training different permutations 
could potentially yield even better results. The inherent flexibility of DNNs means that they can 
reach convergence through various pathways, suggesting that retraining the model from scratch 
might lead to higher F1 scores than those reported in this paper. Additionally, our analysis 
revealed a significant underrepresentation of sinus tachycardia exams in the dataset, likely due to 
its frequent co-occurrence with other diseases. Addressing this imbalance by training the model 
with more sinus tachycardia data could further improve the accuracy of our results.  

Looking ahead, we envision the integration of machine learning programs, like the one 
developed in this project, into low-cost ECG machines. We would also like to see, provided the 
data exists, more cardiovascular diseases to be added to the prediction aspect of this software. 
This software currently only covers a small subsect of the current disease that exists in the heart.  
On top of this, we would like to see this software be furthered by incorporating other patient 
factors such as age, height, weight, and gender to better make accurate disease predictions. By 
doing so, we can advance toward our ultimate objective of delivering state-of-the-art healthcare 
to underserved populations in developing countries. This technological integration holds 
immense potential to democratize access to accurate and efficient cardiovascular disease 
diagnosis, even in resource-constrained settings where traditional medical infrastructure may be 
lacking. As we continue to refine and optimize these machine learning algorithms, their 
deployment in affordable ECG devices could significantly improve healthcare outcomes and 
contribute to reducing global health disparities.  
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