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EXECUTIVE SUMMARY 

Digital pathology has become a field of great interest in recent years because deep learning is enabling the 
development of a new generation of technology whose performance rivals that of pathologists using a 
manual review process involving analog microscopes. Deep learning systems can help reduce a 
pathologist’s workload by providing decision support. The declining number of physicians pursuing careers 
in pathology necessitates the development of tools to increase efficiency and productivity. In this report, 
we discuss the essential components of deep learning systems that analyze histopathological images. We 
specifically focus on cancer detection from whole slide images (WSI). 

Working with whole slide images, which are extremely high resolution (e.g., 100𝑘	 × 	100𝑘 pixels), is a 
significant computational challenge. A large database of these images, which is required to perform state-
of-the-art deep learning, cannot fit into a computer’s physical memory. Further, to provide useful diagnostic 
information for pathologists, these images must be segmented into small patches and analyzed patch by 
patch. This allows the system to identify local regions in each slide that supported the diagnosis but also 
risks a significant increase in the false alarm rate, which has important clinical implications. There are three 
fundamental challenges one faces in applying deep learning to digital pathology: (1) creation of a 
scientifically sound evaluation paradigm, (2) design of suitable pre- and postprocessing of the data to make 
it suitable for machine learning research, and (3) implementation of an architecture that can successfully 
classify small regions, or patches, of high-resolution images. We have selected three papers that address 
each one of these challenges. 

The first paper, titled “Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer: The 
PANDA Challenge,” presents a community-wide evaluation on data that included over 10,000 training 
images and over 1,000 evaluation images from five institutions. A total of 34,262 algorithms submitted by 
1,290 developers were initially evaluated. Fifteen leading systems were shown to achieve a similar level 
of agreement with decisions made by a committee of pathologists and uropathologists (quadratically 
weighted kappa score of 0.828 at a 95% confidence interval). These algorithms performed similarly on 
blind evaluation data, supporting the hypothesis that differences between algorithms are small compared to 
learning how to make effective use of data. 

The second paper, titled “A generalized deep learning framework for whole-slide image segmentation and 
analysis,” discusses the segmentation process. The authors used an ensemble segmentation model that 
divides the image into a series of smaller patches and averages decisions that came from a pool of well-
known segmentation algorithms. Four popular pathology databases were used to evaluate the approach. 
The proposed algorithm achieved a kappa score of 0.91 on the CAMELYON17 test set (𝑁 = 500) and a 
Dice similar coefficient (DSC) of 0.78 on the DigestPath test set (𝑁 = 212). The combination of a kappa 
score above 0.8	and a DSC above 0.7	indicates strong agreement. 

The third paper, titled “Contextual Transformer Networks for Visual Recognition,” (COTNet) introduces a 
robust model with low complexity that uses a transformer-like approach that integrates convolutional and 
attention mechanisms. The authors evaluated their approach on object detection, semantic segmentation, 
and instance segmentation, and showed that their approach reduced complexity and achieved better 
performance than contemporary approaches based on deep convolutional networks with residual 
interconnections. For example, COTNet achieved a top-1 accuracy of 80%, which was 1.5% absolute 
higher than ResNet-101, while reducing complexity by 1.8 GFLOPS and 6.3𝑀 parameters. 
Since a cancer diagnosis is a life-changing event, any clinical system must have a low false alarm 
rate. This necessitates a deep learning system that can robustly segment data. In this report, we 
have introduced an experimental paradigm and some associated algorithms that offer the potential 
for automating the diagnosis process, thereby allowing pathologists to spend time on the most 
significant images. These algorithms can provide valuable decision support for pathologists.
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1. INTRODUCTION 

Histopathology is the study of stained tissue slides for cancer diagnosis (Gurcan et al., 2009). The analysis 
of histopathology images is a complex and time-consuming process that requires highly trained and 
knowledgeable pathologists. The increasing incidence of cancer cases coupled with a shortage of trained 
specialists has made early diagnosis of cancer a challenging task. Furthermore, the existence of varying 
levels of discordance among pathologists in cancer diagnosis underscores the necessity of employing 
computer-aided techniques to assist pathologists (Elmore et al., 2015). Recent advancements in whole-slide 
imaging (WSI) technology and deep learning methods due to the availability of computational power have 
opened up new avenues for the early detection of cancer (Litjens et al., 2017). However, the high resolution 
of WSIs and the lack of annotated images present significant challenges for the efficient processing of these 
images using deep learning techniques. To overcome this challenge, image segmentation techniques can be 
applied to detect cancerous cells in histopathology images. Image segmentation involves dividing an image 
into multiple regions or segments. The lack of reproducibility, which, stems from the inadequate 
independent validation data is a significant challenge faced by deep learning algorithms. In addition to 
addressing the aforementioned limitations, it is imperative to introduce a deep network that is both 
computationally and practically effective. Achieving this objective can facilitate the reproducibility of deep 
learning algorithms and enhance their overall efficacy in various applications. 
 
Prior to the emergence of deep learning, machine learning algorithms relied heavily on feature engineering. 
The accuracy of classification was therefore directly related to the quality of the extracted features. The 
advent of deep learning has been advantageous due to its ability to automate feature extraction (Cruz-Roa 
et al., 2014). Deep learning models possess a remarkable capacity to extract complex features and 
subsequently perform downstream tasks such as classification, rendering them particularly attractive to 
machine learning scientists in the field of WSI. Figure 1 shows an annotated whole slide image. A 
framework for segmentation based on ensembles has been proposed by Hameed et al. (2020). Qin et al. 
(2018) drove patch samples and fed them to the multilevel feature pyramid, then performed a multiclass 
features pyramid to drive semantic segmentation. For fine segmentation, Guo et al. (2019) used a 
combination of Inception-v3 and a cascaded deep convolutional network. To segment breast cancer images, 
Priego-Torres et al. (2020) proposed a method based on patch extraction. In his method, patches are 
extracted from the entire image and then combined using fully connected conditional random fields. This 
approach offers a promising segmentation pipeline for the analysis of breast cancer images. Roy et al. 
(2021) proposed a deep learning approach that 
utilizes multiple resolutions and a customized 
reconstruction loss to achieve viable tumor 
segmentation in liver WSIs.  This method 
provides a promising solution for the accurate 
segmentation of liver tumors in WSI. 

The potential of deep learning algorithms in 
cancer detection is widely recognized; however, 
their efficacy in practice is hindered by the lack 
of reproducibility. The requirement for a diverse 
and unbiased validation set is a key factor 
contributing to this issue. The inherent 
susceptibility of deep learning algorithms 
(Nagendran et al., 2020). The absence of 
reproducibility poses significant challenges to the 
widespread implementation of these algorithms.  

Figure 1. An annotated breast tissue 
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Accurate and reliable computer-aided systems for cancer detection are critical due to the severe 
consequences of diagnostic errors. To mitigate this, it is recommended to use blind validation sets from 
diverse locations and patient populations. Machine learning algorithms should also be designed to be 
generalizable across datasets, rather than tailored to specific ones (Maier-Hein et al., 2018). Such AI 
systems can assist pathologists in accurately and promptly detecting cancer tissue, as well as identifying 
cases of high severity. To develop such systems, international competitions can be organized that involve 
participants, datasets, and experts from diverse geographic regions. This would enable the development of 
robust and accurate computer-aided systems for cancer detection that are effective across different 
populations and clinical settings. 

The accurate classification of small patches in WSIs requires a robust neural network. Convolutional neural 
networks (CNNs) have been widely employed for visual downstream tasks for several years, owing to their 
ability to extract complex features automatically using mathematical techniques such as convolution 
(Simonyan & Zisserman, 2014; Szegedy et al., 2015; Tan & Le, 2019). Yan Lecun and colleagues first 
introduced convolutional methods with their LenNet-5 network, which was designed for handwritten 
character recognition and consisted of two convolutional and pooling layers, followed by a fully connected 
layer and softmax (Lecun et al., 1998). In 2012, Alex Krizhevsky and his team presented AlexNet, which 
won the ImageNet competition. While the architecture of AlexNet resembled that of  LeNet, it had deeper 
layers. However, its heavy hyper parameterization posed significant limitations (Krizhevsky et al., 2012). 
VGG Net subsequently addressed these limitations by substituting smaller kernel-sized filters for larger 
ones (such as 11 and 5 in the first and second convolutional layers) (Simonyan & Zisserman, 2015). 
Nevertheless, VGG Net suffered from a vanishing gradient problem that was resolved by He et al. (2016) 
through the introduction of ResNet, which went on to win the ILSVRC-2015 competition. Residual 
connections were applied to the ResNet, which effectively solved the vanishing gradient problem 
(He et al., 2016). 

The CCN-based networks have shown promise, but they also have some disadvantages. CNNs use locally 
applied filters in convolution layers. Since these filters extract only local features, CNNs have limitations 
when it comes to processing long-range dependencies between pixels. Self-attention-based transformer 
architecture has emerged as a breakthrough in the field of natural language processing (Vaswani et al., 
2017). This approach allows for the consideration of long-term dependencies among input tokens, which 
has attracted significant attention from the computer vision community. Dosovitskiy et al. (2021) proposed 
the Vision Transformer (Vit) as a novel approach that utilizes transformer encoders for computer vision. 
To structure the input image data in a manner similar to natural language processing, the authors divided 
the images into 16𝑥16 patches before feeding them into the encoder. Attention weights can help the model 
understand complicated input features. Furthermore, self-attention can capture the entire image at once, 
unlike convolutional neural networks (CNNs) (Dai et al., 2021). However, calculating the dependencies 
between each pixel and the entire image can be computationally expensive for images of the size of whole-
slide images (WSI). This has led to growing interest in recent years in hybrid methods that combine 
convolution and attention mechanisms (Dai et al., 2021). Hybrid models rely on convolution mechanisms 
to extract low-level features and attention mechanisms to extract complex features, which has shown 
promising results in various computer vision tasks. 

The papers presented in the following sections aim to address the challenges mentioned above. The first 
paper emphasizes the importance of independent and multicontinental validation sets in developing a 
reliable and reproducible AI system for prostate cancer detection (Bulten et al., 2022). The second paper 
focuses on addressing the challenges of image segmentation in whole-slide images (WSI) by proposing an 
efficient method. The authors demonstrate the effectiveness of ensemble models in achieving accurate 
image segmentation and provide empirical evidence of their approach (Khened et al., 2021). The third paper 
proposes a novel architecture, CoTNet, which replaces the convolution layers in ResNet with a block that 
combines convolution and attention mechanisms. The authors demonstrate that the proposed approach 
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outperforms ResNet in terms of performance 
while using fewer parameters. The results 
suggest the potential of combining 
convolution and attention mechanisms for 
improved performance in various computer 
vision tasks (Li et al., 2022). 

2. PANDA CHALLENGE 

In recent years, there has been a surge in the 
prevalence of Artificial Intelligence (AI) 
competitions which aim to showcase the 
capabilities, benefits, and limitations of 
various AI systems (Bándi et al., 2019). 
Nevertheless, the absence of independent and 
multinational validations has rendered the outcomes of such competitions unreliable and non-reproducible. 
Consequently, to promote the creation of sustainable AI systems for Gleason grading utilizing over 10,000 
digitalized prostate biopsies, the PANDA challenge was organized. This competition stands out as one of 
the largest histopathology contests, with the goal of advancing the development of AI technology in the 
field of prostate cancer diagnosis. Based on the outcomes of the competition, some of the submitted 
algorithms achieved more than 86% with the uropathologists on external validation sets.  

2.1. Gleason Grading 

Prostate cancer is a medical condition characterized by the rapid proliferation of cells within the prostate 
gland. In normal conditions, the cells within the gland tend to grow at a slower pace. There exist five distinct 
types of prostate cancer, namely, Adenocarcinomas, Small cell carcinomas, Sarcomas, Neuroendocrine 
tumors, and Transitional cell carcinomas. The most prevalent type among these is Adenocarcinoma. Each 
of these cancer types is graded based on their level of aggressiveness. This grading system, known as the 
Gleason Score, is employed to determine the severity of cancer. The Gleason score is a critical diagnostic 
tool in the management of prostate cancer. This scoring system is used to grade the aggressiveness of 
prostate cancer, which is a heterogeneous disease that often presents with cells of varying grades. Typically, 
each patient receives two different grades, one indicating the most prominent case of cancer cells, and the 
other indicating the second most prominent case of cancer cells. Based on the Gleason score assigned to a 
biopsy specimen, a patient's biopsy can be assessed as healthy (lower score) or abnormal (higher score).  

The Gleason scoring system assigns each of the two most dominant grades of cancer cells a score within 
the 1 to 5 range. These individual scores are then combined to derive an overall score, which can range 
from 2 to 10. A Gleason score less than or equal to 6 typically indicates that the tissue sample is non-
cancerous or that the patient's condition is not critical (Van Leenders et al., 2020). 

2.2. Datasets 

The present study focuses on a recent competition that consisted of two primary components. One of the 
positive aspects of the competition was the diversity of the data, which originated from various institutions 
in both Europe and the United States. Additionally, an independent blind set of data was provided for 
validation purposes. By excluding the developers' influence in the selection of the validation sets, the 
competition organizers ensured a fair and unbiased evaluation process. The dataset consisted of 12,625 
whole slide images (WSIs) collected from six sites across Sweden, the Netherlands, and the United States, 
of which 10,616 and 393 were used for training and tuning, respectively. The validation sets included 545 
internal validation data from Europe and 1071 external validation data from the United States. The reference 
standards for these validation sets were selected from pathologists in the United States and international 
pathological societies. Figure 2 provides additional details about the origin, number, and division of the 

 
Figure 2. An overview of PANDA challenge 
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data, as well as the standard references used. 

2.3. Scoring Metric 

The quadratic kappa score is a statistical measure used to evaluate the level of agreement between two raters 
or classifiers while taking into account the possibility of chance agreement. It is often employed to assess 
classification models, especially when there are class imbalances or multiple classes. To calculate the 
quadratic kappa score, the observed agreement between the two raters or classifiers is compared to the 
expected agreement due to chance. This method employs the same formula as the kappa statistic but applies 
a different weighting scheme that places more emphasis on cases where raters or classifiers differ in their 
assessments. The range of a quadratic kappa score is from -1 to 1. A score of 1 indicates perfect agreement, 
while a score of 0 indicates no agreement beyond chance. If the score is negative, this indicates that the 
agreement is even worse than if left to chance. The quadratic kappa score formula is defined as follows: 

w!,# =
(!%#)!

('%()!
	 (1) 

𝑘 = 1 −
∑ *",$	,",$",$
∑ *",$",$ 	-",$

	,	 (2)	

in which, 𝑤 is the difference between actual and predicted values, 𝑂 is actual outcomes and 𝐸 is expected 
outcomes (Gao, 2023). 

2.4. Competition Overview 

The competition attracted the participation of 1,010 teams hailing from 65 countries, with each team 
required to submit at least one algorithm. Throughout the contest, all teams were granted access to both the 
development set and the tuning set. An internal validation set, kept blind, was employed to assess the 
performance of all algorithms. The top-performing team achieved a quadratic kappa score agreement 
exceeding 90% with uropathologists. After approximately 33 days, the majority of teams had achieved an 
85% agreement, as shown in Figure 3. The aforementioned outcomes lend support to the notion that the 
majority of algorithms perform comparably, with data management and algorithmic training exerting a 
more significant influence on performance. In order to compete in external validation sets, 15 teams were 
selected based on their performance on internal validation sets.  

2.5. Methods and Algorithms   

The majority of participants in the competition utilized deep learning techniques to devise their 
algorithms(Hartman et al., 2020). Notably, the top-ranking teams employed patch-based methods, where 
images were partitioned into smaller patches and subsequently input into the network. The final classifier 
layer of the network operated on the features obtained by concatenating the resulting features from these 
patches. This approach is weakly supervised, as it circumvents the need for pixel-level annotation, which 
is both labor-intensive and expensive, requiring well-trained human resources. Several errors were observed 
in the labels furnished by pathologists, prompting some participants to engage in label cleaning. To address 
this issue, incorrect labels were either removed 
or revised within the training set. This 
corrective process, commonly known as label 
denoising, involved identifying instances 
where the labels deviated significantly from 
the predicted labels. Subsequently, label 
denoising was implemented iteratively 
throughout the model training process. In 
addition to label cleaning, the top-performing 
teams in the competition relied heavily on 
ensemble models. Specifically, ensemble 
methods were utilized in both the 

 
Figure 3. Progression of algorithm performance 
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preprocessing and classification stages, with the final output results being an average of the output produced 
by each device and model. 

2.6. Classification Performance 

Using both internal and external validation sets, the present study evaluates the performance of 
classification algorithms, as presented in Table 1. The degree of agreement between the algorithms and 
pathologists was assessed using Kappa statistics at a 95% confidence interval. As indicated by reported 
sensitivity metrics, representative algorithms overdiagnosed benign cases compared to pathologists' 
diagnoses, as well as misclassified benign cases more often than they would have been expected based on 
their performance on an internal validation 
set. On average, the algorithms missed 1% 
of cancers in the internal validation set, 
whereas pathologists missed 1.8%. In the 
external validation set, the algorithms 
missed 1.9% of cancers, whereas the 
pathologists missed 7.3%. 

2.7. Discussion and Limitations  

In the PANDA challenge, AI algorithms were developed to detect and categorize prostate cancer. As a way 
of overcoming previous limitations, the challenge promoted reproducibility and indiscriminate validation 
of algorithms by a wide range of groups. In the competition, algorithms were produced that were capable 
of detecting and grading tumors, meeting expert reference standards comparable to those used by 
pathologists. However, the algorithms tended to assign higher grades than pathologists did, indicating that 
AI-supported general pathologists could achieve better agreement with uropathologists.. Based on the short 
lead time of top-performing solutions by various teams, the publication of such datasets could facilitate the 
development of high-performance AI algorithms. There are a number of limitations to this study, including 
the fact that only 15 teams were included in the validation phase from a pool of 1,010, which may limit the 
generalizability of the findings. The algorithm validation was also restricted to single biopsies, while 
pathologists typically examine multiple biopsies per patient. Moreover, the study graded only one type of 
prostate cancer. When algorithms are compared against reference standards established by different panels 
of pathologists, there is a risk of bias, since they may have learned grading habits that are not applicable to 
other populations. The study was mainly conducted in white-dominated countries, and certain demographic 
information was not available. 

3. A DEEP LEARNING FRAMEWORK FOR WHOLE-SLIDE IMAGE SEGMENTATION 

The use of deep learning approaches presents a number of technical difficulties in the field of histopathology 
tissue analysis. These issues include the extensive size of WSI data, variations in the images themselves, 
and the complexity of features. To address these challenges, the authors present a comprehensive deep-
learning framework that is specifically designed for this type of analysis. their framework is composed of 
several individual techniques that are applied in a sequence throughout the preprocessing-training-inference 
pipeline. By combining these techniques, the analysis becomes more efficient and generalizable. These 
techniques include an ensemble segmentation model, dividing WSI into smaller, overlapping patches, 
handling class imbalance problems, efficient inference methods, and uncertainty estimation. Their 
ensemble consists of three deep neural networks: DenseNet-121, Inception-ResNet-V2, and 
DeeplabV3Plus (Chen et al., 2018), each trained end-to-end for every task. Their framework has been 
demonstrated to be effective and generalizable through the evaluation of breast cancer metastases 
(CAMELYON), colon cancer (DigestPath), and liver cancer (PAIP).  

Scores Internal  
Validation 

EU External 
Validation 

US External 
Validation 

Kappa 0.931 0.868 0.862 
Sensitivity 99.7% 97.7% 98.6% 
Specificity 92.9% 84.3% 75.2% 

Table 1. The external and internal validation results 
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3.1. Datasets 

The datasets employed to assess the proposed methodology encompass CAMELYON (Litjens et al., 2018), 
which consists of 1399 whole-slide images (WSIs), PAIP (Kim et al., 2019), comprising 90 WSI slides, 
and DigestPath (Da et al., 2022), containing 872 tissue images. Pertinent details regarding the dimensions 
of the training and testing datasets, as well as the resolution and size of the images, can be found in Table 2. 
The CAMELYON16 data set comprises two distinct classes of slide images, namely metastases, which 
correspond to cancerous tissues, and negative, which denotes the absence of cancerous tissue. In 
CAMELYON17, the slide-level labels consist of negative, micro, macro, and ICT, based on the size of the 
tumor. Notably, some portions of the dataset possess pixel-level annotations, while others are annotated at 
the slide level. The PAIP images consist of pixel-level annotation, of the viable tumor and whole tumor 
regions. The DigestPath dataset comprises tissue samples gathered during the examination of colonoscopy 
pathology with the aim of detecting the presence of early-stage colon tumor cells. A single whole-slide 
image (WSI) in this dataset contains at least ten tissue sections, each of which is evaluated during 
colonoscopy pathology review. 

To facilitate analysis, the challenge 
organizers selected one or two tissue 
sections from each WSI image and made 
available the corresponding lesion 
annotations, which were provided by 
pathologists and saved in jpg format 
alongside the tissue section images. Some 
of the images were annotated based on just 
slide level, and some others pixel-level. 

3.2. Proposed Framework  

The authors of the study employed a general strategy that consisted of ensemble network architectures, 
training strategies, and segmentation inference methods.  Additionally, the strategy included methods for 
performing secondary histopathology analysis, which is a common approach to further evaluate the 
characteristics of a tumor after surgical removal and examination by a pathologist. The overall process is 
visually represented in Figure 4. 

3.3. Network Architecture 

To segment the tumor region from patches 
extracted from WSI images, an ensemble Fully 
Convolutional Network (FCN) architecture is 
employed. Segmentation networks based on 
FCNs usually consist of encoders, decoders, 
and pixel-wise classification layers. In order to 
produce a low-resolution feature map, the 
encoder network uses a combination of 
convolution and pooling operations. In the 
decoding network, the low-resolution feature 
map is then upsampled and convoluted back to 
the original resolution via upsampling and 
convolution operations. As a result, the WSI images can be segmented accurately using FCN ensembles. 
Three encoders and decoders make up the ensemble architecture. Different encoder-decider combinations 
are in the following architectures:  

• U-Net (Ronneberger et al., 2015) architecture with DenseNet-121 as the pre-trained encoder on ImageNet, and 
the decoder was a combination of bi-linear upsampling modules followed by convolutional layers. Bilinear 

 
Figure 4. The process of the segmentation 

 

Dataset Train Test Image Size Pixel 
CAMELYON16 270 129 100,000 ×100,000 0.25 
CAMELYON17 500 500 100,000 ×100,000 0.25 
DigestPath 660 212 5000 × 5000 0.25 
PAIP 50 40 50,000 × 50,000 0.50 

Table 2. Characteristics of datasets used for experiments 
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upsampling is a commonly used technique in deep learning models, especially in image classification and object 
detection tasks, as it can improve the accuracy of the model's predictions by increasing the resolution of an image 
before inputting it into the model. Bilinear upsampling works by inserting new pixels between the existing pixels 
in an image and each new pixel is calculated using a weighted average of the four nearest pixels in the original 
image, with weights determined by the distance from the surrounding pixels. Additionally, the authors applied 
skip connection, where extracted features from the encoder were concatenated with extracted features from the 
decoder. This technique helps to maintain the resolution of the image during the encoding and decoding 
processes and preserves important spatial information for more accurate segmentation results. 

• A combination of U-Net and Inception-ResNet-V2 as the pre-trained encoder on ImageNet. The Inception-
ResNet-V2 architecture, also referred to as Inception-v4, is a convolutional neural network that merges the 
characteristics of two previously developed models: Inception and ResNet. The integration of both architectures 
in Inception-ResNet-V2 involves using multi-scale convnet blocks from the Inception network to decrease the 
number of parameters while encoding a considerable amount of information. These blocks comprise various 
convolutions with diverse kernel sizes, accompanied by pooling layers that reduce the spatial dimensions of 
feature maps. This enables the network to extract features at different scales, capturing fine and coarse details in 
the input image. 

• Deeplab V3Plus with Xception (Chollet, 2017)as the encoder, which is pretrained on PASCAL VOC 
(Everingham et al., 2010). To achieve multi-scale context, DeepLabV3Plus employs atrous convolutions with 
varying rates. These dilated convolutions enhance the network's receptive field without increasing the model's 
number of parameters. By applying atrous convolutions with different rates, DeepLabV3Plus captures contextual 
information at various scales, enabling accurate semantic segmentation. The DeepLabV3Plus architecture also 
incorporates a feature pyramid network that transfers low-level features from the encoder to the decoder. This is 
achieved using skip connections that concatenate feature maps from different layers in the encoder with 
corresponding feature maps in the decoder, preserving crucial spatial information and improving the 
segmentation accuracy. 

3.4. Training Pipeline 

The training pipeline is a combination of tissue 
mask generation, patch extraction, and training 
the models patch-wise. the pipeline can be 
found in Figure 5. 

3.4.1. Tissue Mask Generation 

WSI image segmentation was performed by 
separating the tissue region from the 
background glass region. By segmenting, 
unnecessary data is not computed on non-
tissue regions. WSI images with low resolution 
are used since an approximate boundary of the 
tissue region is enough. This step converts the RGB color space from the low-resolution image to the HSV 
color space. A binary image is created based on the saturation component, which is thresholded using Otsu's 
adaptive thresholding method. Using binary morphological operations, small tissue regions and tissue 
boundaries are accurately extracted from the image. 

3.4.2. Patch Coordinate Extraction 

After generating the tissue mask, the next step involved randomly extracting patches of the image to create 
the training dataset. To prevent class imbalance and ensure proper training, an equal number of tumorous 
and non-tumorous patches were extracted from the tissue mask. A patch was classified as tumorous if at 
least one pixel inside the patch was labeled as a tumor. Patch extraction was done in higher resolution.  

 
Figure 5. An overview of the training pipeline 
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3.4.3. Data Augmentation 

Data augmentation methods were used to increase the number of data points to improve generalization 
across staining and acquisition protocols. Various augmentations were applied, including "horizontal or 
vertical flipping", "90-degree rotations", "Gaussian blurring", and color augmentation. Random changes 
were made to brightness, contrast, hue, and saturation during color augmentation. Using random coordinate 
perturbation, patches extracted from images at different epochs were more diverse. An offset of 128 pixels 
is performed before the patch is extracted from the WSI image. A normalization process was performed 
after augmentation. 

3.4.4. Loss Function 

The images of WSI showed that the tumor regions were only a tiny fraction of the total pixels, creating a 
class imbalance. To overcome this challenge, the network was trained utilizing a hybrid loss function that 
minimizes this issue. There are two types of loss functions in the hybrid loss function: cross-entropy loss 
and dice loss. In image segmentation tasks, cross-entropy loss is a loss function that calculates the difference 
between predicted probabilities and actual labels. Meanwhile, dice loss measures the overlap between the 
predicted and true segmentation maps, which helps evaluate segmentation quality. In order to determine 
the dice loss, the predicted posterior probability map is used along with the ground truth binary image. 
Using the predicted posterior probability map, the network assigns a probability value to each pixel 
indicating whether the pixel belongs to the tumor region. Ground truth binary images label pixels as either 
belonging to the tumor region or not. Dice loss is defined as the difference between the predicted 
segmentation map and the true segmentation map, which is a measure of overlap. Through the integration 
of cross-entropy loss and dice loss, a hybrid loss function is created that optimizes both pixel-wise 
classification accuracy and true segmentation similarity. Studies have shown that this method improves 
segmentation performance. The formula for the hybrid loss function is: 

𝐷𝐿 = 1 −	 .∑ /"0"
%
"

∑ /"
!%

" 1∑ 0"
!%

"
	 (3)	

𝐶𝐿 = 	∑ ,𝑔2𝑙𝑜𝑔(𝑝2) + (1 − 𝑔2)𝑙𝑜𝑔(1 − 𝑝2)43
2 	 (4)	

𝐿𝑜𝑠𝑠 = 	𝛼	 ∗ 𝐶𝐿 + 	𝛽 ∗	𝐷𝐿45 + 	𝛾 ∗	𝐷𝐿65 	 (5) 

In these formulas, 𝑝!	and 𝑔!	are a pair wise pixel value predicted posterior and ground truth. N is the total 
number of pixels, DL represent the dice loss and CL refers to cross-entropy loss. 𝐷𝐿#$   and 𝐷𝐿%$  are 
foreground pixels match to the tumor regions and background pixels correspond to the non- tumor regions. 
The 𝛼, 𝛽, 𝛾	 are assigned in a way that the cross-entropy loss and the dice loss have the equal weights.  

3.4.5. Training 

The three neural networks were trained using distinct cross-validation folds, with the encoder component 
of each network initialized with pre-trained weights. For two networks that employed DenseNet-121 and 
Inception-ResNet-V2 as encoders, the weights of the pre-trained model were fixed during the initial two 
epochs, with only the decoder weights being trained. Subsequently, both encoder and decoder weights were 
trained for the remaining epochs. A decayed learning rate based on the number of epochs was implemented 
to capture the gradual convergence of the model. Once the validation loss began to increase, the training 
process was terminated. 

3.5. Inference Pipeline 

To facilitate patch extraction, tissue regions were segmented from WSIs in the preprocessing step. To 
generate the uniform patch-coordinate sampling grid, a lower resolution grid was generated, which was 
then scaled to match the highest resolution WSIs. Scaled coordinate points were used as centers for 
extracting high-resolution image patches from the WSI image. The stitching of segmented patches caused 
boundary artifacts due to the smaller patch sizes that could not capture the context of a larger neighborhood 
region. As a solution to these issues, the inference was made on overlapping patches with large patch sizes, 
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with average prediction probabilities 
calculated at regions that overlapped. It was 
found to be optimal to overlap consecutive 
neighboring patches by 50% for both accuracy 
and computation efficiency. Furthermore, an 
increase in patch size by a factor of four during 
inference increased the quality of generated 
heatmaps compared to those generated during 
training. 

3.6. PN-staging 

PN-staging was applied for CAMELYON17 
dataset.  PN-staging allows doctors to more 
accurately assess the extent of cancer and its 
response to treatment, which can help guide 
further treatment decisions. Figure 6 shows the 
pipeline of PN-staging. 

The steps for PN-staging are as follows: 

• Preprocessing: This step involved detecting 
tissue regions in whole slide images (WSI) for 
patch extraction.  

• Heatmap generation: The extracted patches were then used to generate down-scaled tumor probability heatmaps 
via an inference pipeline. 

• Feature extraction: feature 
extraction was carried out by 
binarizing the heatmaps at 0.5 
and 0.9 probabilities, 
extracting connected 
components, and measuring 
region properties using the 
scikit-image (Van Der Walt et 
al., 2014) library. A total of 
thirty-two geometric and 
morphological features were 
computed from the probable 
metastases regions. Table 3 
shows the results.  

• Data balancing: As a means of 
addressing class imbalance, 
oversampling of SMOTE algorithm (Chawla et al., 2002) was employed, although this method can introduce 
noise. To eliminate noisy samples, under-sampling techniques such as Tomek's link or nearest neighbors were 
employed. In this study, SMOTETomek (Batista et al., 2004), a combination of SMOTE and Tomek's link, was 
used to balance the training data. 

• Classification: Assigning the PN-stage to the patient was determined based on the available lymph node WSI 
images, taking into account the type of metastases each patient had (Table 4). The extracted features were used 
to train an ensemble of Random Forest classifiers to predict metastases type. 

3.7. Tumor Burden Estimation 

Tumor burden estimation is a critical step in the analysis of PAIP datasets related to liver tissues. It is a 
process that involves the measurement of the amount of cancerous tissue present in a patient's liver cancer 

No. Feature Description Threshold 
1 Largest tumor region’s major axis length 0.9, 0.5 
2 Largest tumor region’s area 0.5 
3 Ratio of tumor region to tissue region 0.9 
4 Count of none-zero pixel 0.9 
5 Tumor regions area 0.9 
6 Tumor regions perimeter 0.9 
7 Tumor regions eccentricity 0.9 
8 Tumor regions extent 0.9 
9 Tumor regions solidity 0.9 
10 Mean of all regions mean confidence probability 0.9 
11 Number of connected regions 0.9 

Table 3. Extracted features for predicting lymph node metastasis type 

 

 
Figure 6. An overview of the PN-staging 
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tissue. In order to carry out this process, it is necessary to segment the viable tumor and whole tumor regions 
within the liver tissue. The viable tumor region specifically refers to the portion of the tumor that is actively 
growing and dividing, and this region is identified through the use of a deep learning-based segmentation 
network. While this network proved to be effective in identifying the viable tumor region, training it for the 
whole tumor region did not yield optimal results. As a result, a heuristic approach was employed to 
approximate the whole tumor region from the viable tumor region. 

The steps in tumor burden estimation are as follows:  

• Segment the viable tumor region: This involves using the algorithm proposed in the "Inference pipeline" section 
to segment the portion of the tumor that is actively growing and dividing. This step involves the use of deep 
learning-based segmentation networks.  

• Apply morphological operations: The segmentation process may result in false positives or small holes in the 
prediction. Applying morphological operations (e.g., erosion, dilation) can help to remove these issues. 

• Find the smallest convex hull: This involves identifying the smallest convex hull that contains the entire viable 
tumor region. The convex hull is the smallest convex polygon that can enclose all the points in a given region. 

• Approximate the whole tumor region: As training the same segmentation network for the whole tumor region 
resulted in sub-optimal outcomes, a heuristic approach was adopted to approximate the whole tumor region. 
This involves intersecting the convex hull with the tissue mask to identify the whole tumor region. 

• Calculate the tumor burden: This step involves taking the ratio between the area of the viable tumor region and the area of 
the whole tumor region to calculate the tumor burden. This provides a quantitative measure of the amount of cancerous tissue 
present in the liver tissue. 

3.8. Uncertainty Analysis 

Uncertainty analysis refers to the process of estimating and quantifying the level of uncertainty in the 
predictions made by machine learning models. In the context of medical diagnosis, uncertainty analysis can 
be used to identify cases where the model's predictions are unclear or uncertain, which can then be flagged 
for further review by human experts. There are two main sources of uncertainty in machine learning models: 
aleatoric uncertainty and epistemic uncertainty. Aleatoric uncertainty arises from the inherent variability in 
the data generation process and can be estimated using techniques such as test time augmentations. 
Epistemic uncertainty (Kendall & Gal, 2017), on the other hand, arises from the model architecture and 
parameters and can be estimated using techniques such as test time Bayesian dropout. Bayesian dropout is 
a regularization technique that can be applied to deep neural networks during training to prevent overfitting 
and improve generalization. It works by randomly dropping out neurons during training with a certain 
probability, which forces the network to learn more robust features that are not dependent on any particular 
set of neurons. During test time, Bayesian dropout can be used to estimate the model's uncertainty by 
running multiple forwards passes through the network with dropout applied and computing the variance of 
the predictions. This can be interpreted as a measure of how much the model's predictions vary depending 
on which neurons are dropped out, and hence how uncertain the model is about its predictions. 

In the proposed pipeline, aleatoric uncertainty for each model was estimated using test time augmentations 
(TTA), which involves applying various transformations to the input images at test time to generate multiple 
predictions for each image. The aleatoric uncertainty for a given image was then estimated as the variance 
of the predictions across the different augmentations, using: 

Category Size 
Isolated Tumor Cells Single tumor cells or a cluster of tumor cells ≤ 0.2	𝑚𝑚 or less than < 200	𝑐𝑒𝑙𝑙𝑠 
Micro Metastasis  ≥ 0.2	𝑚𝑚 and/or > 200	𝑐𝑒𝑙𝑙𝑠 and ≤ 2	𝑚𝑚 
Macro Metastasis ≥ 2	𝑚𝑚 

Table 4. The assigned metastasis type based on the tumor size 
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𝑣𝑎𝑟&'(𝑥, 𝜑!) ≈ 𝐸(~**+[(𝜑!(𝑥	|𝑤, 𝑡) −	𝐸(~**+[𝜑!(𝑥|𝑤, 𝑡)]),]	 (6)	
Here, x represents the input image, 𝜑!		represents the machine learning model, and w and t represent the 
weights and dropout probabilities, respectively, for the model. The term 𝜑!(𝑥|𝑤, 𝑡)	represents the output of 
the neural network with weights w and with dropout applied for input x. 𝐸(~**+	denotes the expected value 
across all possible augmentations, and the formula calculates the variance of the predicted probabilities 
across the different augmentations, which is a measure of how much the predictions vary depending on the 
specific data augmentation applied. In the context of machine learning, epistemic uncertainty refers to 
uncertainty that arises from the model itself, such as the model architecture, hyperparameters, and weights. 
In order to estimate this type of uncertainty, a diverse set of model architectures can be used. Equation (7) 
shows the formula used for epistemic uncertainty.  

𝑣𝑎𝑟-.J𝑝(𝑦|𝑥, 𝑤)L 	≈ 𝐸/~{/!} MJ𝜑(𝑥|𝑤) −	𝐸/~{/!}[𝜑(𝑥|𝑤)]L
,N	 (7) 

Where 𝑝(𝑦|𝑥, 𝑤) is the likelihood distribution of the probabilistic model, which generates outputs y for 
given inputs 𝑥 for some parameter settings 𝑤. The notation 𝜑! 	indicates the output of a specific trained 
model 𝑖 for input 𝑥 and with parameters 𝑤. 

3.9. Results 

Performance evaluation on CAMELYON17 is shown in Table 5. In the CAMELYON17 testing dataset 
comprising 500 cases, an ensemble approach was used to combine the predictions made by four trained 
Random Forest classifiers. This ensemble model, called RF-Ensemble, utilized the majority voting 
principle to make the final prediction. In the event of a tie, the higher metastases category was chosen. The 
results of the proposed ensemble approach were compared with other published approaches on the same 
dataset, and it achieved a Cohen's kappa score of 0.91.  

In Khened et al. (2021), 212 samples from DigestPath-2019 were used to test the proposed approach against 
other methods. Among the methods compared, the 
proposed method achieved a Dice score of 0.78.  This 
score measures the similarity between two sets of data, 
such as segmenting an image into foregrounds and 
backgrounds. An overlap of 1 indicates a perfect match 
between two sets, and a match of 0 indicates there is no 
overlap at all. The dice score is calculated by dividing 
twice the overlap between two sets by the sum of their 
sizes. A higher Dice score indicates better segmentation 
accuracy (Table 6). 

Table 7 provides a comparison between the proposed 
approach and other methods on the PAIP-2019 dataset. A 
total of two tasks were included in this dataset. In Task 1, 
the Jaccard index was used to evaluate the performance 
of liver cancer segmentation, and in Task 2, the 
combination of absolute accuracy and the Jaccard index 
was used to estimate viable tumor burden for each case in 
the test set. Participants in Task 1 used deep learning 
methods, but with different CNN architectures. For 
Task 2, participants used deep learning-based methods 
for segmenting the whole tumor. Comparatively to deep 
learning-based methods, the proposed convex hull-based 
method performed well. In image segmentation, 
algorithm performance is commonly evaluated by 
comparing predicted results with ground truth results. 

Method Kappa Rank 
Lee et al 0.9570 1 
Pinchaud 0.9386 2 
Proposed (RF- Ensemble) 0.9090 3 
Proposed (RF- PI) 0.8971 12 
Proposed (RF- PB) 0.9027 9 
Proposed (RF- CI) 0.8889 18 
Proposed (RF- CB) 0.9057 6 

Table 5. Kappa scores on CAMELYON17. 

Teams Dice 
Kuanguang 0.807 
Zju_realdoctor 0.792 
TIA_Lab 0.787 
propose 0.782 

Table 6. Dice scores on DigestPath. 

Teams Task 1 Task 2 
FNLCR 0.789 0.752 
Sichuan University 0.777 NA 
Proposed 0.750 0.634 
Alibab 0.672 0.620 
Sejong University 0.665 0.630 

Table 7. Top five entries of PAIP-2019. 
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3.10. Discussion and Conclusion  

For the segmentation and downstream analysis of WSI images, the article presents an automated end-to-
end deep learning framework. By divide-and-conquer strategy, large images are divided into smaller 
patches, which are then classified at the pixel-level using an ensemble of FCNs. Based on publicly available 
histopathology image analysis challenges, the proposed framework achieved state-of-the-art results. 
Among the advantages of the proposed method is its superior segmentation performance using an ensemble 
approach, as well as its ability to generate uncertainty maps for better pathologists' interpretation. 

4. CONTEXTUAL TRANSFORMER NETWORKS FOR VISUAL RECOGNITION 

The Transformer architecture with self-attention has been a significant breakthrough not only in natural 
language processing but also in computer vision. However, existing Transformer designs rely on self-
attention directly over 2D feature maps, where queries and keys are specified at each spatial location and 
ignore the contextual relationships between neighboring keys. To address this limitation, this paper 
proposes a Transformer-based method called Contextual Transformer (CoT), which utilizes contextual 
information among input keys to enhance the results. Using a three-by-three convolution, the CoT block 
encodes keys in static form. Two 1x1 convolutions are used to learn the dynamic multi-head attention 
matrix by concatenating encoded keys with input queries. For dynamic contextual representations of inputs, 
the learned attention matrix is multiplied by input values.  

The Transformer architecture performs better with a CoT block that outputs a combination of static and 
dynamic contextual representations. Using Contextual Transformer Networks (CoTNet), every 3x3 
convolution in ResNet architectures is replaced by a CoT block. It enables us to create a powerful network 
that makes full use of context information between input keys. Different experiments have been conducted 
to assess the effectiveness of the proposed approach, including image recognition, object detection, instance 
segmentation, and semantic segmentation. The comparison between the conventional self-attention and the 
contextual transformer block can be found in Figure 7 and Table 8. In Figure 7, (a) shows a conventional 
transformer block and (b) shows a contextual 
transformer block. They demonstrated the 
power of CoTNet by comparing it with several 
state-of-the-art backbones. When comparing 
CoTNet to ResNeSt (101 layers), it achieves an 
absolute reduction of 0.9% in top-1 error rate. 
The performance of CoTNet on COCO (Lin et 
al., 2014) for object detection and instance 
segmentation is superior to ResNeSt (Zhang et 
al., 2020). As well, CoTNet performed 1.8% 
better than DeiT-B (Touvron et al., 2021) for 
semantic segmentation on ADE20K (Zhou et 
al., 2019). 

4.1. Transformer 

Transformers are a popular type of neural 
network architecture used in natural language 
processing (NLP) and other sequential data 

 
Figure 7. Comparison of transformer blocks 

 

 

 

 

 
 

Algorithm ResNet-50 CoTNet-50 ResNeXt-50 CoTNeXt-50 
Parameters 25.56	 × 107 22.21 ×	107 25.03	 × 107 30.05 ×	107 

FLOPs 4.12	 ×	108 3.28	 ×	108 4.27	 ×	108 4.33	 ×	108 

Table 8. Comparison of FLOPs and Parameters of two contextual networks and their corresponding backbone. 
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applications. These networks utilize self-attention to focus on different parts of input sequences at different 
times. A transformer architecture typically consists of an encoder and decoder, each containing multiple 
layers of self-attention and feedforward neural networks. 

• Encoder: The encoder takes an input sequence and transforms it into a sequence of vectors through embedding. 
A self-attention layer assigns attention weights to each token in the sequence, allowing the network to determine 
the importance of each token in generating the output. The output of the self-attention layer then passes through 
a feedforward neural network, which nonlinearly transforms each token's vector representation, before being 
normalized across the entire sequence. 

• Decoder: Similarly, the decoder generates output tokens based on the encoder's output. The input sequence to 
the decoder is also embedded into a sequence of vectors and passed through a mask attention layer to prevent 
cheating during training. Attention weights are calculated by passing the encoder output and the previous decoder 
layer's output through an attention layer. The output then passes through feedforward neural networks and layer 
normalization before generating a probability distribution over the output vocabulary. The token with the highest 
probability is selected as the next output token. 

Transformers allow for parallel computations and can handle input sequences of varying lengths. They also 
capture long-range dependencies using self-attention, 
making them suitable for various NLP tasks. Figure 8 
shows a general architecture of the transformers.  

4.2. Self-attention 

As a result of an attention mechanism, a query and a 
group of key-value pairs are mapped into an output, 
where each pair is displayed as a vector. Each value is 
weighted according to its relationship with its 
corresponding key based on a compatibility function. 
Their attention mechanism is called "Scaled Dot-Product 
Attention," and is defined as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	 U9:
&

;<'
V 	𝑉	 (8) 

and is shown in Figure 9. By calculating the dot products 
of the query and all keys, dividing the results by 𝑑2 square 
root, and applying a softmax function, the weights for 
those keys are obtained. The results of several queries are 
written into a matrix Q, with keys and values going into 
matrices K and V. 

4.3. Self-attention in Computer Vision 

In response to Transformer's outstanding performance in 
various NLP tasks, researchers have begun exploring its 
application to vision tasks. The purpose of self-attention 
mechanisms in NLP sequence modeling was originally to 
capture long-range dependencies. Self-attention in the 
vision domain can involve applying feature vectors to 
different areas of an image. Local self-attention within a 
local patch has been found to be an effective alternative 
to global self-attention over an entire feature map (Hu 
et al., 2019). An algorithm for self-supervised 
representation learning was developed based on 
transforming raw images into 1D sequences (Chen 
et al., 2020). In order to detect objects and recognize 

 
Figure 8. The transformer block. 

 
Figure 9. The attention mechanism. 
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images, Pure Transformer uses sequences of local features or image patches. The 3×3 convolutions in a 
ResNet were replaced with layers of self-attention in (Srinivas et al., 2021). 

According to some recent works, the input image is divided into several patches as "visual sentences" and 
then into sub-patches as "visual words," in contrast to ViT, which only divides it into patches.  Swin 
Transformer further improves ViT by merging image patches in deeper layers, which has linear 
computation complexity as image size increases (Liu et al., 2021). For local and global attention 
interleaving with high throughput, Twins-PCPVT and Twins-SVT (Twins transformers) have been 
proposed (Chu et al., 2021). There has been developed a technique known as cross-covariance attention 
(XCA), which makes use of tokens (words or image patches) instead of feature channels, which produces 
a linear approach to self-attention (El-Nouby et al., 2021).  

4.4. Multi-head Attention in Vision Backbone 

Multi-head attention in the vision backbone uses embedding matrices, to transform 2D feature map X into 
queries Q, keys K, and values V. This is done as a 1x1 convolution in space. After that, a local matrix 
multiplication operation is performed between keys K and queries Q to obtain the local relation matrix R. 
R represents all local query-key relation maps for each head. 2D relative position embeddings are integrated 
into the local relation matrix R to provide position information about each grid. To achieve attention 
matrix A, the enhanced local relation matrix is normalized using the Softmax operation along the channel 
dimension. The final feature map is derived by aggregating all values within each grid with the learned 
local attention matrix. Finally, the output Y is the concatenation of aggregated feature maps for all heads. 
Equations and methods for Multi-head attention in vision backbone are: 
𝑅 = 𝐾	 ⊛ 𝑄	 (9)	
𝑅Y = 		𝑅 + 𝑃	 ⊛ 𝑄	 (10)	
𝑌 = 𝑉	 ⊛ 𝐴	,	 (11) 

A block diagram for Multi-head attention is given in Figure 10, where 𝑅	𝜖	ℝ3×5×(7×7×8") and 
𝑃	𝜖	ℝ7×7×8", 𝐶: is the head number, and the operator ⊛ depicts local matrix multiplication.  

4.5. Proposed Method 

Present methods rely primarily on conventional self-attention and ignore the explicit modeling of 
relationships between adjacent keys. Contextual Transformer provides both context discovery among keys 
and self-attention learning over the feature map in a single architecture. Contextual information is 
incorporated into input keys to enhance self-attention learning, resulting in improved representational 
abilities for deep networks. Contextual Transformer Networks derived from ResNet and ResNeXt (Xie 
et al., 2017) are subsequently used to replace 3x3 convolutions throughout the deep architecture. 

4.5.1. Contextual Transformer Block 

Self-attention mechanisms typically allow 
feature interactions to occur across various 
spatial locations depending on the inputs. This 
mechanism, however, does not explore the 
contexts between pairwise query-key relations, 
leading to restricted self-attention learning over 
2D feature maps. Contextual Transformer (CoT) 
blocks have been created to address this 
limitation. In the CoT block, contextual 
information mining and self-attention learning 
are linked into a single architecture to enhance 
the representativeness of the aggregated feature 
map. By applying k × k group convolutions over 

 
Figure 10. The multi-head attention block. 
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all the neighbor keys within the k × k grid, CoT contextualizes each key representation. Learning 
contextualized keys reflects static context information among local neighbors. In order to achieve the 
attention matrix, they  performed two consecutive 1×1 convolutions using the contextualized key feature 
and the query feature. Based on the contextualized attention matrix, the attended feature map is calculated. 
CoT is a block that fuses static and dynamic contexts. Through an attention mechanism, it adaptively 
aggregates the two contexts into a single final 
output. Equations are:  

𝐴 =	 [𝐾(, 𝑄]𝑊=𝑊> 	 (12)	
𝐾. = 𝑉⊛𝐴	.	 (13) 

Figure 11 shows a contextual transformer 
block in a systematic way. 

4.5.2. Contextual Transformer Network 

By using the CoT block instead of each 
convolution layer in ResNet, they were able to 
create a high-performing network without 
dramatically increasing the parameter budget. 
The Contextual Transformer Networks 
(CoTNet) are based on ResNet-50 and 
ResNeXt-50 backbones and show the two 
different constructions, respectively, of CoTNet-50 and CoTNeXt-50. With CoTNet-50, all the 
convolutions in stages res2, res3, res4, and res5 are replaced with CoT blocks. CoTNet-50 has a similar 
number of parameters and FLOPs to ResNet-50 due to the similar computational nature of CoT blocks. 
CoTNeXt-50 is built by replacing all the three convolution kernels in ResNeXt-50 with CoTs. This kernel 
depth decreases significantly with an increase in groups, however. Due to this reduction in depth, group 
convolutions in ResNeXt-50 are computationally cheaper by a factor of C (Table 8). 

4.6. Experiments 

CoTNet has been evaluated over some computer vision (CV) applications in order to prove its effectiveness. 
Among the applications are image recognition, object detection, instance segmentation, and semantic 
segmentation. As a first step, CoTNet was trained from scratch using the ImageNet benchmark (Deng et al., 
2009). Afterward, the trained network has been evaluated for object detection and instance segmentation 
on COCO datasets, and for semantic segmentation on ADE20K datasets. This report exclusively focuses 
on the evaluation of time versus accuracy trade-offs achieved through default and advanced training 
methods in the context of image recognition. Additionally, the report investigates the impact of various 
CoT block designs on the performance of CoTNet-50. While the outcomes presented here are limited to 
image recognition, readers interested in the results pertaining to semantic segmentation, instance 
segmentation, and object detection are directed to (Li et al., 2022). 

4.6.1. Image Recognition 

A dataset called ImageNet (Deng et al., 2009) is used in the image recognition task, which is comprised of 
1.28 million training images and 50,000 validation images from 1,000 classes. The validation set is 
evaluated by reporting the top-1 and top-5 accuracy. Experimental setups include two different kinds of 
training setups, namely the default training and advanced training. Typical training for networks such as 
ResNet, ResNeXt, and SENet (Hu et al., 2018) involves training networks for approximately 100 epochs. 
For the dataset, the augmentation techniques are done, and all hyperparameters are set as per the original 
implementations. Using backpropagation, the CoTNet is also trained end-to-end using SGD with 
momentum 0.9, label smoothing 0.1, and batch size equal to 512. Cosine schedules are used to decay the 
learning rate in the first five epochs. CoTNets are trained to 350 epochs, with RandAugment data 
augmenting, and dropout and  DropConnect regularization. 

 
Figure 11. The contextual transformer block. 
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4.6.2. Performance 

A number of recent vision backbones were compared with two different training settings (default and 
advanced) using the ImageNet dataset. CoTNet and CoTNeXt have been built using two different depths: 
50 layers and 101 layers, resulting in CoTNet-50/101 and CoTNeXt-50/101. The advanced training setup 
featured an upgraded version of CoTNet, SE-CoTNetD-101, in which the 3x3 convolutions in the res4 and 
res5 stages were replaced by CoT blocks under the SE-ResNetD-50 backbone (He et al., 2019). Based on 
the default training results, CoTNet-50/101 and CoTNeXt-50/101 outperformed current vision backbones 
consistently across both top-1 and top-5 accuracy levels, including both ConvNets (e.g., ResNet-50/101 
and ResNeXt-50/101) and attention-based models (such as Stand-Alone and AA-ResNet-50/101). In this 
study, we have demonstrated an effective way of enhancing visual recognition by combining context mining 
and self-attention learning into a single architecture. 

4.6.3. Inference Time Versus Accuracy 

Using both inference time and top-1 accuracy, the CoTNet models were evaluated on image recognition 
tasks. Both Figure 12 and Figure 13 illustrate the inference time-accuracy curves of CoTNet and state-of-
the-art vision backbones for default and advanced training setups. The CoTNet models demonstrated better 
top-1 accuracy at lower inference times than other vision backbones for both training setups when compared 
with other vision backbones. Compared to Efficient-Net-B6, SE-CoTNetD-152 (320) achieved 2.75𝑥 faster 
inference speeds while achieving 0.6% higher top-1 accuracy. 

4.6.4. Effect of Different Configurations 

Detailed analyses of each CoT block design are performed in this section in order to assess their impact on 
the overall performance of CoTNet-50. Initially, the static context is located among the keys through a 
convolution of three, and then the dynamic context is formed by concatenating the query and contextualized 
key. CoT blocks combine the static and dynamic contexts to produce the final outputs. Linear Fusion and 
Concatenate are two variations of CoT blocks that directly sum or concatenate two contexts. Table 9 
outlines the performances of various ways of exploring contextual information in CoTNet-50 backbone. 
According to the results, 77.1% of the top-1 accuracy was achieved using the static context alone. In 
contrast, the exploitation of dynamic context shows improved performance. By combining static and 
dynamic contexts linearly, 78.7% of the gains occur, indicating their complementarity. Additionally, 
Concatenate is comparable to Linear Fusion in terms of performance (Table 9). 

4.6.5. Effect of Replacement Settings 

ResNet-50 backbone performance is analyzed in relationship to the number of stages replaced with CoT 
blocks in order to find a better balance between speed and accuracy. As shown in Table 10, replacing more 
stages with CoT blocks generally improves performance while decreasing parameter numbers and FLOPs 

 
Figure 13. Time versus accuracy-advanced training 

 

 
Figure 12. Time versus accuracy-default training 
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slightly. Performance boosts are most 
notable in the last two stages (res4 and 
res5) after CoT blocks are replaced. 
Moreover, the additional replacement 
of CoT blocks in the first stages (res2 
and res3) only leads to marginal 
performance improvements and 1.34𝑥 
inference time increases, as shown in 
Table 10. As the results show, SE-
CoTNetD-50 achieved better performance with a negligible decrease in throughput compared to SE-
ResNetD-50. 

4.7. Conclusion 

The authors introduced a novel architecture called the Contextual Transformer (CoT) block that combines 
contextual information with self-attention learning to improve visual representation. The CoT block 
captures static context among input keys and uses it to trigger self-attention for mining dynamic context. 
This approach replaces standard convolutions in ResNet architectures and results in better performance 
without increasing parameters. The authors construct CoTNet by replacing 3x3 convolutions in ResNet 
architectures, which validates their proposal and analysis. Extensive experiments on COCO and ADE20K 
datasets demonstrate the generalization of visual representation pre-trained by CoTNet across various 
downstream tasks, such as object detection, instance segmentation, and semantic segmentation. 

5. FINAL DISCUSSION 

This preliminary study aimed to address three important issues in the field of deep learning. Firstly, we 
established the necessity of a blind evaluation set to ensure the reliability and reproducibility of deep 
learning algorithms. Secondly, we proposed a general deep-learning method for segmenting whole slide 
images that effectively overcome memory limitations when dealing with large images. Lastly, we 
introduced a novel vision backbone based on transformer models, which is a prominent area of research in 
the field of deep learning. These three papers are of significant importance in the context of cancer detection 
on pathology images, which are typically whole slide images that require accurate segmentation algorithms. 
Furthermore, deep learning algorithms for cancer detection must be both robust and precise. Therefore, 
these three papers are fundamental in guiding future research in our group. 
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