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EXECUTIVE SUMMARY 

 
In this report, I review three research papers concerning hierarchical Dirichlet processes (HDP), infinite 
hidden Markov models (HDP-HMM), and several inference algorithms for these models. I also use 
several other sources to support the material discussed in this report. 

The three primary references used in this exam are "Hierarchical Bayesian Nonparametric Models with 
Applications,” “On-Line Learning for the Infinite Hidden Markov Model,” and “Sticky HDP-HMM with 
Application to Speaker Diarization". The basic materials in all of these papers involve HDP and HDP-
HMMs. The first paper is a more general overview and contains several other models which are not 
related directly to the main theme of this report. Therefore this report is not organized based on any one of 
these references but contains most of the relevant material from those papers. In many cases I have 
corrected several errors ranging from typos to simple algorithmic/computational errors and have also used 
a unified notation through the report that I believe makes the presentations easier. 

To make the report more self-contained I have added a background review of Dirichlet processes (DP), 
but this review is very short and readers may need to review some background papers before reading this 
report.  After reviewing DPs, I start by introducing HDP and the reason that they are needed. Several 
properties of HDP are derived (both in the main report and the appendix) and some of its properties are 
justified. Two basic inference algorithms for HDPs are presented in detail.  

HDP-HMM is introduced based on the general framework of hierarchical Dirichlet processes. The 
differences between this new model and HDP are emphasized and several of their properties are derived 
and explained. Three important inference algorithms are reviewed and presented in detail. 

In writing this review, one of my primary intentions is to produce a self-sufficient document that can be 
used as a reference to implement some of the inference algorithms for HDP-HMM. Moreover, an 
interested reader can easily start from these and derive more general or application specific algorithms.        
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1 INTRODUCTION 

Nonparametric Bayesian methods provide a consistent framework to infer the model complexity from the 
data. Moreover, Bayesian methods make hierarchical modeling easier and therefore open doors for more 
interesting and complex applications. In this report, we review hierarchical Dirichlet processes (HDP) and 
its applications to derive infinite hidden Markov models (HMM) or HDP-HMM. We also review three 
inference algorithms for the so called HDP-HMM in details.  

This report is organized into five sections and two appendixes. Section two is a quick review of Dirichlet 
process. Section three is devoted to HDP and its inference algorithms and section four is focused on 
HDP-HMM and its inference algorithms. For the sake of readability, some of the mathematical details are 
presented in the appendix sections.    

2 BACKGROUND 

A Dirichlet process (DP) is a distribution over distributions, or more precisely over discrete distributions. 

Formally, a Dirichlet process ( )0,DP Gα is “defined to be the distribution of a random probability 

measure G overΘ such that for any finite measurable partition ( )1 2, ,..., rA A A ofΘ the random distribution

( ) ( )( )1 ,..., rG A G A  is distributed as finite dimensional Dirichlet distribution” (Teh Y. , Jordan, Beal, & 

Blei, 2006) : 

 ( ) ( )( ) ( ) ( )( )1 0 1 0,..., ~ ,...,r rG A G A Dir G A G Aα α  (2.1) 

A constructive definition for Dirichlet process is given by Sethuraman (Sethuraman, 1994) which is 
known as stick-breaking construction. This construction explicitly shows that draws from a DP are 
discrete with probability one. 

 

( )

( )

0 0 0

1

11

| , ~ 1, , | , ~

1 ,
k

k k

k

k k l k
kl

v G Beta G G

v G θ

α α θ α

β β β δ
− ∞

==

= − =∏
 (2.2) 

β can be interpreted as a random probability measure over positive integers and is denoted by

( )~ GEMβ α . In both of these definitions 0G , or base distribution, is the mean of the DP, andα is the 

concentration parameter which can be understood as the inverse of variance.  

Another way to look at the DP is through the Polya urn scheme. In this approach, we have to consider 
i.i.d. draws from a DP and consider the predictive distribution over these draws (Teh Y. , Jordan, Beal, & 
Blei, 2006): 

 
1

1 1 0 0
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1
| ,..., , , ~

1 1k
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i i
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G G
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αθ θ θ α δ
α α

−

−
=

+
− + − +  (2.3) 

In the urn interpretation of equation (2.3), we have an urn with several balls of different colors in it. We 
draw a ball and put it back in the urn and add another ball of the same color to the urn. With probability 
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proportional toα we draw a ball with a new color. To make the clustering property more clear, we should 

introduce a new set of variables that represent distinct values of the atoms. Let * *
1 ,..., Kθ θ to be the distinct 

values and km be the number of lθ associated with *
kθ . We would now have: 

 *1 1 0 0
1

| ,..., , , ~
1 1k

K
k

i i
k

m
G G

N Nθ
αθ θ θ α δ

α α−
=

+
− + − +  (2.4) 

Another useful interpretation of (2.4) is the Chinese restaurant process (CRF). In CRF we have a Chinese 
restaurant with infinite number of tables. A new customer iθ  comes into the restaurant and can either sit 
around one of the occupied tables with probability proportional to the number of people already sitting 
there or start a new table with probability proportional toα . In this metaphor, each customer is a data 
point and each table is a cluster.  

3 HIERARCHICAL DIRICHLET PROCESS 

A Hierarchical Dirichlet Process (HDP) is the natural extension of a Dirichlet process for problems with 
multiple groups of data. Usually, data is split into J groups a priori. For example, consider a collection of 
documents. If words are considered as data points, each document would be a group. We want to model 
data inside a group using a mixture model. However, we are also interested to tie groups to each other, i.e. 
to share clusters across all groups. Let’s assume that we have an indexed collection of DPs with a 

common base distribution{ } 0~ ( , )jG DP Gα . Unfortunately this simple model cannot solve the problem 

since for continues 0G  different jG  necessary have no atoms in common. The solution is to use a 

discrete 0G  with broad support. In other words, 0G  is itself a draw from a Dirichlet process. HDP is 
defined by (Teh & Jordan, 2010) equation (3.1). 

 

( )

0

0 0

| , ~ ( , )

| , ~ ( , )
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| ~

j

ji j j

ji ji ji

G H DP H

G G DP G
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x F for j J

γ γ
α α

θ

θ θ ∈

  (3.1) 

In this definition H provides prior distribution for factor jiθ . γ governs the variability of 0G  around H

andα controls the variability of jG around 0G .  H , γ andα  are hyper-parameters of HDP. 

3.1 Stick-Breaking Construction 

Because 0G is a Dirichlet distribution it has a stick-breaking representation: 

 **0
1

,
k

k
k

G θβ δ
∞

=

=  (3.2) 

Where ** ~k Hθ  and ( ) ( )1
~k k

GEMβ β γ∞
== . Since support of jG is contained in within the support of 0G  
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we can write a similar equation to (3.2) for jG : 

 **

1
k

j jk
k

G θπ δ
∞

=

=  (3.3) 

Then we have: 

 ( )~ ,j DPπ α β  (3.4) 
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~ , 1

1 , 1,...,
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l

k

jk jk jl
l
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α β α β

π

=

−

=

  
−     

= − = ∞



∏
 (3.5) 

We also have: 

 

[ ] ( )
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β γ γ

π β
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α

−−= +

  = 
 −

  = + >   + 

 (3.6) 

 

Stick-breaking construction for HDP and (3.6) are derived in  A.1. Figure 1 demonstrates stick-breaking 
and cluster sharing of HDP.  

 

Figure 1 - Stick Breaking Construction for HDP: The left panel shows a draw ofβ , while the right three show 

independent draws conditioned on β  (Teh & Jordan, 2010).   
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3.2 Different Representations 

Definition (3.1) shows the first representation of HDP. Another representation can be obtained by 
introducing an indicator variable as shown in equation (3.7).   

Figure 2 shows the graphical models of both of these representations. 

 

{ } ( )1

| ~ ( )

| , ~ ( , )

| , ~ ( )

| ~

| , ~

j

k

ji j j

ji k ji jik

GEM

DP

H H

z

x z F

β γ γ
π α β α β
θ λ λ

π π

θ θ∞
=

 (3.7) 

3.3 Chinese Restaurant Franchise 

The Chinese restaurant franchise (CRF) is the natural extension of Chinese restaurant process for HDPs. 
In CRF, we have a franchise with several restaurants and a franchise wide menu. The first customer in 
restaurant j sits at one of the tables and orders an item from the menu. Other customers either sit at one of 
the occupied tables and eat the food served at that table or sit at a new table and order their own food from 
the menu. Moreover, the probability of sitting at a table is proportional to the number of customers 
already seated at that table. In this metaphor, restaurants correspond to groups and customer i in restaurant

j  corresponds to jiθ (customers are distributed according to jG ). Tables are i.i.d. variables *
jtθ distributed 

according to 0G and finally foods are i.i.d. variables **
kθ distributed according to H . If customer i at 

restaurant j sits at table jit and that table serves dish jtk , we will have * **
ji t ji

ji jt kθ θ θ= = . In another way, 

each restaurant represents a simple DP and therefore a cluster over data points. At the franchise level we 
have another DP but this time clustering is over tables.  

Now let introduce several variables that will be used throughout this paper. jktn is the number of 

 

Figure 2-(a) HDP representation of (3.1) (b) Alternative indicator variable 
representation (3.7) (Teh, Jordan, Beal, & Blei, 2004)



 

 

  

Preliminary Exam Report Page 5 of 34

\ Update: February 29, 2012 

customers in restaurant j  , seated around table t ,and who eat dish k . jkm is the number of tables in 

restaurant j  serving dish k and K is the number of unique dishes served in the entire franchise. Marginal 

counts are denoted with dots. For example, j kn  is the number of customers in restaurant j eating dish k . 

3.3.1 Posterior and Conditional Distributions 

CRF can be characterized by its state which consists of the dish labels { }** **

1,...,k k K
θ

=
=θ , the tables 

{ } 1,...,
1,...,

j Jji
i n

t =
= 

 and dishes{ } 1,....,
1,...,

jijt j J
i n

k =
= 

 . As a function of the state of the CRF, we also have the number of 

customers { }jtkn=n , the number of tables { }jkm=m , customer labels { }jiθ=θ and table labels { }*
jtθ=∗θ  

(Teh & Jordan, 2010). The posterior distribution of 0G is given by: 

 
**

1
0 | , , ~ , k

K

kk
H m

G H DP m
m

θγ δ
γ γ

γ
=

 + + + 
 

 




∗θ  (3.8) 

Where m is the total number of tables in the franchise and km is the total number of tables serving dish k . 

Equation (3.9) shows the posterior for jG . jn  is the total number of customers in restaurant j  and j kn  is 

the total number of customers in restaurant j eating dish k . 

 
**0 1

0| , , ~ , k

K

j kk
j j

j

G n
G G DP n

n
θα δ

α α
α

=
 + + + 
 


jθ





 (3.9) 

Conditional distributions can be obtained by integrating out jG and 0G respectively. By integrating out jG

from (3.9) we obtain: 

 
.

*1 , 1 0 0
1

| ,..., , , ~
j

jt

m
jt

ji j j i
j jt

n
G G

n nθ
αθ θ θ α δ

α α−
=

+
+ + 

 
 (3.10) 

And by integrating out 0G from (3.8) we obtain: 

 **
* * *

1 , 1
1

| ,..., , , ~
k

K
k

jt j j t
kk

m
H H

m mθ
γθ θ θ γ δ

γ γ−
=

+
+ + 

 
 (3.11) 

  A draw from (3.8) can be obtained using (3.12) and a draw from (3.9) can be obtained using (3.13). 

 

( )
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β β δ
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**

0 1 0 1 1

0 0 0

0
1

, ,..., | , ~ ( , ,..., )

| , ~ ( , )

k

j j jK j K j K

j

K

j j j jk
k

Dir n n

G G DP G

G G θ

π π π α αβ αβ αβ
α αβ

π π δ
=

+ +
′ ′

′= +

jθ  

 (3.13) 

From (3.12) and (3.13) we see that the posterior of 0G is a mixture of atoms corresponding to dishes and 

an independent draw from ( , )DP Hγ and jG is a mixture of atoms at **
kθ and an independent draw from

0 0( , )DP Gαβ ′  (Teh & Jordan, 2010).    

In an HDP each restaurant represents a DP and so log j
j

n
m O α

α
 

∈  
 


  since the number of clusters scales 

logarithmically. On the other hand, equation (3.8) shows 0G  is a DP over tables and so

log log logj j

j j

m n
K O O

αγ γ
γ γ α

    
∈ =          

    . This shows that HDP represents a prior belief that 

the number of clusters grows very slowly (double logarithmically) when increasing the number of data 
points but faster (logarithmically) in the number of groups (Teh & Jordan, 2010).  

All of the above relationships are derived in  A.2.   

3.4 Inference Algorithms 

First, let introduce several notations. { }jix=x , { }|ji jix t t= =jtx , { }jit=t , { }jtk=k and { }jiz=z .Where

jiji jtz k= denotes the mixture component associated with the observation jix .To indicate the removal of a 

variable from a set of variables or a count, we use a superscript ji− ; for example \ji
jix x− = x or ji

jtn−  is the 

number of customers (observations) in restaurant (group) j seated at table t excluding jix . We also assume

( )F θ has the density ( )|f θ and H has the density ( )h  and is conjugate to F . The conditional density of

jix under mixture component k giving all data excluding jix is defined as: 

 
( )

( ) ( )
( ) ( )

( ) ( ) ( )
\

|

, 1,..., ,
|

| ,

k jiji

k ji

ji
new

j i
j i D xx

k ji

j i
j i D x

x new
ji jik

h f x d

f x k K
h f x d

f x h f x d k k

θ

θ

θ

θ λ θ

θ λ θ

θ λ θ

′ ′
′ ′∈ ∪−

′ ′
′ ′∈

−

= =

= =

∏

∏



 (3.14) 

where { }:
j ik j tD j i k k
′ ′′′ ′= = denotes the set of indices of the data item currently associated with dish k . For 

the conjugate case, we could obtain a closed form for this likelihood function. Particularly if emission 
distributions are Gaussian with unknown mean and covariance, the conjugate prior is a normal-inverse-
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Wishart distribution (Sudderth, 2006) denoted by ( ) { }, , ,
NIW λ ζ ϑ νλ = Δ

and { },k k kθ μ= Σ . Given some 

observations for component, k  of the mixture { }( )

1

Ll

l
x

=
(in this case { }( )

1

Ll

l
x

=
=

{ }| , 1,..., , 1,...,
j i

ji
j tx k k j J i n

′ ′

−
′ ′ ′ ′= = =  ) from a multivariate Gaussian distribution, the posterior still 

remains in the normal-inverse-Wishart family and its parameters are updated using: 

 ( )

1

( ) ( )

1

T

k

k

L l
k k l

L l l T T
k k l

L

L

x

x x

ζ ζ
ν ν

ζ ϑ ζϑ

ν ν ζϑϑ ζϑϑ
=

=

= +
= +

= +

Δ = Δ + + −




 (3.15) 

In practice there are some efficient ways (using Cholesky decomposition) to update these equations and 
allows fast likelihood evaluation for each data point. Finally, marginalizing kθ induces a multivariate t-

student distribution with 1k dν − +  degree of freedom ( d is the dimension of data points): 

 

( ) ( )
( )

( ) ( )
( )

1

1

1
; , , 1,...,

1

1
; , ,

1

ji

k

ji
new

k kx
k ji d ji k k

k k

x new
ji d jik

f x t x k K
d

f x t x k k
d

ν

ν

ζ ν
ϑ

ζ ν

ζ ν
ϑ
ζ ν

−
− −

−
− −

 +
 = Δ =
 − − 
 +

= Δ =  − − 

 (3.16) 

Assuming ( )1k dν > + (3.16) can be approximated by moment-match Gaussian (Sudderth, 2006). 

3.4.1 Posterior Sampling in CRF 

Equations (3.10) and  (3.11) show how we can produce samples from the prior over jiθ and *
jtθ , using the 

proper likelihood function and how this framework can provide us with necessary tools to sample from 
the posterior given the observations x . In this first algorithm, we sample index jit and jtk using a simple 

Gibbs sampler. 

In this algorithm we assumed that emission distributions are Gaussian but using other conjugate pairs is 
the same. The following list shows a single iteration of the algorithm, but to obtain reliable samples we 
have to run this many times. Notice that the most computational costly operation is the calculation of the 
conditional densities. Moreover, the number of events that could happen for each iteration of the 
algorithm is 1K + . 

1. Given the pervious state assignment K ,kand t : 

Sample t: 

2. For all 1,..., , 1,...., jj J i n= =  do the follow sequentially  
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3. Compute the conditional density for jix using (3.16) for 1,..., , newk K k= . 

4. Calculate the likelihood for new
jit t=  using: 

 ( ) ( ) ( )
1

| , , jiji
new

jiK
xxji new k

ji ji k ji jik
k

m
p x t t f x f x

m m

γ
γ γ

−
−−−

=

= = +
+ +t k 

 
 (3.17) 

5. Sample jit from the multinomial probability 

 ( ) ( )
( )

, if t previously used
| ,

| , , , if t

ji

jt

xji
jt jikji

ji ji new new
ji ji

n f x
p t t

p x t t tα

−−
−

−


= ∝ 

= =

t k
t k


 (3.18) 

6.  If the sampled value of jit is newt , obtain a sample of newjt
k by: 

 ( ) ( )
( )

, If k previously used
| ,

, If k =k

ji ji

new

new
ji

new

x x
k k jijt

jt x new
jik

m f x
p k k

f xγ

− −

−
−


= ∝ 


t k


 (3.19) 

7. If newk k= then increment K . 
8. Update the cached statistics. 

9. If a table t becomes unoccupied delete the corresponding jtk and, if as a result some mixture 

component becomes unallocated, delete that mixture component too.  

Sample K: 

10. For all 1,..., , 1,..., jj J t m= =  do the following sequentially: 

11. Compute the conditional density for jtx using (3.16) for 1,..., , newk K k= . 

12. Sample jtk from a multinomial distribution: 

 ( ) ( )
( )

, If k previously used
| ,

, If k =knew

k k

jt new
k

m f
p k

fγ

− −

−


∝ 


jt jt

jt

x x
jt-jt

x
jt

x
t k

x


 (3.20) 

13. If newk k=  then increment K . 
14.  Update the cached statistics. 
15. If a mixture component becomes unallocated delete that mixture component 
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Equation (3.17) is obtained from (3.11). From (3.10) we see the prior probability that jit  takes a 

previously used value is proportional to ji
jtn−   and the prior probability of taking a new value is 

proportional toα .The likelihood for jix given jit t= for some previously used t is ( )jix
k jif x−  and the 

likelihood for new
jit t= is given by (3.17). By multiplying these priors and likelihoods we can obtain the 

posterior distribution (3.18). In the same way, (3.19) and (3.20) can be obtained by multiplying the 
likelihoods and priors given by (3.11). 

3.4.2 Augmented Posterior Representation Sampler 

In the previous algorithm, the sampling for all groups is coupled which makes the derivation of the CRF 
sampler for certain models difficult (Teh Y. , Jordan, Beal, & Blei, 2006). This happens because 0G was 

integrated out. An alternative approach is to sample 0G . More specifically, we will use (3.12) and (3.13) 

to sample from 0G and jG respectively. This algorithm contains two main steps. First we sample cluster 

indices { }jiz (instead of tables and dishes) and then we sample β and{ }j j J
π

∈
. Equation (3.12) shows in 

order to sample from β we should first sample{ }jkm . This completes the second algorithm.  

1. Given the pervious state assignment for z , β and{ }jπ from previous step 

Sample Z 

2. For all 1,..., , 1,...., jj J i n= =  do the follow sequentially  

3. Compute the conditional density for jix using (3.16) for 1,..., , newk K k= . 

4. Sample jiz  using: 

 
( )
( )0

If k previously used
( | , )

If k=k

ji

ji
new

x
jk k jiji

ji x new
j jik

f x
p z

f x

π
β

π

−

−
−


∝ 


z  (3.21) 

5. If a new component newk is chosen, the corresponding atom is initiated using (3.22) and set

1jiz K= + and 1K K= + . 

 

( )
( ) ( )

( )
( ) ( )

0

0 1 0 0 0 0

0 0 0 0 0 0

0 1 0 0

| ~ ,1

, , (1 )

| , , ~ , (1 )

, ~ , (1 )

new new
K

j

new new
j jK j j j j

v Beta

v

v Beta v v

v v

γ γ

β β β ν β

α β ν αβ αβ

π π π π

+

+

= −

−

−

 (3.22) 
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6. Update the cached statistics. 

Sampling m   

7. Sample{ }jkm using (3.23) where ( , )s n m is the Stirling number of the first kind. Alternatively, we 

can sample { }jkm by simulating a CRF, which is more efficient for large .j kn . 

 
( )

( ) ( )( | , , , ) ( , )
mk

jk j k j k k

k j k

p m m n s n m
n

αβ
β α αβ

αβ
Γ

= =
Γ +

z  


 (3.23) 

Sampling βand π  

8. Sample β andπ using(3.12) and (3.13) respectively.  

 

In this algorithm we have used alternative representation given by (3.7). Particularly, we can see ~ji jz π . 

By combining this with (3.13) we can obtain a conditional prior probability function for jiz and by 

multiplying it with the likelihoods we can obtain (3.21). (3.22) is the stick-breaking step for the new atom 
and follows the steps described in section  3.1. In particular the third line in (3.22) is obtained by replacing 
the remaining stick 0β with a unit stick. The validity of this approach is shown in (Pitman, 1996).For a 
proof of (3.23)look at (Antoniak, 1974). It should be noted that computing this equation is generally very 
costly and we can alternatively simulate a CRF to sample{ }jkm . 

3.5 Applications 

Among the several applications of HDP, we will only review two of them in this section. It should be 
noted that the following section, HDP-HMM, is by itself an application of the general HDP framework. 

One of the most cited applications of HDP is in the field of information retrieval (IR) (Teh & Jordan, 
2010). A state of the art but heuristic algorithm which is very popular in IR applications is the “term-
frequency inverse document frequency” (tf-idf) algorithm. The intuition behind this algorithm is that the 
relevance of a term to a document is proportional to the number of times that term occurred in the 
document. However, terms that occur in many documents should be down weighted. It has been shown 
that HDP provides a justification for this intuition (Teh & Jordan, 2010) and an algorithm based on HDP 
outperforms all state of the art algorithms. 

Another application cited extensively in literature is topic modeling (Teh & Jordan, 2010). In topic 
modeling, we want to model documents with a mixture model. Topics are defined as probability 
distributions across a set of words while documents are defined as probability distributions across 
different topics. At the same time we want to share topics among documents within a corpus. So each 
document is a group with its own mixing proportions but components (topics) are shared across all 
documents using an HDP model.    
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4 HDP-HMM 

Hidden Markov models (HMMs) are a class of doubly stochastic processes in which discrete state 
sequences are modeled as a Markov chain (Rabiner, 1989). In the following discussion we will denote the 
state of the Markov chain at time t  with tz  and the state-specific transition distribution for state j by jπ
.The Markovian structure means

1
~

tt zz π
−

. Observations are conditionally independent given the state of 

the HMM and are denoted by ( )~
tt zx F θ . 

HDP-HMM is an extension of HMM in which the number of states can be infinite. The idea is relatively 
simple; at each state tz we should be able to go to an infinite number of states so the transition distribution 
should be a draw from a DP. On the other hand, we want reachable states from one state to be shared 
among all states so these DPs should be linked together. The result is an HDP. In an HDP-HMM each 
state corresponds to a group (restaurant) and therefore, unlike HDP in which an association of data to 
groups is assumed to be known a priori, we are interested to infer this association. The major problem 
with original HDP-HMM is the state persistence. HDP-HMM has a tendency to make many redundant 
states and switch rapidly among them (Teh Y. , Jordan, Beal, & Blei, 2006). This problem is solved by 
introducing a sticky parameter to the definition of HDP-HMM (Fox E. , Sudderth, Jordan, & Willsky, 
2011). Equation (4.1) shows the definition of a sticky HDP-HMM with unimodal emissions.κ is a sticky 
hyper-parameter and generally can be learned from data. Original HDP-HMM is a special case with 0κ =
. From this equation we can see for each state (group) we have a simple unimodal emission distribution. 
This limitation can be addressed using a more general model defined in (4.2). In this model, a DP is 
associated with each state and a model with augmented state ( , )t tz s is obtained. Figure 3 shows a 
graphical representation.  
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| , ~ ( )

| , ~

| , ~

| , ~

t

t

t t

j
j

j

kj

t t j zj

t j t zj

t kj t z sk j

GEM

DP

GEM

H H

z z

s z

x z F

β γ γ
αβ κδ

π α β α κ
α κ

ψ σ σ

θ λ λ

π π

ψ ψ

θ θ

−

∞
− =

∞

=

∞

=

+
+

+

 (4.2) 
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4.1 CRF with Loyal Customers 

The metaphor for the Chinese restaurant franchise for sticky HDP-HMM is a franchise with loyal 
customers. In this case each restaurant has a special dish which is also served in other restaurants. If a 
customer tx  is going to restaurant j then it is more likely that he eats the specialty dish tz j=  there. His 

children 1tx +  also go to the same restaurant and eat the same dish. However, if tx eats another dish ( tz j≠
) then his children go to the restaurant indexed by tz and more likely eat their specialty dish. Thus 
customers are actually loyal to dishes and tend to go to restaurants where their favorite dish is the 
specialty.      

4.2 Inference Algorithms 

4.2.1 Direct Assignment Sampler 

This sampler is adapted from (Fox E. , Sudderth, Jordan, & Willsky, 2011) and (Fox E. , Sudderth, 
Jordan, & Willsky, 2010). In this section we present the sampler for HDP-HMM with DP emission. This 
algorithm is very similar to the second inference algorithm for HDP presented in  3.4.2. The algorithm is 

divided into two steps: the first step is to sample the augmented state ( ),t tz s and the second is to sample β
. 

In order to sample ( ),t tz s  we need to have the posterior. By inspecting Figure 3 and using the chain rule 

we can write the following relationship for this posterior. 

 

( )
( ) ( )

{ }( ) { }( )
( ) { }( ) { }( )( )

\ \ 1:

\ \ 1: \ \ 1:

\

, | , , , , , , ,

| , , , , , | , , , , , ,

| | , , | | , ,

| , , , | | , , | | , ,
t

t t t t T

t t t t T t t t T

t t t

t t t t t
s

p z k s j z s x

p s j z k z s x p z k z s x

p s j s z k t p x x z k s j t

p z k z p x x z k s t p s s z k t

τ τ τ τ

τ τ τ τ

β α σ κ λ
σ λ β α κ λ

τ σ τ

β α κ τ τ σ

= = =

= = = ∝

= = ≠ = = ≠

= = ≠ = ≠

 (4.3) 

 

Figure 3-Graphical model of HDP-HMM (Fox E. , 
Sudderth, Jordan, & Willsky, 2011)
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The reason that we have summed over ts in the last line is because we are interested to calculate the 

likelihood for each state. This equation also tells us that we should first sample the state tz and then 
conditioned on the current state, sample the mixture component for that state. In  B.1. we will derive the 
following relationships for the component of (4.3). (4.6) is written for Gaussian emissions but we can 
always use the general relationship (3.14) for an arbitrary emission distribution.   
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 (4.4) 
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 (4.5) 
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 (4.6) 

After sampling ( ),t tz s we have to sample β but from (3.12) we see that we need to know the distribution 

of the number of tables considering dish k ({ } 1

K
k k

m
= ). The approach is to first find the distribution of 

tables serving dish k ({ } 1

K
k k

m = ). In this algorithm, instead of using the approach based on Stirling 

numbers, we can obtain this distribution by a simulation of the CRF, and then adjust this distribution to 
obtain the real distribution of considered dishes by tables. To review the reason that this adjustment is 
necessary, we should notice thatκ introduces a non-informative bias to each restaurant so customers are 
more likely to select the specialty dish of the restaurant. In order to obtain the considered dish distribution 
we should reduce this bias from the distribution of the served dish. This can be done using an override 
variable. Suppose jkm tables are serving dish k in restaurant j . If k j≠ then jk jkm m= since the served 

dish is not the house specialty but if k j= then there is probability that tables are overridden by the house 

specialty. Suppose that jtω is the override variable with prior ( )| ~jtp ω ρ ρ  , we can write: 
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( ) ( ) ( )
( )

| , , | , , |

1 0

1

jt jt jt jt jt

j jt

jt

p k j p k j pω β ρ ω β ρ ω ρ

β ρ ω
ρ ω

= ∝ =

 − =∝  =

 (4.7) 

The sum of these Bernoulli random variables is a binomial random variable and finally we can calculate 
the number of tables that considered ordering dish k by (4.17).  

1. Given a previous set of ( )( 1) ( 1)
1: 1:,n n

T Tz s− − and ( 1)nβ −  

2. For all { }1,2,...,t T∈ . 

3. For each of the K currently instantiated states compute: 

• The predictive conditional distributions for each of the kK ′  currently instantiated mixture 
components for this state, and also for a new component and for a new state. 

 { }( ), ( ) | | , ,
t

kj
k j t t tt

k

n
f x p x x z k s j t

n
τ τ τ

σ

−

−

 ′
′ = = = ≠  ′+ 

 (4.8)   
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k K t t tt
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τ τ
σ τ

σ′ + −= = = ≠
′+ 

 (4.9) 

 { }( ),0
( ) | | ,new

new
t ttk

f x p x x z k t
n

τ τ
σ τ

σ −

 
′ = = ≠ ′+ 

 (4.10) 

• The predictive conditional distribution of the HDP-HMM state without knowledge of the 
current mixture component. 
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 (4.11) 

4.  Sample tz : 

 ( ) 1
1

~ ( , ) ( ) ( , 1)
K

t k t t K t t
k

z f x z k f x z Kδ δ+
=

+ +  (4.12) 
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5. Sample ts conditioned on tz : 

 , , 1
1

~ ( ) ( , ) ( ) ( , 1)
k

k

K

t k j t t k K t t k
j

s f x s j f x s Kδ δ
′

′ +
=

′ ′+ +  (4.13) 

6. If 1k K= + increase the K and transform β as 

 
( )

( ) ( )
0

0 1 0 0 0 0

| ~ ,1

, , (1 )new new
K

Beta

v

γ γ

β β β ν β+ = −
 (4.14) 

7. If 1t ks K ′= + increment kK ′ . 

8. Update the cache. If there is a state with 0kn = or 0kn =  remove k and decrease K . If 0kjn′ =

remove the component j and decrease kK ′ . 

9. Sample auxiliary variables by simulating a CRF: 

10. For each ( ) { }2
, 1,...,j k K∈ set 0jkm = and 0n = . For each customer in restaurant j eating dish k (

1,..., jki n= ), sample: 

 
( , )

~
( , )

k

k

j k
x Ber

n j k

αβ κδ
αβ κδ

 +
 + + 

 (4.15) 

11. Increment n and if 1x = increment jkm . 

12. For each { }1,...,j K∈ ,sample the override variables in restaurant j : 

 ( )~ , ,
1j jj

j

Binomial m
ρ κω ρ

ρ β ρ α κ
 

=  + − + 
  (4.16) 

13. Set the number of informative tables in restaurant j : 

 
jk

jk
jj j

m j k
m

m j kω
≠=  − = 

 (4.17) 

14. Sample β : 

 ( )( )
1~ , ,...,n

KDir m mβ γ    (4.18) 
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15. Optionally sample hyper-parameters , ,σ γ α andκ .      

4.2.2 Block Sampler 

The problem with the direct assignment sampler mentioned in the previous section is the slow 
convergence rate since we sample states sequentially. The sampler can also group two temporal sets of 
observations related to one underlying state into two separate states. However, in the last sampling 
scheme we have not used the Markovian structure to improve the performance. In this section a variant of 
forward-backward procedure is incorporated in the sampling algorithm that enables us to sample the state 
sequence 1 Tz : at once. However, to achieve this goal, a fixed truncation level L should be accepted which 
in a sense reduces the model into a parametric model (Fox E. , Sudderth, Jordan, & Willsky, 2011). 
However, it should be noted that the result is different from a classical parametric Bayesian HMM since 
the truncated HDP priors induce a shared sparse subset of the Lpossible states (Fox E. , Sudderth, Jordan, 
& Willsky, 2011). In short, we obtain an approximation to the nonparametric Bayesian HDP-HMM with 
maximum number of possible states set to L. However, for almost all applications this should not cause 
any problem if we set L reasonably high. The approximation used in this algorithm is the degree Lweak 
limit approximation to the DP (Ishwaran & Zarepour, 2002) which is defined as: 

 ( ) ( )/ ,..., /LGEM Dir L Lα α α  (4.19) 

Using (4.19) β is approximated as (Fox, Sudderth, Jordan, & Willsky, Supplement to " A Sticky HDP-
HMM with Application to Speaker Diarization", 2010): 

 ( )| ~ / ,..., /Dir L Lβ γ γ γ  (4.20) 

 Similar to (3.4) we can write: 

 ( )1| , , ~ ,..., ,...j j LDirπ α κ β αβ αβ κ αβ+  (4.21) 

And posteriors are (similar to (3.13)): 

 
( )

( )
1

1: 1 1

| , ~ / ,..., /

| , , ~ ,..., ,...,

L

j T j j jj L jL

Dir L m L m

z Dir n n n

β γ γ γ

π α β αβ αβ κ αβ

+ +

+ + + +

m  
 (4.22) 

In (4.22) jkn is the number of transitions from state j to state k and jkm  is the same as (4.17).   

Finally an order L′weak limit approximation is used for the DP prior on the emission parameters: 

 ( )1: 1: 1| , , ~ / ,..., /k T T k kLz s Dir L n L nψ σ σ σ ′′ ′ ′ ′+ +  (4.23) 

The forward-backward algorithm for the joint sample 1:Tz  and 1:Ts given 1:Tx can be obtained by: 
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The right side of equation (4.24) has two parts: forward and backward probabilities (Rabiner, 1989).The 

forward probability includes ( ) ( ) ( ) ( )1 1: , 1: 1| , , , | | | , ,
t t tt t T t z t z s t tp z z x p s f x p x zψ θ− −π θ π θ,ψ    and backward 

probability includes ( )1: | , ,t T tp x z+ π θ,ψ . It seems that the authors in this work approximate the forward 

probabilities with ( ) ( ) ( )1 1: ,| , , , | |
t t tt t T t z t z sp z z x p s f xψ θ− π θ , and for backward probabilities we have: 
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 ≤∝ 
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π θ,ψ

 (4.25) 

As a result we would have (Fox E. , Sudderth, Jordan, & Willsky, 2010) : 

 
( )

( ) ( )
1

1:

, 1,

, | , ,

|
t t t

t t T

z k kj t z s t t t

p z k s j x

f x m zπ ψ θ
− +

= =

∝

z π,ψ,θ
 (4.26) 

where for Gaussian emission for components are given by ( ) ( ),| ; ,
t tt z s t kj kjf x xθ μ= Ν Σ  

The algorithm is as follows (Fox E. , Sudderth, Jordan, & Willsky, 2010): 

1. Given the previous ( 1) ( 1) ( 1), ,n n n− − −π ψ β and ( 1)n−θ . 

2. For { }1,...,k L∈ , initialize messages to ( )1, 1T Tm k+ =  

3. For { }1,...,1t T∈ − and { }1,...,k L∈  compute 

 ( ) ( ) ( ), 1 1 1,
1 1

; ,
L L

t t ki il t il il t t
i l

m k N x m iπ ψ μ− + +
= =

= Σ  (4.27) 

4. Sample the augmented state ( ),t tz s  sequentially and start from 1t = : 

Set 0, 0ik kjn n′= = and kjϒ =∅ for ( ) { }2
, 1,...,i k L∈ and ( ) { } { }, 1,..., 1,...,k j L L′∈ ×  

  For all ( ) { } { }, 1,..., 1,...,k j L L′∈ ×  compute:  

 ( ) ( ) ( )
1, , , , , 1,; ,

tk j t z k k j t k j k j t tf x N x m kπ ψ μ
− += Σ  (4.28) 

5. Sample augmented state ( ),t tz s : 
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 ( ) ( ) ( ) ( ), ~ , ,,
1 1

L L
z s f x z k s jt t k j t t t

k j
δ δ

′
 
= =

 (4.29) 

6. Increase 
1t tz zn
−

and
t tz sn′ and add tx  to the cached statistics.  

 , ,k j k j txϒ ←ϒ ⊕  (4.30) 

7. Sample m,ω,m  similar to the previous algorithm 

8. Update β : 

 ( )1~ / ,..., / LDir L m L mβ γ γ+ +   (4.31) 

9. For { }1,...,k L∈ : 

• Sample kπ and kψ : 

 
( )
( )

1 1

1

~ ,..., ,...,

~ / ,..., /

k k k kk L kL

k k kL

Dir n n n

Dir L n L n

π αβ αβ κ αβ
ψ σ σ ′

+ + + +

′ ′ ′ ′+ +
 (4.32) 

• For { }1,...,j L′∈  sample: 

 ( ), ,~ | ,k j k jpθ θ λ ϒ  (4.33) 

10. Set ( ) ( ) ( ), ,n n nβ β= = =π π ψ ψ and ( )n =θ θ  

11. Optionally sample hyper-parameters , ,σ γ α andκ .      

4.2.3 Learning Hyper-parameters 

Hyper-parameters including , ,α κ γ andσ can also be inferred like other parameters of the model (Fox, 
Sudderth, Jordan, & Willsky, 2010). 

4.2.3.1 Posterior for ( )α +κ  

Consider the probability of data jix to sit behind table t : 

 ( ) { }1,...,
| , , ,

ji
jt jji ji

ji jt
new

n t t m
p t t n

t t
α κ

α κ

−
− −

 ∈= ∝ 
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t
 

  (4.34) 
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This equation can be written by considering equation (3.10) and (4.1). From this equation we can say 
customer table assignment follows a DP with concentration parameterα κ+ . Antoniak (Antoniak, 1974) 

has shown that if ( )~ , ~iGEM zβ γ β  then the distribution of the number of unique values of iz  
resulting from N draws from β has the following form: 

 ( ) ( )( )
| , ,

( )
Kp K N s N K

N

γγ γ
γ
Γ=

Γ +
 (4.35) 

Where ( , )s N K  is the Stirling number of the first kind. Using these two equations the distribution of the 
number of tables in the restaurant j is as follows: 
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j j j j
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α κ
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+ = +
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 (4.36) 

The posterior overα κ+ is as follows: 
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 (4.37) 

The reason for the last line is that ( )
1

,
J

j j
j

s n m
=
∏   is not a function of α κ+ and therefore can be ignored. 

By substitution of ( ) ( ) ( )
( ) ( )

1
11

0

, 1
yxx y

x y t t dt
x y

β −−Γ Γ
= = −
Γ +   and also by considering that ( ) ( )1x x xΓ + = Γ  

we obtain:  

 ( ) ( )( ) ( )
1

1

1 1
1 0

| ,..., , ,..., 1 1
j

J
nm j

J J j j j
j

n
p m m n n p r r drα κα κ α κ α κ

α κ
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=

 
+ ∝ + + + − + 

∏   
     (4.38) 

Finally by considering the fact that we have placed a ( ),Gamma a b  prior onα κ+  we can write: 

 ( ) ( ) ( ) ( ) 11
1 1

1

, , | ,..., , ,..., 1
j

j

sJ
na m jb

J J j j
j

n
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∏  
     (4.39) 

Where js can be either one or zero. For marginal probabilities we obtain: 
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 (4.40) 
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\ 1 1| , , , ,..., , ,..., 1 1,
jn
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−++ ∝ − = + +

      (4.41) 

 ( )\ 1 1| , , ,..., , ,...,
js

j j
j j J J

j

n n
p s r s m m n n Ber

n
α κ α

α κ α κ
  

+ =     + + +   

 
   


 (4.42) 

4.2.3.2  Posterior of γ  

Similar to the discussion for (4.35) if we want to find the distribution of the unique number of dishes 

served in the whole franchise we would have ( ) ( ) ( )
( )| , ,p K m s m K

m

γ
γ

γ
Γ

=
Γ + 


. Therefore for the 

posterior distribution ofγ  we can write: 

 

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )
1

1

0

| , | ,

1,

1

K

mK

p K m p p K m

m
p

m

p m dγ

γ γ γ
β γ

γ γ
γ

γ γ γ η η η−

∝

+
∝

Γ

∝ + − 

 







 (4.43) 

By considering the fact that that prior overγ is ( ),Gamma a b we can finally write: 

 ( ) ( ) ( ) 1log1, , | , 1
mbK m

p K m e
ς

γ ηαγ η ς γ η
γ

−− −+ −  
∝ − 

 


  (4.44) 

And finally for the marginal distributions we have: 

 ( ) ( ) ( )log1| , , , , logbKp K m e Gamma K bγ ηα ςγ η ς γ α ς η− −+ − −∝ = + − −  (4.45) 

 ( ) ( ) ( )1
| , , , 1 1,

m
p K m Beta mγη γ ς η η γ−∝ − = +

   (4.46) 

 ( )| , , ,
m m

p K m Ber
m

ς

ς γ η
γ γ

  
∝ =    +   

 



 (4.47) 

4.2.3.3 Posterior ofσ   

The posterior forσ is obtained in a similar way toα κ+ . We use two auxiliary variables r ′ and s′  and the 
final marginalized distributions are: 
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 ( ) ( ) ( )11
log1

1 1| , , ,..., , ,...,
JJ

jjjj
b rK s

J Jp r s K K n n e
σασ σ ==

′− −′ ′+ − −′ ′ ′ ′ ∝ 
     (4.48) 

 ( ) ( ) 1

\ 1 1| , , , ,..., , ,..., 1
jn

j j J J j jp r r s K K n n r rσ σσ
−

′ ′ ′ ′ ′ ′ ′∝ − 

     (4.49) 

 ( )\ 1 1| , , , ,..., , ,...,
js

j
j j J J

n
p s r s K K n nσ

σ

′
 

′ ′ ′ ′ ′ ∝  
 


     (4.50) 

It should be noted that in cases where we use auxiliary variables we prefer to iterate several times before 
moving to the next iteration of the main algorithm.  

4.2.3.4 Posterior of ρ  

By definition 
κρ

α κ
=

+
 and by considering the fact that the prior on ρ is ( ),Beta c d and ( )~jt Berω ρ

we can write: 

 

( ) ( ) ( )

( )

| |

; , ,

,

j
j

j j
j j

p p p

Binomial m Beta c d

Beta c m d

ρ ω ω ρ ρ

ω ρ

ω ω

∝

 
∝   

 
 

∝ + − +  
 



 

 

  

 (4.51) 

4.2.4 Online learning 

The last two approaches are based on batch learning methodology. One problem with these methods is the 
need to run the whole algorithm for the whole data set when new data points become available. More than 
that, for large datasets we might face some practical constraints such as memory size. Another alternative 
approach is to use sequential learning techniques which essentially let us update models once a new data 
point becomes available. The algorithm that we are describing here is adapted from  (Rodriguez, 2011), 
but the main idea for a general case is published in (Carvalho, Johannes, Lopes, & Polson, 2010) and 
(Carvalho, Lopes, Polson, & Taddy, 2010). For Bayesian problems different versions of particle filters are 
used to replace batch MCMC methods. For further information about particle filters refer to (Cappe, 
Godsill, & Moulines, 2007). It should be noted that this algorithm is developed for the non-sticky ( 0κ = ) 
HDP-HMM with one mixture per state but generalization to sticky HDP-HMM with DP emissions is 
straightforward. 

4.2.4.1 Particle learning (PL) Framework for mixtures 

PL is proposed in (Carvalho, Johannes, Lopes, & Polson, 2010) and (Carvalho, Lopes, Polson, & Taddy, 
2010) and is a special formulation of augmented particle filters.  A general mixture model that PL is 
supposed to infer can be represented by: 
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( )
( )

1 1

1

,

,

t t

t
t

y f x

x g x

θ

θ
+ +

+

=

=
 (4.52) 

In this set of equations, the first line is the observation equation and the second line is the state evolution 

which, in case of mixtures, indicates which component is assigned to the observations and ( )1,...,t
tx x x=  

In order to estimate states and parameters we should define an “essential state vector” ( ), ,t t tz x s θ= where 

( ),x
t t ts s sθ= and x

ts are the state sufficient statistics and ts
θ is the parameter sufficient statistics (Carvalho, 

Johannes, Lopes, & Polson, 2010). After observing 1ty + , particles should be updated based on: 

 ( ) ( ) ( )
( )

11

1

| |
|

|

t
t t tt

t t
t

p y z p z y
p z y

p y y

++

+

=  (4.53) 

 ( ) ( ) ( )1 1
1 1 1| | , |t t

t t t t t tp x y p x z y p z y dz+ +
+ + +=   (4.54) 

   A particle approximation to (4.53) is: 

 ( ) ( )
( )( )

( )
11 ( ) ( )

( )
1 11

|
| ( ),

|
i

t

iN
t tN t i i

t t t t Nz j
i t tj

p y z
p z y z

p y z
ω δ ω ++

= +=

= =


 (4.55) 

   Using this approximation we can generate propagated samples from the posterior ( )1 1| ,t t tp x z y+ +  to 

approximate ( )1
1 | t

tp x y +
+ . Sufficient statistics can be updated using a deterministic mapping and finally 

parameters should be updated using sufficient statistics. The main condition for this algorithm to be 

possible is the tractability of ( )( )
1 | i

t tp y z+ and ( )1 1|t t tp x z y+ ++ . The PL algorithm is as follows: 

1. Resample particles tz with weights ( )( ) ( )
1 |i i

t t tp y zω +∝  

2. Propagate new states 1tx +  using ( )1 1|t t tp x z y+ ++  

3. Update state and parameter sufficient statistics deterministically ( )1 1 1, ,t t t ts S s x y+ + +=  

4. Sampleθ from ( )1| tp sθ +    

After one sequential run through the data we can use smoothing algorithms to obtain ( )|T Tp x y . The 

algorithm is repeated 1,...,b B= to generate B sample paths.  

1. Sample ( )( ) ( ) ( ), ,b b b
T Tx s θ from output of particle filter ( )( )

1

1
i

T

N

Tzi
z

N
δ

=  
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For 1:1t T= −  

2. Sample ( ) ( )( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
( )1

1

, ~ , , , |s
t

iN
b b i i i b b it

T T t t t t t tNz
ss

t
s

q
x s q p x r z

q

ω δ ω + +
=

=

= =


 

4.2.4.2 PL for HDP-HMM 

In this algorithm we use { } { } { } { } { } { }( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , ,i i i i i i i i i i i i
t t t ljt lt t lt t ljt t lt ltZ z L n S m uα β γ φ ς= where tz is 

the state, tL is the number of states at time t , ljtn is the number of transitions from state l to state j at time t ,

ltS is the sufficient statistics for state l at time t  and other variables have the same definitions as previous 
sections (the last three are auxiliary variables which are used to infer hyper-parameters.).    

From (4.4) and by setting 0κ =  we can write: 

 ( ) ( ) ( ) ( )
( ) { }

1 1 2

1

, ,
, 1,..,

,| ,..., , , ,

, 1

t

t

k kk t t
k z kt t

k t tt t t

L k t

n z k k k
n k L

n z kp z k z z z k

k L

αβ δ δ
αβ

α δβ α
αβ β

′ ′

+ +

+

  ′+ +
+ ∈    + +′= = ∝   

 = +

 (4.56) 

In this equation k ′  is the next state 2tz +  that we have not seen yet. Because of this we should integrate 
this out by summing over all possibilities. The result is: 

 

( ) ( ) ( )
( ) { }

( ) { }

1 1

1

1

,
, 1,..,

,| ,..., , ,

, 1

, 1,..,

, 1
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t
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k z k t

k t tt t

L t

k z kt t
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n z k
n t k L

n z kp z k z z

k L

n k L

k L

α δ
αβ

α δβ α
αβ
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+

+

+

  + +
+ ∈    + += ∝   

 = +
 + ∈∝ 

= +





 (4.57) 

After normalization we can write: 

 ( ) ( ) 1
1 1 1
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| ,..., , ,
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L
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z zk

n
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+
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=

+
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 (4.58) 

 ( ) ( ) ( ) ( ) ( ) ( )11
1

1 1 1 1 1 1 11
1

| | |
t
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L
k z kt L xx
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n
p x Z p x z p z Z dz f x f x

n n

αβ αβ
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=

+
= = +
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(4.59) 

The algorithm is as follow: 
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1. Compute
( )

( )

( )

1

i
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t N j
tj

v

v
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=

=


 where ( )( )
( ) ( ) ( )

11
,

i
tLi i i
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v q Z x +=

=  and we have: 
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−
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 += 


= +
+





 (4.60) 

Where ( )1tx
lf +− •  is similar to (4.6).  

2. Sample (1) (2) ( ), ,..., N
t t tZ Z Z from 

 ( ) ( )( )
1 ( )

1

| i
t

N
N t i

t t tZ
i

p Z y Zω δ+

=

=  (4.61) 

3. Propagate the particles to generate ( )
1

i
tZ + : 

4.  Sample ( )
1

i
tz + : 

 ( ) ( )
( )

( )
( )

( )

( ) ( )1
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1 1 1 11 ( ) ( )1
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,
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i
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i iL
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t t t t l tL j jl
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z p z Z x z

q Z x
δ

+
+
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∝ 


 (4.62) 

5. Update the number of states: 

 
( ) ( ) ( )

1( )
1 ( ) ( )

1

1, 1i i i
t t ti

t i i
t t

L z L
L

L L otherwise

+
+

+

 + = += 
=

 (4.63) 

6. Update the sufficient statistics: 

 ( )( ) ( )( ) ( )( ) ( )
1 11 1

( ) ( )
, 1 ,, , 1 , ,

1 i ii ii i
t tt tt t

i i
tz t z tz z t z z t

n n S S s x
+ ++ + ++

= + = +  (4.64) 

7. If ( ) ( )
1

i i
t tz L+ > : 
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 ( )
( ) ( )( )
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=
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 (4.65) 

8. Hyper-parameters update: 

9. Sample ( )
, , 1
i

l j tm + : 

 ( ) ( )( )( ) ( ) ( ) ( )
, , 1 , , 1 , 1,

mi i i i
l j t l j t t j tp m m s n m α β+ + += ∝  (4.66) 

Alternatively we can simulate a CRF instead of computing Stirling numbers. 

10.  Sample ( )
1

i
tγ +  by first sample ( )( ) ( ) ( )

1 1~ 1,i i i
t t tBeta mφ γ+ ++  : 
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( )( )
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 (4.67) 

11. Sampling ( )
1

i
tα + using auxiliary variables: 
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 (4.68) 

12.  Resample β : 

 ( )( )
1

( ) ( )
1 ,1, 1 1, , 1

~ ,..., ,i
t

i i
t t tL t

Dir m mβ γ
+

+ + ++   (4.69) 

After finishing this inference step, we can optionally smooth the states using an algorithm similar to the 
one discussed in  4.2.4.1. However one drawback of this algorithm is the fact that paths for 1,..., Tz z are 

coupled together since we integrate out lπ for the inference algorithm. To improve particle diversity we 
can sample transition probability and emission parameters explicitly. The smoothing algorithm would be 
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as follows: 

1. Sample ( )
( )

1

1
~ i

T

N
b

T Z
i

Z
N
δ

=
  

2. Sample{ }( )b
lπ    

 { } ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1~ , ,..., b b
T T

b b b b b b b
l l T l T L lL T

Dir n n nπ α β β+ + +  (4.70) 

3. Sample{ }( )b
lθ  from the ( ) { }, , , , ,

|
lT lT

l S n
NIW λ ζ ϑ νθ λ

= Δ
. 

4. Sample ( ) ( )
1 ,...,b b

Tz z using a single run of Forward-Backward algorithm applications. Use { }( )b
lπ

and{ }( )b
lθ as parameters for the Forward-Backward algorithm. 

4.3 Applications 

One of the applications of HDP-HMM, which is extensively discussed in (Fox E. , Sudderth, Jordan, & 
Willsky, 2011), is speaker diarization. In this application, we are interested to segment an audio file into 
time intervals associated with different speakers. If the number of speakers is known a priori a classic 
HMM can be used and each speaker can be modeled as different states of HMM. However, in real world 
applications the number of speakers is not known and therefore nonparametric models are a natural 
solution. It has been shown in (Fox E. , Sudderth, Jordan, & Willsky, 2011) that HDP-HMM can produce 
results comparable to other state of the art systems.  

Another application which is cited as an application of HDP-HMM is word segmentation (Teh & Jordan, 
2010). In this problem, we have an utterance and we are interested to segment it into words. Each word 
can be represented as a state in a HDP-HMM and transition distributions can define a grammar over 
words. 

5 CONCLUSION 

In this report, we have investigated hierarchical Dirichlet processes and its application to extend HMMs 
into infinite HMMs. We also reviewed two inference algorithms for HDP and three inference algorithms 
for HDP-HMM.  

HDP-HMM seems to be a good candidate for many applications which traditionally use HMMs. Using a 
nonparametric Bayesian approach could help us to automatically learn the complexity of the models from 
the data instead of relying on heuristic tuning methods. Moreover, the framework can provide a generic 
and simple approach to organize all models (i.e. different HMMs in a speech recognizer) in a well-defined 
hierarchy and tie parameters of different models using Bayesian hierarchical methods. The definition of 
HDP-HMM (with DP emission) can also be altered to include another HDP that links DP emissions of 
different states together (to link different components of mixture models together.)  Another area of work 
is in inference algorithms. We have presented three algorithms based on Gibbs sampling. It seems block 
and sequential samplers have some interesting properties that make them reasonable candidates for big 
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datasets. Particularly it seems easy to build a parallel implementation of sequential sampler which can be 
an important factor for large scale problems. Studying other kinds of inference methods like variational 
methods or parallel implementation of these algorithms can be a subject of further research.    
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APPENDIX A:   DERIVATION OF HDP RELATIONSHIPS 

A.1.  Stick-Breaking Construction (Teh Y. , Jordan, Beal, & Blei, 2006) 

Lemma A.1.1  

In this lemma we show ( )
1

1

1
k

k k l
l

v vπ
−

=

= −∏
 

We know: 

1

1

1
K

k k l
l

vπ π
−

=

 
= − 

 


 

Using this equation we can write: 

( )
1

1 2 1 3 1 2 1 2 3 2
1 1

1 1 (1 ) (1 )(1 ).... (1 ) 1 (1 ).... (1 )
Kk

l l
l l

v v v v v v v v v v vπ
−

= =

− = − − − − − − = − − − − = − ∏  

( )
1

1

1
k

k k l
l

v vπ
−

=

 = −∏  

•  

 We know **

1
kj jk

k

G θπ δ
∞

=

= .Let ( )1,..., rA A  be a random partition on, define { }**: , 1,...,l k lK k A l rθ= ∈ =  

from(3.1) and the definition of DP we have: 

 ( ) ( )1 0 1 0( ),..., ( ) ~ ( ),..., ( )j j r rG A G A Dir G A G Aα α  (A1.1) 

Using (A1.1), (3.2) and(3.3) we obtain: 

 
1 1

,..., ~ ,...,
r r

jk jk k k
k K k K k K k K

Dirπ π α β α β
∈ ∈ ∈ ∈

   
      
   
     (A1.2) 

Since this is correct for every finite partition of positive integers we conclude that ~ ( , )j DPπ α β  

Now for a partition { } { } { }( )1,..., 1 , , 1,...k k k− +  and aggregation property of Dirichlet distribution we 

obtain: 
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1 1

1 1 1 1

, , ~ , ,
k k

jl jk jl l k l
l l k l k k

Dirπ π π α β αβ α β
− ∞ − ∞

= = + = = +

   
   
   
     (A1.3) 

Using the neutrality property of a Dirichlet distribution: 

 1
1 1

1

1
, ~ ,

1
jk jl k lk

l k l k
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l

Dirπ π αβ α β
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−
= + = +
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 (A1.4) 

Notice that
1 1

1
k

l l
l k l

β β
∞

= + =

= −   and also defining 1

1

1

jk
jk k

jl
l

v
π

π
−

=

=
−

 we have: 

 
1

~ , 1
k

jk k l
l

v Beta αβ α β
=

  
−     
  (A1.5) 

Using  Lemma A.1.1 

 ( )
11

1 1

1 1
kk

jk jk jl jk jl
l l

v v vπ π
−−

= =

 
= − = − 

 
 ∏  (A1.6) 

 

A.2.  Deriving Posterior and Predictive Distributions 

Derivation of equation(3.8): 

Since 0G is a random distribution, we can draw from it. Let assume **θ are i.i.d. draws from 0G . **θ  takes 

value inΘ since 0G is a distribution overΘ .Let 1 2, ,..., kA A A be a finite measureable partition ofΘ and

{ }**# :r i rm i Aθ= ∈ . By using the conjugacy and also definition of DP we can write: 

 ( ) ( )( )** **
0 1 0 1 1 1( ),..., ( ) | ,..., ~ ,...,k n k kG A G A Dir H A m H A mθ θ γ γ+ +   (A1.7) 

This shows the posterior of 0G is a DP with concentration parameter equal to
k

r
r

m mγ γ
=

+ = +   and 

mean of
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1
i

n

i
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m

θγ δ

γ
=

+

+




. We also know ** **

1 1
i k

n K

k
i k

mθ θδ δ
= =

=    so we can write: 
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0 | , , ~ ,

k
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k
k

H m

G H DP m
m

θγ δ
γ γ

γ
=

 
+ 

 + +
  
 


**θ






 (A1.8) 

Derivation of equation(3.9): 

Similar to the last proof, let 1 2, ,..., kA A A be a finite measureable partition ofΘ and { }# :j k ji rn i Aθ= ∈  

 ( ) ( )( )1 1 0 1 1 0( ),..., ( ) | ,..., ~ ,...,j j k j jn j k j kG A G A Dir G A n G A nθ θ α α+ +   (A1.9) 

So jG is a DP with concentration
1

K

j k j
k

n nα α
=

+ = +    and mean
0

1
ji

n

i

j

G

n

θα δ

α
=

+

+




 and finally we can write: 

 
**0

1
0| , , ~ ,

k

K

j k
k

j j
j

G n

G G DP n
n

θα δ
α α

α
=

 
+ 

 + +
  
 


θ






 (A1.10) 

Derivation of equation(3.10): 

For A⊂ Θ : 

 

( ) ( )

**

1 1 1 1

0
1

| ... | ...

1
( )

k

ji j ji j j ji

K

j k
j k

p A E G A

G A n
n θ

θ θ θ θ θ

α δ
α

− −

=

 ∈ =  
 

= + +  
 



 (A1.11) 

 
{ }

{ }

*

* **

** * *

* **

:

1 1 1:

jt

jt k

j

k jt jt

jt k

j k jt

t

mK K

j k jt jt
k k tt

n n

n n n

θ
θ θ

θ θ θ
θ θ

δ

δ δ δ

=

= = ==

=

 = =



   


 

  

 (A1.12) 

From(A1.11) and (A1.12): 

 *1 1 0 0
1

1
| ... , , ~

j

jt

m

ji j ji jt
j t

G G n
n θθ θ θ α α δ

α−
=

 
 +
 +  







 (A1.13) 

Derivation of Equation(3.11) is very similar to the above lines and we just need to calculate the 
expectation of 0G instead of jG . 



 

 

  

Preliminary Exam Report Page 32 of 34

\ Update: February 29, 2012 

 

Deration of Equation(3.12) 

We know that  
**

1
0 | , , ~ ,

k

K

k
k

H m

G H DP m
m

θγ δ
γ γ

γ
=

 
+ 

 + +
  
 


**θ






 and also we know that we can write 0G has 

two parts; one is a draw form a DP and the other is a draw from a multinomial distribution: 

 **0 0
1 1 1

k j k

K

k j k
k j k

G θ θ θλ δ β α δ β δ
∞ ∞

= = =

= = +    (A1.14) 

Let ( )0 1, ,..., kA A A be a partition onΘ where 0A contains the wholeΘ except spikes located at **
kθ and

, 1,...,jA j K= contains spikes. We can write: 

 

( ) ( ) ( )( )0 0 0 1 0 0 0 0

**

1
0

( ), ( ),..., ( ) ~ ,...,

,

k k

K

k k
k

G A G A G A Dir F A F A

H m

m F
m

α α

γ δ
α γ

γ
=

+
= + =

+

 




 (A1.15) 

And as a result we can write: 

 ( ) ( )0 1 1, ,..., ~ , ,...,K KDir m mβ β β γ    (A1.16) 

Derivation of equation (3.13) follows the same lines.    

 

APPENDIX B:   DERIVATION OF HDP-HMM RELATIONSHIPS 

B.1.  Derivation of the posterior distribution for ( )t tz ,s  

Lemma B.1.1  
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( )

( )

( )

11 11

1
1

1

1

1
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K

K kK
k kk

k kKK
k kkk
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K

kk
K

k
k

d dα α

α

αα
π π π π

αα

α

α

=− −=

=
=

=

=

=

  
Γ  Γ   =    Γ Γ      

Γ
=

 
Γ 
 

∏∏  ∏

∏


  (B1.1) 

•  

Derivation of ( )\| , , ,t tp z k z β α κ= : 

By using the chain rule and graphical model of Figure 3 we can write: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) { }( )
1

\ 1

1 1
| , , 1

1 1 1

| , , , | , , |

| | | , , |

| | | | , , 1 , , ,

t

t

t t i z
i

t k t z i i
i z i t t

t k t z i
i

p z k z p p z d

p z p z k p p z d

p z p z k p z z i t t d

τ

τ

τπ
τ

τ
τ τπ

τ τπ

β α κ π α β κ π π

π π π α β κ π π

π π π τ β α κ π
−

−

+ −
= ≠ +

+ − −

= ∝

 
 ∝ =
 
 

∝ = = ≠ +

∏ ∏

∏ ∏

∏

 (B1.2) 

For 1tz j− = and k j≠  we can write: 

 

( ) ( ) { }( )
( ) { }( )

{ }( )
{ }( )

\ 1 1

1

1 1

1

| , , , | | | , , 1 , , ,

| | | , , 1 , , ,

| | , , 1 , , ,

| | , , 1 , , ,

k

j

t t t k k k

t j j j

t

t

p z k z p z p z z k t t d

p z k p z z j t t d

p z z z k t t

p z k z z j t t

τ τπ

τ τπ

τ τ

τ τ

β α κ π π τ β α κ π

π π τ β α κ π

τ β α κ

τ β α κ

+ −

−

+ −

−

= ∝ = ≠ +

= = ≠ +

∝ = ≠ +

= = ≠ +


  (B1.3) 

For k j=       

 
( ) ( ) ( ) { }( )

{ }( )
\ 1 1

1 1

| , , , | | | | , , 1 , , ,

, | | , , 1 , , ,

j
t t t j t j j j

t t

p z j z p z p z j p z z j t t d

p z j z z z j t t

τ τπ

τ τ

β α κ π π π τ β α κ π

τ β α κ

+ −

+ −

= ∝ = = ≠ +

∝ = = ≠ +


(B1.4) 

Using the fact that zτ has a multinomial distribution, ( )1 1| , ~ ,..., ,..., ,j j K KDirπ α β αβ αβ κ αβ αβ ++ , and 

by using  Lemma B.1.1: 
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{ }( ) ( ) { }( )
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( )( )
( )( )
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1 1
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i
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i
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k k ik n
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k i k i n
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τ τ τ τ
π

αβ κδ

π

β α κ π β α κ π π

αβ κδ
π π π
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αβ κδ αβ κδ

αβ κδ αβ κδ

αβ κδα κ
α κ αβ κ
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+ +
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= =

= = =

Γ +
=

Γ +

Γ + Γ + +
=

Γ + Γ + +

Γ + +Γ +
=
Γ + + Γ +



 ∏ ∏ ∏
 ∏

∏ 

 ( )( ),k k iδ∏

 (B1.5) 

In the equation above, ikn denotes the number of transitions from state i to state j . Using (B1.5), (B1.3), 
(B1.4), and after some algebra we can obtain:  

 

 ( )
( )( ) ( ) ( )

( ) { }1 1

1

1 1
1

1
\

2
1

, ,
, 1,...,

,
| , , ,

, 1

t t

t

t

t
z kz t tt

k z t t
k t

t t

zk

n z k k z
n z k k K

n z k
p z k z

k K

αβ κδ δ
αβ κδ

α κ δ
β α κ

α β β
α κ

+ +

−

−
− +−

− −
−

+

  + +
  + + ∈

 + + +  = ∝ 


= +
+

 (B1.6) 

 

Equation (4.5) can be obtained similar to (3.10). Notice in this case that for each state we have a DP and 
therefore numbers of data points for DP are all data points associated with that state. 

Equation (4.6) can be obtained similar to (3.16). The only difference is that we only consider observations 
assigned to state tz k= and ts j= .    

 

 

 


