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EXECUTIVE SUMMARY 

Developing sign language applications for hearing-impaired people is extremely important since it is 
difficult for these people to communicate with people that are unfamiliar with sign language. Ideally, a 
translation system would improve communication by utilizing common and intuitive signs that can 
facilitate communications. Continuous sign recognition is significantly challenging since both spatial 
(hand position) and temporal (when gesture starts/ends) segmentation will cause inaccuracy in the results. 
Therefore, most research is based on assumptions of knowing either spatial or temporal segmentation, 
which is not possible for real-time processing. 

Frameworks for real-time sign language recognition which do not need precise segmentations are very 
unstable due in part to a lack of training data. An enhanced level building technique emerged which 
reduced the requirement for large amounts of training data. This approach reduced the error rate by 54% 
from 71% to 17%. Unfortunately, error rates increased to above 30% when dealing with complex and 
unpredictable backgrounds. Also, signer-independent tests, in which no signers are common between the 
training and test data, resulted in error rates ranging from 21% to 72%. The results suggest that hand 
shape matching might be a promising approach to improving performance because there are signs with 
similar positions and motions, but different hand shapes. 

The first paper, “A unified framework for gesture recognition and spatiotemporal gesture segmentation” 
by J. Alon, et al., proposes a framework for American Sign Language (ASL) recognition with ambiguous 
hand position and start/end times. Instead of assuming correct hand positions at each frame, the proposed 
algorithm searched for a set of several candidate hand locations at each frame, and then hand candidate 
features were fed into the higher-level model-matching algorithm based on dynamic programming to 
estimate the hand position. This is referred to as top-down and bottom-up segmentation. Dynamic 
programming-based approaches, such as Dynamic Time Warping (DTW), have the advantage that only 
one example is needed, but they lack a statistical model for variations. A hybrid approach was employed 
in which a Gaussian model for each observation probability was estimated and a uniform transition 
probability model was used. The Baum-Welch algorithm was used to estimate the parameters of the 
models for each sign. The proposed approach reduced the false positive rate from 65% to 12% for the 
sign “Now.”  

The second paper, “Handling movement epenthesis and hand segmentation ambiguities in continuous 
sign language recognition using nested dynamic programming,” by Yang, Sarkar and Loeding also 
addresses the same task using a nested DP technique. The framework nests a DP matching algorithm 
inside an enhanced dynamic level building algorithm. This approach does not need a large training 
dataset, unlike more sophisticated statistical approaches. Movement epenthesis (meaningless gestures 
between signs) is also taken into consideration. To reduce the time complexity for DP path searching, a 
bigram model is used to prune meaningless or unpromising paths. Skin color was modeled using 
Gaussian Mixture Models (GMMs) and combined with motion cues to find multiple possible hand 
positions. This resulted in a 40% improvement in performance, reducing the error rate from 82% to 31%.  

Both papers used only hand position and motion. Yet, hand shape is also an important feature for 
distinguishing different signs in ASL. The third paper, “Exploiting phonological constraints for 
handshape inference in ASL video,” Thangali, Nash, Sclaroff and Neidle, proposes a Bayesian network 
based on a hand shape matching algorithm (HSBN). A novel non-rigid alignment is introduced to reduce 
the variation caused by slight displacement, rotations and also different implementation habit of signers. 
A start-end co-occurrence probability is introduced to obtain more possible sign models after acquiring 
both start and end gesture separately. The N-best error rate for the top 5 choices was 38.7% using this 
approach. The algorithm was planned to be used in conjunction with hand positions and movements to 
facilitate progress towards person-independent large vocabulary sign recognition. 
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1. INTRODUCTION 

Developing automated sign language (SL) recognition is important since it is the primary mode of 
communication for most deaf people. For example, in North America alone it is estimated that as many as 
500,000 people use American Sign Language (ASL) as their primary language for communication (Li, 
et al., 2011). SL recognition also provides an appealing testbed for understanding more general principles 
governing human motion and gestures. Such gestures are a critical part of a next generation of human-
computer interfaces. Moreover, SL is becoming a popular alternative teaching style for babies since they 
can express feelings by signs much earlier than speaking (Taylor-Dileva, 2010). The development of a 
system for translating sign language into spoken language would be of great use in a number of 
applications for the hearing-impaired.  

No one form of sign language is universal. Different sign language systems exist throughout the world. 
For example, unlike the similarities between British English and American English, British Sign 
Language (BSL) and American Sign Language are two totally different languages and have distinct 
gestures and rules. However, most sign languages have a similar grammatical structure that enables us to 
build a generalized SL recognition framework (Sandler & Lillo-Martin, 2001). 

SL recognition systems can be classified according to the type of data acquisition employed, the type of 
recognition task pursued, and the type of features employed, as shown in Figure 1. With respect to data 
acquisition, there are three main approaches: sensor-based, vision-based and hybrid systems that utilize a 
combination of sensors and vision systems. Sensor-based SL recognition methods typically use a sensory 
glove and a motion tracker for detecting hand shapes and body movements (Oz, et al., 2004). Vision-
based SL methods use standard cameras, such as those commonly found on many portable computing 
devices, and rely on image processing and feature extraction techniques for capturing and classifying 
body movements and hand shapes.  

Hybrid systems often integrate data from a range of devices including sensors (often located on a 
subject’s hands), conventional video cameras 
providing multiple angle views of a subject’s 
hands, and thermo graphic cameras that operate 
outside the visible light band (e.g., infrared 
cameras). One popular example of a hybrid 
system is Microsoft’s Kinect sensor (Keskin, et 
al., 2011) that utilizes a single 2D camera as well 
as an infrared depth sensor. Kinect can capture 
color and depth information as part of its 
measurements. 

Sensor-based SL recognition systems have 
become popular in the last decade as advances in 
human computer interfaces have fueled a new 
generation of devices. ASL finger spelling 
systems were developed using a CyberGlove as a 
sensor (Sturman & Zeltzer, 1994; Cemil, et al., 
2011) and a neural network for feature 
classification and sign recognition (Kramer, 
1996). In 2002, Wan et al. built a Chinese Sign 
Language (CSL) recognition system based on 
CyberGloves on both hands. Hidden Markov 
models (HMMs) of approximately 2,400 
phonemes were trained and used to recognize 200 

 
Figure 1. SL recognition tasks are organized by the type 
of data acquisition, recognition task, feature extraction 
and pattern recognition algorithm. A new generation of 
hybrid systems involving the integration of cameras and 
advanced sensors to measure auxiliary information like 
depth are emerging. 
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sentences formed by 5119 signs. A word error rate of 
7.2% was reported (Gao & Shan, 2002). Mcguire et al. 
(2004) improved on the neural network approach by using 
HMMs, achieving a recognition error rate of 6% on an 
ASL 141-sign vocabulary signed in phrases of four signs 
using a one-handed glove. In 2007, an ASL recognition 
system was designed based on linguistic properties with a 
sensory glove using a neural network, which resulted in a 
recognition error rate of 8% for a database consists of 60 
ASL words (Oz & Leu, 2007). 

Vision-based approaches can be classified into two 
general categories: a single 2D camera (Ahuja & Tabb, 
2002; Ding & Martinez, 2009; Issaacs & Foo, 2004; 
Athistsos, et al., 2010), and stereo cameras installed at 
multiple angles (Rodriguez, et al., 1998; Campos & 
Murray, 2006). Multiple stereo cameras are positioned in 
three orthogonal planes, as shown in Figure 2, to construct 
a 3D image. For example, one camera is placed above the hands so that it views the hands looking 
downward. A second camera is placed in front of the hands. A third camera is placed to the side of the 
signer. This makes the system very bulky and non-portable. However, the accuracy for both segmentation 
and recognition improves significantly due to the multiple views. 

Recently, Microsoft’s Kinect (Keskin, et al., 2011) has been used in hand tracking and gesture 
classification systems. The Kinect system has enabled a new area of real-time ASL recognition systems 
(Zafrulla, et al., 2011). Using four-state HMM models and a feature vector that included depth 
information, a sentence recognition error rate of 65% and a sign recognition error rate of 26% were 
obtained on a task consisting of 19 signs. Though the Kinect has become extremely popular, there are 
some issues with the technology. First, the sensor resolution is low, which restricts the position of a 
signer. If the signer is far away from the sensor, only a few pixels will be assigned to the hands that are 
insufficient for providing crucial details of finger positions. Second, hand position and orientation have 
few geometric constraints and are therefore hard to locate with the current generation of the device. Third, 
a Kinect sensor is much larger than a simple video camera and is also not commonly available as standard 
equipment on devices such as laptops and phones. 

A sensor-based approach is typically more accurate than a vision-based approach since it is much easier 
to locate finger positions using sensors located on a subject’s fingers (Parashar, 2003). However, 
constraining the user interface through the use of additional sensors often conflicts with the goal of 
making SL recognition nonintrusive and natural. Hybrid systems attempt to alleviate the need to use 
specialized sensors on the hands by employing more sophisticated imaging systems. However, these often 
require a special peripheral (e.g., Kinect), are costly, and not as ubiquitous as standard cameras.  

With respect to the task, there are three common tasks reported in the literature: isolated signs, continuous 
signs and fingerspelling. In an isolated sign task, a subject presents a single sign, typically formed by one 
or two gestures. The task involves localization of the positions of the hands as well as tracking of their 
movements. Once the hand locations and movements are identified, the system must select the correct 
sign from a set of N signs using a pattern recognition algorithm (Mcguire, et al., 2004). For an ASL 
isolated sign task, N, the size of the dictionary, is on the order of 6,000 signs. 

Continuous signs are sentences or phrases formed by sequencing a series of signs. Therefore, very similar 
features can be used as isolated signs. However, in the process of transitioning from one sign to the next, 
the hand shapes and positions for the preceding and following signs are influenced. In other language 

 
Figure 2. Multiple cameras are used for vision-
based gesture recognition to provide hand shape 
information in three dimensions. Three cameras 
located in three orthogonal planes are used to 
reconstruct a 3D image. 
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disciplines, this phenomena is referred to as coarticulation (Cohen & Massaro, 1993). The study of this 
phenomenon is fairly new to sign language, and the same term is gradually gaining acceptance (Segouat 
& Braffort, 2010). The general approach to dealing with this problem is to develop context-dependent 
models of each sign (Vogler & Metaxas, 1997). However, this comes with a great computational cost. 
Coarticulation is one reason that continuous sign language recognition is very difficult.  

An example of isolated and continuous signs is given in Figure 3. Signs for the words “ticket”, “buy” and 
“finish” form a sentence “I have already bought the ticket” which we refer to as a continuous sign. Each 
individual word is a meaningful sign formed by one or two hand gestures that generally involves 
movements between gestures. The recognition of continuous signs is harder due to the fact that more 
gestures and transitions between signs are involved. ASL consists of approximately 6,000 words with 
unique signs (comparable to morphemes in written language). Additional words are spelled using 
fingerspelling (Munib, et al., 2007). Similar to written English, ASL has an alphabet of 26 gestures that 
can be used in fingerspelling. It is very common to use fingerspelling for names, places and specialized 
terms. 

In isolated and continuous sign recognition, handshape features are not typically considered because 
characterization of hand shapes requires precise segmentation. This is hard to achieve in practice when 
images have blurred hand movements (hand moves too fast between frames or drift during the process of 
forming a sign), background scenery that is similar in color to the color of a subject’s skin, illumination 
changes, or moving objects in the background (Yang, et al., 2010). Location and movement features are 
generally used, which are extracted by hand tracking, motion detection and a variety of segmentation 
techniques (Bashir, et al., 2005; Alon, et al., 2009). 

Fingerspelling, on the other hand, does not need to deal with hand movement. Unlike other SLs, such as 
British Sign Language, ASL fingerspelling is one-handed, which means only one hand is used when 
signing the alphabet (Pugeault & Bowden, 2011; Liwicki & Everingham, 2009). This reduces the need for 
highly accurate hand segmentation due to the fact that both hand positions must be precise for two-handed 
fingerspellings. The main objective of ASL fingerspelling recognition is to classify alphabet gestures as 
shown in Figure 4. Therefore, handshape features extracted by edge, corner and pattern detections are 
often applied (Tanibata, et al., 2002; Hernandez-Rebollar, et al., 2005).  

In our work, we will not focus on sensor-based systems because the sensors are still undergoing dramatic 
changes from a hardware point of view. Our plan is to focus more on machine-learning aspects of the 
problem. To make the interaction between human and machine simpler and more flexible, we choose to 
study approaches based on a single 2D camera rather than using multiple cameras. Since hand shape 
information is important, our first task will be to classify the ASL fingerspelling alphabet. Our work will 

 
Figure 3. A signer is shown signing the sentence “I have already bought the ticket.” This sentence is formed by 
three signs: “ticket,” “buy” and “finish.” The three frames between “buy” and “finish” are recognized as 
movement epenthesis (ME) sign, which refer to movements inserted between two signs that are required to 
connect them but are not semantically meaningful. 
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focus on the development of a robust and efficient classification algorithm to distinguish gestures. 

An historical summary of ASL recognition approaches and results are shown in Table 1. The earliest 
work in ASL recognition (Charayaphan & Marble, 1992) was proposed in 1992, which used simple hand 
tracking techniques and adaptive clustering to classify 31 isolated signs. Neural network-based (NN) 
approaches were introduced to ASL recognition in the early 1990’s (Wilson, et al., 1993). These used 
hand location, motion and handshape features as input to an NN for fingerspelling gesture classification. 
Later, similar work based on NNs combined different data acquisition and feature extraction methods for 
finger spelling classification (Oz & Leu, 2011). For example, Hamilton, et al. (1994) used a DataGolve 
with 13 sensors to obtain hand positions. Issacs & Foo (2004) employed wavelet decomposition to extract 
hand features from 2D images. The best recognition results for NN-based ASL fingerspelling recognition, 
which used edge detection and a Hough transform for feature extraction, had a classification error rate of 
8% for an alphabet of 20 signs (Munib, et al., 2007). 

By the mid-1990’s, continuous vision-based sign language recognition based on HMMs became 
prominent (Starner & Pentland, 1995). Angular cameras were used to generate 3D hand–arm models so 
that more precise motion and location information could be obtained. Color gloves were employed to 
improve the accuracy of hand segmentation. Also, a grammar constraint was added between words to 
decrease the false positive recognition error rate. The error rate for a task involving both a grammar 
constraint and color gloves was 8% (Starner, et al., 1998). With no gloves or grammar constraints, the 
error rate increased to 25%.  

In 2002, Tanibata, et al. (2002) demonstrated Japanese sign language recognition based on HMMs and 
obtained a 2% error rate on a task consisting of 65 signs when the face and hands in an image were 
manually segmented. Yin, et al. (2009) proposed a Segmentally-Boosted HMM (SBHMM) which 
embedded a discriminative feature selection process into HMM. In SBHMMs, discriminative features that 
separate the states of HMMs are extracted by a multiclass boosting algorithm. The recognition error rate 
was reduced to 3.73% from 12.37% on the CyberGlove-based dataset from Mcguire et al. (2004). These 
experiments indicate that HMM can be applied to SL recognition successfully. 

However, most of the algorithms introduced earlier were tested on very small amounts of data. For 
example, in a study by Munib, et al. (2007) only 10 training and 5 testing images were used for each sign. 
Error rates for systems that employ hand location and motion features, and use classification algorithms 
based on HMMs, are less than 20% when tested on 39 signs (Parashar, 2003). However, the error rates 
increase significantly when the vocabulary size is increased to 147 signs and the segmentations are 
derived automatically (Yang, et al., 2010). The limited size of the training data is an issue in these studies 
because the HMMs models for thousands of signs require orders of magnitude more data than is currently 
available. 

 

Figure 4. The hand gestures for the 26 signs in the alphabet for ASL. Many of these gestures are very 
similar (e.g., the gestures for “m” and “n”), making this a very difficult task. 
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Real-time continuous sign language recognition using a single 2D camera is a more difficult endeavor 
compared to many other popular capture devices. Changing illumination, low-quality video, motion blur, 
low resolution sensors, temporary occlusion, the appearance of a face or other “hand-like” objects, 
variations in signing behavior and background clutter are all common problems that impede the 
performance. A framework based on Dynamic Programming (DP) (Alon, et al., 2009) was explored to 
address those challenges. The task was to retrieve occurrences of ASL signs in a video database 
consisting of 1,071 signs. Instead of assuming unambiguous and correct hand detection at each frame, the 
proposed algorithm searched for a set of several candidate hand locations at each frame, and then hand 
candidate features were fed into the higher-level model-matching algorithm to estimate the hand position.  

This is considered a combination of top-down and bottom-up methods (Parashar, 2003). In the bottom-up 
direction, multiple candidate hand locations are detected and their features are fed into a higher-level 
model-matching algorithm. In the top-down direction, information from the model is used in the matching 
algorithm to select, among the exponentially many possible sequences of hand locations, a single optimal 
sequence. This sequence specifies the hand location at each frame, thus completing the low-level task of 
hand detection (Alon, et al., 2009). Therefore, the combination of bottom-up and top-down technique 
generally can improve the accuracy of hand segmentation. 

Table 1. A summary of related work in ASL recognition is shown. Since the data sets and sensor methodologies 
vary significantly, it is difficult to directly compare these results. Error rates are still well above 10% for relatively 
simple signing tasks under realistic operational conditions. 

  Vocabulary  
Researchers Classification Methods Size (signs) Type Error Rate 

Nguyen et al., 2012 Facial expression, SVM 6 
(expression) 

Isolated 19.1% 

Thangali et al., 2011 Handshape, Bayesian 1500 Isolated 68.9% - 38.7% 
(Rank 1 – 5) 

Pugeault et al., 2011 Kinect, Gabor filter, Random forest 24 FS 47% 
Zafrulla et al., 2011 Kinect, PCA, GMM 19 Continuous 24.8% - 48.5% 

Yang et al., 2010 Level building, ME lable 147 Continuous 17% 
Zafrulla et al., 2010 Color gloves, PCA, HMM 19 Continuous  17% 

Yin et al., 2009 Sensor gloves, SBHMM 141 Isolated 3.73% 
Khambaty et al., 2008 Sensor gloves, Template matching 24 FS 8%  

Munib et al., 2007 Hough transform, NN 
Small size training/test data 20 FS 7.7% 

Oz et al., 2007 3D motion tracker, ANN 60 Isolated 5% - 8% 
Kong et al., 2007 PCA, HMM 25 

 (sentences) 
Continuous 

24% - 33.8% 

Yang et al., 2006 Key frame extraction, CRF 147 Continuous 19.7% 
Mcguire et al., 2004 Sensor gloves, HMM 141 Isolated  6% - 13% 

Allen et al., 2003 Sensor gloves, NN, 
Small size training/test data 24 

FS 
10% 

Parashar, 2003 Motion tracking, PCA, HMM 39 Continuous 5% - 12% 
Gupta & Ma, 2001 Geometric features, alignment 10 FS 5.8% 

Vogler & Metaxas, 1998 HMM, 3 cameras, data gloves 53 Isolated 8% - 12% 
Starner et al., 1998 HMM, cameras at angular views, 

Color gloves, Skin tone 40 
Isolated 2% - 8% 

 
Waldron et al. , 1995 Neural network 14 Isolated 14% 
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Parameter estimation is problematic in many of these statistical approaches since there is limited training 
data. Therefore, it is common to assign a priori probabilities for transition probabilities (Alon, et al., 
2009) and not to re-estimate these parameters. These approaches resulted in error rates exceeding 50%, 
especially when movement epenthesis (ME) modeling is taken into consideration. ME modeling, which is 
used to recognize semantically meaningless frames, can provide better segmentation of each sign within a 
sentence. In previous work, researchers were trying to model each of ME signs between two different 
gestures, such as ME for sign AB, AC, etc. However, the possible combinations between gestures are 
huge, and this results in a combinatorial nightmare for parametric models.  

An enhanced level building algorithm (Yang, et al, 2010) which considered ME at each level was 
introduced for recognizing 147 ASL signs in sentences. The single sign matching process was 
accomplished by a 2D dynamic time warping (DTW) or 3D dynamic programming matching based on 
how many hand candidates pair existed in one frame. If there is only one pair of hand candidates found in 
the image, the algorithm will use 2D DTW to find best match. If multiple pairs are detected within each 
frame, every possible pair will generate a new path, and the final best match will be the path has least 
accumulated score. When matching scores between a test hand feature and all sign models are lower than 
a threshold, the system will assign a ME label to current candidate.  

The enhanced level building algorithm reduced error rates by more than 40% when compared to 
traditional level building and conditional random fields. However, the task described above is based on 
images collected using simple backgrounds. The error rate increased by at least 10% in experiments 
which involving complex background scenery (Yang, et al, 2010; Alon, et al., 2009). For example, a 
dataset with a moving object in the background and a signer wearing short sleeves increased the error 
rates from 17% to above 30% (Yang, et al., 2010).  

Improving the accuracy of single sign matching is crucial since the correctness of each level will affect 
the overall precision. Most work related to isolated and continuous ASL recognition used only hand 
position and motion (Bashir, et al, 2005; Wang, et al., 2009; Yang, et al., 2010; Alon, et al., 2009). Yet, 
hand shape is also an important feature for distinguishing different signs in ASL. Therefore, more 
recently, researchers are investigating embedding hand shapes into traditional ASL recognition systems 
(Martines, 2006; Ricco & Tomasi, 2009; Athitsos, et al., 2010). Thangali, et al. (2011) used a histogram 
of oriented gradient (HOG) features as hand features. Start-end co-occurrence probabilities were 
computed using a Variational Bayes (VB) network to boost the sign retrieval accuracy.  

The error rate for hand shape recognition in this study was relatively high. The correct choice for 
approximately 80 hand shapes for an isolated sign task did not appear in the top five hypotheses 38.7% of 
the time for an evaluation dataset of 1500 lexical signs in ASL. The algorithm was planned to be used in 
conjunction with other articulation parameters (which include hand location, trajectory, and orientation) 
to facilitate progress towards person-independent large vocabulary sign recognition (Thangali, et al., 
2011).  

This report is organized in six sections and two appendixes. Section 2 and 3 introduce hand detection and 
feature extraction techniques. The benefits of applying bottom-up and top-down approaches to sign 
language recognition is also discussed in section 2. Dynamic programming (DP) based ASL recognition 
is introduced in section 4. In Section 0, a handshape-based isolated sign recognition system which uses a 
VB network is discussed. We conclude this report in Section 6 with a discussion of promising future 
directions. More mathematical details of some of the key algorithms can be found in the appendices.

2. HAND DETECTION 

Most existing sign language recognition systems use a hierarchical model that consists of three levels: 
detection and tracking, feature extraction and recognition (Zaki & Shaheen, 2011; Chen, et al., 2003; 
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Tanibata, et al., 2002). The detection and tracking layer is responsible for performing temporal data 
association between successive image frames, so that, at each moment in time, the system knows the 
locations of the hands. In model-based methods, tracking also provides a way to maintain estimates of 
model parameters and variables that are not directly observable at a certain moment in time. The feature 
extraction layer is used for extracting visual features that can be attributed to the presence of hands in the 
field of view of the cameras. Finally, the recognition layer is responsible for clustering the spatiotemporal 
data extracted in the previous layers and assigning labels to the resulting clusters representing the 
associated class of gesture.  

Two types of methods have been generally used for hand tracking and detection. One is considered a 
bottom-up approach (Alon et al., 2009), which uses low-level feature to segment hand regions. This type 
of algorithm is usually straightforward and not based on prior detection results. However, such 
approaches are very sensitive to cluttered background and overlap between object. Another type of 
method is top-down processing (Kumar, Torr & Zisserman, 2010), which is guided by higher level 
learning processes as the system construct structures based on our experiences and expectations.                         

2.1. Bottom-up Hand Detection Using Color Models and Motion Tracking 

In most dynamic gesture recognition systems, information flows bottom up: the video is input into the 
analysis module, which estimates the hand pose and shape model parameters, and these parameters are in 
turn fed into the recognition module, which classifies the gesture. A simple example of bottom-up hand 
detection process will first extract hand features directly from an input image, and then fit the features 
into a training and recognition system.  

Among all the tasks for gesture and sign language recognition, hand shape and hand motion are the 
primary sources of information that differentiate one sign from another. Thus, building an efficient and 
reliable hand detector is the first important step for recognizing signs and gestures (Zhang et al., 2011). 
Most systems that detect hands from continuous frames place restrictions on the environment (Kolsch & 
Turk, 2004). For example, a common assumption is that skin color is uniform (Jones & Rehg, 1999). 
Moreover, many works manually separate hands from other skin-colored objects, especially for cases 
with insufficient illumination (Binh, Shuichi & Ejima, 2005). Because of the above constraints, hand 
detection methods based on color cues are not suitable for real world problems. 

Motion information is a modality that can mitigate the effects of color distribution and lighting 
conditions, but this approach becomes increasingly difficult and less reliable for a non-stationary 
background. Statistical information about hand locations is effective when used as a prior probability, but 
it requires application-specific training. Shape models generally perform well if there is sufficient contrast 
between the background and the object, but they have problems especially with non-rigid objects and 
cluttered backgrounds. In this section, a hand detection approach, which based on both color and motion 
cues, is introduced.  

Since the human skin is relatively uniform, a statistical color model can be employed to compute the 
probability of every pixel being an acceptable skin color (Zhang, Alonzo & Athitsos, 2011). Jones & 
Rehg (1999) applied a histogram color model to classify skin and non-skin pixels in images. A database 
containing 4675 skin colors and 8965 non-skin images were used for training and testing. The skin pixels 
were manually labeled and then the histogram counts were converted into a discrete probability 
distribution. A similar histogram was generated for non-skin pixels as well. Both models were then used 
for maximum likelihood (ML) classification. Motion information is another discriminant cue for hand 
detection in sign videos since a user needs to move at least one hand to perform a sign. To detect motion, 
frame differencing was used in which the differences between two consecutive frames was calculated 
(Gupta & Kulkarni, 2008).  
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More sophisticated methods, such as optical flow and particle filters (Szeliski, 2011) can be applied 
instead of frame differencing. However, the computational complexity will increase if more complicated 
algorithms are used for tracking. A typical system that combines color information with motion cues is 
shown in Figure 5 (Yang, et al., 2010). A Gaussian Mixture Model (GMM) is used to classify pixels into 
two clusters that represent skin color and non-skin color. The parameters of the GMM model can be 
trained using a ML criterion.  

Due to the fact that more than one moving object might be detected which has skin-like color, edge 
detection and other morphology-based pre-processing methods are typically applied to find connected 
components. For example, a face detection algorithm is first employed to determine the size of the face in 
an image. Since the sizes of a human face and hand should have some type of relationship, a threshold is 
then applied to group together candidate pixels within the threshold.  

2.2. Hand Detection Using a Combined Bottom-up and Top-down Approach 

One common drawback of bottom-up systems is that tracking and recognition typically fail in the absence 
of perfect hand segmentation (Alon, et al., 2009). However, a top-down approach also has a disadvantage 
because it emphasizes planning and a complete understanding of the system. Top-down approaches 
generally use more prior knowledge, typically consisting of domain or application-related constraints, 
compared to bottom-up approaches. 

Therefore, it makes sense to combine bottom-up and top-down process as show in Figure 6. In the 
bottom-up direction, motion and color cues are used for detecting multiple hand candidates within each 
frame which as we described in Figure 5. In the top-down direction, information from the model is used 
in the matching algorithm (HMMs in the example) to select a single optimal sequence among the 
exponentially many possible sequences of hand locations found from the bottom-up process. After 
finding an optimal solution, the sequence found will specify the hand location at each frame. The 
advantage of this combination of bottom-up and top-down approaches is that it reduced the requirement 
of accurate segmentation, and therefore is more robust to a cluttered background. 

3. SIGN FEATURE EXTRACTION 

Feature extraction is an essential component of tracking and recognition systems. Selecting good features 
will result in better accuracy and system performance. Generally, hand shape, hand location, hand 
movement and 3D hand models are features used for sign language recognition (Rybach, 2006). Three-
dimensional hand model-based approaches offer a rich description that allows a wide class of hand 
gestures. However, a large number of images taken from different views of the hand are required to create 
a 3D hand model with 27 degree of freedoms (DoFs). Such a model uses five DoFs for the thumb, four 
for each of the other fingers, and the remaining six DoFs define the global position and rotation of the 
wrist in the 3D space (Garg, Aggarwal, & Sofat, 2009). Thus, most existing hand feature extraction 
approaches are focused on 2D features.  

 
Figure 5. Detection of hand candidates using a GMM classifier and motion information is shown. Edge detection is 
applied after skin color segmentation  
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3.1. Hand Movement and Location Features 

The goal of continuous sign recognition is to translate a sequence of images into meaningful sentences 
and phrases formed by a series of signs. The features extracted from images can be used for both 
continuous and isolated sign recognition. Grammar constraints can be employed for continuous sign 
recognition and can improve the accuracy of hand location detection. For example, if multiple hand 
candidates have been found from the detection step, grammars can prune meaningless search paths and 
increase the chance to locate real hands. Hence, isolated sign recognition normally requires more 
complicated and precise feature extraction algorithms.  

Hand positions and velocities are commonly used as primary features in two-dimensional continuous sign 
language recognition. Many researchers compute local features by using only the center point coordinates 
of the hand (Yang et al., 2010; Alon et al., 2009). In most cases, the calculation of these features depends 
on a segmentation of the input image, geometric constraints, and other heuristics. The advantage of the 
local feature approach is that it only focuses on detected hand region, and therefore is less affected by 
complex background. However, local methods will fail when 
the detected region is not accurate, especially when the 
background image is cluttered and complicated.  

In contrast, global features are computed from the whole 
image, and therefore can provide relationships between the 
hands and the reference points, such as the position of a head 
or shoulder, in addition to hand segments (Yang, et al., 2010). 
Figure 7 shows an example of global hand features proposed 
by using the center of the face as a reference point. After 
locating the face and hands in an image, all horizontal and 
vertical distances between the hand contour points and the 
center of the face are computed.   

There is a need for a reference point because hand positions 
can be totally different when the cameras are set up at 
different angles or positions. In order to calculate distances 

 

Figure 6. Hand detection method combining bottom-up and top-down approaches. Motion and color information 
are applied to bottom-up process, and then multiple hand candidates are chosen to be decide later through the top-
down step.  

 

Figure 7. Global feature extraction based on 
hand positions for dynamic sign recognition. 
Face detection technique is used to detect 
face center point as a reference of 
calculating the distances. 
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between candidate hand edge points and a reference point, the hand position of a sign is constrained by 
the geometric structures of a human body. For example, a one-hand sign with a hand position on the right 
lower right part of the body will never appear on the left or top side of the face. Hence, the distances 
between the hands and face should be always within a certain range. One weakness of global feature 
extraction algorithms is that more non-hand objects may be considered when there is clustered 
background. Due to the fact that both global and local approaches have drawbacks, more investigations 
towards feature extraction are needed in the future.  

3.2. Handshape Features 

ASL consists of approximately 6,000 words with unique signs. Additional words, such as names and 
places, are spelled using fingerspelling (Munib, et al., 2007). Normally, fingerspelling does not involve 
any hand movements, which means it is essentially a hand shape recognition problem. In this section, we 
will introduce one of the most commonly used shape-based feature extraction algorithms – Histogram of 
Oriented Gradient (HOG) features (Thangali, et al., 2009). These will form the basis for our proposed 
research. 

3.2.1. HOG Feature Extraction 

HOG features were first introduced in 2005 for an application involving pedestrian detection (Dalal & 
Triggs, 2005). In 2009, HOG features were extended to hand gesture recognition as well as many other 
applications (Wang, el al., 2012; Liwicki & Everingham, 2009). The essential idea behind HOG features 
is that local object appearance and shape can be described by the distribution of intensity gradients or 
edge directions. 

The first step in calculating HOG features is to compute the gradient intensity, G, and orientation, A, of 
each pixel: 

  ( , ) ( 1, ) ( 1, )xG x y I x y I x y= + − −  (1) 

  ( , ) ( , 1) ( , 1)yG x y I x y I x y= + − −   (2) 

  2 2( , ) ( , ) ( , )x yG x y G x y G x y= +   (3) 

  
  
A(x, y) = atan(Gy (x, y) / Gx (x, y))  . (4)  

Next, the entire image is divided into overlapping windows, which are called blocks. Each block consists 
of four non-overlapped smaller spatial regions named cells. In each cell, A(x, y) is quantized in a set of Ar 
regions by dividing the range [0, 2π] equally. All G(x, y) within the same region are summed together to 
form a 1-D histogram. 

Finally, histograms within a block are normalized using the following equation: 

 

  

fi =
vi

v
2
+ 0.012

 .    (5) 

3.2.2. Hand Image Alignment 

For example, if we define the block size to be 90x90 pixels with a 10 pixel overlap, an image with 
40 40×  pixels will have 64 blocks. Normally, 9 bins are used to calculate the histogram within each cell; 
however, 12 bins are used in the example from Thangali et al. (2011). Hence, feature vectors from cells in 



S. Lu: ASL Recognition Page 11 of 34 

Preliminary Exam Report  Updated: July 13, 2013 

a block are concatenated to form a 48-dimensional HOG 
feature vector. This vector is then normalized to unit 
length for robustness to illumination and contrast 
changes. Thus, the total HOG feature vector will have 
64 48×  elements in the example shown in Figure 8. 

When matching an observed hand shape image to a 
labeled hand shape model in the database, similarity 
scores are used in computing the observation likelihoods. 
In order to accommodate some of the variations in hand 
appearance for the same gesture, alignment algorithms 
can be applied. Thangali et al. (2011) proposed a non-
rigid image alignment method. The goal is to find a 
vector ai→j (displacement of a point from image i to image j) that can minimize a total cost, E, which 
consists of two terms, Edata and Esmooth: 

a align a data smootha argmin E argmin (E (a) +E (a)),i j→ = =    (6) 

where Edata is the data association cost and Esmooth is the smoothness cost.  

The advantage of using a smoothness prior is related to the physical properties of an image: a 
neighborhood of space or an interval of time are coherence and generally do not change abruptly (Li, 
2000). For example, the image in a hand region does not change rapidly over several frames of data. The 
spatial smoothness prior can be defined as a quadratic function of the predicted displacement vector a, is 
given by: 

T
smoothE ( ) a a,a K=       (7)   

where 1 2 na = [a ,a ,...,a ]  and n is the number of control points of an image mesh. Each vector na  is 
formed by two elements nxa  and nya , which are the horizontal and vertical displacements of control 
points n. K is a stiffness matrix which consists of several local stiffness matrices lk , which represents the 
stiffness within each mesh grid. Each sub-matrix lk  is then formed by spring stiffness mnk  of spring 
which connects with end nodes m and n, and is updated in each iteration as: 

n m

= ,
avg( a + a )

base
mn

kk  (8) 

Where kbase, referred to as base stiffness parameter, is typically set experimentally to 75, m and n are two 
end nodes of a spring in the mesh. na  and ma are the positions of m and n. More details, including an 
algorithm implementation, can be found in Thangali et al. (2011).  

By combining equation (6) and (7), we get:  

 
Figure 8. An example of HOG features for a 
hand gesture is shown. A 50% overlap for each 
analysis window is typically used. 
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 T
align dataE (a) = E (a) + a Ka.  (9) 

The cost function reaches its optimal when: 

a align a dataE (a) 0 E (a) = Ka.∇ = ⇒−∇  (10)  

 Using the gradient descent (Yuan, 2008) method: 

  i j
dataa = a - E (a).α∇   (11) 

Let af   be the local displacements to decrease Edata: 

i j i j
a data= a a - a = E (a).f α→ = − ∇  (12) 

Combining equations (10) and (12), we have:  

a Ka.f α=  (13) 

An overview of this algorithm is shown in Figure 9. The position vectors a in  and a im  of two control points 

m and n in image i corresponds to a jn  and a jm  in image j. First, the initial displacement vectors :ainit i j→

are calculated. A search window W is defined which is centered at each control point of image i. Within 
the search window, HOG features are calculated by sliding two pixels vertically or horizontally each time 
as shown in Figure 9(c). A Euclidean distance is used to compute Edata at each point. 

After calculating Edata at all points within a search window, one point is randomly selected from points 
that have 5 lowest scores for Edata. The position of this point is then assigned as the initial new position for 
the control point in the new image, which is initial value for :

na
init i j→ . One advantage of the random 

selection is that it reduces the chance of falling into local minimum. With displacement vectors :ainit i j→ , 
equation (8) and (13), we can obtain the value for aα . Finally, a line search is applied to decide the value 
of α  to minimize Edata(a), which will also provide the final result for vector   a

i→ j . 

 
 (a) (b) (c) 
Figure 9. The non-rigid image alignment process with smoothness prior adaptation: (a) shows the undeformed mesh 
and control points; (b) shows the new positions of corresponding control points from image i, and the displacement 
vectors; and (c) shows the places for calculating Edata  within the search window, W.       
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4. CONTINUOUS ASL RECOGNITION BASED ON DP 

Dynamic programming (DP) (Silverman & Morgan, 1990) has been an important sequential-decision 
analysis tool for speech recognition systems since the 1960’s. It is also widely used to solve a variety of 
computer vision problems, such as, stereo matching, hand writing recognition and gesture recognition 
(Alon et al., 2009). DP is a general approach for solving problems exhibiting two properties: optimal 
substructure and overlapping sub-problems (Cormen et al., 2001). Optimal substructure means that 
optimal solutions of sub-problems can be used to find the optimal solutions of the overall problem.  

In ASL recognition, the goal of matching a sentence of signs to a query subsequence is to find several 
candidate hand sequences that can be best mapped to several model sequences. The main idea of 
DP-based continuous ASL recognition is that the main problem can be broken down into sub-problems of 
computing matching costs between each hand image sequence and a hand model. The matching costs 
computed for these sub-problems can then be combined to compute the optimal matching cost for the 
entire sentence. One advantage of DP-based algorithms is that they can handle sequences of different 
lengths; time alignment and time warping are included in the optimization process. For example, two 
image sequences with five and ten frames each can be recognized using the same model. 

4.1.  Dynamic Time Warping and Hidden Markov Models 

Dynamic Time Warping (DTW) and Hidden Markov Models (HMM) are two well-known non-linear 
sequence alignment or pattern matching algorithms (Fang, 2009). DTW is used to compute a distance 
between two time series. Standard DTW is based on the idea of deterministic DP. However, more real-
world signals are stochastic processes, such as speech, video, etc. Hence, a new algorithm called 
“stochastic DTW” was proposed in 1988. In this method, conditional probabilities are used instead of 
local distances in standard DTW, and transition probabilities instead of path costs. This actually is very 
similar to an HMM model. 

An HMM is a statistical model in which the system being modeled is assumed to be a Markov process 
with unknown parameters (Rabiner, 1989). The challenge is to determine the hidden parameters from the 
observable data. The extracted model parameters can then be used to perform further analysis included 
pattern recognition applications. An HMM can be considered as the simplest dynamic Bayesian network. 
In a regular Markov model, a state is directly visible to the observer, and therefore the state transition 
probabilities are the only parameters that need to be estimated. In a hidden Markov model, the state is not 
directly visible, but variables influenced by the state are visible (Fang, 2009).  

For an unknown input ASL sign with N image frames, every path from the start state to the exit state of 
the HMM which passes through exactly N emitting HMM states is a potential recognition hypothesis. 
Each of these paths has a log probability which is computed by summing the log probability of each 
individual transition in the path and the log probability of each emitting state generating the 
corresponding observation. Within-HMM transitions are determined from the HMM parameters, while 
between-model transitions are determined by the language model likelihoods. The objective is to find the 
path through the network that has the highest log probability. The Baum-Welch (Rabiner, 1989) 
algorithm, a special case of the Expectation-Maximization (EM) approach, is usually used for HMM 
parameter estimation. Details of the Baum-Welch algorithm can be found in Welch (2003). 

Template-based approaches like DTW have an advantage that only one example is needed, but lack a 
statistical model for variations. On the other hand, higher accuracy is expected when using more 
expressive dynamic models, such as HMMs. However, these models require a large amount of training 
data to learn their parameters (Alon et al., 2009). Though it is possible to estimate state output 
probabilities of HMMs using a process similar to what was used in DTW systems, learning state 
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transition probabilities and language model likelihoods from small amount of training data is not possible. 
Therefore, Alon et al. (2009) proposed a hybrid approach, which estimated a Gaussian model for the 
observation probabilities (like an HMM), but employed the uniform transition probability model of DTW.  
This method can be considered as a simplified stochastic DTW, and can be implemented as follows: 

Suppose I = (I1, I2,…, Ij) is a query sequence from a test video. At each frame j, we can extract K feature 
vectors {Qj1, Qj2,..., Qjk}. Each vector includes a 2D hand position and a 2D hand velocity. Let’s also 
assume we have gesture models X = (X1, X2,…, Xg), and each gesture model has m states. For each state 

g
iX , a Gaussian observation density ( , )g g

i iµ Σ  which assigns a likelihood to the observation vector Qjk is 

obtained by the Baum-Welch algorithm. Here, ,g g
i iµ Σ  are the mean and covariance matrix of the feature 

vectors observed in state g
iX . The mission for matching video with a model is to calculate a cost function 

( , , ) ( , )g
i jkd i j k d X Q=  which is a Mahalanobis distance: 

 ' 1( , , ) ( ) ( ) ( ).g g g
jk i jk id i j k Q Qµ µ−= − Σ −  (14) 

DTW is used to map each image frame to a state of a hand model, so the total sum of distances of the 
query sequence is minimized. This algorithm is useful for a task with a small training dataset; however, 
more complicated stochastic models should be applied to achieve better performance when more data is 
available.   

As mentioned in Sections 2 and 3, the features normally used for continuous signs matching are hand 
locations and velocities. If multiple hand candidates are found in one image, we need to record the 
matching path of all hand candidates at each frame. This changes the 2D DTW algorithm into a 3D 
dynamic programing process. The only difference between 2D DTW and 3D DP is that 3D process needs 
to compare more alternatives at each step. 

4.2. An Improved Pruning Method for DP     

One issue with the above 3D dynamic programming matching approach is that the time complexity will 
increase dramatically when more gesture models and states of the model are applied. For example, if jN  
hand candidates are found from frame j, then the number of possible hand pairs (representing the left and 
right hand) will be 2( 1)pair j j j jN N N N N= − = − . The higher Npair is, the more complicated the 
recognition process will become, because more potential paths will be added to the computation. Thus, 
eliminating improbably or unlikely paths is an essential way to maintain computational efficiency.  

The process of removing low-scoring partial paths from the search space is known as pruning. A number 
of heuristic criteria can be applied to identify such paths and to set the appropriate thresholds on path 
scores which keep only qualified paths for future steps. Some commonly used heuristics are: beam search, 
limiting the total number of model instances active at a given frame and setting an upper bound on the 
number of models allowed to end at a given frame (Deshmukh, Ganapathiraju, & Picone, 1999). The 
most commonly used method is beam search. 

In beam search, a predetermined likelihood value, referred to as beam width, is chosen at each frame, and 
all paths with a matching score larger than the beam width are removed from further consideration. 
However, the value of beam width at each step is not easy to define. One possible way of doing this is by 
calculating distances between a model state and training feature vectors that are matched with the model 
state, and set the beam width to be the maximum distance (Alon et al., 2009).  

If the maximum matching distance at cell(i, j, k) from the training data is τi and the test distance d(i, j, k) 
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at this cell is larger than τi, all paths that pass through cell(i, j, k) will be eliminated (pruned). When 
lacking large amount of training data, many nodes in the test data may have a larger value than the beam 
widths in the training data. This could potentially prune too aggressively and delete the optimal path. To 
avoid this, Alon et al. (2009) defined a parameter ε derived from cross-validation training and added it to 
each τi, so the final threshold for each cell should be '

i iτ τ ε= + . This cross validation approach reduces 
the chance of over pruning and also decreases the computational complexity of the search process. 

4.3.  Enhanced Level Building for ASL Recognition 

DP-based algorithms have been widely used to solve various kinds of optimization problems. Two crucial 
problems in video-based sign language and gesture recognition systems can be solved by dynamic 
programming. The first problem occurs at the highest level (e.g., sentence). Movement epenthesis (ME) 
(Yang, et al., 2010), which means the necessary but meaningless movement between signs, can result in 
difficulties in modeling and scalability as the number of signs increases. In the past, ME gestures had only 
been modeled explicitly such that each ME between two signs was trained as a specific sign. This creates 
a major problem because millions of ME signs need to be learned when the vocabulary size is large. The 
second problem occurs at the loweest level (e.g., feature). Ambiguity of hand detection and occlusion will 
propagate errors to higher levels. Regarding the above issues, Yang et al. (2010) constructed an enhanced 
level building (eLB) framework that can handle both of these problems based on a DP approach.  

The classic Level Building algorithm refers to a search process that is performed at various levels, where 
a level corresponds to the positions of the gesture units within the possible sentence. At each level, we 
maximize the score over all unit models for every frame t and find a best hypothesis. The search at the 
next level starts with the winning score of the previous level. After going through all levels, all hypothesis 
sequences found at the end frame of the query will be compared to each other and the optimum solution 
which has the best score will be selected as the result. 

The eLB algorithm proposed by Yang et al. (2010) used the classic Level Building algorithm with a 
threshold set to decide whether there is an ME gesture. At each frame, if the highest matching score of a 
test sequence with all meaningful gestures is less than a threshold, an ME label is going to be added 
instead of a modeled gesture. This raises a question of how to calculate the cost for an ME label and 
threshold. The author defined the cost as follows: 

                            ( , ( 1, )) ( ) ,v kD S T j m m j α+ + = −                    (15) 

where!! is a penalty that decides the threshold for a good match, j+1 and m are the start and the end 
frame of a new level, S is corresponding to a certain sign model. The variable k represents the length of 
the ME label, which means Sv+k  represents an ME sign with 2 frames.  

A general function for scoring at each level is: 

 

,

( , (1: )), 1,
( , , ) , . . ( , ) 0,

min ( 1, , ) ( , ( 1: )), ,

i

ik j

D S T m if l
A l i m i s t R p i

A l k j D S T j m otherwise

⎧ =⎪⎪= ∞ ∀ =⎨
⎪ − + +⎪⎩

  (16) 

where D is the matching cost between a single sign and a segment of the test sequence, and ( , )R i j  
represents the local constraint: 

!(!, !) 
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R(i, j) =
1, if Si can be the predecessor of S j

0, if Si cannot be the predeccessor of S j .

⎧
⎨
⎪

⎩⎪
       (17)     

This local constraint is similar to N-gram (Deshmukh, Ganapathiraju, & Picone, 1999) in speech 
recognition with N equal to 2.  

After the optimal path is obtained, backtracking is applied to reconstruct the optimal sign sequence. An 
array ψ is used to store the best matched sign at each level, which is defined as 

  

1, 1,
( , , ) 1, . . ( , ) 0,

argmin ( 1, , ) ( , ( 1: )), .i

if l
l i m i s t R p i

A l k j D S T j m otherwise
ψ

− =⎧
⎪= − ∀ =⎨
⎪ − + +⎩

 (18) 

Suppose we have in total 100 frames for a test sequence. The eLB implementation steps are shown in 
Figure 10: 

 
Level 1: 

 ( ) ( , ( : ))i1A 1,i1, j1 D S T 1 j1=  (19)  

 

By minimizing ( , )A 1 i1, j1   at each possible end frame, we would find several possible signs for the first 
level.  

 

(1, (1:10)), 10,
(5, (1: 20)), 20,
(2, (1:30)), 30,

min( ( , ))
( 4, (1:50)), 50,
(2, (1: 60)), 60,
(9, (1: 70)), 70.

D T j1
D T j1
D T j1

A 1 i1, j1
D V T j1
D T j1
D T j1

=⎧
⎪ =⎪
⎪ =⎪= ⎨ + =⎪
⎪ =
⎪

=⎪⎩

  (20) 

Level 2: 

 
Figure 10. One example of the enhanced level building matching . S1, ME, S2, ME is finally decided 
after comparing with S2, S8, S9 and S9, S1 sequences due to lowest total cost 

Possible Sign Number (i1) 1 5 2 V+4 2 9 
Possible sign end frame (j1) 40 55 65 80 85 90 
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( , ) min ( , ) ( , ( : ))

min ( , ( : )) ( , ( : ))
i2

i1 i2

A 2 i2, j2 A 1 i1, j1 D S T j1+1 j2
D S T 1 j1 D S T j1+1 j2

= +
= +

 (21) 

 
By minimizing (2, 2,100)A i  , we would find possible signs for the second level 

 

(1, (1:10)) ( 3, (11: 40)), 40,
(1, (1:10)) ( 4, (11:55)), 55,
(5, (1: 20)) (2, (21:65)), 65,

min( ( )) (2, (1:30)) (8, (31:80)), 80,
( 4, (1:50)) (2, (51:85)), 85,
(2, (1: 60))

D T D V T j2
D T D V T j2
D T D T j2

A 2,i2, j2 D T D T j2
D V T D T j2
D T

+ + =
+ + =
+ =

= + =
+ + =

+ (1, (51:90)), 90,
(9, (1: 70)) (1, (71:100)), 100.

D T j2
D T D T j2

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪

=⎪
⎪ + =⎩

  (22) 

Level 3: 

 
( ) min ( ) ( , ( ))

min[min( ( , ( ) ( , ( )))] ( , ( ))
i3

i1 i2 i3

A 3,i3, j3 A 2,i2, j2 D S T j2+1: j3
D S T 1: j1 D S T j1+1: j2 D S T j2+1: j3

= +
= + +

  (23) 

 

 

 

(1, (1:10)) ( 3, (11: 40)) (8, (41:65)), 65,
(1, (1:10)) ( 3, (11: 40)) (2, (41:80)), 80,

min( ( ))
(5, (1: 20)) (2, (21:65)) ( 3, (66 :90)), 90,
(2, (1:30)) (8, (31:80)) (9, (81:1

D T D V T D T j3
D T D V T D T j3

A 3,i3, j3
D T D T D V T j3
D T D T D T

+ + + =
+ + + =

=
+ + + =
+ + 00)), 100.j3

⎧
⎪⎪
⎨
⎪
⎪ =⎩

  (24) 

Level 4: 

 
( ) min( ( ) ( , ( )))

min{min[min( ( , ( )) ( , ( ))
( , ( )) ( , ( )))]}

i4

i1 i2

i3 i4

A 4,i4, j4 A 3,i3, j3 D S T j3+1: j4
D S T 1: j1 D S T j1+1: j2

D S T j2+1: j3 D S T j3+1: j4

= +
= +
+ +

  (25) 

 

 
min( ( )) (1, (1:10)) ( 3, (11: 40))

(2, (41:80)) ( 2, (81:100)), 100.
A 4,i4, j4 D T D V T

D T D V T j4
= + +

+ + + =
  (26) 

As we can see from the example, the best match, which the traditional LB algorithm would find, is {S2, 
S8, S9}, whereas the real sign sequence should be {S1, S2}. By applying the eLB algorithm with ME 
signs, the recognized sequence is {S1, ME, S2, ME}, which matches the original sign exactly. 

Dynamic programming-based approaches, like DTW, have the advantage that only one example is 
needed, but they lack a statistical model for variations. On the other hand, higher accuracy is expected 
when using more expressive dynamic models, such as HMM or conditional random field (CRF). When 

Possible Sign Number (i2) V+3 V+4 2 8 2 1 1 
Possible sign end frame (j2) 40 55 65 80 85 90 100 

 

Possible Sign Number (i3) 8 2 V+3 9 
Possible sign end frame (j3) 65 80 90 100 

 

Possible Sign Number (i4) V+2 
Possible sign end frame (j4) 100 
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process a sign sentence, accurate allocation of ME gestures has proved to enhance the recognition results 
by Yang et al. (2010). They also found that sign features with only hand locations and motions limit the 
discriminative abilities of the recognition system. Hence, richer features in conjunction with hand shape 
and facial expression may provide better performance.  

5. HANDSHAPE INFERENCE FOR SIGN MATCHING  

As mentioned by Yang et al. (2010), sign recognition methods based on only hand positions and 
movements are not robust because hand shape is an important component of sign language recognition. 
Thus, recent research has been focusing on how to use hand shape information to develop sign or hand 
gesture recognition (Oz, et al., 2011; Keskin, et al., 2011; Khambaty, etl al., 2008). In speech recognition, 
a language model, which models the co-occurrence probabilities of several words in a sentence, is usually 
used to enhance the recognition accuracy. Similar to the language model, the probabilities of two gestures 
being start and end gestures of an isolated sign also follow a certain distribution. Hence, Thangali et al. 
(2011) proposed a Variational Bayesian (VB) network which models the co-occurrence of start and end 
gesture pairs to improve the recognition accuracy.  

5.1. Handshape Bayesian Network (HSBN) 

An overview of the approach in the paper is shown in Figure 12. Given an input test hand pair {is, ie}, we 
want to match it with a corresponding model hand pair {xs, xe}. This can be seen as maximizing the 
likelihood, ( , | , )s e s eP x x i i : 

,

1( , | , ) ( , , , )
( , )
1 ( | ) ( | ) ( , )
( , )

( )
( | ) ( | ) .

( ) ( )

s e s e s e s e
s e

s s e e s e
s e

s e
s s e e

s e

P x x i i P x x i i
P i i

P i x P i x P x x
P i i

P x x
P x i P x i

P x P x

=

=

∝

 (27) 

In the above equation, ( | )s sP x i  and ( | )e eP x i  are calculated using: 

 
1

( | ) ( , ),
kdefine

i i
s s DB s

i

P x i e x xβ δ−

=

∝ ∑   (28) 

where, k is the number of examples retrieved from a database by a k-nearest neighbor algorithm, β  is a 

decaying weight, and δ  is an indicator function which tests whether the end frame of i
DBx  is sx . ( )sP x  

and ( )eP x  are the marginal probability of ( , )s eP x x . Therefore, the problem becomes how to find the 
value of ( , )s eP x x .  

An important and difficult problem in Bayesian inference is computing the marginal probability. The 
marginal probability is an important quantity because it allows us to select between several model 
structures. It is a difficult quantity to compute because it involves integrating over all parameters and 
latent variables, which usually results in a complex integral in a high dimensional space. Most simple 
approximations have failed catastrophically at this (Beal & Ghahramani, 2003).  

5.2.  Variational Bayesian Learning in an HSBN 

Variational methods have recently become popular in the context of inference problems. Variational 
Bayes is a particular variational method (Jordan, et al., 1999) which aims to find some approximate joint 



S. Lu: ASL Recognition Page 19 of 34 

Preliminary Exam Report  Updated: July 13, 2013 

distribution Q(x,θ) over hidden variables x to approximate the true joint distribution P(x), and defines 
‘closeness’ as the KL divergence KL[Q(x,θ)||P(x)] (Fox & Roberts, 2011). It maximizes the likelihood by 
iteratively increasing a lower bound. For example, the marginal likelihood P(xs,xe) in equation (27) can be 
calculated as: 

 ,
,

( , ) a ( ) ( ).
s

s e
s e s es s e e

s e

P x x b x b xϕ ϕ ϕ ϕ ϕ
ϕ ϕ

π= ∑  (29) 

The parameters ! = {!, a, b!, b!} above correspond to the following multinomial probability distributions:      

 
,( ); a ( | );

( ) ( | ); ( ) ( | ),
s s e

s e

s e s

s e
s s s e e e

P P

b x P x b x P x

ϕ ϕ ϕ

ϕ ϕ

π ϕ ϕ ϕ

ϕ ϕ

= =

= =
  (30) 

where {φs, φe} are the {start, end} hand shape 
categories which are considered as hidden states in 
the network, and {xs, xe} are the observed hand shape 
pairs which contains different realizations of {φs, φe}. 
Thus, the hidden variable φi corresponds to xi, which 
includes all possible implementations of a sign model 
in the HSBN, as shown in Figure 11. The advantage 
of using a hidden layer for this task is that it can 
adapt to the variations of hand shapes caused by the 
signing habit of different signers. It may also be less 
sensitive to hand rotations to other existing 
algorithms.  To approximate the marginal probability 
distribution, the EM algorithm is employed to 
maximize the lower bound. The goal of the EM 
algorithm (Dempster, et al., 1977) is to estimate the 
model parameter(s) for which the observed data are 
most likely. Each iteration of the EM algorithm 

 
Figure 11. One-to-many associations between hidden 
and observed variables for HSBN. Any start or end 
parameter can correspond to more than one 
observation. 

 
Figure 12. An illustration of the whole proposed HSBN approach. Best three match gestures for start and end signs 
are found by matching process including non-rigid alignment process, and then VB inference are applied for 
retrieving the sign with most probable start-end gesture pair. 
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consists of two processes: the E-step and the M-step. In the expectation, or E-step, the missing data are 
estimated given the observed data and current estimate of the model parameters. This is achieved using 
the conditional expectation. In the M-step, the likelihood function is maximized under the assumption that 
the missing data are known. The estimate of the missing data from the E-step is used instead of the actual 
missing data. Convergence is assured since the algorithm is guaranteed to increase the likelihood at each 
iteration (Borman, 2004). 

To maximize the likelihood function, the VB-EM approach employs a lower bound function ℱ which is 
derived as follows: 

 ln ( ) ln ( | ) ( )P x d P x Pλ λ λ= ∫   (31) 

( )ln ( ) ( | )
( )

P
d Q P x

Qλ
λ

λλ λ λ
λ

= ∫  (32) 

( )( ) ln ( | )
( )

P
d Q P x

Qλ
λ

λλ λ λ
λ

≥ ∫  (33) 
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N

i
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d Q P x

Qλ
λ
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( )( )[ ln ( , | ) ln ]
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i i
i

P
d Q P x

Qλ
λϕ

λλ λ ϕ λ
λ
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( , | ) ( )( )[ ( ) ln ln ]
( ) ( )i

ii

i i
i

ii

P x P
d Q Q

Q Qλ ϕ
ϕ λϕ

ϕ λ λλ λ ϕ
ϕ λ

≥ +∑∑∫  (36) 

 ( ( ), ( )).
i iQ Qλ ϕλ ϕ= F   (37) 

The derivation from equation (32) to (33) and equation (35) to (36) is based on Jensen's inequality 
(Dempster, et al., 1977).  
Jensen's inequality states that a convex function of the variable expectation is larger than or equal to the 
expectation of the convex function of the same variable. We know that log function is a concave function 
(Carter, 2001), so we have: 

 ln [ ] [ln( )].E x E x≥   (38) 

By simply taking functional derivatives with respect to each of the Q(·) distributions and equating these 
to zero, we get the distributions that maximize ℱ. Synchronous updating of the variational posteriors is 
not guaranteed to increase ℱ but consecutive updating of dependent distributions is. The result is that 
each update is guaranteed to monotonically and maximally increase ℱ. Taking the derivative of Lower 
bound function ℱ from equation (36) with the respect of !!(!) and !!(!), we have 

0
( )

ln ( ) ( )[ln ( , | ) ln ( )] ln ( ) ;
i i
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i i i i Q
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QC λ
 and 

iQ
C

ϕ
 here are normalizing constants for the variational distributions.  

The complete data log-likelihood can be expanded given the model in Figure 11: 
| | | |

1 1

ln ( , | ) ln ln ln ( ) ln ( ).
i i

i i i i
s s e s e

x x
i s ij e ij

i i s e
j j

P x a b x b xϕ ϕ ϕ ϕ ϕϕ λ π
= =

= + + +∑ ∑   (41) 

The prior distributions for model parameters are chosen from the Dirichlet family. The Dirichlet 
distribution (Appendix A.2) is one that has often been utilized in Bayesian statistical inference as a 
convenient prior distribution. The most common reason for using a Dirichlet distribution is that it is from 
the same family as multinomial distribution (Huang, 2005), and they are a conjugate prior. If the data has 
multinomial distribution and the prior of the parameters of the data is a Dirichlet distribution, then the 
posterior distribution of the data parameters is also Dirichlet. The benefits of this are that the posterior 
distribution is easy to compute and updating parameters normally does not involve complicated 
integration. 

Based on the properties of Dirichlet distribution (Beal, 2003), we have:  

 ln ( ) lnDir({ , , , }|{ , , , })s e o o so eoP a b b v aλ π β β=   (42) 

 lnDir( | ) lnDir( | ) lnDir( | ) lnDir( | )o o s so s so
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, ,
,

, ,

( 1)ln ( 1)ln

( ( ) 1)ln ( ) ( ( ) 1)ln ( ).

o o

s s s e s e
s s e

so s eo e

s s e e
x xs e

v a a

x b x x b x

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ

π

β β

= − + −

+ − + −

∑ ∑

∑ ∑
 (44) 

Substituting equations (41) and (44) into equation (39), we get: 
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S. Lu: ASL Recognition Page 22 of 34 

Preliminary Exam Report  Updated: July 13, 2013 

 

, ,,
,

, 1

, 1

( ( ) 1)ln

( ( , ) 1)ln

( ( ) ( , ) ( ) 1)ln ( )

( ( ) ( , ) ( ) 1)ln ( )

s s s

s

i i
s e s es e

s e

i

s s s

s

i

e e e

e

o i
s

i

o
s e

i

x
so ij i s

s s
x i j

x
eo ij i e

e e
x i j

v Q

a Q a

x x x Q b x

x x x Q b x

ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ ϕϕ ϕ
ϕ ϕ

ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ
ϕ

ϕ π

ϕ ϕ

β δ ϕ

β δ ϕ

=

=

= + −

+ + −

+ + −

+ + −

∑ ∑

∑ ∑

∑ ∑∑

∑ ∑∑

  (47) 

 * * * *lnDir( | ) lnDir( | ) lnDir( | ) lnDir( | ),
s s s s e e

s s e

so s eo ev a a b bϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ

π β β= + + +∑ ∑ ∑   (48) 

where, 
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Using what we obtained above, ( )Qλ λ  can be decomposed as the sum of Dirichlet distributions. 
Therefore, equation (40) is equal to: 
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Using the identity Dir( | )ln ( ) ( )i i k
k

d v v vπ π π ψ ψ= − ∑∫ , (! is digamma function, see Appendix A.5), 
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Now, we go back to equation (36), and apply equation (40) to it. Then we obtain: 
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where !"(∙ | ∙  is K-L convergence function (Appendix A.3). 

The EM algorithm will repeat the above steps iteratively until changes in the value of ( , )
i

Q Qλ ϕF  are 

below a threshold. With the lower bound ( , )
i

Q Qλ ϕF  learned by the variational approach mentioned 
above, the probability of {start, end} co-occurrence can then be obtained. One major contribution of this 
proposed HSBN algorithm is that it takes into consideration both {start, end} hand shape co-occurrence 
probabilities which increases recognition performance similar to the way a language model influences 
performance in speech recognition (Picone, 1990).  

6. CONCLUSIONS AND FUTURE WORK 

This report summarized and compared state of the art ASL recognition systems from three aspects: hand 
detection, feature extraction, and gesture recognition. Accurate hand detection generally requires precise 
segmentation of an image. However, this is hard to achieve when the background is complicated and skin 
color varies. Almost all existing ASL recognition systems or demos tend to constrain the background to 
be plain. Still, it is impossible to always limit the background conditions in real world applications. 
Therefore, Alon et al. (2009) and Yang et al. (2010) applied a combination of bottom-up and top-down 
approaches which allowed multiple hand position hypotheses within each image frame. With the 
stochastic modeling ability of top-down algorithms, the final detected hand locations are more robust in 
cluttered backgrounds.   

In the past, hand positions and movements were frequently used for continuous and isolated sign 
recognition, while hand shape was more meaningful for fingerspelling. However, many continuous 
gestures have the same hand locations and movements but different hand shapes, and therefore can only 
be differentiated by the shapes of the hands. Hence, more research interests have focused on the feature 
extraction of hand shapes.  

Histogram of Oriented Gradient, as one of the most popular shape representation algorithms, has been 
successfully applied to hand gesture recognition. It uses distributions of gradients to reflect the edge 
information, which does not reply on pre-segmentation and is more robust to illumination changes. 
Despite all the benefits HOG has, it is not scale and rotation invariant and is sensitive to backgrounds 
containing subjects with clear edges. Handshape-based recognition still needs further investigation, which 
should be one of the major developments of ASL recognition in the following decades.  

The dynamic programming-based gesture recognition system has been very popular because it is flexible 
to match sign sequences with different lengths. DTW, as one of the most commonly used DP-based 
algorithms, has many similarities with HMM. Ideally, as the data collected of real-world signs are 
stochastic signals, HMM should over perform DTW for ASL recognition application. However, DTW is 
more generally used, due to the fact that there is generally not enough data available for training 
parameters needed for stochastic models. Thus, finding a dataset with a greater amount of data for testing 
HMM-based systems is part of future work.  

Continuous ASL recognition often involves movement epenthesis between two meaningful signs, which 
is hard to model when a database has a large vocabulary. Yang et al (2010) embedded the recognition of 
ME signs into a level building algorithm which avoided the process of modeling it. Though algorithms 
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with multiple levels may obtain better accuracy compared to one level DTW, the computation needed for 
the whole system also increases. As a result, multiple constraints should be considered to either speed up 
the training and recognition process or improve accuracy when using dynamic programming approaches.  

Similar to speech recognition, ASL recognition can be separated into several levels: state level, hand 
shape level, and sign level. At each level, certain types of pruning algorithms, such as, beam search, can 
be applied to reduce the computational complexity and the recognition error rate. Modeling the linguistic 
constraints on the co-occurrence of hand shapes in lexical signs can also improve the robustness of the 
recognition systems.   

As the hand is a non-rigid object, there are variations in the production of a hand shape articulated by the 
same or different signers. Because of this, a set of hidden variables is normally introduced to the 
modeling process.  After adding the hidden variables into the computation process, it is often difficult to 
calculate the likelihood probabilities using integrals. Variational Bayesian methods provide an alternative 
way of computing probabilities, which can be generalized to other algorithms, including HMM.  

In conclusion, without sophisticated sensors, vision-based ASL recognition is a very challenging research 
topic. A better hand feature representation will be the first task in order to develop a reliable ASL 
recognition system. Advanced statistical modeling algorithms (instead of simple DTW) need to be 
investigated to improve the recognition process, which means datasets with larger amounts of samples are 
required.  Finally, more research on reducing the effects caused by hand shape and background variation 
is necessary.   
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APPENDIX A 

A.1.  Gamma Function 

A Gamma function is defined as 1

0
( ) xx d e ττ τ

∞ − −Γ = ∫ , which has a well know recursion 

x!=Γ(x+1)=xΓ(x)=x(x-1)! .  

A.2.  Dirichlet Distribution 

The dirichlet distribution is as follows, 
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Where αs is the sth element of α, and Γ(x) is the gamma function. 

A.3.  K-L Convergence 

For the probability densities p(x) and q(x) for X D∈  the KL-divergence is defined as follows: 

 ( )
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A.4.  Expectation of Logarithm Function of Dirichlet Distribution 
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A.5.  Digamma Function 

The digamma function is defined as 
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APPENDIX B 

B.1.  Maximum Likelihood 

Maximum likelihood estimation (MLE) is a method of estimating the parameters of a statistical model. 
X1, X2, X3,…, Xn have joint density denoted 

 1 2 1 2( , ,..., ) ( , ,..., | ).n nf x x x f x x xθ θ=  

Given observed values X1=x1, X2=x2,…,Xn=xn, the likelihood of ! is the function  

 1 2( | ) ( , ,..., | ),nl x f x x xθ θ=  

which is considered as a function of θ. 
In words, the likelihood function is the probability of observing the given observation as a function of θ. 
The MLE of θ is a value of θ that maximizes the likelihood, which means the value that makes the 
observed data the most probable.  

 ( ) max ( | ).MLE l xθ θ=    

Note that the solution to an optimization problem is invariant to a strictly monotone increasing 
transformation of the objective function, an MLE can be obtained as a solution to the following problem: 

 maxlog ( | ) max ( | )l x L xθ θ=    

The EM algorithm is an efficient iterative procedure to compute the MLE. Convergence is assured since 
the algorithm is guaranteed to increase the likelihood at each iteration. However, depending upon the 
choice of the initial parameter values, the algorithm could prematurely stop and return a sub-optimal set 
of parameter values, which is called the local maxima problem. Unfortunately, there exists no general 
solution to the local maximum problem. Instead, a variety of techniques have been developed in an 
attempt to avoid the problem, though there is no guarantee of their effectiveness (Myung, 2003). 

B.2.  Mahalanobis Distance  

In statistics, Mahalanobis distance is based on correlations between variables by which different patterns 
can be identified and analyzed. It gauges similarity of an unknown sample set to a known one. The 
Mahalanobis distance is defined as: 

 2 1( ) ' ( ),D x m C x m−= − −   

where: 
 
 
 
 
 
If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean 
distance. If the covariance matrix is diagonal, then the resulting distance measure is called the normalized 
Euclidean distance. 

B.3. Covariance  

The first step in analyzing multivariate data is computing the mean vector and the variance-covariance 
matrix. Covariance is a measure of how much two random variables change together. The mean vector 
consists of the means of each variable. For covariance matrix, each element represents the relationship 

!! = Mahalanobis distance 
! = Vector of data 
! = Vector of mean values of independent variables 
!!!= Inverse Covariance matrix of independent variables 
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between two variables. If the matrix is diagonal, it means any variable is not related to any other ones, 
which indicates the variables are independent.  

The covariance matrix of any sample matrix can be expressed in the following way: 

 
1

1( ) ( )( ) ',
n

i i
i

Cov x x x x x
n =

= − −∑  

where !! is the !th test sample, ! is the mean vector of one class of training samples, and n is the number 
of test samples.  


