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Abstract 

Designing a machine that mimics human behavior, particularly the capability of speaking 

naturally and responding properly to spoken language, has intrigued engineers and scientists for 

centuries. Since the 1930s, when Homer Dudley of Bell Laboratories proposed a system model 

for speech analysis and synthesis [1, 2], the problem of automatic speech recognition has been 

approached progressively, from a simple machine that responds to a small set of sounds to a 

sophisticated system that responds to fluently spoken natural language and takes into account the 

varying statistics of the language in which the speech is produced. Based on major advances in 

statistical modeling of speech in the 1980s, automatic speech recognition systems today find 

widespread application in tasks that require a human-machine interface, such as automatic call 

processing in the telephone network and query-based information systems that do things like 

provide updated travel information, stock price quotations, weather reports, etc. In this article, we 

review some major highlights in the research and development of automatic speech recognition 

during the last few decades so as to provide a technological perspective and an appreciation of the 

fundamental progress that has been made in this important area of information and 

communication technology. 
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1. Introduction 

Speech is the primary means of communication between people. For reasons ranging from 

technological curiosity about the mechanisms for mechanical realization of human speech 

capabilities, to the desire to automate simple tasks inherently requiring human-machine 

interactions, research in automatic speech recognition (and speech synthesis) by machine has 

attracted a great deal of attention over the past five decades. 

The desire for automation of simple tasks is not a modern phenomenon, but one that goes 

back more than one hundred years in history. By way of example, in 1881 Alexander Graham 

Bell, his cousin Chichester Bell and Charles Sumner Tainter invented a recording device that 

used a rotating cylinder with a wax coating on which up-and-down grooves could be cut by a 

stylus, which responded to incoming sound pressure (in much the same way as a microphone that 

Bell invented earlier for use with the telephone). Based on this invention, Bell and Tainter formed 

the Volta Graphophone Co. in 1888 in order to manufacture machines for the recording and 

reproduction of sound in office environments. The American Graphophone Co., which later 

became the Columbia Graphophone Co., acquired the patent in 1907 and trademarked the term 

“Dictaphone.” Just about the same time, Thomas Edison invented the phonograph using a tinfoil 

based cylinder, which was subsequently adapted to wax, and developed the “Ediphone” to 

compete directly with Columbia. The purpose of these products was to record dictation of notes 

and letters for a secretary (likely in a large pool that offered the service as shown in Figure 1) 

who would later type them out (offline), thereby circumventing the need for costly stenographers. 

This turn-of-the-century concept of “office mechanization” spawned a range of electric and 

electronic implements and improvements, including the electric typewriter, which changed the 

face of office automation in the mid-part of the twentieth century. It does not take much 

imagination to envision the obvious interest in creating an “automatic typewriter” that could 

directly respond to and transcribe a human’s voice without having to deal with the annoyance of 

recording and handling the speech on wax cylinders or other recording media. 

A similar kind of automation took place a century later in the 1990’s in the area of “call 

centers.” A call center is a concentration of agents or associates that handle telephone calls from 

customers requesting assistance. Among the tasks of such call centers are routing the in-coming 

calls to the proper department, where specific help is provided or where transactions are carried 

out. One example of such a service was the AT&T Operator line which helped a caller place calls, 

arrange payment methods, and conduct credit card transactions. The number of agent positions 

(or stations) in a large call center could reach several thousand. Automatic speech recognition 
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technologies provided the capability of automating these call handling functions, thereby 

reducing the large operating cost of a call center. By way of example, the AT&T Voice 

Recognition Call Processing (VRCP) service, which was introduced into the AT&T Network in 

1992, routinely handles about 1.2 billion voice transactions with machines each year using 

automatic speech recognition technology to appropriately route and handle the calls [3]. 

 

Speech recognition technology has also been a topic of great interest to a broad general 

population since it became popularized in several blockbuster movies of the 1960’s and 1970’s, 

most notably Stanley Kubrick’s acclaimed movie “2001: A Space Odyssey”. In this movie, an 

intelligent computer named “HAL” spoke in a natural sounding voice and was able to recognize 

and understand fluently spoken speech, and respond accordingly. This anthropomorphism of 

HAL made the general public aware of the potential of intelligent machines. In the famous Star 

Wars saga, George Lucas extended the abilities of intelligent machines by making them mobile as 

well as intelligent and the droids like R2D2 and C3PO were able to speak naturally, recognize 

and understand fluent speech, and move around and interact with their environment, with other 

droids, and with the human population at large. More recently (in 1988), in the technology 

community, Apple Computer created a vision of speech technology and computers for the year 

2011, titled “Knowledge Navigator”, which defined the concepts of a Speech User Interface 

(SUI) and a Multimodal User Interface (MUI) along with the theme of intelligent voice-enabled 

agents. This video had a dramatic effect in the technical community and focused technology 

efforts, especially in the area of visual talking agents.   

Figure 1 An early 20th century transcribing pool at Sears, Roebuck and Co. The 

women are using cylinder dictation machines, and listening to the recordings 

with ear-tubes (David Morton, the history of Sound Recording History, 

http://www.recording-history.org/) 
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Today speech technologies are commercially available for a limited but interesting range of 

tasks. These technologies enable machines to respond correctly and reliably to human voices, and 

provide useful and valuable services. While we are still far from having a machine that converses 

with humans on any topic like another human, many important scientific and technological 

advances have taken place, bringing us closer to the “Holy Grail” of machines that recognize and 

understand fluently spoken speech. This article attempts to provide an historic perspective on key 

inventions that have enabled progress in speech recognition and language understanding and 

briefly reviews several technology milestones as well as enumerating some of the remaining 

challenges that lie ahead of us. 

2. From Speech Production Models to Spectral Representations 

Attempts to develop machines to mimic a human’s speech communication capability appear 

to have started in the 2nd half of the 18th century. The early interest was not on recognizing and 

understanding speech but instead on creating a speaking machine, perhaps due to the readily 

available knowledge of acoustic resonance tubes which were used to approximate the human 

vocal tract. In 1773, the Russian scientist Christian Kratzenstein, a professor of physiology in 

Copenhagen, succeeded in producing vowel sounds using resonance tubes connected to organ 

pipes [4]. Later, Wolfgang von Kempelen in Vienna constructed an “Acoustic-Mechanical 

Speech Machine” (1791) [5] and in the mid-1800's Charles Wheatstone [6] built a version of von 

Kempelen's speaking machine using resonators made of leather, the configuration of which could 

be altered or controlled with a hand to produce different speech-like sounds, as shown in Figure 2. 

 

Figure 2    Wheatstone's version of von Kempelen's speaking machine (Flanagan [7]). 
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During the first half of the 20th century, work by Fletcher [8] and others at Bell Laboratories 

documented the relationship between a given speech spectrum (which is the distribution of power 

of a speech sound across frequency), and its sound characteristics as well as its intelligibility, as 

perceived by a human listener. In the 1930’s Homer Dudley, influenced greatly by Fletcher’s 

research, developed a speech synthesizer called the VODER (Voice Operating Demonstrator) [2], 

which was an electrical equivalent (with mechanical control) of Wheatstone’s mechanical 

speaking machine. Figure 3 shows a block diagram of Dudley’s VODER which consisted of a 

wrist bar for selecting either a relaxation oscillator output or noise as the driving signal, and a foot 

pedal to control the oscillator frequency (the pitch of the synthesized voice). The driving signal 

was passed through ten bandpass filters whose output levels were controlled by the operator’s 

fingers. These ten bandpass filters were used to alter the power distribution of the source signal 

across a frequency range, thereby determining the characteristics of the speech-like sound at the 

loudspeaker. Thus to synthesize a sentence, the VODER operator had to learn how to control and 

“play” the VODER so that the appropriate sounds of the sentence were produced.  The VODER 

was demonstrated at the World Fair in New York City in 1939 (shown in Fig 4) and was 

considered an important milestone in the evolution of speaking machines. 

 

Figure 3      A block schematic of Homer Dudley’s VODER [2]. 

 

Speech pioneers like Harvery Fletcher and Homer Dudley firmly established the importance 

of the signal spectrum for reliable identification of the phonetic nature of a speech sound. 

Following the convention established by these two outstanding scientists, most modern systems 

and algorithms for speech recognition are based on the concept of measurement of the (time-

varying) speech power spectrum (or its variants such as the cepstrum), in part due to the fact that 
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measurement of the power spectrum from a signal is relatively easy to accomplish with modern 

digital signal processing techniques.  

   

3. Early Automatic Speech Recognizers  

Early attempts to design systems for automatic speech recognition were mostly guided by the 

theory of acoustic-phonetics, which describes the phonetic elements of speech (the basic sounds 

of the language) and tries to explain how they are acoustically realized in a spoken utterance. 

These elements include the phonemes and the corresponding place and manner of articulation 

used to produce the sound in various phonetic contexts. For example, in order to produce a steady 

vowel sound, the vocal cords need to vibrate (to excite the vocal tract), and the air that propagates 

through the vocal tract results in sound with natural modes of resonance similar to what occurs in 

an acoustic tube. These natural modes of resonance, called the formants or formant frequencies, 

are manifested as major regions of energy concentration in the speech power spectrum. In 1952, 

Davis, Biddulph, and Balashek of Bell Laboratories built a system for isolated digit recognition 

for a single speaker [9], using the formant frequencies measured (or estimated) during vowel 

regions of each digit. Figure 5 shows a block diagram of the digit recognizer developed by Davis 

et al., and Figure 6 shows plots of the formant trajectories along the dimensions of the first and 

the second formant frequencies for each of the ten digits, one-nine and oh, respectively. These 

trajectories served as the “reference pattern” for determining the identity of an unknown digit 

utterance as the best matching digit. 

Figure 4     The VODER at the 1939 World’s Fair in NYC. 
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Figure 5      Block schematic of digit recognizer circuits. (Davis, Biddulph, and Balashek [9]) 

 

Figure 6 Photographs of formant 1 vs. formant 2 presentation of the digits. (Davis,  

Biddulph, and Balashek [9]) 

 

In other early recognition systems of the 1950’s, Olson and Belar of RCA Laboratories built a 

system to recognize 10 syllables of a single talker [10] and at MIT Lincoln Lab, Forgie and 
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Forgie built a speaker-independent 10-vowel recognizer [11]. In the 1960’s, several Japanese 

laboratories demonstrated their capability of building special purpose hardware to perform a 

speech recognition task. Most notable were the vowel recognizer of Suzuki and Nakata at the 

Radio Research Lab in Tokyo [12], the phoneme recognizer of Sakai and Doshita at Kyoto 

University [13], and the digit recognizer of NEC Laboratories [14]. The work of Sakai and 

Doshita involved the first use of a speech segmenter for analysis and recognition of speech in 

different portions of the input utterance. In contrast, an isolated digit recognizer implicitly 

assumed that the unknown utterance contained a complete digit (and no other speech sounds or 

words) and thus did not need an explicit “segmenter.” Kyoto University’s work could be 

considered a precursor to a continuous speech recognition system. 

In another early recognition system Fry and Denes, at University College in England, built a 

phoneme recognizer to recognize 4 vowels and 9 consonants [15]. By incorporating statistical 

information about allowable phoneme sequences in English, they increased the overall phoneme 

recognition accuracy for words consisting of two or more phonemes. This work marked the first 

use of statistical syntax (at the phoneme level) in automatic speech recognition.  

An alternative to the use of a speech segmenter was the concept of adopting a non-uniform 

time scale for aligning speech patterns. This concept started to gain acceptance in the 1960’s 

through the work of Tom Martin at RCA Laboratories [16] and Vintsyuk in the Soviet Union [17]. 

Martin recognized the need to deal with the temporal non-uniformity in repeated speech events 

and suggested a range of solutions, including detection of utterance endpoints, which greatly 

enhanced the reliability of the recognizer performance [16]. Vintsyuk proposed the use of 

dynamic programming for time alignment between two utterances in order to derive a meaningful 

assessment of their similarity [17]. His work, though largely unknown in the West, appears to 

have preceded that of Sakoe and Chiba [18] as well as others who proposed more formal methods, 

generally known as dynamic time warping, in speech pattern matching. Since the late 1970’s, 

mainly due to the publication by Sakoe and Chiba, dynamic programming, in numerous variant 

forms (including the Viterbi algorithm [19] which came from the communication theory 

community), has become an indispensable technique in automatic speech recognition. 

4. Technology Drivers since the 1970’s 

In the late 1960’s, Atal and Itakura independently formulated the fundamental concepts of 

Linear Predictive Coding (LPC) [20, 21], which greatly simplified the estimation of the vocal 

tract response from speech waveforms. By the mid 1970’s, the basic ideas of applying 
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fundamental pattern recognition technology to speech recognition, based on LPC methods, were 

proposed by Itakura [22], Rabiner and Levinson [23] and others.  

Also during this time period, based on his earlier success at aligning speech utterances, Tom 

Martin founded the first speech recognition commercial company called Threshold Technology, 

Inc. and developed the first real ASR product called the VIP-100 System. The system was only 

used in a few simple applications, such as by television faceplate manufacturing firms (for quality 

control) and by FedEx (for package sorting on a conveyor belt), but its main importance was the 

way it influenced the Advanced Research Projects Agency (ARPA) of the U.S. Department of 

Defense to fund the Speech Understanding Research (SUR) program during the early 1970’s. 

Among the systems built by the contractors of the ARPA program was Carnegie Mellon 

University’s “Harpy” (Lowerre [24]) which was shown to be able to recognize speech using a 

vocabulary of 1,011 words, and with reasonable accuracy. One particular contribution from the 

Harpy system was the concept of doing a graph search, where the speech recognition language 

was represented as a connected network derived from lexical representations of words, with 

syntactical production rules and word boundary rules. In the proposed Harpy system, the input 

speech, after going through a parametric analysis, was segmented and the segmented parametric 

sequence of speech was then subjected to phone template matching using the Itakura distance 

[22]. The graph search, based on a beam search algorithm, compiled, hypothesized, pruned, and 

then verified the recognized sequence of words (or sounds) that satisfied the knowledge 

constraints with the highest matching score (smallest distance to the reference patterns). The 

Harpy system was perhaps the first to take advantage of a finite state network to reduce 

computation and efficiently determine the closest matching string. However, methods which 

optimized the resulting finite state network (FSN) (for performance as well as to eliminate 

redundancy) did not come about until the early 1990’s [25] (see section 5). 

Other systems developed under DARPA’s SUR program included CMU’s Hearsay(-II) and 

BBN’s HWIM [26]. Neither Hearsay-II nor HWIM (Hear What I Mean) met the DARPA 

program’s performance goal at its conclusion in 1976. However, the approach proposed by 

Hearsay-II of using parallel asynchronous processes that simulate the component knowledge 

sources in a speech system was a pioneering concept. The Hearsay-II system extended sound 

identity analysis (to higher level hypotheses) given the detection of a certain type of (lower level) 

information or evidence, which was provided to a global “blackboard” where knowledge from 

parallel sources was integrated to produce the next level of hypothesis. BBN’s HWIM system, on 

the other hand, was known for its interesting ideas including a lexical decoding network 
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incorporating sophisticated phonological rules (aimed at phoneme recognition accuracy), its 

handling of segmentation ambiguity by a lattice of alternative hypotheses, and the concept of 

word verification at the parametric level. Another system worth noting of the time was the 

DRAGON system by Jim Baker, who moved to Massachusetts to start a company with the same 

name in the early 1980s. 

In parallel to the ARPA-initiated efforts, two broad directions in speech recognition research 

started to take shape in the 1970’s, with IBM and AT&T Bell Laboratories essentially 

representing two different schools of thought as to the applicability of automatic speech 

recognition systems for commercial applications. 

IBM’s effort, led by Fred Jelinek, was aimed at creating a “voice-activated typewriter” 

(VAT), the main function of which was to convert a spoken sentence into a sequence of letters 

and words that could be shown on a display or typed on paper [27]. The recognition system, 

called Tangora, was essentially a speaker-dependent system (i.e., the typewriter had to be trained 

by each individual user). The technical focus was on the size of the recognition vocabulary (as 

large as possible, with a primary target being one used in office correspondence), and the 

structure of the language model (the grammar), which was represented by statistical syntactical 

rules that described how likely, in a probabilistic sense, was a sequence of language symbols (e.g., 

phonemes or words) that could appear in the speech signal. This type of speech recognition task 

is generally referred to as transcription. The set of statistical grammatical or syntactical rules was 

called a language model, of which the n-gram model, which defined the probability of occurrence 

of an ordered sequence of n words, was the most frequently used variant. Although both the n-

gram language model and a traditional grammar are manifestations of the rules of the language, 

their roles were fundamentally different. The n-gram model, which characterized the word 

relationship within a span of n words, was purely a convenient and powerful statistical 

representation of a grammar. Its effectiveness in guiding a word search for speech recognition, 

however, was strongly validated by the famous word game of Claude Shannon [28] which 

involved a competition between a human and a computer. In this competition both the computer 

and the human are asked to sequentially guess the next word in an arbitrary sentence. The human 

guesses based on native experience with language; the computer uses the accumulated word 

statistics to make its best guess based on maximum probability from the estimated word 

frequencies. It was shown that once the span of the words, n, exceeded 3, the computer was very 

likely to win (make better guesses as to the next word in the sequence) over the human player. 
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Since their introduction in the 1980’s, the use of n-gram language models, and its variants, has 

become indispensable in large vocabulary speech recognition systems.  

At AT&T Bell Laboratories, the goal of the research program was to provide automated 

telecommunication services to the public, such as voice dialing, and command and control for 

routing of phone calls. These automated systems were expected to work well for a vast population 

(literally tens of millions) of talkers without the need for individual speaker training. The focus at 

Bell Laboratories was in the design of a speaker-independent system that could deal with the 

acoustic variability intrinsic in the speech signals coming from many different talkers, often with 

notably different regional accents. This led to the creation of a range of speech clustering 

algorithms for creating word and sound reference patterns (initially templates but ultimately 

statistical models) that could be used across a wide range of talkers and accents. Furthermore, 

research to understand and to control the acoustic variability of various speech representations 

across talkers led to the study of a range of spectral distance measures (e.g., the Itakura distance 

[22]) and statistical modeling techniques [30] that produced sufficiently rich representations of 

the utterances from a vast population. (As will be discussed in the next section, the technique of 

mixture density hidden Markov models [31, 32] has since become the prevalent representation of 

speech units for speaker independent continuous speech recognition.) Since applications, such as 

voice dialing and call routing, usually involved only short utterances of limited vocabulary and 

consisted of only a few words, there was an emphasis of the research at Bell Laboratories on what 

is generally called the acoustic model (the spectral representation of sounds or words) over the 

language model (the representation of the grammar or syntax of the task). Also, of great 

importance in the Bell Laboratories’ approach was the concept of keyword spotting as a primitive 

form of speech understanding [33]. The technique of keyword spotting aimed at detecting a 

keyword or a key-phrase of some particular significance that was embedded in a longer utterance 

where there was no semantic significance to the other words in the utterance. The need for such 

keyword spotting was to accommodate talkers who preferred to speak in natural sentences rather 

than using rigid command sequences when requesting services (i.e., as if they were speaking to a 

human operator). For example, a telephone caller requesting a credit card charge might speak the 

sentence “I’d like to charge it to my credit card” rather than just say “credit card”. In a limited 

domain application, the presence of the key-phrase “credit card” in an otherwise naturally spoken 

sentence was generally sufficient to indicate the caller’s intent to make a credit card call. The 

detected keyword or key-phrase would then trigger a prescribed action (or sequence of actions) as 

part of the service, in response to the talker’s spoken utterance. The technique of keyword 
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spotting required extension of the usual pattern recognition paradigm to one that supported 

hypothesis testing. 

The IBM and AT&T Bell Laboratories approaches to speech recognition both had a profound 

influence in the evolution of human-machine speech communication technology of the last two 

decades. One common theme between these efforts, despite the differences, was that 

mathematical formalism and rigor started to emerge as distinct and important aspects of speech 

recognition research. While the difference in goals led to different realizations of the technology 

in various applications, the rapid development of statistical methods in the 1980’s, most notably 

the hidden Markov model (HMM) framework [34-35], caused a certain degree of convergence in 

the system design. Today, most practical speech recognition systems are based on the statistical 

framework and results developed in the 1980’s, with significant additional improvements in the 

1990’s.  

5. Technology Directions in the 1980’s and 1990’s 

Speech recognition research in the 1980’s was characterized by a shift in methodology from 

the more intuitive template-based approach (a straightforward pattern recognition paradigm) 

towards a more rigorous statistical modeling framework. Although the basic idea of the hidden 

Markov model (HMM) was known and understood early on in a few laboratories (e.g., IBM and 

the Institute for Defense Analyses (IDA) [36]), the methodology was not complete until the mid-

1980’s and it wasn’t until after widespread publication of the theory [35-36] that the hidden 

Markov model became the preferred method for speech recognition. The popularity and use of 

the HMM as the main foundation for automatic speech recognition and understanding systems 

has remained constant over the past two decades, especially because of the steady stream of 

improvements and refinements of the technology. 

The hidden Markov model, which is a doubly stochastic process, models the intrinsic 

variability of the speech signal (and the resulting spectral features) as well as the structure of 

spoken language in an integrated and consistent statistical modeling framework [37]. As is well 

known, a realistic speech signal is inherently highly variable (due to variations in pronunciation 

and accent, as well as environmental factors such as reverberation and noise). When people speak 

the same word, the acoustic signals are not identical (in fact they may even be remarkably 

different), even though the underlying linguistic structure, in terms of the pronunciation, syntax 

and grammar, may (or may not) remain the same. The formalism of the HMM is a probability 

measure that uses a Markov chain to represent the linguistic structure and a set of probability 
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distributions to account for the variability in the acoustic realization of the sounds in the utterance. 

Given a set of known (text-labeled) utterances, representing a sufficient collection of the 

variations of the words of interest (called a training set), one can use an efficient estimation 

method, called the Baum-Welch algorithm [38], to obtain the “best” set of parameters that define 

the corresponding model or models. The estimation of the parameters that define the model is 

equivalent to training and learning. The resulting model is then used to provide an indication of 

the likelihood (probability) that an unknown utterance is indeed a realization of the word (or 

words) represented by the model. The probability measure represented by the hidden Markov 

model is an essential component of a speech recognition system that follows the statistical pattern 

recognition approach, and has its root in Bayes’ decision theory [39]. The HMM methodology 

represented a major step forward from the simple pattern recognition and acoustic-phonetic 

methods used earlier in automatic speech recognition systems. 

The idea of the hidden Markov model appears to have first come out in the late 1960’s at the 

Institute for Defense Analyses (IDA) in Princeton, N.J.  Len Baum referred to an HMM as a set 

of probabilistic functions of a Markov chain, which, by definition, involves two nested 

distributions, one pertaining to the Markov chain and the other to a set of the probability 

distributions, each associated with a state of the Markov chain, respectively [38]. The HMM 

model attempts to address the characteristics of a probabilistic sequence of observations that may 

not be a fixed function but instead changes according to a Markov chain. This doubly stochastic 

process was found to be useful in a number of applications such as stock market prediction and 

crypto-analysis of a rotary cipher, which was widely used during World War II. Baum’s modeling 

and estimation technique was first shown to work for discrete observations (i.e., ones that assume 

values from a finite set and thus are governed by discrete probability distributions) and then 

random observations that were well modeled using log-concave probability density functions. 

The technique was powerful but limited. Liporace, also of IDA, relaxed the log-concave density 

constraint to include an elliptical symmetric density constraint (thereby including a Gaussian 

density and a Cauchy density), with help from an old representation theorem by Fan [41]. Baum’s 

doubly stochastic process started to find applications in the speech area, initially in speaker 

identification systems, in the late 1970’s [40-41]. As more people attempted to use the HMM 

technique, it became clear that the constraint on the form of the density functions imposed a 

limitation on the performance of the system, particularly for speaker independent tasks where the 

speech parameter distribution was not sufficiently well modeled by a simple log-concave or an 

elliptically symmetric density function. In the early 1980’s at Bell Laboratories, the theory of 

HMM was extended to mixture densities [30-31] which have since proven vitally important in 
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ensuring satisfactory recognition accuracy, particularly for speaker independent, large vocabulary 

speech recognition tasks. 

The HMM, being a probability measure, was amenable for incorporation in a larger speech 

decoding framework which included a language model. The use of a finite-state grammar in large 

vocabulary continuous speech recognition represented a consistent extension of the Markov chain 

that the HMM utilized to account for the structure of the language, albeit at a level that accounted 

for the interaction between articulation and pronunciation. Although these structures (for various 

levels of the language constraints) were at best crude approximations to the real speech 

phenomenon, they were computationally efficient and often sufficient to yield reasonable (first-

order) performance results. The merger of the hidden Markov model (with its advantage in 

statistical consistency, particularly in handling acoustic variability) and the finite state network 

(with its search and computational efficiency, particularly in handling word sequence hypotheses) 

was an important, although not unexpected, technological development in the mid-1980’s.  

 

 

Figure 7   A composite finite-state network for the utterance “show all alerts.” 

Figure 7 shows a finite state composite model for the utterance ‘show all alerts‘, constructed 

from several context-dependent subword models that represent the corresponding phoneme-like 

speech units (including a unit for silence that can occur at the beginning and end of the sentence, 

as well as at the end of any word in the sentence, as might occur during a pause in speaking). The 

finite state graph is realized as a Markov chain for calculation of the likelihood, based on the 

observation sequence (the spectral representation over time) of an unknown utterance. Note that 

each node in the graph is associated with a probability distribution which accounts for the 

sil             sh                 ow             sil           aw                   l              sil

       ax                    l                     er                   t                     s            

Beginning state 

Final state 

“Show all alerts” modeled as phones:  �-sh-ow,     �-ax-l,     ax-l-er,     l-er-t 
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variability in realizing the corresponding phoneme-like sound. The likelihood that an utterance 

was generated by the finite state network represented by the model is computed as a sequential 

sum of local likelihoods (related to elementary units of the composite model) after a dynamic 

programming state alignment is performed to maximize the match between the labeled units and 

the corresponding portions of the speech observations (even for models of incorrect word 

sequences), respectively. At any given time, there are a number of hypothesized units and the 

determination of sound identity is based on the maximum likelihood value (or score of the match). 

The number of hypothesized units for match and that of the paths for search can be at times 

astronomical and thus may require efficient computational algorithms to solve the problem. A 

tool, called the FSM (finite-state machine) library, which embodied the finite state network 

approach in a unified transducer framework (including weighted search) was developed in the 

mid-1990s [25] and has been a major component of almost all modern speech recognition and 

understanding systems. 

Another technology that was (re)introduced in the late 1980’s was the idea of artificial neural 

networks (ANN). Neural networks were first introduced in the 1950’s, but failed to produce 

notable results initially [42]. The advent, in the 1980’s, of a parallel distributed processing (PDP) 

model, which was a dense interconnection of simple computational elements, and a 

corresponding “training” method, called error back-propagation, revived interest around the old 

idea of mimicking the human neural processing mechanism. A particular form of PDP, the multi-

layer perceptron, shown in Fig. 8, received perhaps the most intense attention then, not because of 

its analog to neural processing but due to its capability in approximating any function (of the 

input) to an arbitrary precision, provided no limitation in the complexity of the processing 

configuration was imposed. If a pattern recognizer is viewed as one that performs a function 

mapping an input pattern to its class identity, the multi-layer perceptron was then a readily 

available candidate for this purpose. Early attempts at using neural networks for speech 

recognition centered on simple tasks like recognizing a few phonemes or a few words (e.g., 

isolated digits), with good success [43]. However, as the problem of speech recognition inevitably 

requires handling of temporal variation, neural networks in their original form have not proven to 

be extensible to this task. On-going research focuses on integrating neural networks with the 

essential structure of a hidden Markov model to take advantage of the temporal handling 

capability of the HMM.  

In the 1990’s, a number of innovations took place in the field of pattern recognition. The 

problem of pattern recognition, which traditionally followed the framework of Bayes and 
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required estimation of distributions for the data, was transformed into an optimization problem 

involving minimization of the empirical recognition error [44]. This fundamental change of 

paradigm was caused by the recognition of the fact that the distribution functions for the speech 

signal could not be accurately chosen or defined, and that Bayes’ decision theory would become 

inapplicable under these circumstances. After all, the objective of a recognizer design should be 

to achieve the least recognition error rather than the best fitting of a distribution function to the 

given (known) data set as advocated by the Bayes criterion. The concept of minimum 

classification or empirical error subsequently spawned a number of techniques, among which 

discriminative training and kernel-based methods such as the support vector machines (SVM) 

have become popular subjects of study [44-46]. 

 

Figure 8     Multi-layer Perceptron 

The success of statistical methods revived the interest from DARPA at the juncture of the 

1980’s and the 1990’s, leading to several new speech recognition systems including the Sphinx 

system from CMU [47], the BYBLOS system from BBN [48] and the DECIPHER system from 

SRI [49]. CMU’s Sphinx system successfully integrated the statistical method of hidden Markov 

models with the network search strength of the earlier Harpy system.  Hence, it was able to train 

and embed context-dependent phone models in a sophisticated lexical decoding network, 

achieving remarkable results for large-vocabulary continuous speech recognition.  

With the support of DARPA, evaluation of speech recognition technology for a wide range of 

tasks and task vocabularies was diligently pursued throughout the 1990’s and into the twenty-first 

century. Such evaluations were mostly based on the measurement of word (and sentence) error 

rate as the performance figure of merit of the recognition system. Furthermore, these evaluations 
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were conducted systematically over carefully designed tasks with progressive degrees of 

difficulty, ranging from the recognition of continuous speech spoken with stylized grammatical 

structure (as used routinely in military tasks, e.g., the Naval Resource Management task) to 

transcriptions of live (off-the-air) news broadcast (e.g., NAB that involves a fairly large 

vocabulary over 20K words) and conversational speech. Figure 9 shows a chart that summarizes 

the benchmark performance of various large vocabulary continuous speech recognition tasks, as 

measured in formal DARPA and NIST evaluations [50]. In the chart, the task of “Resource 

Management” involves a rigidly stylized military expression with a vocabulary of nearly 1000 

words. ATIS is a task that involves simple spontaneous speech conversation with an automated 

air travel information retrieval system; although the speech is spontaneous, its linguistic structure 

is rather limited in scope. WSJ refers to transcription of a set of spoken (read) paragraphs from 

the Wall Street Journal; the vocabulary size could be as large as 60K words. The Switchboard 

task is one of the most challenging ones proposed by DARPA. The speech is conversational and 

spontaneous, with many instances of the so-called disfluencies such as partial words, hesitation 

and repairs, etc. The general conclusion that can be drawn from these results is that 

conversational speech, which does not strictly adhere to linguistic constraints, is significantly 

more difficult to recognize than task-oriented speech that follows strict syntactic and semantic 

production rules. Also, the evaluation program showed that increasing the amount of speech data 

used for estimating the recognizer parameters (i.e., the size of the training set) always led to 

reductions of word error rate.  (It is a well accepted target that in order for virtually any large 

vocabulary speech recognition task to become viable, the word error rate must fall below a 10% 

level).  

In the 1990’s great progress was made in the development of software tools that enabled 

many individual research programs all over the world. As systems became more sophisticated 

(many large vocabulary systems now involve tens of thousands of phone unit models and millions 

of parameters), a well-structured baseline software system was indispensable for further research 

and development to incorporate new concepts and algorithms. The system that was made 

available by the Cambridge University team (led by Steve Young), called the Hidden Markov 

Model Tool Kit (HTK) [51], was (and remains today as) one of the most widely adopted software 

tools for automatic speech recognition research. 
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Figure 9 DARPA benchmark evaluation of speech recognition for a number of tasks. 

6. Towards a Machine That Communicates 

Most speech recognition research, up to the 1980’s, considered the major research problem to 

be one of converting a speech waveform (as an acoustic realization of a linguistic event) into 

words (as a best-decoded sequence of linguistic units). Many researchers also believed that the 

speech-to-text process was the necessary first step in the process that enabled a machine to be 

able to understand and properly respond to human speech. In field evaluations of speech 

recognition and understanding technology for a range of tasks, two important things were learned 

about the speech communication process between humans and machines. First, potential users of 

a speech recognition system tended to speak natural sentences that often did not fully satisfy the 

grammatical constraints of the recognizer (e.g., by including out-of-vocabulary (OOV) words, 

non-grammatical constructs, ill-formed sentences, etc.), and the spoken utterances were also often 

corrupted by linguistically irrelevant “noise” components such as ambient noise, extraneous 

acoustic sounds, interfering speech, etc. Second, as in human-to-human speech communications, 

speech applications often required a dialog between the user and the machine to reach some 

desired state of understanding. Such a dialog often required such operations as query and 

confirmation, thus providing some allowance for speech recognition and understanding errors. 

The keyword spotting method (and its application in AT&T’s Voice Recognition Call Processing 

(VRCP) System, as mentioned earlier), was introduced in response to the first factor while the 
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second factor focused the attention of the research community on the area of dialog management. 

Many applications and system demonstrations that recognized the importance of dialog 

management over a system’s raw word recognition accuracy were introduced in the early 1990’s 

with the goal of eventually creating a machine that really mimicked the communicating 

capabilities of a human. Among these systems, Pegasus and Jupiter developed at the 

Massachusetts Institute of Technology under Victor Zue were particularly noteworthy demos 

[52,53], and the How May I Help You (HMIHY) system at AT&T developed by Al Gorin was an 

equally noteworthy service that was introduced as part of AT&T Customer Care for their 

Consumer Communications Services in 2000 [54]. 

Pegasus is a speech conversational system that provides information about the status of 

airline flights over an ordinary telephone line. Jupiter is a similar system with a focus on weather 

information access, both local and national. These systems epitomized the effectiveness of dialog 

management. With properly designed dialog management, these systems could guide the user to 

provide the required information to process a request, among a small and implicit set of menu 

choices, without explicitly requesting details of the query, e.g., such as by using the dialog 

management phrase “please say morning, afternoon, or evening” when time frame of the flight 

was solicited. Dialog management also often incorporated imbedded confirmation of recognized 

phrases and soft error handling so as to make the user react as if there was a real human agent 

rather than a machine on the other end of the telephone line. The goal was to design a machine 

that communicated rather than merely recognized the words in a spoken utterance. 

The late 1990’s was marked by the deployment of real speech-enabled applications, ranging 

from AT&T’s VRCP (automated handling of operator-assisted calls) and Universal Card Service 

(customer service line) that were used daily (often by millions of people) in lieu of a conventional 

voice response system with touch-tone input, to United Airlines’ automatic flight information 

system and AT&T’s “How May I Help You? (HMIHY)” system for call routing of consumer 

help line calls. Although automatic speech recognition and speech understanding systems are far 

from perfect in terms of the word or task accuracy, properly developed applications can still make 

good use of the existing technology to deliver real value to the customer, as evidenced by the 

number and extent of such systems that are used on a daily basis by millions of users. 

7. Summary & Outlook 

Figure 10 shows a timeline of progress in speech recognition and understanding technology 

over the past several decades. We see that in the 1960’s we were able to recognize small 
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vocabularies (order of 10-100 words) of isolated words, based on simple acoustic-phonetic 

properties of speech sounds. The key technologies that were developed during this time frame 

were filter-bank analyses, simple time normalization methods, and the beginnings of 

sophisticated dynamic programming methodologies. In the 1970’s we were able to recognize 

medium vocabularies (order of 100-1000 words) using simple template-based, pattern recognition 

methods. The key technologies that were developed during this period were the pattern 

recognition models, the introduction of LPC methods for spectral representation, the pattern 

clustering methods for speaker-independent recognizers, and the introduction of dynamic 

programming methods for solving connected word recognition problems. In the 1980’s we started 

to tackle large vocabulary (1000-unlimited number of words) speech recognition problems based 

on statistical methods, with a wide range of networks for handling language structures. The key 

technologies introduced during this period were the hidden Markov model (HMM) and the 

stochastic language model, which together enabled powerful new methods for handling virtually 

any continuous speech recognition problem efficiently and with high performance. In the 1990’s 

we were able to build large vocabulary systems with unconstrained language models, and 

constrained task syntax models for continuous speech recognition and understanding. The key 

technologies developed during this period were the methods for stochastic language 

understanding, statistical learning of acoustic and language models, and the introduction of finite 

state transducer framework (and the FSM Library) and the methods for their determination and 

minimization for efficient implementation of large vocabulary speech understanding systems. 

Finally, in the last few years, we have seen the introduction of very large vocabulary systems with 

full semantic models, integrated with text-to-speech (TTS) synthesis systems, and multi-modal 

inputs (pointing, keyboards, mice, etc.). These systems enable spoken dialog systems with a range 

of input and output modalities for ease-of-use and flexibility in handling adverse environments 

where speech might not be as suitable as other input-output modalities. During this period we 

have seen the emergence of highly natural concatenative speech synthesis systems, the use of 

machine learning to improve both speech understanding and speech dialogs, and the introduction 

of mixed-initiative dialog systems to enable user control when necessary.  

After nearly five decades of research, speech recognition technologies have finally entered 

the marketplace, benefiting the users in a variety of ways. Throughout the course of development 

of such systems, knowledge of speech production and perception was used in establishing the 

technological foundation for the resulting speech recognizers. Major advances, however, were 

brought about in the 1960’s and 1970’s via the introduction of advanced speech representations 

based on LPC analysis and cepstral analysis methods, and in the 1980’s through the introduction 
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of rigorous statistical methods based on hidden Markov models. All of this came about because of 

significant research contributions from academia, private industry and the government. As the 

technology continues to mature, it is clear that many new applications will emerge and become 

part of our way of life – thereby taking full advantage of machines that are partially able to mimic 

human speech capabilities.  

The challenge of designing a machine that truly functions like an intelligent human is still a 

major one going forward. Our accomplishments, to date, are only the beginning and it will take 

many years before a machine can pass the Turing test, namely achieving performance that rivals 

that of a human. 

 

Figure 10    Milestones in Speech Recognition and Understanding Technology over the Past   

40 Years. 
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