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INTRODUCTION
FUNDAMENTAL CHALLENGE

DID YOU GET MUCH BACK • “Did you get” is reduced such
that the resulting word is
pronounced “jyuge.”

• Phoneme deletion rate: ~12%
Syllable deletion rate: ~1%

• Predicting pronunciations of
words is crucial!

• Conversational speech defies
conventional grammatical
structure.

• Constrained interfaces have
failed!

“have sort of like a a a manpower”



INTRODUCTION
NOISY COMMUNICATION CHANNEL MODEL

Message
Source

Linguistic
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Acoustic
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Message Words Phones Features

Bayesian formulation for speech recognition:

Objective: minimize the word error rate by maximizing

Approach: maximize  (training)

• : acoustic model (hidden Markov models, Gaussians)

• : language model (finite state machines, N-grams)

• : acoustics (ignore during maximization)

P W A( ) P A W( )P W( ) P A( )⁄=
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INTRODUCTION
SYSTEM COMPONENTS

• The signal is converted to
a sequence of feature
vectors using spectral and
temporal measurements.

• Acoustic models
represent the sub-word
units, such as phonemes,
as a finite-state machine.

• The language model
predicts the next set of
possible words.

• Search is perhaps the
most crucial component
in the system.



FEATURE EXTRACTION
A FAMILY OF FRONT ENDS

Traditional Feature Extraction (1970’s)

Digital Filter

Bank
Power Estimation

Fourier

Transform

Perceptual

Linear Prediction

Linear Prediction

Filter Bank

Cepstrum

Filter Bank

Filter Bank

Cepstrum

Cepstrum

Speech

• Exotic spectral estimation techniques did not survive.

• Homomorphic processing (cepstrum) was shown to be an
acceptable compromise between performance and complexity.

• The Fourier Transform
is robust to noise.

• Use absolute measures
of the spectrum such as
filterbank energies.

• Add normalized
temporal energy.



FEATURE EXTRACTION
MEL FREQUENCY CEPSTRUM COEFFS.

• Incorporate knowledge of the
nature of speech sounds in
measurement of the features.

• Utilize rudimentary models of
human perception.

• Measure features 100
times per second.

• Use a 25 msec window
for frequency domain
analysis (40 Hz res.).

• Include absolute energy
and 12 spectral
measurements.

• Time derivatives model
spectral change. Energy

+
Mel Cepstrum

∆ Energy
+

∆ Cepstrum

∆ ∆ Energy
+

∆ ∆ Cepstrum



FEATURE EXTRACTION
PERCEPTUAL LINEAR PREDICTION

Critical Band
Analysis

Autocorrelation
LP Conversion

Intensity-Loudness
Conversion

Inverse
Fourier Transform

s n( ) Equal Loudness
Preemphasis

Cepstral
Conversion

PLP-Derived
Cepstrum

• Incorporate more knowledge about the physics of speech:

• Processing steps are similar to conventional analysis:

• Word error rate (WER) reduction is very small.



FEATURE EXTRACTION
NOISE COMPENSATION

• Most commercial front ends use adaptive noise compensation:

and use long-term spectral structure of speech to remove noise:

Fast
Fourier

Transform

TRAPS

speech
Weiner
Filter
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NormalizationLDA

VAD

∆
∆∆

Mel
Transf.

Channel

• Note that we haven’t discussed normalization techniques such as
Vocal Tract Length Normalization (VTLN) and adaptation tech-
niques such as maximum likelihood linear regression (MLLR).

Fast
Fourier

Transform

Noise
Masking

speech
Noise

Estimation
Filterbank
Analysis

Spectral
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Log
Spectrum

Discrete
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Transform
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• Acoustic models encode the
temporal evolution of the
spectrum using a finite state
machine consisting of
statistical models and
transition probabilities.

• We will examine some
common acoustic modeling
techniques for large
vocabulary speech
recognition systems.

AOUSTIC MODELING
HIDDEN MARKOV MODELS



ACOUSTIC MODELING
HIDDEN MARKOV MODELS

• Gaussian mixture
distributions are used to
account for variations in
speaker, pronunciation, etc.

• Phonetic model topologies
are simple three-state left-to-
right structures.

• Model topologies can
include skip states and
multiple paths.

• Sharing model parameters
is a common strategy to
reduce complexity.



ACOUSTIC MODELING
CONTEXT-DEPENDENT UNITS

• Phonetic units
are preferred.

• Training does
not require
phonetic tran-
scriptions.

• Many types of
phonetic units.

• Cross-word
units add
complexity.



ACOUSTIC MODELING
PARAMETER TYING

• Decision trees are used to determine how to share parameters
(e.g., states) between models (reduce complexity) based on
linguistic considerations:



•Data-driven modeling supervised
only from a word-level
transcription.

•The EM algorithm is used to
improve our estimates:

using an MLE approach.

•Computationally efficient training
algorithms have been crucial.

•Training is an iterative process.

•Batch mode parameter updates
are typically preferred.

P Data λ( )log P Data λ( )log≥

ACOUSTIC MODELING
PARAMETER ESTIMATION



LANGUAGE MODELING
NOISY COMMUNICATION CHANNEL MODEL

Message
Source
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Message Words Phones Features

Bayesian formulation for speech recognition:

Objective: minimize the word error rate by maximizing

• A language model typically predicts a small set of next words
based on knowledge of a finite number of previous words
(N-grams) — leads to search space reduction.

• There are many ways to estimate or approximate ;
smoothing of these estimates is also important.

P W A( ) P A W( )P W( ) P A( )⁄=

P W A( )

P W( )



LANGUAGE MODELING
WORD PREDICTION — HUMANS DO IT!



LANGUAGE MODELING
FINITE STATE AUTOMATA

• The search space for large vocabularies is unmanageable if we
allow any word to follow any other word (e.g., loop grammar).

• Only a small subset of the vocabulary can follow a given word
hypothesis, but this subset is “context-sensitive”.

• In real applications, a user-interface design results in a
specification of a language or collection of sentence patterns that
are permissible.

• A simple way to express and manipulate this information in a
dynamic programming
framework is a via a state
machine, shown to the right.

• Such networks are often called
finite state grammars (FSG),
automata (FSA), or
transducers (FST).
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Finite state machines are one of many types of grammar formalisms
that can be used to process language. We categorize these
formalisms by their generative capacity (the Chomsky hierarchy):

Type of Grammar Constraints Automata

Phrase Structure A -> B Turing Machine
(Unrestricted)

Context Sensitive aAB -> aBb Linear Bounded Automata
(N-grams, Unification)

Context Free A -> w
A -> BC

Push down automata
(CFG, BNF, JSGF, RTN)

Regular A -> w
A -> wB

Finite state automata
(Network Decoding)

LANGUAGE MODELING
FORMAL LANGUAGES

• CFGs offer a good compromise between parsing efficiency and
representational power, and provide a natural bridge between
speech recognition and natural language processing.



LANGUAGE MODELING
N-GRAM LANGUAGE MODELS

Three important simplifications:

• Unigram:

• Bigram:

• Trigram:

P W( ) P w1w2w3…wn( )=

P wi w1 w2, …, wi 1–,( )
i 1=

n

∏=

P wi Φ w1 w2, …, wi 1–,( )( )
i 1=

n

∏=

Φ w1 w2, …, wi 1–,( ) φ=

Φ w1 w2, …, wi 1–,( ) wi 1–=

Φ w1 w2, …, wi 1–,( ) wi 1– wi 2–,=

• Histories can be merged;
negligible loss in performance
(equivalence classes).

• Many real-time systems use
bigrams for computational
efficiency reasons.

• Trigram models require
statistical smoothing
techniques for reliable
estimation of probabilities.

• Performance improvements
for trigrams are modest (less
than 10% relative).

N-grams: approx.  as a
product of conditional probabilities,
referred to as histories.

P W( )



•N-gram models are a popular alternative because they can be
implemented efficiently and provide a CSG capability:

LANGUAGE MODELING
ESTIMATING N-GRAM LANGUAGE MODELS



• Search algorithms are based on
principles of dynamic
programming (Viterbi decoding)

• Finding globally optimal solutions
can be very expensive

• Suboptimal solutions work well in
practice

• Search complexity must be linear
w.r.t. the length of the utterance to
be practical

• Most research systems use
multiple passes and invoke
several search algorithms

• Lookahead and pruning are
essential parts of search

SEARCH TECHNIQUES
PRINCIPLES OF SEARCH



SEARCH TECHNIQUES
DYNAMIC PROGRAMMING

• Dynamic programming is used to find
the most probably path through the
network.

• Beam Search: paths with low
probabilities are discarded early in the
search process.

• Search is time synchronous and
left-to-right.

• Arbitrary amounts of silence must
be permitted between each word.

• Words are hypothesized many
times with different start/stop
times, which significantly increases
search complexity.



SEARCH TECHNIQUES
HIERARCHICAL SEARCH

• In practice, a system might utilize many knowledge sources (e.g., part of speech, word,
phone, and acoustic model.

• Breadth-first time-synchronous hierarchical search is very convenient for integrating
linguistic constraints.

• Efficient Viterbi search of a
hierarchical network is a much
more complicated problem
because of ambiguity in the
network (e.g., the same word
sequence can appear multiple
places in the network.

• Special care must be taken to
synchronize all hypotheses so
each acoustic model is
evaluated as few times as
possible.

• Since many hypothesis might need the same phone at the same time, coordinating this
search becomes a nontrivial problem.



SEARCH TECHNIQUES
CROSS-WORD DECODING

• Cross-word decoding: since word boundaries don’t occur in spontaneous speech, we
must allow for sequences of sounds that span word boundaries.

• Cross-word decoding significantly increases memory requirements.

• The lexicon can be converted to a tree structure (lexical trees) to improve efficiency.
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• Time-synchronous Viterbi search is one
of many types of search algorithms.

• It belongs to a class of search algorithms
known as breadth-first.

• Beam search (suboptimal search) is
typically easier to implement for breadth-
first search algorithms.

SEARCH TECHNIQUES
FAMILY OF SEARCH ALGORITHMS

• Other popular search algorithms are
based on depth-first search.

• Stack decoding (IBM) and N-best list
generation are two examples of this
search approach.

• Stack decoding can be very fast, and
use minimal resources, if accurate
heuristics are available.



SEARCH TECHNIQUES
WORD GRAPH GENERATION

• Direct searching of trigram language
models is very expensive.

• Application of higher order language
models (quadgrams) and acoustic
models (pentaphones) is difficult in a
single-pass search.

• Rescoring of word graphs is a practical
alternative.

• Word graph generation is expensive, and
performed using an expanded Viterbi-
style search.

• An important figure of merit is the word
graph error rate.

• Word graph compaction and
postprocessing is a popular area of
research (e.g., sausages).

100 200 300 400 500 600 700 8000

time (ms)

SIL

HARD

HEART

CARD

WRONG

RAW

ROCK

CARD

SIL

SILHEART

SIL HARD SIL

1kHz

2kHz

3kHz

0kHz

HARD ROCK

hh aa r d r k aosilsil sil



SEARCH TECHNIQUES
N-BEST LISTS

• N-best lists are a popular
alternative to word graphs
(smaller, faster).

• Useful as input to natural
language postprocessors

• Word error rate
asymptotically approaches
zero as N increases.

• The top N hypotheses can
be rescored using more
complex acoustic models,
language models, and
linguistic constraints.

• A more compact format than
word graphs.



• Software might be a
commodity, but the
experience required to
build a complex system is
great.

• Speech recognition
systems are far too
complex for the
performance they deliver.

• We will examine some
common characteristics
of state of the art
systems.

STATE OF THE ART
COMMODITY TECHNOLOGY?



• State of the art systems use several million free variables.

• Training requires almost 40 passes over the data, and several
hundred hours of data to achieve high performance.

• Models are often “bootstrapped” from a previous stage of training,
or even a previous application development.

STATE OF THE ART
TYPICAL TRAINING RECIPES



Decoding typically
involves two steps:

(1) generation of a
word graph using a
bigram language
model;

(2) recognition
using cross-word
triphones and a
trigram LM.

STATE OF THE ART
TYPICAL MULTIPASS DECODING



Nuance v8.0 Features:

• Based on SRI’s DECIPHER system

• 27-dimensional mel-frequency
cepstral coefficients

• 3-state triphone hidden Markov
models (with mixture-tying)

• N-gram and network language models

• Barge-in (echo cancellation); voice
activity detection

• Dynamic language detection

• MLLR and MAP adaptation

• Noise robustness (acoustic models for
land lines, cellular, and automotive)

Strengths:

• Resource efficiency

• Multilingual support

• Robustness/Adaptation

STATE OF THE ART
ENTERPRISE SOLUTIONS



SpeechWorks (OpenSpeech):

• Originally based on MIT’s
segment-based recognizer.

• Transitioned to AT&T’s finite
State Transducer technology.

• Segmental statistical models
used for phone classification.

• Unsupervised, automatic
adaptation.

• Parallel grammars; dynamic
grammar compilation;
grammar caching; grammar
and lexicon updates.

Strengths:

• Flexible configuration and run-
time efficiency through finite
state transducer technology

• Early adopter of VoiceXML and
open architectures

STATE OF THE ART
RAPID APPLICATION DEVELOPMENT



Strengths:

• Core search engine

• Support dictation, telephony,
and mobile computing
applications

• Multilingual support

• Natural language support

Philips SpeechPearl:

• Leverages years of internal
speech recognition research

• Open and closed grammars

• Natural language interpretation

• Mixed acoustic models (whole
word and triphone models)

• Confidence measures and out-
of-vocabulary rejection

• Dynamic grammar and lexicon
switching

• Optimization for tonal languages

STATE OF THE ART
DIVERSE APPLICATION SUPPORT



• Hidden Markov Model Toolkit (HTK)

• Research-only license

• Known for high performance research
systems and solid engineering

• Released software lags published
research results

• Sphinx / Hephaestus

• Research-only license

• Known for impressive demonstrations of
integrated technology (e.g., speech to
speech translation)

• Developing Sphinx 4 in Java

• CU Communicator

• Research-only license; consortium fee

• Known for dialog systems and
application development

• Released a DARPA Communicator
application for travel

• First and only state of the art public
domain speech recognition system

• Designed to accelerate progress in
research and to increase participation

• Known for software engineering, ease
of use, and comprehensive toolkits

STATE OF THE ART
OPEN SOURCE TECHNOLOGY



STATE OF THE ART
COMMON EVALUATIONS



• Erro s on research systems have drop  in 7 years:

• The rmance of real-time (xRT) system ut 50% higher.

• The rmance of 10xRT systems is abo higher.
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STATE OF THE ART
ARE RESEARCH SYTEMS PRACTICAL?

• The 2001 Hub 5E AT&T system is shown above.

• A real-time version of the same system, developed for the “How
may I help you” application, is shown to the right.

• Moral: Research results don’t often translate to real systems.



Performance as a function of task:

• WER is proportional to perplexity:

• Acoustic confusability of highly probable and interchangeable
words most often dominates performance.

Corpus
Vocabulary

Size Perplexity WER

TI Digits (TIDigits) 11 11 ~0%

OGI Alphadigits (AD) 36 36 8%

Resource Management (RM) 1,000 60 4%

Air Travel Information Service (ATIS) 1,800 12 4%

Wall Street Journal (WSJ) 20,000 200 - 250 15%

Broadcast News (BN, Hub 4) > 80,000 200 - 250 18%

Conversational Speech (SWB, Hub 5) > 50,000 100 - 150 20%

WER 12.37– 6.48 Perplexity( )2log•+≈

STATE OF THE ART
PERFORMANCE VS. TASK
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