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@ INTRODUCTION
T
ABSTRACT

Language is a uniguely human tool by which people exchange
iIdeas. Automatic speech recognition (ASR) is the conversion of a
sound pressure wave representing these ideas to text. This signal is
at best a noisy representation. Accurate conversion of this signal
requires building machines that approach human intelligence.
Modern ASR systems rely heavily on statistical methods and
powerful computers to achieve this goal. In this talk, we will review
the dominant approaches for achieving high performance speech
recognition. On limited tasks, machines are approaching human
performance. However, to provide flexible and Intuitive voice
Interfaces, we must develop a more fundamental computational
paradigm for representing language.

About the speaker:

Joseph Picone is currently a Professor and Hearin Eminent Scholar in the Department of
Electrical and Computer Engineering at Mississippi State University, where he also directs
the Institute for Signal and Information Processing.



INTRODUCTION

w FUNDAMENTAL CHALLENGE

‘ DID YOU GET‘ ‘ MUCH ‘ BACK ‘ i “Did yOU get" iS reduced SUCh
T Bl that the resulting word is
pronounced “jyuge.”

e Phoneme deletion rate: ~12%
Syllable deletion rate: ~1%

 Predicting pronunciations of
words iIs crucial!

» Conversational speech defies
conventional grammatical
structure.

e Constrained interfaces have
falled!




w INTRODUCTION
NOISY COMMUNICATION CHANNEL MODEL

Message Linguistic Articulatory Acoustic
Source Channel Channel Channel

Message Words Phones Features

Bayesian formulation for speech recognition:
P(W| A = P(A|W)P(W)/P(A)
Objective: minimize the word error rate by maximizing P(\W/| A)
Approach: maximize P(A| W) (training)
* P( Al W): acoustic model (hidden Markov models, Gaussians)

« P(W): language model (finite state machines, N-grams)

* P(A): acoustics (ignore during maximization)
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e The signal is converted to
a sequence of feature
vectors using spectral and
temporal measurements.

» Acoustic models
represent the sub-word
units, such as phonemes,
as a finite-state machine.

 The language model
predicts the next set of
possible words.

e Search is perhaps the
most crucial component
In the system.



FEATURE EXTRACTION

e
@ A FAMILY OF FRONT ENDS

Traditional Feature Extraction (1970’s)

— e The Fourier Transform
— Dighal Filter Power Estimation I : .
Bank IS robust to noise.

Speech 1 m o
Transform |
— Filter Bank I I .
| Linear Prediction \ fllterbank energles
‘ — Cepstrum I
L p tual Filter Bank I * Add nOI‘mahzed
erceptua
Linear Prediction [:WI temporal energy.

 Exotic spectral estimation technigues did not survive.

Filter Bank I
e Use absolute measures
Copstum ] of the spectrum such as

« Homomorphic processing (cepstrum) was shown to be an
acceptable compromise between performance and complexity.



FEATURE EXTRACTION

@ MEL FREQUENCY CEPSTRUM COEFFS.
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Input Speech

.

Fo
Tra
 Incorporate knowledge of the

urier

nsform
nature of speech sounds in
measurement of the features.

Cepstral N _
Analysis « Utilize rudimentary models of
human perception.
-
Perceptual Time Time
Weighting Derivative Denvative

Energy A Energy A A Energy
+ + +

Measure features 100
times per second.

Use a 25 msec window
for frequency domain
analysis (40 Hz res.).

Include absolute energy
and 12 spectral
measurements.

Time derivatives model
spectral change.

Mel Cepstrum A Cepstrum A A Cepstrum



FEATURE EXTRACTION

e~
w PERCEPTUAL LINEAR PREDICTION

 Incorporate more knowledge about the physics of speech:

i I:}'

speech Powrer Specinam Exzpert Knowledge PLP WModel

e Processing steps are similar to conventional analysis:

Critical Band > Equal Loudness Intensity-Loudness [
: - Inverse
PLP-Derived Cepstral Autocorrelation :
Cepstrum LP Conversion Fourier Transform /g s

« Word error rate (WER) reduction is very small.




FEATURE EXTRACTION

@ NOISE COMPENSATION

 Most commercial front ends use adaptive noise compensation:

speech Fast .
Fouri Noise Spectral Filterbank Noise i
o imati ' Analysis Masking
Transform Estimation Subtraction y

Discrete
features Cosine
Transform

Log

- -

Spectrum

and use long-term spectral structure of speech to remove noise:

Speech Fast :
Fouri Weiner Mean/Variance
ourier Filter LDA X ana
Transform ormalization
AV/A\D)

* Note that we haven’t discussed normalization technigues such as
Vocal Tract Length Normalization (VTLN) and adaptation tech-
nigues such as maximum likelinood linear regression (MLLR).



AOUSTIC MODELING
HIDDEN MARKOV MODELS

/ Input
Speech Q

Acoustic
Front-end

» Acoustic models encode the
temporal evolution of the
spectrum using a finite state
machine consisting of
statistical models and
transition probabillities.

* We will examine some
common acoustic modeling
techniques for large
vocabulary speech
recognition systems.

Language Model
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ACOUSTIC MODELING

@ HIDDEN MARKOV MODELS

THREE TWO FIVE EIGHT

e Gaussian mixture
distributions are used to
account for variations in
speaker, pronunciation, etc.

* Phonetic model topologies
are simple three-state left-to-
right structures.

* Model topologies can
Include skip states and
multiple paths.

e Sharing model parameters
IS a common strategy to
reduce complexity.




ACOUSTIC MODELING
CONTEXT-DEPENDENT UNITS

Orthographic: The  doctor examined  the patient’s knees.

R g ST T L S

Phonetic: dhexd A kt er] gz 3 ml nddhexpHelsh I nts n i 2

Phonetic units
are preferred.

5 kHz _

. . || |- T ..'.l.
° Tralnlng does 4 kHz :1% I'dl--.“', it :#
Nnot require 1 kHz L / : IR g

2 kHz

phonetic tran-
scriptions.

| kHz

{1 kHz

 Many types of
phonetic units.

Time {s208)

 Cross-word

units adc.l [silence]] BEAT | IT] [silence]
complexity.
G
Monophone Modeling sil b 1y t ih t sil

Word internal triphone modeling sil] btiy  b-iy+t  iy-t | th+t  ih-t ]sil

Crossword triphone modeling sil | sil-b+iy b-iy+t iy-t+ih | t-ih+t 1h-t+sil | sil



w ACOUSTIC MODELING
PARAMETER TYING

* Decision trees are used to determine how to share parameters

(e.qg., states) between models (reduce complexity) based on
linguistic considerations:

hird States

Lw-zh+er
L=z h+ a3
uw=zh+aa
ah-zh+aa

o=zh+Ber ove=zh+ih
o=z + a3

aa-zh+an aa-zh+ax
itFzh+ao eh-zh+ax
ibrzh+w ih-zh+ih



ACOUSTIC MODELING

@ PARAMETER ESTIMATION

eData-driven modeling supervised
only from a word-level
transcription.

*The EM algorithm is used to
Improve our estimates:

logP(Data/A) = logP(Data|A)
using an MLE approach.

«Computationally efficient training
algorithms have been crucial.

*Training IS an iterative process.

eBatch mode parameter updates
are typically preferred.

« |nitialization

« Single
Gaussian
Estimation

« 2-Way Split

« Mixture

Distribution
Reestimation

« 4-\Way Split

+ Reestimation

Intervoice
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@ LANGUAGE MODELING
e~
NOISY COMMUNICATION CHANNEL MODEL

Message Linguistic Articulatory Acoustic
Source Channel Channel Channel

Message Words Phones Features

Bayesian formulation for speech recognition:
P(W[A = P(A|W)P(W)/P(A)
Objective: minimize the word error rate by maximizing P(\W/| A)
« A language model typically predicts a small set of next words

based on knowledge of a finite number of previous words
(N-grams) — leads to search space reduction.

« There are many ways to estimate or approximate P(W);
smoothing of these estimates is also important.



LANGUAGE MODELING
WORD PREDICTION — HUMANS DO IT!
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LANGUAGE MODELING

e
@ FINITE STATE AUTOMATA

 The search space for large vocabularies is unmanageable if we
allow any word to follow any other word (e.g., loop grammar).

* Only a small subset of the vocabulary can follow a given word
hypothesis, but this subset is “context-sensitive”.

* In real applications, a user-interface design results in a
specification of a language or collection of sentence patterns that
are permissible.

* A simple way to express and manipulate this information in a
dynamic programming
framework Is a via a state
machine, shown to the right.

-

SILENCE HARD \

AR

» Such networks are often called | gue72~ Zl{‘?:/‘,
g ST

finite state grammars (FSG), : ' AT
I I g ( ) ST_ENCE CARD
automata (FSA), or «.‘

tranSdUCGrS (FST) . k SILENCE ~ARE PART /




@ LANGUAGE MODELING

FORMAL LANGUAGES

Type of Grammar

Constraints

Automata

Phrase Structure A->B Turing Machine
(Unrestricted)
Context Sensitive aAB -> aBb | Linear Bounded Automata
(N-grams, Unification)
Context Free A->w Push down automata
A ->BC (CFG, BNF, JSGF, RTN)
Regular A->w Finite state automata
A ->wB (Network Decoding)

« CFGs offer a good compromise between parsing efficiency and
representational power, and provide a natural bridge between

speech recognition and natural language processing.

Intervoice

Finite state machines are one of many types of grammar formalisms
that can be used to process language. We categorize these
formalisms by their generative capacity (the Chomsky hierarchy):




S

P(W) =

— |—| P(WI‘Wl,WZ ..... WI _1)

P(wywows... W)

n

N-grams: approx. P(W) as a
product of conditional probabilities,
referred to as histories.

LANGUAGE MODELING
N-GRAM LANGUAGE MODELS

Intervoice

 Histories can be merged,
negligible loss in performance
(equivalence classes).

 Many real-time systems use
bigrams for computational
efficiency reasons.

e Trigram models require
statistical smoothing
technigues for reliable
estimation of probabillities.

* Performance improvements
for trigrams are modest (less
than 10% relative).



@ LANGUAGE MODELING
e~
ESTIMATING N-GRAM LANGUAGE MODELS intervoice

*N-gram models are a popular alternative because they can be
Implemented efficiently and provide a CSG capability:

Unigrams (SWB): R

0.75
+ Most Common: |, and, the , you, a 0.50
+ Rank-100: she, an, going 0.25
« Least Common: Abraham, Alastair, Acura 0.00

2 20 200 2K 20K
Bigrams (SWB):

(T 1.00

+ Most Common: “you know”, “yeah SI7,
“1S um-hum”, “I think” i
» Rank-100: “do it”, “that we”, “don’t think” e
. Least Common: “raw fish", “moisture content,  *%
“Reagan Bush” 00020 200 2x 20K 200K

Trigrams (SWB):

+ Most Common: “I1S um-hum 517, "a lot of”,
“I don’t know”

+ Rank-100: “it was a", “you know that”

« Least Common: “you have parents”,
“you seen Brooklyn” 000550 500 5Kk 50K 500K

1.00
0.75

0.50
0.25




SEARCH TECHNIQUES
PRINCIPLES OF SEARCH
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Search algorithms are based on
principles of dynamic
programming (Viterbi decoding)

Finding globally optimal solutions
can be very expensive

Suboptimal solutions work well in
practice

Search complexity must be linear
w.r.t. the length of the utterance to
be practical

Most research systems use
multiple passes and invoke
several search algorithms

Lookahead and pruning are
essential parts of search



SEARCH TECHNIQUES

@ DYNAMIC PROGRAMMING

* Dynamic programming is used to find
the most probably path through the
network.

 Beam Search: paths with low
probabilities are discarded early in the
search process.

F/r.' T : : . \‘n . .
: e e woox | « Search is time synchronous and
P i ~HEART, .'/; ; left-to-right.
e N\ | |
% S -Q% * Arbitrary amounts of silence must
o, aro 40“ b e be permitted between each word.
- g
: \ {  SILENCE cm: * Words are hypothesized many
N e g times with different start/stop
| SLENGE ARe PART" g““" g times, which significantly increases
0 2 1516 18 43 75 e search Complexity.

\\ Frames -/.




SEARCH TECHNIQUES

@ HIERARCHICAL SEARCH

 In practice, a system might utilize many knowledge sources (e.g., part of speech, word,
phone, and acoustic model.

» Breadth-first time-synchronous hierarchical search is very convenient for integrating
linguistic constraints.

phrase

« Efficient Viterbi search of a

hierarchical network is a much PR e

more complicated problem

because of ambiguity in the

network (e.g., the same word

sequence can appear multiple .= e oo TN

places in the network. =L
» Special care must be taken to P

Level 3 - . acoustic

Al
synchronize all hypotheses so L . ,-"r '“xk
each acoustic model is - 1 S0 O
evaluated as few times as &-éﬂ)}-
possible.

« Since many hypothesis might need the same phone at the same time, coordinating this
search becomes a nontrivial problem.



SEARCH TECHNIQUES

@ CROSS-WORD DECODING

» Cross-word decoding: since word boundaries don’t occur in spontaneous speech, we
must allow for sequences of sounds that span word boundaries.

» Cross-word decoding significantly increases memory requirements.

* The lexicon can be converted to a tree structure (lexical trees) to improve efficiency.

CARD

r-d+r HARD



SEARCH TECHNIQUES

e~
@ FAMILY OF SEARCH ALGORITHMS

e Time-synchronous Viterbi search is one
of many types of search algorithms.

 Itbelongs to a class of search algorithms
known as breadth-first.

« Beam search (suboptimal search) is
typically easier to implement for breadth-
first search algorithms.

» Other popular search algorithms are
based on depth-first search.

« Stack decoding (IBM) and N-best list
generation are two examples of this
search approach.

» Stack decoding can be very fast, and

use minimal resources, if accurate
heuristics are available.

© & ©
OOOO W



SEARCH TECHNIQUES

w WORD GRAPH GENERATION

» Direct searching of trigram language
models is very expensive.

« Application of higher order language
models (quadgrams) and acoustic
models (pentaphones) is difficult in a
single-pass search.

» Rescoring of word graphs is a practical
alternative.

« Word graph generation is expensive, and
performed using an expanded Viterbi-
style search.

« An important figure of merit is the word
graph error rate.

AR

' HARD SIL / :
: . ' _CARD :
! ! . RAW 5
: IL : :

. CARD S

« Word graph compaction and
postprocessing is a popular area of
research (e.g., sausages).

0 100 200 300 400 500 600 700 800

time (ms)




e
N-BEST LISTS

@ SEARCH TECHNIQUES

* N-best lists are a popular
alternative to word graphs
(Sma”er faster) Sibermee [HAT PERCENTALE CHANGES

" CHANGE

» Useful as input to natural
language postprocessors

Slence \..___./ FHE
* Word error rate FOR
asymptotically approaches

zero as N increases.

PERCENTAGE CHANGE H1%

Lot $
 The top N hypotheses can Silnce || I8 e

be rescored using more

complex acoustic models, e
|anguage models, and Silence PERCENTAGE CHANGES
linguistic constraints.

L st

Silence PFERCENTALGE CHANGE

« A more compact format than
word graphs.

slemce FOmR

1 best




STATE OF THE ART
COMMODITY TECHNOLOGY?
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« Software might be a
commodity, but the
experience required to
build a complex system is
great.

« Speech recognition
systems are far too
complex for the
performance they deliver.

* We will examine some
common characteristics
of state of the art
systems.




STATE OF THE ART

e
@ TYPICAL TRAINING RECIPES

o State of the art systems use several million free variables.

 Training requires almost 40 passes over the data, and several
hundred hours of data to achieve high performance.

* Models are often “bootstrapped” from a previous stage of training,
or even a previous application development.

60 hours Monophone ( Trlphune
SWB i Training j

GI WINT Models

12 Mixtare

Splitting

GD XWRD Models

200 hours uj M5'98 Data
\ Variance Normalized




STATE OF THE ART

@ TYPICAL MULTIPASS DECODING

Decoding typically
Involves two steps:

(1) generation of a
word graph using a
bigram language
model;

(2) recognition
using cross-word
triphones and a
trigram LM.




STATE OF THE ART
e~
ENTERPRISE SOLUTIONS

Nuance v8.0 Features:
« Based on SRI's DECIPHER system
|

o . 27-d|menS|on_aI. mel-frequency
Manager cepstral coefficients

Nuance Client

3-state triphone hidden Markov
I . — models (with mixture-tying)

CPU & Memory CRUEMemory | 'cAl s Mamory

Nuance Nuance Nuance
Server Server Server

N-gram and network language models

Barge-in (echo cancellation); voice

Strengths: activity detection

Dynamic language detection

MLLR and MAP adaptation

* Resource efficiency

e Multilingual support
* Noise robustness (acoustic models for

» Robustness/Adaptation |, jines, cellular, and automotive)



@ STATE OF THE ART
e~
RAPID APPLICATION DEVELOPMENT

SpeechWorks (OpenSpeech):

: Application [ ; o
W -+ Originally based on MIT’s
‘ "'"’""“”' e segment-based recognizer.
‘ e S=——. . Transitioned to AT&T'’s finite
pensoosch qecny ,,;fﬂ-t_ z -~ | State Transducer technology.
I I - Scgmental statistical models
g Used for phone classification.
Strengths: e Unsupervised, automatic
| _ _ adaptation.
* Flexible configuration and run- _
time efficiency through finite » Parallel grammars; dynamic
state transducer technology grammar compilation;

_ grammar caching; grammar
* Early adopter of VoiceXML and and lexicon updates.

open architectures



STATE OF THE ART

w DIVERSE APPLICATION SUPPORT

Philips SpeechPearl:

Speech Recognition Service
- Record/Play _temestt e | everages years of internal
EBarviCes — PEEE L ...
| . Speech recognition research

audio
LaM |

Telephony Voice/EC AFL |
Interface Resources

o8 - speechpeart® | speechpeartz|  © OpeN and closed grammars

Server Server

Strengths: Natural language interpretation

Mixed acoustic models (whole

« Core search engine ,
word and triphone models)

e Support dictation, telephony,
and mobile computing
applications

Confidence measures and out-
of-vocabulary rejection

Dynamic grammar and lexicon

e Multilingual support e
switching

e Natural language support L
o Optimization for tonal languages
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STATE OF THE ART
OPEN SOURCE TECHNOLOGY

Intervoice

BB UNIVERSITYOF
% cavrnce htk

Hidden Markov Model Toolkit (HTK)
Research-only license

Known for high performance research
systems and solid engineering

Released software lags published
research results

1
........

Sphinx / Hephaestus
Research-only license

Known for impressive demonstrations of
integrated technology (e.g., speech to
speech translation)

Developing Sphinx 4 in Java

..':'-';..'i-
g ."':I =0 -{I:-Fj

L_0lo13do
CU Communicator
Research-only license; consortium fee

Known for dialog systems and
application development

Released a DARPA Communicator
application for travel

& Mississippl date

UNIVERSITY

« First and only state of the art public
domain speech recognition system

» Designed to accelerate progress in
research and to increase participation

« Known for software engineering, ease
of use, and comprehensive toolkits



STATE OF THE ART
COMMON EVALUATIONS
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STATE OF THE ART

w PERFORMANCE HISTORY

* Error rates on research systems have dropped 50% in 7 years:

O'as SWBD
100 g
(3'98 SWBD , 48.0
W00 SWEBD-saved B | 38.8
= 0% SWBD-saved
52 8 02 SWEBD-s=avad 0E i
e "' HE
= el B
£ 7 T al: 19.8
o = iz B
g2 -’ Il 19.8
Q = thie
Wea o 4 Z g
Eo i |
o o 1] g
= B iE
@ &= E’
(7] fe ik
e T (& -
@ ﬁ e
= B Eg
14 : -
ATAT BEEN CLU-HTK JHU LIMS] SRl Best

* The performance of real-time (XRT) systems is about 50% higher.
 The performance of 10xRT systems is about 25% higher.



STATE OF THE ART
ARE RESEARCH SYTEMS PRACTICAL? intervoice
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 The 2001 Hub 5E AT&T system is shown above. e

» A real-time version of the same system, developed for the “How
may | help you” application, is shown to the right.

« Moral: Research results don’t often translate to real systems. T




STATE OF THE ART

e~
@ PERFORMANCE VS. TASK

Performance as a function of task:

Vocabulary
Corpus Size Perplexity WER
TI Digits (TIDigits) 11 11 ~0%
OGI Alphadigits (AD) 36 36 8%
Resource Management (RM) 1,000 60 4%
Air Travel Information Service (ATIS) 1,800 12 4%
Wall Street Journal (WSJ) 20,000 | 200 - 250 15%
Broadcast News (BN, Hub 4) > 80,000 200 - 250 18%
Conversational Speech (SWB, Hub 5) > 50,000 100 - 150 20%

« WER is proportional to perplexity:
WER=-12.37+ 6.48 log,(Perplexity)

» Acoustic confusability of highly probable and interchangeable
words most often dominates performance.



CONCLUSIONS

e
@ COMMODITY OR LIABILITY?

« Commercial speech recognition systems are based on hidden
Markov Model technology and include context-dependent cross-
word phonetic models and bigram/trigram language models.

 Research systems use a multipass decoding strategy and often
combine outputs from each of these passes (e.g., ROVER). Many
of these system perform 50 to 100 passes on the data before the
final recognition result is achieved.

e Such systems typically run 100 to 500 times real-time on a 1 GHz
processor and use at least 0.5 Gbytes of memory.

* Real-time systems often deliver performance close to these
research systems (no more than 25% higher word error rate).

« Robustness to noise is becoming increasingly important,
particularly in the automotive and cellular telephony markets.



CONCLUSIONS
REFERENCES AND RESOURCES
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On-line Speech Recognition Resources:

[1]

[2]

[3]

[4]

[5]

[6]

“Internet-Accessible Speech Recognition Technology,” http.//
www.isip.msstate.edu/projects/speech/index.html,  Institute
for Signal and Information Processing, Mississippi State Uni-
versity, Mississippi State, Mississippi, USA, January 2002.

“Speech Recognition System Training Workshop,” http:/
www.isip.msstate.edu/conferences/srstw/current/index.htmi,
Institute for Signal and Information Processing, Mississippi
State University, Mississippi State, Mississippi, USA,
May 2002.

“Fundamentals of Speech Recognition — A Tutorial Based
on a Public Domain C++ Toolkit,” http://
www.isip.msstate.edu/projects/speech/software/tutorials/pro-
duction/fundamentals/current/, Institute for Signal and Infor-
mation Processing, Mississippi State University, Mississippi
State, Mississippi, USA, May 2002.

“Speech and Signal Processing Demonstrations,” http./
www.isip.msstate.edu/projects/speech/software/demonstra-
tions/index.html, Institute for Signal and Information Process-

ing, Mississippi State University, Mississippi State,
Mississippi, USA, January 2002.
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