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Abstract 

Biological Neural Networks (BNNs) are characterized by complex interregional connectivity, 

allowing for seamless communication between different brain regions. In vitro models 

traditionally consist of single-dish neural cultures that cannot recapitulate the dynamics of 

interregional interactions. Herein, we introduce Virtual White Matter (VWM), a novel platform 

enabling real-time functional digital connectivity between neural cultures in separate multi-

electrode array (MEA) dishes. By detecting action potentials in one dish and providing precisely 

timed electrical stimulation to another, VWM recreates inter-regional neural communication.  

VWM represents a significant advancement in in vitro modeling by enabling controlled 

interactions between heterogeneous neural cultures, such as different brain regions or cell types. 

The platform enables the investigation of dynamic network behaviors and integration with 

biological and artificial neural systems. These advances will push forward biocomputing, wetware 

computing, and organic intelligence. Furthermore, VWM has the potential to be applied in fields 

like therapeutic interventions that use directed neural plasticity to promote brain injury or disease 

responses. 

The study introduces the conceptual framework, technical implementation, and proof-of-concept 

validation of the VWM system. VWM enables complex in vitro models to be built with the same 

neural connectivity as in the human brain. VWM is versatile, placing it at the core of a 

transformational tool for experimental neuroscience, biocomputing, and translational research to 

bridge biological and digital systems. 
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Research Aims: 

Aim 1: Develop a robust VWM platform for real-time cross-dish neural communication 

Implement a proof-of-concept VWM system by establishing precise spike detection and 

stimulation protocols. In this setup, neural action potentials detected in the “source” dish trigger 

time-sensitive stimulations in the “target” dish with a fixed delay of 200 ms, creating a 

unidirectional connection. In a bidirectional configuration, action potentials from the target dish 

also stimulate the source dish, thereby mimicking interregional brain communication and laying 

the groundwork for more advanced neural interaction models. 

Aim 2: Communicating messages between the BNNs through VWM 

Aim 2 focuses on transmitting digitally coded messages between biological neuronal networks 

(BNNs). In this setup, a 3-bit coded message is first delivered through electrical stimulation to the 

first MEA, and the resulting neural activity—captured via detected spikes—is fed into a machine 

learning system to decode the original message. This decoded message is then used to stimulate 

the second MEA, whose post-stimulus spiking data is processed by another machine learning 

model. Finally, in a subsequent round, the message is transmitted back from the second MEA to 

the first, allowing comparison of the recovered code with the original to assess communication 

accuracy. An additional, final step will bypass the machine learning stage between the two MEAs. 

Instead of using a computer-based model, the timings of binned spike patterns captured from the 

first MEA will be passed directly as stimulation input to the second MEA. This approach 

effectively substitutes one BNN for the machine learning layer, enabling evaluation of how 

communication accuracy changes when removing computer-based decoding from the loop. 
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1 Introduction 

1.1 Background and Motivation: 
Neural tissue cultures grown in multi-electrode array (MEA) dishes are widely used to study neural 

network development [1], learning [2], population self-organization [3], and responses to external 

stimuli [4]. MEAs are a flexible and powerful tool for studying neural behavior because they can 

be used with different types of cells (e.g., with respect to species, genetic mutation, and brain 

region), different culture types (e.g., brain slices, dissociated cell cultures, organoids), and different 

morphologies (e.g., 2D, 3D). MEA cultures are an excellent platform for studying neural 

population function because they are simpler to interact with than in-vivo whole brains but also 

more biologically realistic than in silico simulations. 

Closed-loop MEA systems [5] modify the open-loop MEA paradigm by enabling focal electrode 

stimulation in one region of the dish in response to detected activity in other regions. Such systems 

are emerging as prototypes of biocomputing, in which neural populations can be taught to respond 

differentially to different stimuli. These are effectively pattern recognition systems that use 

biological tissue instead of silicon-based computing. In the last three decades, there have been 

extensive efforts to leverage the processing capabilities of Biological Neural Networks (BNNs), 

including learning, adaptation, and information processing [6–12]. These capabilities have been 

used in performing specific tasks such as controlling robots [13–15], flight control [16], and 

playing video games [4]. 

Recent examples of closed-loop MEA systems include the Dishbrain system (Cortical Labs, 

Melbourne, Australia), in which both human and rodent in vitro neural networks exhibited learning 

behavior and goal-oriented activity when embodied in a simulated game world such as "Pong" [4]. 

Another example is Brainoware (Indiana University Bloomington), which is a live brain organoid 
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capable of learning and pattern detection in a 3D BNN [17]. Brainoware has successfully predicted 

a Hénon map, a fundamental non-linear dynamic system characterized by chaotic dynamics. 

Furthermore, Sumi et al. have used BNNs as generalization filters in reservoir computing [18], a 

technique that enhances the performance of tasks like speech classification and pattern recognition.  

Neural preparations have demonstrated potential as processing units for information, paving the 

way for more complex configurations of BNNs. Creating advanced forms of BNNs requires 

establishing connectivity between different regions or types of networks. However, the 

mechanisms and implications of such connectivity have not been extensively studied. The subject 

of this proposal, the Virtual White Matter (VWM) system, represents a pioneering effort to 

investigate and simulate artificial connectivity between BNNs, providing a foundation for 

exploring their coordinated functionality and interactions.  

The VWM system extends closed-loop MEA capabilities by enabling interaction between neurons 

across multiple MEA dishes. As depicted in Figure 1, the VWM system electrically stimulates 

electrodes in a target MEA dish in response to detected action potentials in a source MEA dish. 

Precision timing ensures that time- and rate-based information is preserved between the dishes. 

The VWM paradigm allows interaction between heterogeneous cell cultures (e.g., a dish with a 

hippocampal rat slice can bidirectionally communicate with a dissociated knockout mouse 

 

Figure 1: Schematic representation of the Virtual White Matter system. 
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culture). The VWM platform can also be amended to manipulate information flow between dishes 

as a means of probing neural coding. For example, a target dish may only be stimulated if a certain 

multi-electrode pattern of activity is detected in the source. The information manipulation stage 

could be as simple as a pass-through follower or as sophisticated as a block of artificial 

intelligence, allowing for a wide range of biological computing configurations. 

VWM’s fundamental concept is to create a functional connection between two or more neural 

cultures on distinct MEA dishes in the digital world. More precisely, using VWM, one could 

modulate the activity of an active target neural setup in real time by providing stimulation that is 

contingent upon the neural activity of the source neural setup. This real-time interaction mimics 

the way different regions of the brain communicate with each other, allowing for the study of how 

changes in one region can influence another. Early closed-loop systems provided the foundation 

for this approach by demonstrating that recorded neural activity from one region could 

dynamically trigger stimulation in another, effectively providing an auxiliary interregional brain 

communication [19]. Building on these principles, VWM not only replicates such interactions but 

also offers a platform for precisely controlling and manipulating the timing and pattern of 

information flow, enabling deeper investigations into neural coding and plasticity.  

This platform has the potential to enable user-modulated communication between multiple 

heterogeneous cultures, which vastly expands the complexity of neural modeling. To date, most 

research on BNNs has focused on single neural preparations, and little effort has been made to 

interconnect multiple BNNs to process information through a hybrid interconnection of the 

biological and digital systems. The VWM addresses this gap by enabling interconnections that 

could bridge multiple BNNs and ANNs, a prerequisite for biocomputing, wetware computing, and 

organic intelligence [17,18,20–25]. Furthermore, the utilization of closed-loop stimulation 
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systems in therapeutic environments has been investigated, with the potential to provide 

interventions for neurological disorders. Such applications can aid in recovery from injury or 

disease by directing the plasticity of the nervous system through real-time neural circuit 

modulation. VWM has the potential to study and replicate phenomena such as "virtual strokes," 

"white matter disconnection" [26,27], or “brain rewiring” [28] by selectively modulating or 

disrupting communication between neural populations. 

Furthermore, VWM can serve as a foundational building block for implantable brain-computer 

interfaces (BCI), enabling reciprocal linking between spatially distant recording and stimulation 

elements [29]. It also offers the potential to reconstruct entire mammalian brain models by 

interconnecting separate sections of their brain in vivo. This will enable the creation of more 

elaborate multi-specimen transfer functions or biological transformers, surpassing the capabilities 

of single isolated specimens. Ultimately, VWM can be a fundamental building block for virtual 

embodiment, in which several linked specimens could be collectively embodied in a virtual 

environment or in a robotic body. 

This study consists of two phases. In the first phase, a proof-of-concept version of the Virtual 

White Matter (VWM) system has been implemented. Initially, spontaneous neural action potentials 

(spikes) detected in the "source" dish were used to trigger stimulations in a "target" dish with a 

fixed delay of 200 ms. Subsequently, machine learning techniques classified the source of 

stimulation based on post-stimulus spike patterns in the "target" dish. This phase was further 

expanded to include bidirectional communication between the two dishes by relaying post-

stimulus spikes induced in the "target" dish back to the "source" dish. The continuous feedback 

loop established in this manner functions autonomously, emulating interregional brain 
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communication and providing a foundation for exploring more complex neural interactions in 

future research. 

In the second phase, the study transitions from spontaneous neural activity to a coded message 

introduced into the system and subsequently identified. The message is first encoded on the first 

MEA and recognized via a machine learning algorithm that processes spike patterns detected in 

that same MEA. These spike-derived codes are then transmitted to the second MEA as stimulation 

signals, where they are similarly decoded by analyzing post-stimulus evoked spike patterns. This 

unidirectional communication setup provides a baseline for comparative analysis of encoding-

decoding accuracy. 

Subsequently, to evaluate bidirectional communication, the decoded message on the second MEA 

is re-encoded and sent back to the first MEA. Demonstrating successful decoding of this return 

pathway confirms the ability of the VWM system to support robust two-way communication. 

Finally, in a bypass step, the computer-based decoding between the two MEAs is omitted: rather 

than employing machine learning, the binned spike outputs from the first MEA are sent directly as 

stimulation signals to the second MEA, effectively using the second BNN itself as the “decoder.” 

This final test reveals how communication accuracy changes when the machine learning pipeline 

is removed, further underscoring the potential of the VWM approach for interconnecting 

established BNNs and facilitating integrated neural network architectures. 

1.2 Biology of Neurons 
1.2.1 Structure of Neurons 

Neurons, the fundamental units of the nervous system, communicate through electrical and 

chemical signals. Each neuron consists of three main structures: the cell body (soma), dendrites, 

and the axon as shown in Figure 2a. The soma houses the nucleus, which contains the genetic 

material essential for neuronal function and survival. Dendrites serve as the input zone, receiving 
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signals from other neurons, while the axon transmits these signals to target cells. Axons vary in 

length, ranging from a few millimeters in the brain to several feet in the spinal cord. They may 

branch extensively (from 10 to 250,000 branches) to reach multiple target cells. The ends of these 

branches form axon terminals, where neurotransmitters are released to propagate the signal. 

1.2.2 Neuronal Communication  

The electrical properties of neurons arise from the distribution and movement of ions across the 

cell membrane. Key ions involved in this process include negatively charged proteins (large 

anions) and chloride ions (Cl⁻), as well as positively charged sodium (Na⁺) and potassium (K⁺) 

ions. These ions create an electrochemical environment that determines the neuron's ability to 

generate and transmit signals.  

Neuronal membranes contain specialized channels that regulate the ion movement. Two key types 

are leaky channels, which allow continuous ion flow, and voltage-gated channels, which open and 

close in response to voltage changes through the cell membrane. Potassium (K⁺) is more 

concentrated inside the neuron, while sodium (Na⁺) is more concentrated outside. Due to the 

concentration gradient, potassium tends to leave the cell, but the electrical gradient pulls it back 

in, maintaining equilibrium. Similarly, sodium follows its own electrochemical gradient. 

Neuronal communication occurs through neurotransmitters, which are chemical messengers 

released from the presynaptic neuron. Examples include: 

• Dopamine is involved in various functions, including motor control, motivation, and 

reward processing. 

• Acetylcholine (Ach) is commonly used by motor control neurons to communicate with 

muscles, facilitating movement. 
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• Endorphins, a class of neurotransmitters, play a role in pain relief, stress reduction, and the 

regulation of mood and immune response. 

These neurotransmitters bind to ligand-gated receptors on the dendrites of the postsynaptic neuron, 

triggering an excitatory postsynaptic potential (EPSP) or an inhibitory postsynaptic potential 

(IPSP) depending on the type of receptor and ion channels involved. These neurotransmitters are 

only released into the synaptic cleft upon the arrival of an action potential. EPSPs make the neuron 

 

Figure 2: Neuronal Architecture and action potential stages a) Different parts of a neuron. b) Neuron membrane 

voltage during an action potential and the activation of different ion channels. 
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more likely to fire, while IPSPs inhibit it. The axon hillock, a specialized region connecting the 

soma to the axon, functions as a decision-making center. If the sum of incoming EPSPs surpasses 

IPSPs and reaches the threshold of approximately -55 mV, an action potential is initiated. This all-

or-nothing response ensures the uniform propagation of the signal. When a neuron fires, that is 

essentially a spatial and temporal integration of information from upstream neurons. 

An action potential propagates along the axon, and when it reaches the axon terminals, 

neurotransmitters are released into the synaptic cleft, continuing the cycle of neuronal 

communication. 

The stages of membrane potential changes during an action potential are shown in Figure 2b: 

• Resting Potential (about -70 mV): The neuron is at rest. The membrane voltage is 

maintained by sodium-potassium pumps, which exchange three Na⁺ ions out of the cell for 

two K⁺ ions into the cell (producing a net negative voltage), and by leaky channels that 

allow passive ion movement. 

• Depolarization (+30 mV): When the membrane potential reaches the threshold (~ -55 mV), 

voltage-gated Na⁺ channels rapidly open within less than 1 millisecond, allowing Na⁺ to 

rush into the cell. These channels have a fast activation gate that responds almost instantly 

to voltage changes, leading to a rapid rise in membrane voltage. 

• Repolarization: At peak depolarization (+30 mV), voltage-gated Na⁺ channels inactivate 

via a built-in inactivation gate, which blocks further Na⁺ influx. At the same time, voltage-

gated K⁺ channels begin to open, but at a slower rate (~2-5 ms delay) compared to Na⁺ 

channels. This delayed opening allows K⁺ to exit the cell, restoring a negative membrane 

potential. 
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• Hyperpolarization (< -70 mV): Because K⁺ channels close more slowly than Na⁺ channels, 

delayed rectifier K⁺ channels remain open for a short period after repolarization, causing 

the membrane potential to temporarily become more negative than resting levels. 

• Restoration: Once K⁺ channels finally close, the sodium-potassium pump actively restores 

ion balance by pumping Na⁺ out and K⁺ back into the cell, bringing the membrane potential 

back to its resting state. 

These molecular mechanisms highlight how the specific biophysics of membrane proteins shape 

neuronal electrical activity and how even minor alterations, such as genetic affecting ion channel 

functions, can lead to profound physiological consequences. These include epilepsy, certain 

migraines, and long QT syndrome as well as neuromuscular disorders, chronic pain conditions, 

neurodevelopmental diseases, and neurodegenerative disorders [30–32].  

1.3 Microelectrode Arrays 
1.3.1 How Microelectrode Arrays Work 

Microelectrode arrays (MEAs) integrate electrodes into in vitro neural cell cultures to detect their 

extracellular electrical signals and to deliver targeted electrical stimulation. The functionality of 

MEAs is based on the electrophysiological properties of excitable neurons. Neurons generate ionic 

currents across their membranes, leading to extracellular voltage fluctuations that MEAs can 

detect. During recording, these electrodes sense voltage changes in the extracellular medium and 

convert them into electronic signals. During stimulation, they deliver electrical pulses, which 

generate ionic currents in the surrounding medium that modulate neural activity. The quality of 

recordings depends on multiple factors, including electrode geometry, impedance, and the quality 

of cell-electrode coupling. 

When an electrode is placed in an ionic solution (such as a neural culture medium or cerebrospinal 

fluid), an electrical double layer forms at the interface due to charge redistribution. This interface 
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behaves as a capacitor but also exhibits resistive properties, which influence signal quality and 

impedance. The first layer, which is the electrode surface, carries free-moving electrons, as it is a 

metal. The second layer is the electrolyte side, in which ions in the surrounding solution rearrange 

in response to the electrode’s charge. These two layers of opposite charges act just like the two 

plates of a capacitor — one plate being the electrode’s surface and the other being the charged ions 

in solution [33]. 

MEA recordings capture either action potentials representing activity from a single neuron or local 

field potentials (LFPs), which are low frequency fluctuations representing activity from multiple 

neurons. While all extracellularly recorded action potentials share a similar shape (a negative 

version of the neuron's membrane voltage that was shown on Figure 2b) their amplitude varies 

based on neuron size, axon properties, ion channel composition, media conductivity, and the 

distance between the neuron and the electrode. Larger neurons with thicker axons generate higher 

voltage in vicinity of their membrane, and this voltage  attenuates approximately with the inverse 

of distance from the membrane of the cell [34].  

Depending on electrode size and neuronal density, a single electrode can record signals from 

multiple nearby neurons, resulting in overlapping extracellular voltages. Researchers use 

mathematical techniques such as spike sorting to separate these signals, though this process can be 

computationally demanding [35,36]. To ease the signal isolation process, high-density MEAs with 

smaller and less electrode pitch (center-to-center distance between the conductive areas of two 

electrodes) have been developed, positioning each electrode closer to individual neurons and 

covering all essential neuronal space. These designs enhance spatial resolution by reducing the 

number of neurons contributing to each electrode’s signal. However, decreasing the size of the 

electrodes increases their impedance which in turn makes the captured signal weaker and more 
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susceptible to noise. Addressing these challenges requires amplifiers with higher input impedance 

(on the order of hundreds of megaohms) and the adding some software techniques for signal 

processing to remove the unwanted noise. A new method for spike detection has been devised and 

is discussed in detail in Section 2.4 Realtime Spike Detection. 

1.3.2 Materials and Fabrication: 

Microelectrode arrays are built from biocompatible conductive materials and insulating substrates 

that together determine their performance and longevity. Noble metals like platinum (Pt) and gold 

(Au) are commonly used because they resist corrosion and are biologically inert [37]. Platinum-

iridium alloys (Pt-Ir) and iridium (often as iridium oxide, IrO2) are also widely used for their high 

strength and high charge-injection capacity [38]. In contrast, materials like copper or silver are 

avoided despite excellent conductivity, since they corrode or leach toxins in tissue [37]. To improve 

signal quality, electrode surfaces are often coated to lower impedance: for example, depositing 

platinum black, iridium oxide, or titanium nitride (TiN) can reduce a 50 μm electrode’s impedance 

to ~10–20 kΩ at 1 kHz 

1.3.3 In-Vitro Microelectrode Arrays 

Planar MEAs used for in vitro research are typically transparent MEAs with a grid of 

microelectrodes embedded in a dish or slide, allowing neurons or cardiac cells to grow over the 

electrodes. A common configuration is a roughly 6×10 or 8×8 electrode grid (60–64 electrodes 

total) covering a few square millimeters. For example, the MED64 (Alpha MED Scientific, Osaka, 

Japan) probe (Figure 3a) has 64 electrodes with electrode sizes of 20 μm or 50 μm and arranged 

with center-to-center spacings of 100–450 μm. These electrodes are typically flat pads made of 

noble metal or conductive ceramic. Indium tin oxide (ITO) film is often used for the underlying 

tracks due to its transparency, and the electrode sites are coated with a low-impedance material 
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like platinum black or TiN. TiN-coated electrodes 30 μm in diameter have impedance on the order 

of 100 kΩ at 1 kHz, while 50 μm Pt-black electrodes can be 20 kΩ, yielding an excellent signal-

to-noise ratio for extracellular spikes. Planar MEAs often include large reference electrodes 

(typically in the 4 corners of the array) and can support stimulation on any site. These dish-based 

MEAs allow long-term recordings from cultured networks or acute brain slices and can be reused 

a handful of times with proper care [39]. More recently, high-density CMOS MEAs have greatly 

expanded in vitro capabilities. In these devices, each electrode is integrated with on-chip amplifiers 

and multiplexers, enabling thousands of electrodes to be recorded simultaneously. A prime 

example is 3Brain’s (Pfäffikon SZ, Switzerland) high-density MEA: a 4096-electrode array on a 

2.7×2.7 mm silicon chip, arranged as a 64×64 grid. Each electrode on this CMOS-MEA is only 

21 μm square with a 42–60 μm pitch, and all 4096 channels can be read at 1 kHz [40]. This 

technology achieves sub-cellular resolution, essentially “imaging” electrical activity without a 

microscope. The BioCAM DupleX system [41] records from 4096 electrodes in parallel, capturing 

both single-neuron spikes and local field potentials propagation across brain slices. Materials for 

CMOS MEAs must be fully integrated – 3Brain uses platinum-coated electrodes on CMOS to 

ensure biocompatibility and low noise. 

1.3.4 In Vivo Microelectrode Arrays 

In vivo MEAs are specially designed for implantation, either sitting on the surface of neural tissue 

or penetrating it to record extracellular activity. They are generally categorized by form-factor: 

microwire arrays, silicon microfabricated arrays (e.g. Michigan and Utah probes), and flexible 

polymer arrays. These devices differ in electrode density, geometry, and tissue response. 

Microwire MEAs consist of fine wires (typically 30–50 μm diameter) inserted into the brain, often 

bundled in arrays of 4 to 64 or more. The wires are insulated (with polyimide, parylene, glass, or 
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Teflon) except at the tip, which serves as the recording site [37]. Common materials 

are tungsten, stainless steel, or Pt/Ir wires, chosen for stiffness to penetrate brain tissue yet 

resilience against bending. Each wire records spiking activity from neurons in a small 50–100 μm 

 

Figure 3: Different forms of Micro Electrode Arrays (MEAs).a: MED-64 plainer MEA for in-vitro and in-vivo 

applications. b: Neuronexus Michigan Arrays in-vivo animal studies. c: Blackrock Neurotech Utah array for 

human studies. d: WIMAGINE ECoG Array for human studies e: Proposed MEA system for ex-vivo studies. f: 

Neuralink flexible electrodes implanted in a rat.  
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radius volume around its tip. Variants like tetrodes (four twisted microwires) improve single-unit 

isolation by recording each neuron on multiple closely spaced tips.  

Silicon-based MEAs are fabricated by MEMS processes, yielding more complex geometries and 

higher site counts on rigid shanks. There are two classic designs, named for the universities where 

they were developed. Michigan Arrays are planar polysilicon or silicon probes with multiple 

recording sites distributed along the length of a thin shank. Each Michigan probe is typically 15 μm 

thick and 50 μm wide, with a sharp tip, and several electrode contacts (pads of 10–20 μm) arranged 

in different forms from tip to base as shown in Figure 3b. Probes can also have multiple shanks: 

e.g. a 4-shank device with eight electrodes per shank yields 32 channels in one implant [37]. The 

rigid silicon substrate minimizes bending during insertion, giving precise electrode placement. 

Their advantage is the ability to capture laminar activity profiles – recording neurons at different 

depths (multisite vertical recordings to study cortical columnar activity, etc. However, the flat 

shank can cause more tissue damage and displacement than thin wire, and the high channel count 

can introduce crosstalk due to inter-track capacitance [37]. Modern versions include on-shank 

electronics: the Neuropixels (Leuven, Belgium) probe is essentially a CMOS-Michigan hybrid, 

with 960 recording sites on a 10 mm length shank, 70 μm wide [42]. In Neuropixels, 384 sites can 

be selected to record at once (out of 960), and integrated amplifiers allow this enormous scale 

without overwhelming noise. This represents an order-of-magnitude leap in channel count, 

enabling brain-wide recordings with single-cell resolution in rodents. Those being said, Michigan 

arrays have evolved from early 16-channel probes to state-of-the-art 1000-channel microsystems, 

all leveraging silicon microfabrication for precision and density. 

In contrast to the thin planar Michigan style, the Utah array is a 3D bed-of-nails configuration. It 

consists of a grid of silicon needles (typically 100 needles in a 10×10 array over a 4 mm×4 mm 
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area) etched from a single silicon block. Each needle is around 80μm radius at the base and tapers 

to a sharpened tip (around 1μm tip radius), with single metal electrode site located at the tip. All 

needles are the same height (commonly 1.0 or 1.5 mm for cortex) so that the array records from 

approximately one cortical layer (a horizontal array of sites at uniform depth). The electrodes are 

connected via metallization through the base to a connector (e.g. a ceramic CerePort of BlackRock 

Neurotech, Utah, USA) [43]. The standard Utah array, commercialized by Blackrock 

Microsystems, has 96 active electrodes (4 corner needles are often inactive for mounting) and is 

FDA-approved for human research which is shown in Figure 3c. Key specifications include a 

400μm inter-electrode pitch, needle length options from 0.5 mm up to 1.5 mm, and tip 

metallization with platinum or iridium oxide. The Utah array’s design enables recording from 

hundreds of neurons simultaneously, since each microelectrode can pick up multiple units in its 

vicinity and the array spans a broad surface area (e.g. 4 × 4 mm of cortex). It has been used in 

many brain-machine interface demonstrations; for example implanted Utah arrays in motor cortex 

have allowed humans to control robotic arms [44–46] or detect handwriting [47,48,48].. The array 

is also used in neuroscience for recording population activity and in neuro prosthetics for 

stimulation (each needle can deliver localized microstimulation) [49]. Utah arrays are considered 

the “gold standard” for multi-unit cortical recordings, with over two decades of use and over 

20,000 citations in the literature [37].  

In general, the Michigan and Utah arrays are regarded as state-of-the-art penetrating MEAs and 

represent two paradigms. The Michigan array provides precise vertical sampling with multiple 

electrodes per shank, whereas the Utah array maximizes horizontal coverage with a single 

electrode per shank and numerous shanks. The Utah arrays, which are commercialized by 

Blackrock Microsystems, have been approved by the FDA for human implantation and are now 
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used in clinical research settings. In contrast, the Michigan arrays have not been approved for 

human clinical use and are primarily used in animal studies [37,50]. 

Flexible Arrays replace rigid silicon or metal based MEAs with polymer materials (e.g. 

polyimide, Parylene, SU-8) that better match the brain’s stiffness. The motivation is to minimize 

chronic tissue reaction caused by micromotion of a stiff implant against softer neural tissue. 

Flexible arrays can bend and move with the brain, causing less strain and inflammation over time 

The stiffness of the materials is being measured by Young's modulus (E) which is a property of the 

material that tells us how easily it can stretch and deform and is defined as the ratio of tensile stress 

(σ) to tensile strain (ε). Stress is the amount of force applied per unit area (σ = F/A) and strain is 

extension per unit length (ε = dl/l). Young’s modulus of polyimide is around 2.5 GPa vs silicon’s 

is around 200 GPa, which shows their difference in terms of stiffness, while the brain tissue is 

much softer (E = 0.4–15 kPa) [51]. The mismatch between the stiffness of the brain tissue and the 

implanted microelectrode can lead to low and long-term inflammation due to micromovements of 

the brain tissue [37,52,53]. 

Typical examples include thin-film polyimide probes with metal traces (often gold or platinum) 

with multiple electrodes on each shank similar to Michigan probes, but only 5–20 μm thick and 

with significantly reduced stiffness.  

Another category is surface-conforming arrays, such as electrocorticography (ECoG) grids, which 

are made of silicone or polyimide with embedded electrodes placed on the brain surface. However, 

these arrays record local field potentials rather than individual spikes. ECoG is a neural recording 

technique that uses surface electrodes positioned directly on the cortical surface to measure 

electrical activity. ECoG arrays are commonly used in clinical settings for pre-surgical epilepsy 

mapping and have recently gained attention in research on brain-computer interfaces (BCIs) [54]. 
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A sample of these MEAs is shown in Figure 3d. ECoG arrays are classified as subdural electrodes, 

meaning they sit on the exposed brain surface without penetrating tissue. The electrode contacts 

are typically made of platinum-iridium (Pt-Ir) or gold (Au) and are embedded in a flexible, 

biocompatible polymer substrate such as silicone, polyimide, or Parylene-C.  

Another notable design is Neuralink’s thread-like electrodes [55]: ultra-fine polyimide filaments 

(around	5–6 μm width) with embedded gold traces and 32–64 recording sites along each filament 

as shown in Figure 3f. The stiffness of the threads are so low that they cannot be inserted by 

themselves so Neuralink developed a micro-surgical robot [56] to insert them reliably into cortex. 

Once implanted, their flexibility virtually eliminates large micromotion forces, greatly reducing 

vascular damage (the robot can avoid blood vessels with micron precision) and inflammatory 

responses.  

1.3.5 Custom Ex-Vivo Microelectrode Arrays 

In addition to conventional in-vitro and in-vivo MEAs, we developed and evaluated a new 

generation of 3D ex-vivo MEA systems for recording and stimulating neural tissue preparations, 

including brain slices (see Figure 3e). While these 3D MEAs were not used in the present study, 

they will be implemented in future VWM development. We acquired Neuronexus Michigan Array 

Shanks (Model 4x8-prox-2mm-150-400-177, Neuronexus, Ann Arbor, MI, USA) and positioned 

them upright to allow brain slices to be placed and gently penetrated onto the shanks. Additionally, 

we designed a custom dish holder with an integrated automatic media exchange system, enabling 

continuous media change. This setup facilitates simultaneous neural recording and stimulation 

while optimizing conditions for long-term activity monitoring.  
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2 System Setup 

2.1 Cell Preparation 
To conduct Aims 1 & 2, we culture dissociated neural cells in MEAs for 14 to 50 days on the 

MED64 electrodes. Cortical neurons were isolated from embryonic day 18 (E18) rat cortices in a 

protocol approved by the Institutional Animal Care and Use Committee (IACUC). The cells were 

plated onto MED64 P515A 8x8 Probe MEAs, which feature 50*50 µm2 electrodes spaced 150 µm 

apart. Prior to cell placement, the MEAs were coated with a 20 µg/ml solution of poly-D-lysine 

(PDL) to enhance cell adhesion. After a 30-minute incubation, the PDL solution was removed, and 

the MEAs were rinsed three times with sterile water to eliminate any excess. A 2 µg/ml laminin 

 

Figure 4:Microscopic image showing neural cell placement on the MEA 
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solution was then applied to the MEAs, incubated for 30 minutes, and subsequently removed, 

followed by three additional rinses with sterile water. Approximately 50,000 cortical neurons were 

plated onto each MEA and were maintained in an incubator at 37 ◦C with 5% CO2. The cells were 

maintained in Neurobasal-A medium supplemented with B-27 and GlutaMAX (referred to as NB 

Active 4 media). The culture medium was refreshed by replacing approximately 60% of the 

volume twice per week. Neural activity within the cultures typically began to manifest around day 

14 post-plating and was sustained until approximately day 48. Figure 4 shows a microscopic 

picture of the cells on the MEA 30 days post plating. 

2.2 The MEAs 
For this study, dissociated neural cells from rat cortex were used. To culture, record, and stimulate 

these cells, the MED-64 system, a commercial 2D in vitro MEA platform, was used. The MED-

64 MEA contains 64 planar microelectrodes arranged in an 8×8 grid placed on a glass plate, each 

with a diameter of approximately 50 µm, spaced 150 µm apart, and housed in a 10 mm-high 

package, enabling multi-site measurement of neuronal activity in organotypic slice cultures, 

dissociated cells, and tissue slices. These electrodes are fabricated from platinum for their low 

impedance and stability, coated with platinum black for lowering the impedance and increasing 

signal quality. 

2.3 Data Acquisition and Electrical Stimulation System 
A top-level system block diagram is shown Figure 5. Each MEA contains 64 electrodes, and the 

system simultaneously interfaced with two MEAs. The MEAs were placed in an MEA connector 

(MED-C03, Alpha MED Scientific) and connected to the recording and stimulation system via 

custom adapters. The PCB of the adaptors have been designed through Altium Designer software 

and hand soldered after printing. These custom adapters bridged the mounting hardware to the 

Intan headstages to create a 64-channel bidirectional link for each MEA. For each MEA, two 32-
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channel Intan (Los Angeles, CA) M4032 RHS stim/record headstages were used to perform both 

data recording (with sampling rates of up to 30 kSamples/s) and electrode stimulation (current-

controlled).  

Since the system interfaced with two MEAs, a total of four 32-channel headstages were employed, 

fully utilizing the 128-channel capacity of the Intan system. A bidirectional link connected the 

headstages to a 128-channel controller unit (RHS, Intan), which in turn relayed data and control to 

a personal computer via USB.  The acquisition computer used a conventional multithreaded 

architecture to run in parallel the stock Intan software I/O package (RHX) for acquisition system 

management and data acquisition and a custom VWM Software for real-time data processing and 

stimulation control (see (a)). These parallel application threads communicated via a local TCP 

socket. Once the VWM software detected a spike in the source dish that met certain criteria, a 

stimulation command was passed to an ARM microprocessor (STM32F410, STMicroelectronics, 

Plan-les-Ouates, Switzerland), which synchronized and buffered stimuli across channels before 

triggering the controller to stimulate the target MEA. An I/O expander (E6500, Intan) provided 

 

Figure 5: Block diagram of the Virtual White Matter (VWM). 
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supplemental digital I/Os, enabling seamless relay of stimulation commands from the 

microcontroller to the Intan controller. 

To deliver stimulation patterns to the Intan head stages, two primary methods can be employed. 

The first is to send stimulation commands through the TCP Command Port. Testing revealed that 

the delays associated with this method due to transmission through the TCP Command Port, Intan 

RHX software, and the universal serial bus (USB) were inconsistent. To achieve consistent delays, 

a second method was developed in which stimuli were digitally triggered through the I/Os of the 

Intan expansion box. This method required the use of an STM32F407 microcontroller, receiving 

stimulation commands through USB, with an onboard circular buffer implemented to compensate 

for any timing inconsistencies in data recording or software-based signal processing. The circular 

buffer allowed asynchronous data input and synchronous output, ensuring precise timing. 

Prior to stimulation, the VWM software preprograms the stimulation parameters—including pulse 

shape, amplitude, pulse width, number of pulses, etc.—into the Intan controller. The stimulation 

trigger of each target electrode is assigned to a digital input signal on the Intan expansion box. The 

microcontroller generates these triggering pulses based on the commands received from the VWM 

software via USB in real time. Each rising edge of a pulse on the expansion box's digital input 

activated the preprogrammed stimulation on the corresponding electrode, with the expansion box 

relaying the stimulation triggers to the Intan controller. This entire synchronization process 

occurred within the firmware of the microcontroller and the Intan system, avoiding variability 

associated with operating systems and ensuring consistent timing. The final stimulation commands 

were transmitted to the headstages via Serial Peripheral Interface (SPI) cables. 

To minimize stimulation-induced artifacts and amplifier railing—which occurs when stimulation 

voltages exceed the system's maximum readable voltage (6.4 mV for the Intan RHS system)—
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some neural recording devices offer blanking hardware features, namely the capability to 

completely turn off the amplifier and zero out the recording for a predefined time both pre- and 

post-stimulus to reduce artifacts caused by stimulation. However, this approach could potentially 

destabilize IIR filters due to DC-offset issues during the initiation phase following the zero-out 

period. Since this feature is not available in the Intan system, an alternative method was employed 

to address these artifacts. The Intan system was configured to temporarily reduce the amplification 

gain across all electrodes of the stimulated head stage during the stimulation. While a low-pass 

filter (with Intan’s default setting at 1000 Hz) is commonly used to filter out these high-frequency 

 

Figure 6: Experimental setup for testing signal processing and spike detection 
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artifacts, it proved impractical because the initiation of the filter prior to stimulation introduced 

start-up artifacts, especially in the presence of residual DC voltage from previous stimulations. By 

instead reducing the amplification during stimulation, these issues were mitigated, leading to more 

accurate signal detection and reduced artifact impact [57]. 

Before working with actual neurons on the MEA, we developed a minimal bench simulation 

system, as shown in Figure 6. This system utilized a Blackrock Digital Neural Signal Simulator 

(PN-8282, Blackrock Microsystems, LLC, Salt Lake City, UT) to generate simulated neural 

activity. The simulator produced a baseline of low-frequency activity along with various modes of 

high-frequency spikes, including phases of normal single spikes and bursts. The outputs from the 

Digital Neural Signal Simulator were connected to the MEA inputs, simulating neural activity 

within the dish. This setup allowed us to develop and refine the system efficiently, minimizing the 

time spent on cell culturing and experimental preparation. 

2.4. VWM Software 

Figure 7a shows a detailed block diagram of the custom VWM software package and its interaction 

with the external hardware components. The software was written in standard Python 3.0 for ease 

of implementation and portability between operating systems. The code is sufficiently lightweight 

to perform real-time signal processing on up to 4 source and 4 target channels with recording from 

up to 128 channels running on a Windows 11 PC equipped with a 12th Gen Intel(R) Core (TM) 

i9-12900K processor and 64 GB of RAM. On startup, the VWM software preconfigures the Intan 

RHX software to initiate data collection and prepares the Intan controller hardware to receive 

stimulation triggers from the microcontroller via the I/O expander. The RHX software streams raw 

signals from 128 channels via a local TCP socket and transfers a user-defined subset of channels 

to the VWM software for real-time processing while also storing all data into dedicated files for 
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optional offline analysis. TCP communication can, however, introduce unpredictable latencies and 

data packets can be received in different chunk sizes due to packet handling and operating system 

overhead. These latencies can degrade the communication of rate-encoded spike data between the 

source and target MEAs [58,59]. To mitigate these issues, the VWM software uses a circular data 

buffer. Namely, raw signal data is asynchronously pulled by the read thread and written into the 

circular buffer in variable-sized chunks as received via TCP. The signal processing thread then 

retrieves the data from the circular buffer in fixed chunk sizes, equivalent to 25.6 ms of data, 

ensuring consistent processing times and minimizing the effects of irregular delays between 

consecutive data chunks. The signal processing thread applies a user-defined band-pass Infinite 

Impulse Response (IIR) filtering (250-5000 Hz, Butterworth, 3rd order) followed by a custom spike 

detection module (see Section Realtime Spike Detection). Spike times were passed to the artificial 

intelligence (AI) module, which can be programmed to only trigger stimulations (see Section 

Stimulation) in the target MEA when source spikes meet certain user-defined criteria (e.g., 

channels 1 and 7 fire within 25 ms). For testing purposes, the AI was configured as a pass-through, 

meaning that every detected source spike triggered a matching stimulation in the target MEA.  

2.4 Realtime Spike Detection  
A real-time multi-threshold window discriminator spike detection system was customized 

specifically for the MEA signals observed in our dissociated neuron preparations. The algorithm 

continuously monitors incoming data, identifying potential spikes when a signal crosses a negative 

threshold (-A) and subsequently a positive threshold (+B). If the time between these crossings is 

less than T1 or greater than T2, the event is classified as an artifact. Otherwise, the system waits 

for the signal to cross the zero. If the zero-crossing time falls within the range of T3 to T4, the 

event is classified as a spike, and as an artifact otherwise. Furthermore, the signal must not exceed 

±C within a 1-millisecond window prior to crossing -A and 2 ms after. Some examples of the spike 
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detections and artifact removals have been illustrated in Figure 7b and the pseudocode is on Figure 

7c. 

All the above-mentioned parameters, namely, spike detection thresholds and time windows, were 

determined by an offline meta-analysis of data previously collected from six MEA preparations of 

E18 rat dissociated cortical neurons. In more detail, a simple threshold (4 times the background 

RMS level) was used to detect events, which were in turn reduced using PCA and clustered using 

K-means. Clusters of spikes were differentiated from clusters of artifacts and noise and used as 

templates for tuning the spike sorting parameters A, B, C, T1, T2, T3, and T4. Results were 

consistent across all six MEAs. Threshold A and B were set, respectively to, 5.5 times and 2 times 

the background RMS of each channel. RMS levels for each electrode were determined over a 4-

second period at the start of the experiment. Threshold C was fixed at ±70 µV, with T1, T2, T3, 

and T4 set to 0.2 ms, 0.6 ms, 0.25 ms, and 1 ms, respectively. These values were chosen based on 

the experimental setup and cell types and may vary under different conditions. It is important to 

note that in the target dish, the stimulus-induced responses predominantly manifested as bursting 

activity, which did not exhibit the typical morphology of individual spikes. Unlike conventional 

spikes, the shape of spikes within bursts is more variable and less defined, making them less 

suitable for the proposed algorithm, which performed better with distinct individual spikes. To 

address this, both the proposed spike-detection algorithm and a simpler single threshold-crossing 

approach were tested to detect and analyze stimulation-induced responses.  

2.5 Stimulation 
To deliver stimulation patterns to the Intan head stages, two primary methods can be employed. 

The first is to send stimulation commands through the TCP Command Port. Testing revealed that 

the delays associated with this method due to transmission through the TCP Command Port, Intan 

RHX software, and the universal serial bus (USB) were inconsistent. To achieve consistent delays, 
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a second method was developed in which stimuli were digitally triggered through the I/Os of the 

Intan expansion box. This method required the use of an STM32F407 microcontroller, receiving 

stimulation commands through USB, with an onboard circular buffer implemented to compensate 

for any timing inconsistencies in data recording or software-based signal processing. The circular 

buffer allowed asynchronous data input and synchronous output, ensuring precise timing. 

Prior to stimulation, the VWM software preprograms the stimulation parameters—including pulse 

shape, amplitude, pulse width, number of pulses, etc.—into the Intan controller. The stimulation 

trigger of each target electrode is assigned to a digital input signal on the Intan expansion box. The 

microcontroller generates these triggering pulses based on the commands received from the VWM 

software via USB in real time. Each rising edge of a pulse on the expansion box's digital input 

activated the preprogrammed stimulation on the corresponding electrode, with the expansion box 

relaying the stimulation triggers to the Intan controller. This entire synchronization process 

occurred within the firmware of the microcontroller and the Intan system, avoiding variability 

associated with operating systems and ensuring consistent timing. The final stimulation commands 

were transmitted to the headstages via Serial Peripheral Interface (SPI) cables. 

Prior to running the VWM, a parameter optimization process was carried out to select the best 

stimulation parameters and target electrodes. This preliminary step ensured that the chosen 

parameters would robustly evoke post-stimulation activity while minimizing the risk of deleterious 

effects due to excessive or unbalanced charge density. A custom software tool called NeuroTuner 

was developed, interfacing with the Intan system via TCP. This tool facilitated systematic sweeps 

of stimulation across all electrodes on the MEA with different parameters, and data was recorded 

for offline analysis. The optimization process involved a symmetrical biphasic pulse sweep, 

starting with a current of 1 µA and a pulse width of 100 µs, which were systematically increased 
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to find the optimal combination. Our analysis identified a current of 10 µA with a pulse width of 

500 µs for each phase as optimal, consistently generating adequate post-stimulation biological 

spikes while maintaining cell viability. 

With the optimal parameters set, an electrode sweep was performed on each MEA by NeuroTuner 

to identify the most suitable target electrodes. The most effective electrodes were selected based 

on their higher neural activity levels post stimulus, physical distance from each other, and the 

presence of viable cells, as confirmed by microscopic imaging. On the other hand, source 

electrodes were selected based on noise RMS, spontaneous spike rate, and impedance. Electrodes 

with acceptable impedances (below 200 kΩ) were chosen, as higher impedance increases noise 

levels, often exceeding spike voltages, making spike detection impractical. The two electrodes 

with the lowest noise, highest spike activity, and acceptable impedance were chosen, ensuring 

independent and representative data collection. This careful selection process enhanced the 

reliability and quality of the recorded neural signals for analysis. Simultaneously, data from all 64 

electrodes of the target MEA was recorded. Electrodes with impedance exceeding 200 kΩ or 

lacking significant activity post-stimulus were excluded from the analysis. This refinement 

resulted in 32 “active electrodes” being included for further analysis, enhancing the reliability and 

quality of the recorded neural signals. 

To minimize stimulation-induced artifacts and amplifier railing—which occurs when stimulation 

voltages exceed the system's maximum readable voltage (6.4 mV for the Intan RHS system)—

some neural recording devices offer blanking hardware features, namely the capability to 

completely turn off the amplifier and zero out the recording for a predefined time both pre- and 

post-stimulus to reduce artifacts caused by stimulation. However, this approach could potentially 

destabilize IIR filters due to DC-offset issues during the initiation phase following the zero-out 
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period. Since this feature is not available in the Intan system, an alternative method was employed 

to address these artifacts. The Intan system was configured to temporarily reduce the amplification 

gain across all electrodes of the stimulated head stage during the stimulation. While a low-pass 

filter (with Intan’s default setting at 1000 Hz) is commonly used to filter out these high-frequency 

artifacts, it proved impractical because the initiation of the filter prior to stimulation introduced 

start-up artifacts, especially in the presence of residual DC voltage from previous stimulations. By 

 

Figure 7: VWM and novel spike detection  (a) Block diagram of the Virtual White Matter (VWM). (b) Examples of spike 

detection and artifact removal. (c) Pseudocode for spike detection. 
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instead reducing the amplification during stimulation, these issues were mitigated, leading to more 

accurate signal detection and reduced artifact impact [57]. The current controlled stimulation 

method has been employed for stimulations. Current-controlled stimulation offers several 

advantages over voltage-controlled stimulation in vitro experiments. One significant benefit is its 

ability to provide more precise and consistent control over the amount of current delivered to the 

target tissue. This precision helps minimize the risks of tissue damage that can arise from the 

unpredictable variations in tissue and electrode impedance, which can affect voltage-controlled 

systems. Due to the variations in the impedances of the electrodes, when stimulated through a 

voltage-controlled method, the amount of voltage delivered to the cell or tissue will not be the 

same for all the electrodes, making the results dependent on the electrode impedance. Additionally, 

current-controlled stimulation can achieve more uniform and reliable activation of neurons, which 

is crucial for the effectiveness of the experiments. This uniformity enhances the reproducibility of 

neural responses and can improve the overall outcomes of neuromodulation studies. The 

adaptability of current-controlled systems also facilitates more accurate dose-response 

relationships, enabling better customization of stimulation protocols to meet the experimental 

requirements [60,61]. 

2.6 Parameter Optimization 
Optimizing stimulation parameters to evoke sufficient post-stimulation activity while preserving 

cell viability is critical to this project. Excessive stimulation currents can lead to cell depolarization 

or irreversible damage, while insufficient currents may fail to elicit significant neural activity. The 

key factor in effectively evoking cellular responses is the amount of charge delivered to the cells, 

measured in microcoulombs (µC), determined by the product of current and pulse width. To 

achieve this balance, we developed a software tool, NeuroTuner shown on Figure 8, which 
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interfaces with the Intan RHX Software via TCP. NeuroTuner enables precise configuration of 

stimulation paradigms and systematic electrode sweeps, as illustrated in Figure 8. Initial 

optimization involved symmetrical biphasic pulse sweeps with pulse widths ranging from 100 µs 

to 1000 µs and pulse amplitudes from 1 µA to 20 µA. Analysis identified a current of 10 µA with 

a pulse width of 500 µs as the optimal combination, consistently generating adequate post-

stimulation spikes while maintaining cell viability. 

With the optimal parameters set, an electrode sweep was performed on each MEA by NeuroTuner 

to identify the most suitable target electrodes. The most effective electrodes were selected based 

on their higher neural activity levels post stimulus, physical distance from each other, and the 

presence of viable cells, as confirmed by microscopic imaging. On the other hand, source 

 

Figure 8: NeuroTuner Software to optimize electrical stimulation of neural preparations. 
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electrodes were selected based on noise RMS, spontaneous spike rate, and impedance. Electrodes 

with acceptable impedances (below 200 kΩ) were chosen, as higher impedance increases noise 

levels, often exceeding spike voltages, making spike detection impractical. The two electrodes 

with the lowest noise, highest spike activity, and acceptable impedance were chosen, ensuring 

independent and representative data collection. This careful selection process enhanced the 

reliability and quality of the recorded neural signals for analysis. Simultaneously, data from all 64 

electrodes of the target MEA was recorded. Electrodes with impedance exceeding 200 kΩ or 

lacking significant activity post-stimulus were excluded from the analysis. This refinement 

resulted in 32 “active electrodes” being included for further analysis, enhancing the reliability and 

quality of the recorded neural signals. 
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3 Specific Aim 1 

Aim 1: Develop a robust VWM platform for real-time cross-dish neural 
communication. 

3.1 Description 
The project's initial phase was to show the proof of the concept of the system and test its various 

functionalities. A simple forwarder system has been designed to detect the spikes from two source 

electrodes and stimulate two electrodes in the target dish. This initial design emulates interregional 

brain communication and serves as a basis for the future investigation of more sophisticated neural 

interactions.  

Subsequently, we validated whether the detected spontaneous spikes and evoked responses were 

truly biological. This included applying MK-801 to block N-Methyl-D-aspartate (NMDA) 

receptor activity and confirm that the observed spikes were not due to noise or stimulation artifacts. 

We also tested the delay between spike detection and stimulation, which was set to 200 ms, and 

checked its consistency across trials. 

To evaluate how well the system could distinguish between the two stimulation sites, we analyzed 

the post-stimulus spike activity across different electrodes in the target dish. We examined which 

time periods after stimulation contained the most useful information and found that the first 10 ms 

carried the strongest signal for classification. We also tested bidirectional communication, where 

each dish could send and receive signals from the other using the same 200 ms delay. This setup 

allowed us to observe feedback loops and test the system under more dynamic conditions, similar 

to real brain regions interacting. 

3.2 Validation 
To confirm that the spontaneous activity in the source dish and the stimulus-evoked activity in the 

target dish were biological, we used MK-801, an NMDA receptor channel blocker. The blocker 
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was applied to suppress neural activity and verify that the spikes observed before its introduction 

 

Figure 9: Initial results of the Vistual White Matter (VWM) test (a) Cross-sectional representation of spike detection, 

stimulation timing, and artifact propagation with recording electrodes in the VWM. (b) Post-stimulus high pass filtered activity 

showing spikes detected from recording electrodes on the target dish running the VWM, recorded before the application of 

any channel blockers. (c) Activity from recording electrodes on the target dish after the application of MK-801 to the target 

dish. (d) Activity from recording electrodes on the target dish after the removal of MK-801 from both dishes and subsequent 

cell recovery. (e) Post-Stimulus Time Histogram (PSTH) depicting responses from two electrodes (A21 on the left and B20 on 

the right) to stimulations delivered at target electrodes (0 above and 1 below). To minimize confounding effects of overlapping 

stimuli, only stimulations with no preceding events within 50 ms and no subsequent events within 200 ms were considered. 

Red markers denote the positions of the target electrodes, while blue markers indicate the positions of the recording electrodes 

on the MEA capturing the activity. 
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were indeed biological rather than noise or stimulation artifacts. MK801 selectively inhibits neural 

activity while preserving other conditions and signals, including noise and artifacts. 

The blocker was administered to reach a final concentration of 85 µM in the media following data 

collection during the VWM experiments. Neural activity gradually diminished over the course of 

30 minutes, eventually reaching a complete cessation. The VWM experiment was conducted to 

confirm that the neural activity detected in the source MEA represented true biological signals 

rather than noise. Afterward, the media was replaced, and the blocker was removed to allow 

recovery over 72 hours. Given MK801's reversible effects, a return of spontaneous activity was 

confirmed as expected, which indicated that the neural silence was due to the blocker and not from 

permanent cell damage, cell dislodgment from the MEAs, or other issues. The successful 

resumption of activity upon blocker removal confirmed the effect was indeed due to MK801. 

Furthermore, the same procedure was successfully implemented in the target dish to verify that 

stimulus-evoked neural activity was a true biological response rather than a stimulation artifact. 

We evaluated the system's timing by analyzing delays between spike detection in the source dish 

and stimulation in the target dish, using data from the VWM experiments. After refining the spike 

detection algorithms and optimizing inter-thread and inter-system communication, we achieved 

consistent 200 ms delays from spike occurrence in the source dish to stimulation in the target dish. 

While the 200 ms delay can be adjusted, it was chosen based on typical neural processing times, 

such as reaction times to sensory stimuli (150-250 ms) [62] cortical processing in sensory 

pathways (100-200 ms) [63], and feedback loops in motor control (around 200 ms) [64], which 

are common in neural integration and response. 

A key objective for evaluating the VWM was to assess how distinct the neural activity evoked by 

stimulation at each of the two target electrodes was by examining the stimulation responses across 
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various recording electrodes in the target dish. Given that stimulation in 2D MEAs can spread 

throughout the dish and potentially affect multiple regions similarly, it was important to evaluate 

the uniqueness of the evoked activity. We addressed this by analyzing Post-Stimulus Timing 

Histograms (PSTH) of detected spikes across different recording sites in the target dish, focusing 

on a 200 ms window following stimulation at each of the two target electrodes. This analysis 

helped determine the distinctiveness of the responses from the two stimulation sites. 

We subsequently developed a machine learning model to classify the target electrode of delivered 

stimulations by analyzing spike timings from a combination of one or more active electrodes, with 

the two stimulus target electrodes as output labels. Spike times were binned in 1 ms intervals within 

a 200 ms window following each stimulation event, resulting in a matrix format compatible with 

machine learning for a VWM dataset spanning 26 minutes. To enhance computational efficiency 

and preserve data integrity, Principal Component Analysis (PCA) was applied to reduce 

dimensionality while retaining 95% of the variance (n_components = 0.95), and each binned 

feature was normalized using z-score normalization. To identify the most effective model for 

predicting the stimulated electrode in the source dish, using evoked responses from the target dish, 

we compared several machine learning algorithms, including K-Nearest Neighbor (KNN), Support 

Vector Machines (SVM), and Random Forests (RF). The dataset was split with 80% allocated for 

training and validation and the remaining 20% for testing. 

To ensure a fair and unbiased evaluation of the model, we addressed two key sources of bias in 

our analysis. First, the dataset was unbalanced, with one target electrode having more stimulations 

than the other, which could potentially influence model performance. Second, relying solely on a 

simple train-test split risked introducing uneven data representation. To mitigate these issues, we 

employed stratified 10-fold cross-validation, which preserves class distribution in each fold and 
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ensures that the model is tested on a representative mix of data from both labels. We based our 

analysis on all data from the 32 identified active electrodes and subsequently evaluated various 

combinations of these electrodes to determine the optimal number of required electrodes to achieve 

satisfactory performance. 

To address the presence of any unwanted stimulation artifacts, potentially erroneously detected as 

spikes, in our data, we applied both single-threshold and double-threshold algorithms for spike 

detection and tested the data from both methods using the same machine learning algorithms. For 

validation that responses were the products of biological activity (rather than artifactual), we used 

data from a target dish treated with the channel blocker MK-801, where stimulation occurred 

without any NMDA-mediated neural activity in the target dish. The analysis revealed that the 

double-threshold method effectively eliminated all artifacts from the feature set, whereas the 

single-threshold method allowed some artifacts to be present in the analysis. These findings 

demonstrate the effectiveness and robustness of our double threshold spike detection technique.  

3.3 Results 
The VWM system demonstrated the capability to create functional connections between distinct 

neural populations in separate MEA dishes by triggering precise stimulation based on detected 

spike activity. Key findings from the experiments are summarized as follows: 

3.3.1 Spike Detection and Artifact Mitigation 

Spike events satisfying the spike detection criteria were identified on source electrodes 0 and 1, 

triggering electrical stimulation on corresponding target electrodes with a consistent delay of 200 

milliseconds. The temporal alignment between spikes and stimulations exhibited high consistency 

(Figure 9a). However, each stimulation generated artifacts on nearby electrodes, including those 

within the same head stage, the same dish, and even on adjacent dishes. The magnitude of these 

artifacts is influenced by factors such as electrode impedance, physical distance between 
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electrodes, and the design of the headstage chip and PCB traces. This can be seen in Figure 9a in 

the artifacts observed on the target electrodes as well as two randomly selected recording 

electrodes. When stimulation occurred on a headstage, a surge of electrical charge traveled through 

its SPI cable, creating a substantial electric field capable of interfering with nearby parallel cables. 

To mitigate this, we maintained at least 5 cm of separation between parallel cables. All recordings 

were conducted inside a grounded Faraday cage housed within a grounded incubator to minimize 

external electromagnetic noise. 

3.3.2 Validation with MK-801 

To validate the biological origin of recorded neural activity, the NMDA receptor antagonist MK-

801 was employed. Prior to introducing MK-801, spontaneous activity in the source dish was 

consistently detected and used to trigger stimulation in the target dish, resulting in detectable 

stimulus-evoked neural responses (Figure 9b). Upon administering MK-801 to the source dish, 

spontaneous neural activity was suppressed, leading to the cessation of stimuli in the target dish. 

Washing out MK-801 restored neural activity in the source dish, which reactivated the whole 

system. When MK-801 was applied to the target dish, stimulation-evoked neural responses were 

effectively suppressed, despite the presence of external stimulation (Figure 9c). Removal of the 

antagonist from the target dish restored post-stimulus spike activity, confirming the system's 

capability to detect and utilize genuine neuronal interactions and thus verifying the biological 

nature of the recorded signals (Figure 9d). 

3.3.3 Post-Stimulus Spike Time Histograms 

To achieve the VWM's objective of transmitting information across dishes, it was critical to 

demonstrate that stimulation at two distinct target electrodes could evoke discriminable neural 

responses at other electrodes on the MEA. Given that stimulation in 2D MEAs can propagate and 
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influence multiple regions similarly, it was essential to assess whether the evoked activity post-

stimulus was unique to each stimulation site. Demonstrating this uniqueness would confirm that 

information can be introduced into the neural preparation by stimulating distinct electrodes. 

Conversely, if stimulation at different electrodes produced identical post-stimulus neural activity, 

the ability to differentiate input sources would be compromised.  

To assess the uniqueness of the evoked activity, we analyzed post-stimulus spike time histograms 

(PSTH) within a 200 ms window relative to each stimulation electrode. This comparative analysis 

allowed us to evaluate the distinctiveness of the neural responses elicited by each stimulation site. 

Figure 9e provides clear examples of the PSTH recorded from two different electrodes in response 

to stimulation at the two target electrodes. The PSTH plots demonstrate that the neural responses 

on the same electrode differ significantly depending on which target electrode was stimulated, 

confirming the ability to generate distinct neural activity patterns through stimulation of separate 

sites. 

3.3.4 Artifact Removal 

We tested the efficacy of single- and double-threshold spike detection methods for rejecting 

stimulus artifacts. Spikes detected from a combination of all active electrodes within 200 ms post-

stimulus were used to train a machine learning algorithm to predict which of two electrodes had 

been stimulated. In the presence of MK-801, which silenced neural activity, the ML algorithms 

successfully differentiated between stimulus electrodes when trained with spikes detected using 

the single-threshold method. This indicates that, in the absence of biological activity, the stimuli 

were differentiable solely due to stimulation artifacts. In contrast, when trained using spikes 

detected with the double-threshold method under the same conditions, the differentiation between 

stimulus electrodes dropped to chance levels (accuracy around 0.5, Figure 10a).  
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These results underscore the importance of rejecting stimulation artifacts in BNN or VWM 

preparations, as artifacts otherwise can mistakenly masquerade as transmitted information. Based 

on these findings, subsequent analyses exclusively utilized data from the double-threshold method 

to ensure artifact-free results. Although the double-threshold technique effectively isolates genuine 

neural activity, it may occasionally miss certain biological events, such as closely occurring 

neuronal spikes that deviate from typical spike shapes. Despite this limitation, the developed 

double-threshold method reliably distinguishes target electrodes while significantly minimizing 

the influence of artifacts. 

3.3.5 Machine Learning Analysis 

After validating the spike detection methods, machine learning techniques were applied to data 

collected without the MK-801 blocker, where both biological activity and stimulation were 

present. The analysis focused on classifying target electrodes using spike data recorded during the 

first 200 ms post-stimulation, as shown in Figure 10b. Due to the combinatorial magnitude of 

analyzing all possible electrode combinations, random subsets of 100 combinations were 

generated and averaged for groups of 2, 3, 5, 10, 15, 20, 25, and 30 electrodes. For scenarios 

involving either a single electrode or all 32 active electrodes, the full set of possible combinations 

was evaluated, resulting in 32 and 1 combination(s), respectively. This approach ensured a balance 

between computational efficiency and analytical rigor, providing insights into how electrode 

numbers and selection affect classification performance. The findings highlight the relationship 

between the number of electrodes used and the overall accuracy of the machine learning model. 

To determine which electrodes and time frames provided the most valuable information for 

classifying stimulation targets, three metrics were applied: information gain, chi-square tests, and 
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Fisher’s score. These analyses, shown in Figure 10c, identified the channels and time frames most 

 

Figure 10: Illustration of mono-directional VWM-1 and results of the experiment.(a) Comparison of machine 

learning performance for spike detection using single and double threshold methods, analyzed with and without 

the application of MK-801 to the target dish. (b) Machine learning classification results utilizing various electrode 

combinations, analyzing 200 ms of post-stimulus neural data. Models include Random Forest (RF), Support 

Vector Machine (SVM), and K-Nearest Neighbors (KNN). (c) Normalized scores representing the information 

richness of individual electrodes over different post-stimulus time points, highlighting their contribution to 

classification performance. (d) Accuracy of machine learning models employing data from all active electrodes, 

evaluated across varying post-stimulus time windows. (e) Machine learning results comparing different electrode 

combinations using 10 ms of post-stimulus neural data. 
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critical for machine learning classification. In Figure 10c, each section of the x-axis represents the 

200 ms post-stimulus window for the specified active electrode, and the y-axis reflects the 

importance scores assigned to each time point for each electrode. Notably, the large spikes at 

electrodes 17 and 52 indicate the special relevance of these two electrodes for decoding the source 

electrode.  

Additionally, the peaks consistently occur within the first 10 ms of the post-stimulus window, 

highlighting the significance of this early time frame for classification and led to an investigation 

of how performance changes when using only specific portions of the early post-stimulation data. 

Various time frames, starting with the first few milliseconds after stimulation, were analyzed using 

data from all active electrodes. As shown in Figure 10d, optimal performance was achieved when 

focusing on the first 10 ms of spike activity post-stimulation. Extending the analysis to longer time 

frames resulted in a decrease in accuracy, likely due to burst activity. During bursts, a large 

proportion of neurons synchronize their activity, which may confound the machine learning 

algorithms and obscure the differentiation between stimulation sources. 

Additionally, Figure 10e illustrates the relationship between the number of electrodes used and 

classification accuracy for the 10 ms time frame. While the first 10 ms contained the most valuable 

information, reducing the number of electrodes also led to a decrease in accuracy, likely due to the 

smaller dataset available for training. Conversely, using more electrodes improved classification 

performance but with diminishing returns beyond a certain number of electrodes. These findings 

highlight the importance of early neural responses and comprehensive electrode coverage for 

accurate classification, providing insights into optimizing data collection and processing for future 

studies. Furthermore, we applied the same machine learning approach to data combined from all 

electrodes under MK-801 conditions in the target dish, using a doubled threshold within the 0–10 
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ms period. As shown in Figure 10a, even focusing solely on the first 10 ms did not enhance 

accuracy when MK-801 was present. This outcome suggests that the improvements observed in 

other conditions are driven primarily by biological neural activity rather than stimulation artifacts. 

Overall, the machine learning results demonstrate that using a traditional window discriminator 

double-threshold approach and 10 ms windows post-stimulus enables the system to introduce 

information into a neural preparation and extract information processed by the BNN. This neural 

processing holds immense value as it can be leveraged for diverse applications, such as image 

processing, signal filtering, and other tasks where BNNs can interpret and relay information 

between neural systems. 

3.3.6 Bidirectional Connection: 

A key feature of the VWM platform is its ability to establish real-time bidirectional communication 

between two independent neural cultures on separate MEAs as shown in Figure 11a This capability 

allows the system to model the reciprocal interregional communication observed in biological 

neural circuits, where most brain regions are interconnected in a bidirectional manner. In the 

current proof-of-concept implementation, spikes detected from either MEA trigger stimulation on 

the other MEA after the same fixed delay of 200 ms. Each MEA includes two dedicated electrodes 

for spike detection and two separate electrodes for stimulation. The same spike detection algorithm 

is applied symmetrically to both networks, enabling fully reciprocal closed-loop interactions 

without any gating or filtering of the stimulation events.  

This unrestricted bidirectional configuration was designed to explore emergent network dynamics 

and information flow between dissociated neural populations. However, one observed 

consequence is the formation of positive feedback loops, where stimulation on one MEA evokes 

activity that subsequently triggers stimulation on the other MEA, potentially resulting in self-
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sustained excitatory activity. These feedback loops can lead to excessive stimulation, which in turn 

induces a temporary reduction in neural activity due to depolarization block—a phenomenon in 

which prolonged or intense stimulation inhibits neuronal firing temporarily [65,66]. Notably, this 

 

Figure 11: Illustration of bidirectional bi-directional VWM-1 and results of the experiment. (a) Schematic 

representation of the bidirectional Virtual White Matter (VWM) configuration. Spikes detected on one Micro 

Electrode Array (MEA) trigger stimulation on the opposite MEA after a fixed 200 ms delay, allowing reciprocal 

communication between two dissociated neural networks. (b) Classification results for MEA1, and (c) 

Classification results for MEA2, based on 200 ms post-stimulus activity from 32 selected electrodes in the 

bidirectional VWM setup. (d) Classification results for MEA1, and (e) Classification results for MEA2, based on 

10 ms post-stimulus activity from 32 selected electrodes in the bidirectional VWM setup.
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suppression is reversible, with spontaneous activity typically resuming a few seconds after 

stimulation ceases. 

To evaluate the system’s classification performance under bidirectional conditions, machine 

learning models were trained independently for each MEA using post-stimulus activity from 32 

selected electrodes over a recording duration of 12 minutes. Results for the 200 ms analysis 

window are shown in Figure 11b for MEA1 and Figure 11c for , while results for the 10 ms analysis 

window are presented in Figure 11d and Figure 11e, respectively. Overall performance was slightly 

lower compared to the unidirectional configuration, likely due to overlapping stimulation events 

caused by positive feedback loops. These overlaps within the analysis window obscured distinct 

evoked response patterns, diminishing the models' ability to accurately classify the stimulation 

source. However, similar to the unidirectional VWM, the 10 ms post-stimulus data yielded slightly 

better results than the 200 ms data, as shorter windows reduced the likelihood of additional 

overlapping stimulations. 
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4 Specific Aim 2 

In the second phase of the VWM experiment, as shown in Figure 12, spontaneous neural activity 

on the source MEA will be replaced with coded information. Two electrodes are used as binary 

markers representing “0” and “1,” enabling the transmission of structured data such as letters, 

numbers, or Morse code. We use a 3-bit coding scheme (8 possible codes). For each code, the 

corresponding stimulation is delivered through these electrodes with an inter-bit time interval of 1 

second. This delay was selected for the initial experiments to allow the network to return to a 

stable, non-bursting state between stimulations. Evoked neural activity is recorded from the 

remaining electrodes within a fixed post-stimulation window (e.g., 10–200 ms, segmented into 1 

ms bins). During later stages of the experiment, different inter-bit intervals will be tested to 

determine the minimum required delay for reliable information transmission. 

The recorded, binned spike data is then processed by a machine learning system to decode the 

original 3-bit input. The recovered code is transmitted to a second MEA by stimulating two of its 

electrodes and a second machine learning system decodes the evoked response from the second 

MEA, establishing a one-way VWM connection. In the next step, the decoded code is sent back 

from the second MEA to the first, completing a bidirectional communication loop. This setup 

requires four distinct machine learning models—two for each direction. 

  

Figure 12: Illustration of bidirectional VWM-2. Information transmission and reconstruction happens between 

two interconnected Biological Neural Networks (BNNs) via Virtual White Matter (VWM). 
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This experiment evaluates all 8 combinations of a 3-bit code and aims to identify parameters 

including: (1) the maximum decoding accuracy of the machine learning models in unidirectional 

(2 models) and bidirectional (4 models) modes, (2) the overall accuracy of transmitting a full 3-bit 

message in both modes, (3) the minimum required interval between each bit, (4) the shortest 

effective post-stimulation time window for accurate decoding, and (5) the minimum time needed 

to transmit a complete 3-bit message. These tests will be conducted using three different MEA 

sets, each evaluated at two distinct time points corresponding to specific days in vitro (DIV). 

Next, we investigate the possibility of removing the machine learning inference stage between the 

two MEAs and instead directly stimulating the second MEA using the binned spike data from the 

first MEA. Based on the results from the initial VWM phase (Figure 10b and e), we know that a 

trained machine learning model can identify the source of stimulation with over 80% accuracy 

using combined binned spike data from five electrodes within a 10 or 200 ms time window. 

Building on this, we will select the six best-performing electrodes and use their binned spike 

activity to construct a new stimulation pattern. This pattern will be delivered to the second MEA 

via two designated stimulation electrodes. The binned data from half of the selected electrodes will 

  

Figure 13: Diagram of the final step. After MEA1 is stimulated by the encoded message, spike data from six key 

electrodes (recorded in 10–200 ms bins) is used to drive MEA2’s BNN, which propagates this input across its 

electrode array. The resulting spikes are then detected, binned, and used to reconstruct the original code—

proving data can travel between MEAs without direct decoding. For a bidirectional link, the recovered code from 

MEA2 is re-encoded as bits on two electrodes and sent back to MEA1. 
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be time-combined and used to stimulate one electrode, while the remaining half will be used for 

the second. Six electrodes were chosen instead of five to both increase the accuracy and allow an 

even split for constructing the two stimulation signals. 

In this setup, no machine learning is used between the two MEAs. Instead, we allow the BNN in 

the second MEA to interpret the incoming pattern. The evoked activity in the second MEA will 

then be recorded, binned, and passed through a machine learning model to reconstruct the original 

code. As illustrated in Figure 13, this test explores whether meaningful information can be 

transmitted from one MEA to another—through biological processing alone—without 

intermediate digital decoding. 

To establish a bidirectional system, the recovered code from the second MEA will be re-encoded 

and sent back to the first MEA using the same stimulation method. The final decoded result from 

the first MEA will be compared with the original input. With 8 possible 3-bit codes, chance-level 

accuracy is 12.5% (1/8). Consistently higher accuracy across multiple trials would confirm 

successful information transmission via VWM without intermediate machine learning. All 

previously measured parameters—including decoding accuracy, required minimum post-stimulus 

time windows, required minimum inter-bit timing, and minimum total transmission duration—will 

also be evaluated in this experiment. 
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5 Conclusion 

In vitro cell culture systems of the mammalian nervous systems are inherently limited since they 

cannot recapitulate the complex circuitry and can only sustain fragments. VWM opens the door to 

reconstructing circuits across a scalable number of specimens, and to investigating the effects of 

what removing and adding specimens might do to the physiological properties of the assembly. 

While individual specimens may have limited longevity, when multiple specimens are linked 

together by VWM, it could allow specimens that have deteriorated to be swapped out while 

maintaining the global integrity of the assembled hybrid system. The hardware framework 

described here is agnostic as to the type of specimens (dissociated, aggregates, organotypic slices, 

organoids) and to whether the specimens are in vitro or in vivo. The ability to reciprocally link in 

vivo neural activity to in vitro neural activity could enable exploration of novel substrate 

expansion, whereby the brain of a living organism would have additional neural substrate, even if 

ultimately the auxiliary neural tissue were implanted. The VWM platform allows characterization 

each given specimen as a transfer function [67]. The VWM platform also allows investigators to 

interpose in silico models (whether traditional machine learning artificial neural networks, or 

neuromorphic firmware) between neural specimens to see how the hybrid assembly performs. 

VWM in vitro can be thought of as the fundamental counterpart to BCIs that implants tens to tens 

of thousands of channels for stimulation and recording: namely, rather than implanting numerous 

sensor/recording elements into a living brain, VWM opens the door of rebuilding a brain around 

those elements.  

Future enhancements will further validate and extend the system’s capabilities. Incorporating 

additional MEAs, including high-density MEAs or 3D MEAs, will increase the resolution for 

recording and stimulation, supporting more detailed studies of neural dynamics. Developing 
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portable systems capable of controlling environmental parameters such as temperature and CO₂ 

levels, while also automating media exchange, will enable the long-term viability of brain slices 

without human intervention. These advancements are critical for sustaining neural preparations for 

weeks and exploring more complex neural dynamics. Such systems could also find applications in 

pharmacological studies by enabling the integration of drug delivery systems to evaluate how 

various compounds influence interconnected neural preparations. Additionally, the platform could 

be used to model neural disorders, such as epilepsy, Parkinson’s disease, and Alzheimer’s disease, 

in a controlled and reproducible environment. 

An exciting avenue for enhancement lies in enabling closed-loop real-time operation. By recording 

and processing activity from interconnected neural preparations and delivering stimulation based 

on this activity, the system can replicate neural networks similar to those observed in living 

organisms, such as the interaction between the lateral geniculate nucleus (LGN) and the visual 

cortex. Incorporating real-time machine learning models into this closed-loop system will enable 

the identification of well-known neural patterns and the dynamic optimization of stimulation 

protocols. This approach, supported by artificial intelligence (AI), allows for the design of 

preplanned stimulation scenarios tailored to specific experimental needs. The use of diverse 

stimulation patterns, including variations in pulse shapes, widths, currents, frequencies, and 

numbers, will evoke a broader range of neural activity, making the system suitable for investigating 

complex neural processes. 

Another critical improvement involves transitioning the system from software-based computer 

implementations to embedded platforms, such as FPGAs or microcontrollers, to reduce latency 

between spike detection and stimulation. This shift will significantly enhance the system's real-

time processing capabilities, ensuring more accurate and immediate responses. Furthermore, the 
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integration of the system into a global network via the internet—the "Internet of Neurons" (IoN)—

will enable interconnected neural preparations across laboratories, cities, or even continents. Such 

a globally distributed network would facilitate collaborative experiments on an unprecedented 

scale, advancing the field of neuroscience. 

By enabling the creation of assemblies of two or more specimens, VWM could also open the door 

to virtual embodiment of more complex virtual organisms. Whereas motor and sensory 

assembloids allow for pathway reconstruction in a single dish [68], VWM could enable an 

assembly of assembloids (or other specimen types) that could then be embodied as an entity 

navigating a virtual, simulated world. We predict that the more the assembly system recapitulates 

the complexity of the nervous systems of intact animals, the more likely the emergent system will 

be to navigate more complex environments, and to move beyond the relatively constrained 

environments of Pong or solving a maze, towards more naturalistic scenarios of survival and 

exploration. These hybrid systems could also serve as more valid models for disease processes and 

screening therapeutics. 

Additional enhancements could expand the system's functionality by incorporating multisensory 

inputs, such as optical, chemical, or mechanical signals, alongside electrical signals. Combining 

optogenetic stimulation with electrical recording would allow for precise spatiotemporal control 

over specific neural circuits or cell types, such as those in the retina. This integration would enable 

the system to process image information and interconnect it with BNNs for further processing. By 

simulating comprehensive neural processing scenarios, the system could bridge the gap between 

artificial and biological networks. 

The system also holds potential for BCI applications, particularly by linking in vitro and in vivo 

neural systems to human neural systems. Such advancements could pave the way for creating 
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auxiliary neural substrates for therapeutic or enhancement purposes. The development of 

autonomous protocol optimization systems, driven by AI, will further streamline experimental 

processes by dynamically adjusting experimental parameters based on real-time results. This 

capability is essential for efficiently exploring the vast parameter space involved in neural 

stimulation studies. 

This study presents VWM, a novel platform that enables real-time functional connectivity between 

neural cultures in separate multi-electrode array (MEA) dishes, bridging the gap between single-

dish in vitro models and the complex interregional dynamics of BNNs. By replicating interregional 

communication and facilitating controlled interactions between heterogeneous cultures, VWM 

opens new opportunities to investigate neural coding, plasticity, and dynamic network behaviors. 

The system provides a robust and flexible platform for pharmacological testing, disease modeling, 

and the creation of sophisticated BNNs. By integrating machine learning, AI-driven optimization, 

and global connectivity, VWM advances biocomputing and hybrid systems while paving the way 

for next-generation brain-computer interfaces. These innovations offer transformative tools for 

neuroscience research and translational applications, laying the foundation for new frontiers in 

understanding and harnessing neural processing. 
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6 Timeline 

MEA Plating & Usage Plan (April–August 2025): 

Plating Date Usable Window (DIV 14–35) Purpose 

April 9 April 23 – May 5 First round of experiments (Fig. 12) 

April 30 May 14 – May 28 Continued Fig. 12 + ML training 

May 21 June 4 – June 25 Fig. 13 BNN-based testing 

June 11 June 25 – July 16 Repetition of Fig. 12 and Fig. 13 

July 2 July 16 – August 6 Redundant ML training, long-term data 

July 23 August 6 – August 27 Final testing and manuscript figures 

August 13 August 27 – September 17  Backup MEAs or extended data recording 

September 3 

 

September 17 – October 8 

 

Final experimental, replication, and refinement 

 

Machine Learning, Thesis, and Manuscript Timeline (May–December 2025): 

In May 2025, the primary focus will be on launching the first phase of experiments described in 

Figure 12. These experiments involve encoding 3-bit binary codes and decoding them using 

machine learning. Four machine learning models—two for each transmission direction—will be 

trained. Initial data will be collected to assess decoding accuracy, post-stimulation time windows, 

and inter-bit intervals. 

In June and July 2025, the second phase of experiments, detailed in Figure 13, will begin. This 

phase tests the ability of biological neural networks to interpret stimulation patterns without any 

machine learning in the transmission pathway. Stimulation patterns will be derived from binned 
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spike data and delivered directly to a second MEA. However, machine learning will still be used 

for decoding at the receiving end. Data will continue to be collected across multiple MEAs to 

improve generalizability and reliability. 

In August and September 2025, experiments for both phases will continue. Focus will be placed 

on redundant testing with different MEA batches, long-term comparisons across days in vitro, and 

exploring variations in stimulation patterns, electrode selection, and decoding windows. Final 

validation experiments will also be conducted to evaluate system robustness and to identify the 

best-performing configurations for communication. 

From October through December 2025, the emphasis will shift entirely to writing and final 

analysis. The second manuscript will be written and revised for journal submission, with finalized 

figures, statistical results, and discussion. In parallel, the PhD thesis will be developed to include 

comprehensive coverage of all experimental phases, key findings, and future directions. Both the 

thesis and manuscript are expected to be finalized and submitted by the end of December 2025. 
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