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Abstract

Multimodal MR Imaging and Machine Learning-Based Assessment of Spinal Cord

by

Zahra Sadeghi Adl

Accurate assessment of spinal cord integrity is crucial for diagnosing abnormali-

ties, guiding therapeutic interventions, and improving patient outcomes. While tra-

ditional T1- and T2-weighted Magnetic Resonance Imaging (MRI) sequences remain

fundamental in clinical practice, they often lack the sensitivity and specificity to de-

tect subtle microstructural changes indicative of early or progressive pathology. Ad-

vanced MRI techniques, such as Diffusion Tensor Imaging (DTI), Neurite Orientation

Dispersion and Density Imaging (NODDI), Diffusion Kurtosis Imaging (DKI), and

Magnetization Transfer Imaging (MTI), provide deeper insights into spinal cord tissue

organization and microstructure. However, the absence of a robust, pediatric-specific

normative benchmark limits their clinical utility, hindering early and accurate detec-

tion and intervention in pediatric spinal cord abnormalities, where timely treatment

can significantly impact long-term neurological outcomes.

Spinal Cord Injury (SCI), a debilitating neurological condition with both acute

and chronic manifestations, underscores the need for objective, automated diagnostic

tools. Traditional clinical assessments, such as the American Spinal Injury Associa-

tion (ASIA) Impairment Scale (AIS), rely on subjective evaluations that may overlook

critical injury characteristics. This limitation can lead to delayed or suboptimal treat-

ment decisions. Machine learning approaches offer a promising solution by leveraging

high-dimensional MRI data to identify subtle patterns associated with injury severity

and prognosis, thereby enhancing diagnostic precision and clinical decision-making.

This thesis proposal aims to address these challenges through a three-phase ap-

proach. First, a pediatric MRI biomarker database will be established by collecting
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and analyzing structural and diffusion imaging data from 150 typically developing

(TD) children. The dataset will include T1-weighted, T2-weighted, DTI, NODDI,

DKI, and MTI sequences, along with demographic metadata including age, sex,

and height, all acquired under standardized research protocols. Appropriate de-

identification and privacy protocols will be implemented to support public release for

broader research use. This will be the first comprehensive, multimodal MRI database

of the pediatric spinal cord, addressing the lack of normative benchmarks and allow-

ing for quantitative assessment of normal spinal cord development. Second, machine

learning-based models will be developed to predict injury severity in pediatric patients

with chronic traumatic SCI by integrating structural, diffusion, and demographic fea-

tures. This will be the first study to incorporate multimodal MRI biomarkers with

deep learning for chronic pediatric SCI classification, providing a robust, data-driven

method for classifying injury severity based on quantitative imaging features. Finally,

predictive models for acute traumatic adult SCI will be designed using multimodal

MRI data, employing Convolutional Neural Networks (CNNs) with attention mech-

anisms to improve severity prediction and support immediate clinical interventions.

While the pediatric models rely on extracted features from chronic-phase imaging,

the adult models are developed using raw MRI data from the acute phase, reflecting

distinct modeling strategies aligned with each cohort’s data availability. This will

be the first study to develop a deep learning framework that integrates both struc-

tural and diffusion MRI for acute SCI severity classification, leveraging 3D volumetric

data rather than relying on 2D slices or manually extracted features. By combining

advanced MRI modalities with machine learning techniques, this research aims to

provide objective, quantitative tools to facilitate precise diagnosis, prognosis, and

treatment planning for spinal cord disorders in both pediatric and adult populations.
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CHAPTER 1

Introduction

The spinal cord is a critical component of the Central Nervous System (CNS),

serving as the primary conduit for transmitting motor, sensory, and autonomic sig-

nals between the brain and the rest of the body [1, 2]. It plays a pivotal role in

fundamental physiological functions, including movement, sensation, respiration, and

digestion. Any disruption to its structure or function, whether due to developmental

abnormalities, trauma, or degenerative conditions, can result in profound neurologi-

cal deficits and diminished quality of life. Thus, accurate assessment of spinal cord

integrity is essential for diagnosing abnormalities, guiding therapeutic interventions,

and optimizing patient outcomes [3].

Spinal Cord Injury (SCI) is one of the most severe conditions affecting the spinal

cord, leading to varying degrees of motor, sensory, and autonomic dysfunction depend-

ing on the level and extent of the injury [4]. It progresses through acute and chronic

phases: the acute phase involves primary mechanical damage and secondary biological

processes like inflammation and neurodegeneration, while the chronic phase leads to

long-term neurodegeneration, scarring, and functional impairment [5, 6]. Despite its

impact, SCI severity assessment remains challenging, particularly in pediatric cases.

In clinical practice, the American Spinal Injury Association (ASIA) Impairment Scale

(AIS) is widely used to evaluate injury severity based on motor and sensory function,

but it relies on subjective, examiner-dependent assessments [7, 8].

Magnetic Resonance Imaging (MRI) has revolutionized spinal cord evaluation by

offering non-invasive, high-resolution visualization of both macrostructural and mi-
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crostructural features [9–11]. Conventional T1-weighted and T2-weighted sequences

remain widely used in clinical practice for detecting macrostructural abnormalities

such as lesions, atrophy, and changes in cross-sectional area [12]. However, these

techniques primarily provide anatomical information and lack the ability to char-

acterize microstructural tissue changes, including axonal integrity, myelination, and

neuroinflammation, key factors in understanding disease progression. Advanced MRI

techniques, including Diffusion Tensor Imaging (DTI), Neurite Orientation Disper-

sion and Density Imaging (NODDI), Diffusion Kurtosis Imaging (DKI), and Mag-

netization Transfer Imaging (MTI), have been developed to overcome some of these

limitations by providing quantitative insights into spinal cord microstructure [13–17].

Each of these modalities offers unique advantages; DTI provides information on wa-

ter diffusion in tissues and allows visualization of white matter tract orientation and

integrity, NODDI quantifies neurite density and dispersion, DKI extends beyond DTI

by capturing tissue heterogeneity and characterizing non-Gaussian diffusion, which

reflects complex microstructural environments such as regions with axonal beading,

demyelination, or inflammation, and MTI evaluates macromolecular content such as

myelin. Hybrid Diffusion Imaging (HYDI), an emerging technique, integrates multiple

diffusion protocols within a single acquisition, allowing the simultaneous derivation

of DTI, NODDI, and DKI metrics [18, 19].

Despite their potential, the application of advanced MRI techniques has largely

been focused on adult populations, with a significant lack of pediatric-specific norma-

tive benchmarks [20, 21]. The absence of such benchmarks hinders accurate detection

of spinal cord abnormalities in children, delaying necessary interventions during crit-

ical neurodevelopmental windows [22, 23]. On the other hand, both pediatric and

adult SCI research lack objective, quantitative tools for injury severity assessment

across different stages of injury. Current clinical assessments, such as the AIS, re-

main subjective and rely on manual examinations, which are prone to variability [24].
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Existing machine learning applications in SCI research have been limited to segmen-

tation tasks or predefined feature-based classification models that rely on manual

extractions rather than fully automated, end-to-end learning approaches [25, 26]. To

date, only one study has attempted direct image-based SCI severity assessment, but

it was restricted to a single imaging modality and relied on 2D image slices, missing

the richer information present in full 3D volumetric data [27]. Furthermore, to the

best of our knowledge, no existing work has developed a comprehensive, multimodal

machine learning model integrating structural and diffusion MRI for SCI severity

assessment, leaving a significant gap in SCI research

To address these gaps, this thesis proposal outlines a three-phase approach that

integrates advanced MRI techniques, quantitative imaging biomarkers, and machine

learning models. In the first phase, we will establish a pediatric MRI biomarker

database by collecting and analyzing structural, diffusion, and magnetization trans-

fer imaging data from typically developing children. Quantitative biomarkers will

be extracted from these sequences, including cross-sectional area (CSA), anterior-

posterior (AP) width, and right-left (RL) width from structural MRI; fractional

anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity

(RD) from DTI; neurite density index (NDI) and orientation dispersion index (ODI)

from NODDI; mean kurtosis (MK) and axial kurtosis (AK) from DKI; and magneti-

zation transfer ratio (MTR) from MTI. All raw imaging data will be securely stored

alongside the extracted biomarkers to support future analysis, reproducibility, and

open science. The dataset will be made publicly available for research use follow-

ing appropriate de-identification and in full compliance with existing IRB protocols

and data-sharing regulations. This will be the first comprehensive, multimodal MRI

database of the pediatric spinal cord, enabling the creation of age-stratified reference

values.

In the second phase, we will develop machine learning-based models to predict
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injury severity in chronic pediatric SCI by integrating extracted structural and diffu-

sion biomarkers along with demographic features. This study targets long-term struc-

tural alterations and aims to enhance automated severity classification by leveraging

multimodal MRI biomarkers. While acute SCI research is vital for early prognosis,

acquiring high-quality MRI data in the acute phase is challenging due to clinical and

logistical constraints, as patient management and urgent medical interventions take

precedence over research imaging. As a result, this study focuses on chronic cases

where imaging data can be acquired under more controlled conditions, allowing for a

comprehensive analysis of structural and diffusion biomarkers. This will be the first

study to integrate multimodal MRI biomarkers with deep learning for pediatric SCI

classification, offering a novel approach to severity assessment.

Finally, in the third phase, we will develop machine learning models for acute adult

SCI using multimodal MRI data, employing convolutional neural networks (CNNs)

with attention mechanisms to analyze raw imaging data and predict injury severity

based on AIS scores. Acute imaging is more feasible in adult populations because

MRI is routinely integrated into early clinical workflows, allowing for timely and stan-

dardized acquisition. Unlike prior studies that rely on manually extracted features

or 2D image slices, this work will leverage full 3D volumetric data, capturing a more

comprehensive representation of spinal cord damage. This will be the first study to

integrate both structural and diffusion MRI in a deep learning framework for acute

SCI severity classification, offering a data-driven approach to support immediate clin-

ical interventions and improve early decision-making. By bridging these critical gaps,

this research will enable more precise, individualized patient management and im-

prove clinical decision-making for SCI across pediatric and adult populations. The

combination of advanced MRI modalities, quantitative biomarkers, and deep learning

represents a transformative step toward more accurate, data-driven diagnosis.
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CHAPTER 2

Background and Literature Review

This chapter lays the interdisciplinary groundwork for the project by presenting

a brief overview of three core domains: spinal cord neuroanatomy and pathology,

the physics and advanced methodologies of MRI, and the emerging applications of

machine learning in medical imaging. Each section is intended to outline the funda-

mental scientific principles while highlighting their clinical relevance and potential for

advancing diagnostic and therapeutic strategies.

The first section offers a concise review of the spinal cord, detailing its anatomical

organization, functional roles, and the pathophysiology of SCI. It covers the basic

structure of the spinal cord, including gray and white matter organization, segmental

anatomy, and the mapping of dermatomes and myotomes, followed by a brief discus-

sion of clinical assessment methods and the key events following SCI. This overview

provides essential context for understanding how structural disruptions can lead to

functional impairments and underscores the importance of precise anatomical char-

acterization in both research and clinical practice.

Next, the chapter turns to MRI. In this section, we introduce the fundamental

physics underlying MRI, such as nuclear magnetic resonance, relaxation processes,

and spatial encoding via gradient fields, in a succinct manner. We then survey a

range of MRI sequences, from T1- and T2-weighted imaging to advanced techniques

like diffusion imaging and MTI. This brief overview emphasizes how each modality

contributes to the visualization and quantitative assessment of tissue integrity and

microstructure, which is crucial for diagnosing and monitoring spinal cord disorders.

5



The final section focuses on the role of machine learning in medical imaging.

We provide an outline of key ML methodologies that have been successfully applied

to enhance image analysis, segmentation, and classification across various clinical

settings. Following this, we discuss the specific integration of ML techniques with

MRI data in the context of spinal cord imaging, highlighting how these approaches

can improve diagnostic accuracy, streamline clinical assessments, and yield deeper

insights into the structural and functional changes associated with SCI.

2.1 Spinal Cord

The spinal cord is a critical structure of the central nervous system, serving as the

primary conduit for bidirectional communication between the brain and peripheral

tissues. It extends from the medulla oblongata at the base of the brainstem to the

level of the first or second lumbar vertebra, where it tapers into the conus medullaris

and gives rise to the cauda equina, a bundle of spinal nerve roots. Enclosed within

the vertebral column and surrounded by meninges, the spinal cord is protected from

mechanical injury by cerebrospinal fluid (CSF) and the bony vertebrae [1, 2].

2.1.1 Anatomy

In cross-section, the spinal cord consists of a central core of gray matter, encased

by white matter, each serving distinct functions (see Figure 1). At its center lies the

central canal, a small CSF-filled channel that runs the entire length of the spinal cord

and plays a crucial role in nutrient transport and waste removal. The central canal

is surrounded by ependymal cells, which facilitate CSF circulation and contribute to

spinal cord homeostasis [28].

The gray matter, shaped like an ”H” or butterfly, consists of neuronal cell bod-

ies and is responsible for processing incoming sensory signals and generating motor

outputs. It is further organized into:
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Figure 1: Cross-sectional anatomy of the human spinal cord. The left panel provides a
labeled diagram highlighting the structural organization of the spinal cord,
including the gray matter (dorsal, ventral, and lateral horns), white matter
(posterior, lateral, and anterior columns), and the central canal. The right
panel shows a histological section of the spinal cord, illustrating the distinct
distribution of gray and white matter under the microscope [29].

• Posterior (dorsal) Horns: Contain sensory axons and interneurons involved

in processing incoming sensory information.

• Anterior (ventral) Horns: House motor neurons that transmit motor com-

mands to skeletal muscles.

• Lateral Horns: Present in the thoracic and upper lumbar regions, containing

autonomic neurons that regulate sympathetic nervous system functions.

Surrounding the gray matter is white matter, which contains both myelinated

and unmyelinated nerve fibers that conduct information either up (ascending) or

down (descending) the spinal cord. The white matter is organized into three distinct

columns:

• Posterior (dorsal) Column: Contains ascending sensory tracts responsible

for proprioception, vibration, and fine touch.

• Lateral Column: Contains both ascending and descending tracts involved in

voluntary movement control and pain sensation.
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Figure 2: Anatomical and functional organization of the spinal cord. (a) Segmenta-
tion of the spinal cord into cervical, thoracic, lumbar, sacral, and coccygeal
regions. (b) Dermatome map showing skin areas supplied by sensory fibers
from spinal nerve roots. (c) Myotome chart highlighting key muscle groups
innervated by specific spinal cord segments [30].

• Anterior (ventral) Column: Houses descending tracts responsible for motor

control and posture.

The spinal cord is divided into five anatomically and functionally distinct regions

(see Figure 2 (a)), with each region responsible for specific motor and sensory func-

tions [30]:

• Cervical Region (C1–C8): Comprising eight spinal segments, the cervical

region innervates the head, neck, shoulders, diaphragm, and upper limbs. The

cervical enlargement (C4 to T1) supports the complex movements of the upper

limbs.

• Thoracic Region (T1–T12): Consisting of twelve spinal segments, this region

provides innervation to the thoracic and upper abdominal regions and includes
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preganglionic neurons of the sympathetic nervous system within the lateral

horns.

• Lumbar Region (L1–L5): The lumbar region, composed of five segments,

innervates the lower abdominal wall and portions of the lower limbs. The lumbar

enlargement, from L2 to S3, reflects the increased neural connectivity necessary

to coordinate lower limb movements.

• Sacral Region (S1–S5): The sacral region’s five segments primarily innervate

the pelvic organs, perineum, and portions of the lower limbs.

• Coccygeal Region (Co1): This single segment contributes minimally to sen-

sory innervation of the skin overlying the coccyx.

Each spinal cord segment provides sensory and motor innervation to specific areas

of the body, known as dermatomes and myotomes, respectively. This segmental

organization facilitates precise mapping of spinal cord function and helps diagnose

neurological deficits resulting from injury or disease.

Dermatomes, illustrated in Figure 2 (b), correspond to specific skin areas supplied

by sensory fibers from a single spinal nerve root. The cervical dermatomes (C2–C8)

supply the head, neck, and upper limbs, the thoracic dermatomes (T1–T12) cover the

trunk, while the lumbar (L1–L5) and sacral (S1–S5) dermatomes innervate the lower

limbs and perineal region.

Myotomes refer to the muscle groups innervated by motor fibers from specific

spinal cord segments. Each myotome governs distinct movements, such as elbow

flexion (C5), wrist extension (C6), knee extension (L3), and ankle plantar flexion

(S1), as shown in Figure 2 (c). Clinically, myotome testing is used to assess motor

deficits and localize spinal cord injuries. Damage to a particular spinal segment can

lead to characteristic patterns of sensory loss (dermatomal distribution) or motor
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impairment (myotomal dysfunction). More severe injuries can result in complete loss

of function below the injury site, profoundly impacting movement and sensation [31].

2.1.2 Spinal Cord Injury

SCI is a devastating condition with significant physical, psychological, and socioe-

conomic consequences. Among its types, traumatic SCI results from sudden external

physical impacts such as falls, motor vehicle accidents, or acts of violence, causing

immediate damage to the spinal cord [32]. This is in contrast to non-traumatic SCI,

which stems from underlying conditions like tumors, infections, or degenerative dis-

eases. In the United States, the reported incidence of traumatic spinal cord injury

ranges from 28 to 55 cases per million individuals, with approximately 18,000 new

cases occurring annually [33]. The primary causes include motor vehicle accidents

(37.5%), falls (31.7%), acts of violence (15.4%), and sports (8%). The average age

at the time of injury is 31.7 years, with the highest occurrence between ages 15 and

25, and a male-to-female ratio of 4:1. Assuming a near-normal lifespan, the esti-

mated number of individuals living with traumatic spinal cord injury in the U.S. falls

between 183,000 and 230,000 [34]. Among all spinal cord disorders, SCI demands

particular attention due to its acute and long-term consequences [5].

Pathophysiology of SCI

The pathophysiology of SCI is traditionally divided into two distinct phases, acute

and chronic, each presenting unique clinical challenges and requiring tailored interven-

tions [30]. The acute phase begins immediately after the injury and is characterized

by primary mechanical damage, involving the physical disruption of neural elements,

blood vessels, and cell membranes. Clinically, the acute phase demands rapid and

effective interventions to prevent further damage and stabilize the patient. Key pri-

orities include restoring spinal stability, maintaining adequate blood flow to prevent
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ischemia, and minimizing the effects of secondary injury cascades. Early imaging, par-

ticularly advanced MRI techniques, is crucial during this phase to assess the extent

and level of injury and guide immediate clinical decisions.

The chronic phase of SCI develops weeks to months after the initial injury and is

marked by long-term structural and functional changes in the spinal cord. Demyeli-

nation, resulting from the loss of myelin sheaths surrounding axons, disrupts nerve

conduction and impairs signal transmission. Axonal degeneration further contributes

to the permanent loss of neural connections, severely limiting the potential for func-

tional recovery. These chronic changes solidify the long-term deficits observed in SCI

patients, including motor, sensory, and autonomic impairments. In the chronic phase,

clinical needs shift toward rehabilitation and functional recovery. Strategies focus on

promoting neuroplasticity, minimizing secondary complications, and improving qual-

ity of life. The differing clinical needs in the acute and chronic phases emphasize

the importance of timely and phase-specific interventions. In the acute phase, the

primary goal is to limit secondary damage and stabilize the patient, whereas in the

chronic phase, the focus shifts toward promoting recovery and improving long-term

outcomes.

Clinical Assessment of SCI

Assessing the severity and functional impact of SCI is crucial for guiding treat-

ment and predicting recovery outcomes. The most widely used clinical tool for this

purpose is the American Spinal Injury Association (ASIA) Impairment Scale (AIS),

which provides a standardized method for evaluating motor and sensory function [35].

The assessment involves a detailed examination of motor and sensory function to de-

termine the neurological level of injury (NLI) and classify the injury into one of five

grades, as illustrated in Figure 3:
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Figure 3: The AIS assessment form used for evaluating the sensory and motor func-
tion of individuals with spinal cord injury [35].

• AIS A (Complete Injury): No sensory or motor function is preserved below

the neurological level of injury (NLI).

• AIS B (Sensory Incomplete): Sensory function is preserved below the NLI,

but motor function is absent.

• AIS C (Motor Incomplete): Motor function is preserved below the NLI, but

more than half of the key muscles have a strength grade less than 3.

• AIS D (Motor Incomplete): Motor function is preserved below the NLI,

with at least half of the key muscles graded 3 or higher.

• AIS E (Normal): Sensory and motor functions are fully preserved.
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Sensory testing is conducted bilaterally across 28 dermatomes using light touch

and pinprick stimuli, scored on a 3-point scale. Motor function is assessed in 10

key muscle groups, corresponding to specific spinal levels, using a 6-point strength

scale. The results are documented in a comprehensive form that includes motor and

sensory scores as well as sacral sparing, which is critical for distinguishing complete

from incomplete injuries.

2.2 Magnetic Resonance Imaging

MRI is a non-invasive imaging technique that has transformed neurology by pro-

viding detailed insights into the structure and function of the brain and spinal cord

[11]. By utilizing the magnetic properties of hydrogen atoms, which are abundant in

water and fat molecules, MRI generates high-contrast images with exceptional reso-

lution. This capability has made it a cornerstone in modern diagnostics and research,

particularly for conditions affecting the central nervous system.

2.2.1 Principles of MRI

MRI is based on the phenomenon of nuclear magnetic resonance (NMR), where

atomic nuclei absorb and emit electromagnetic energy in a magnetic field [36]. Hydro-

gen nuclei, or protons, have an intrinsic property called spin, which creates a magnetic

moment. When placed in a strong magnetic field (B0), these protons align either par-

allel or antiparallel to the field, resulting in a slight net magnetization along B0. An

applied radiofrequency pulse at the Larmor frequency excites the protons, tipping the

magnetization vector away from equilibrium. Once the RF pulse is turned off, the

protons relax back to their original state through two distinct processes: longitudinal

relaxation (T1), which describes the recovery of magnetization along B0, and trans-

verse relaxation (T2), which refers to the decay of magnetization in the transverse

plane due to spin-spin interactions. These relaxation processes vary across tissues,
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providing the contrast necessary for imaging. For instance, tissues with high water

content, such as CSF, exhibit long T1 and T2 relaxation times, while fatty tissues

have shorter relaxation times.

As the protons relax, they emit RF signals that are detected by receiver coils.

Spatial encoding is achieved using gradient magnetic fields, which vary linearly across

the body and allow the MRI system to localize the signal in three dimensions. These

signals are then processed to reconstruct high-resolution images. By adjusting pa-

rameters such as repetition time (TR) and echo time (TE), MRI sequences can be

optimized to emphasize specific tissue properties, making the technique highly ver-

satile for various diagnostic applications. Beyond structural imaging, advanced MRI

techniques such as diffusion imaging extend its applications to mapping neural activ-

ity and assessing tissue microstructure, further enhancing its role in understanding

and treating brain and spinal conditions.

MRI sequences are specialized imaging techniques that manipulate magnetic field

gradients and RF pulses to generate high-quality images with specific tissue contrast.

These sequences are fundamental to the diagnosis and management of various med-

ical conditions, as they allow clinicians to assess distinct tissue properties such as

relaxation times, diffusion characteristics, and perfusion dynamics [9, 36].

Each MRI sequence is composed of a unique set of RF pulses, gradient manipu-

lations, and signal acquisition schemes that influence image contrast and resolution.

By adjusting key parameters such as TR and TE, sequences can be optimized to em-

phasize particular anatomical or pathological features. This versatility makes MRI

an invaluable tool for assessing a wide range of conditions, from neurodegenerative

diseases to musculoskeletal disorders.
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2.2.2 Structural MRI

T1-Weighted Imaging

T1-weighted imaging emphasizes differences in longitudinal relaxation time (T1),

which represents the time it takes for protons to exchange energy with their surround-

ing lattice (spin-lattice interactions) and realign with the main magnetic field after

excitation by an RF pulse [12]. The longitudinal magnetization recovery follows an

exponential curve described by:

Mz(t) = M0

(
1 − e−t/T1

)
, (2.2-1)

where Mz is the longitudinal magnetization at time t, M0 is the equilibrium magne-

tization, and T1 is the tissue-specific relaxation constant.

In T1-weighted images, tissues with shorter T1 values, such as fat, recover mag-

netization faster and appear bright (see Figure 4). In contrast, tissues with longer

T1 values, like CSF, recover more slowly and appear dark. The key parameters for

achieving T1-weighted contrast are a short TR and a short TE, ensuring that the sig-

nal depends predominantly on differences in T1. T1-weighted imaging is commonly

used for anatomical visualization, especially for detecting structural abnormalities

like atrophy, fibrosis, or hemorrhages.

T2-Weighted Imaging

T2-weighted imaging highlights differences in transverse relaxation time (T2),

which describes the decay of transverse magnetization due to spin-spin interactions

[12]. The signal decay in transverse magnetization follows:

Mxy(t) = M0e
−t/T2, (2.2-2)
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Figure 4: T1-weighted and T2-weighted MRI brain images. The T1-weighted im-
age (left) provides high anatomical detail, with CSF appearing dark and
fat appearing bright. The T2-weighted image (right) highlights fluid-rich
structures, with CSF appearing bright and fat appearing dark [37].

where Mxy(t) is the transverse magnetization at time t, and T2 is the relaxation

time constant.

In T2-weighted images, tissues with longer T2 values, such as water-rich struc-

tures like CSF or regions of edema, retain transverse magnetization longer and appear

bright (see Figure 4). Conversely, tissues with shorter T2 values, such as fat, decay

faster and appear dark. To achieve T2-weighted contrast, long TR and TE values are

used, allowing sufficient time for differences in transverse relaxation to become appar-

ent. T2-weighted imaging is particularly valuable for detecting pathological changes

involving fluid accumulation, such as edema, inflammation, syrinx formation, and

demyelination. It is a cornerstone in diagnosing spinal cord injuries and neurological

conditions like multiple sclerosis.

2.2.3 Diffusion MRI and Modeling Approaches

Diffusion MRI is a technique for characterizing the microstructural properties of

biological tissues by measuring the displacement of water molecules. In biological

tissues, water diffusion is not entirely random—it is restricted and hindered by cel-

lular structures such as axons, myelin sheaths, and extracellular barriers. Diffusion-

weighted imaging (DWI) captures this motion using magnetic field gradients that
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sensitize the MR signal to molecular displacement, with different levels of sensitivity

defined by the b-value. The b-value is a scalar that quantifies the strength and tim-

ing of the diffusion-sensitizing gradients applied during the MRI sequence. It reflects

how much the MR signal will be attenuated due to diffusion. Higher b-values increase

sensitivity to slower or more restricted diffusion, but also reduce the signal-to-noise

ratio (SNR). Conversely, lower b-values are less sensitive to restricted diffusion but

provide higher SNR [13].

The signal attenuation due to diffusion is described by the Stejskal-Tanner equa-

tion:

S = S0e
−bD, (2.2-3)

where S is the diffusion-weighted signal, S0 is the signal without diffusion weighting,

D is the apparent diffusion coefficient (ADC), and b is the diffusion weighting factor

determined by the gradient strength, duration, and timing. This formulation assumes

that water molecule displacement follows a Gaussian distribution, meaning molecules

diffuse equally in all directions, and their displacement probability forms a normal

curve [38].

DWI serves as the foundation for various computational models that extract mean-

ingful biological information. Several mathematical models can be applied to DWI

data to capture different aspects of tissue microstructure:

Diffusion Tensor Imaging

DTI builds upon DWI by capturing both the magnitude and directionality of

water diffusion [14]. While DWI measures overall diffusion, DTI represents diffusion

as a tensor, a second-order symmetric 3 × 3 matrix that describes diffusion in three
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dimensions:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . (2.2-4)

This tensor is estimated for each voxel, capturing the local diffusion characteristics

of the underlying tissue. The 3×3 structure arises from modeling diffusion along the

three spatial axes (x, y, z), including interactions between them.

The eigenvalues (λ1, λ2, λ3) and eigenvectors of this tensor describe the principal

diffusion directions and their magnitudes. Key metrics derived from DTI include:

• Fractional Anisotropy (FA): This metric quantifies the directionality of wa-

ter diffusion within a voxel. Higher FA values indicate more directionally re-

stricted diffusion, typically found in well-organized white matter tracts.

• Mean Diffusivity (MD): This metric represents the average magnitude of

water diffusion within a voxel. Higher MD values are often associated with

increased extracellular space due to tissue damage or degeneration.

• Radial Diffusivity (RD): This metric measures water diffusion perpendicular

to the primary fiber direction. Elevated RD values are often linked to myelin

degradation and demyelination.

• Axial Diffusivity (AD): This metric quantifies water diffusion along the pri-

mary fiber direction. Changes in AD may indicate axonal damage or degener-

ation.

DTI enables the mapping of white matter tracts, making it essential for studying

connectivity and microstructural changes in the brain and spinal cord. DTI assumes

Gaussian diffusion, which is adequate in many white matter regions but may over-

simplify more complex tissue environments where non-Gaussian behavior is present.
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Neurite Orientation Dispersion and Density Imaging

NODDI is a diffusion MRI technique that utilizes specially acquired diffusion data

to distinguish between different water diffusion properties, allowing for the modeling

of diffusion within three compartments: intracellular, extracellular, and isotropic

[15]. This model enables NODDI to assess the microstructure of neurites (axons and

dendrites), providing a detailed picture of neural integrity and organization. Unlike

DTI, which assumes Gaussian diffusion, NODDI explicitly accounts for the underlying

biological complexity of tissues by differentiating between restricted, hindered, and

free water diffusion.

The NODDI model introduces three key metrics:

• Neurite Density Index (NDI): This metric quantifies the density of neurites

by estimating the fraction of intracellular water within a voxel. A higher NDI

reflects greater axonal or dendritic density, indicating intact neural architecture.

• Orientation Dispersion Index (ODI): ODI measures the variability in neu-

rite orientation within a voxel. High ODI values suggest a highly dispersed

arrangement, typical in areas with complex branching, while low ODI values

indicate aligned fiber bundles.

• Intracellular Volume Fraction (Vic): Measures the proportion of free water

within the tissue, often associated with extracellular fluid content.

NODDI’s ability to separate isotropic diffusion, such as CSF, from anisotropic

diffusion enhances its accuracy in regions where traditional DTI metrics like FA may

be confounded. For instance, in spinal cord imaging, where partial volume effects

from CSF are common, NODDI provides a more robust characterization of white and

gray matter microstructure. Compared to DTI, NODDI offers superior specificity

in detecting changes in neural density and orientation, making it highly valuable in

studying neurodegeneration, neurodevelopment, and injury recovery.
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Diffusion Kurtosis Imaging

DKI is designed to capture the non-Gaussian nature of water diffusion, reflecting

the microstructural complexity of biological tissues [16]. While DTI assumes Gaussian

diffusion, biological tissues often exhibit non-Gaussian diffusion due to barriers like

cell membranes and organelles. DKI quantifies this deviation using the diffusion

kurtosis coefficient, which provides additional information about tissue heterogeneity.

The signal attenuation in DKI is described by an extended Stejskal-Tanner equa-

tion:

S = S0e
−bD+ 1

6
b2KD2

, (2.2-5)

where S is the diffusion-weighted signal, S0 is the signal without diffusion weighting,

K is the kurtosis coefficient, D is the diffusion coefficient, and b is the diffusion

weighting factor. The term 1
6
b2KD2 arises from a Taylor expansion of the signal

decay, modeling the influence of non-Gaussian effects. DKI generates several metrics,

including:

• Mean Kurtosis (MK): Reflects the overall non-Gaussian behavior of diffusion

within a voxel, providing a measure of microstructural complexity.

• Axial Kurtosis (AK): Describes kurtosis along the principal diffusion direc-

tion, offering insights into axonal integrity.

• Radial Kurtosis (RK): Quantifies kurtosis perpendicular to the principal

diffusion direction, often associated with myelin sheath integrity.

DKI excels in identifying subtle microstructural changes that may not be apparent

with DTI or NODDI. For instance, in spinal cord injury, DKI can detect early patho-

logical changes such as inflammation and demyelination by capturing alterations in

tissue heterogeneity. Its sensitivity to microstructural complexity makes it a valuable

tool for understanding neurodegenerative diseases and assessing treatment efficacy.
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Figure 5: Example diffusion metrics of the brain. The figure illustrates MD, FA, MK,
ODI, and Vic, each providing unique insights into tissue microstructure and
neural organization [39].

Hybrid Diffusion Imaging

HYDI integrates the strengths of multiple diffusion models, including DTI, NODDI,

and DKI, into a unified framework [18]. By combining Gaussian and non-Gaussian dif-

fusion components, HYDI provides a comprehensive assessment of tissue microstruc-

ture, enabling a more detailed analysis of complex tissue environments.

The HYDI framework employs multi-shell diffusion imaging, which involves ac-

quiring diffusion data at multiple b-values and directions. This multi-shell approach

captures both linear (Gaussian) and non-linear (non-Gaussian) diffusion properties,

allowing HYDI to extract a wide range of metrics:

• Traditional DTI metrics (e.g., FA, MD, AD, RD) for basic anisotropy and dif-

fusivity analysis.

• NODDI-derived metrics (e.g., NDI, ODI, Vic) for compartmentalized diffusion

modeling.

• Kurtosis metrics (e.g., MK, AK, RK) for non-Gaussian tissue characterization.

HYDI is particularly useful in regions with highly complex anatomy, where par-

tial volume effects and overlapping diffusion behaviors often confound single-model

approaches. By integrating multiple diffusion metrics, HYDI provides a holistic view

of white and gray matter architecture, all in one acquisition, aiding in the diagnosis

and monitoring of conditions like spinal cord injury and neurodegeneration. Figure 5
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illustrates an example of HYDI-derived diffusion metrics, including MD, FA, MK,

ODI, and Vic, demonstrating the diverse microstructural insights provided by this

approach.

2.2.4 Magnetization Transfer Imaging

MTI enhances tissue contrast by exploiting the exchange of magnetization between

macromolecular-bound protons (the ”bound pool”) and free water protons (the ”free

pool”) [17]. An off-resonance RF pulse selectively saturates the bound pool, transfer-

ring energy to the free pool and reducing its signal intensity. This effect is quantified

using the magnetization transfer ratio (MTR), calculated as:

MTR =
S0 − SMT

S0

× 100% (2.2-6)

where S0 is the signal before the MT pulse, and SMT is the signal after the MT

pulse.

MTI provides valuable insights into myelin integrity, making it useful in assessing

demyelinating diseases such as multiple sclerosis. Clinically, it enhances contrast in

MR angiography (MRA) by suppressing background tissues, improving visualization

of small vessels, and increasing the conspicuity of gadolinium-enhanced lesions in

contrast-enhanced imaging [40].

2.3 Machine Learning in Medical Imaging

The integration of machine learning techniques into medical imaging has signif-

icantly enhanced image analysis by automating feature extraction, improving di-

agnostic accuracy, and enabling predictive modeling. Traditionally, medical image

interpretation depended on handcrafted feature extraction, where radiologists and

domain experts manually identified relevant features such as texture, intensity, and
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shape. While these methods have been valuable, they often suffer from subjectivity,

limited scalability, and suboptimal generalization across different datasets and imag-

ing modalities. For instance, handcrafted radiomic features such as shape, intensity,

and texture require expert definition and may vary significantly between annotators,

leading to subjectivity and limited reproducibility [41]. Machine learning has trans-

formed this process by enabling computational models to learn directly from imaging

data and extract meaningful patterns in a more automated and data-driven manner

[42].

Machine Learning techniques in medical imaging can be broadly categorized into

traditional machine learning methods and deep learning approaches. Traditional

Machine Learning methods have been widely used for classification, segmentation,

and dimensionality reduction. These models rely on explicit feature engineering,

where predefined image attributes are used as input to train predictive models. With

the advancement of deep learning, more sophisticated approaches have been developed

that overcome the limitations of manual feature engineering. These methods enable

end-to-end learning, where models can automatically extract relevant features and

make predictions without requiring explicit pre-processing.

Given the vast number of machine learning methods available, this section focuses

on some of the most widely adopted and impactful techniques in medical imaging.

The selection of these methods is based on their proven effectiveness in image seg-

mentation, classification, feature extraction, and data augmentation, as well as their

specific applications in medical imaging. By explaining these approaches in detail, we

aim to provide a solid understanding of their theoretical foundations, mathematical

formulations, and practical implications in medical imaging.
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2.3.1 Traditional Machine Learning Methods

Traditional machine learning approaches have been extensively used in medical

imaging for classification, segmentation, and feature selection. These models require

explicit feature extraction, where domain experts define image characteristics such as

texture, intensity, and shape before applying machine learning techniques.

Support Vector Machine

Support Vector Machine (SVM) is a supervised learning algorithm used for classi-

fication tasks. In SVM, the algorithm aims to find the hyperplane that best separates

the data points into different classes in feature space. The hyperplane is chosen to

maximize the margin, which is the distance between the hyperplane and the nearest

data points from each class, also known as support vectors [43].

For linearly separable datasets, the decision boundary is represented by a hyper-

plane defined as:

f(x) = wTx + b, (2.3-7)

Where:f(x) is the decision function, w is the weight vector, x is the input feature

vector, and b is the bias term. The goal is to identify the hyperplane that maximizes

the margin 2
∥w∥ while ensuring correct classification:

yi(w
Txi + b) ≥ 1, ∀i. (2.3-8)

This leads to the following convex optimization problem:

min
w,b

1

2
∥w∥2. (2.3-9)

In practice, data is often not linearly separable. To address this, the soft-margin

SVM introduces slack variables ξi ≥ 0 that permit certain misclassifications. The
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optimization objective then becomes:

min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi, (2.3-10)

subject to:

yi(w
Txi + b) ≥ 1 − ξi, ξi ≥ 0.

Here, C ∈ R+ governs the trade-off between maximizing the margin and min-

imizing the classification error. A larger value of C imposes a higher penalty for

misclassification, leading to a narrower margin and potentially overfitting, while a

smaller value allows more margin violations, promoting generalization.

SVMs have been extensively applied in medical imaging, particularly in MRI, for

various diagnostic and classification tasks [44]. Their effectiveness has been demon-

strated in several applications. For instance, in brain tumor classification, Gupta et

al. proposed a three-step algorithm involving the identification of patients with tu-

mors, automatic selection of abnormal slices, and segmentation and detection of the

tumor [45]. Features were extracted using discrete wavelet transform on normalized

images and classified by SVM, achieving a classification accuracy of 95% with 100%

specificity and 90% sensitivity. Similarly, El-Dahshan et al. utilized SVMs to classify

brain MRI images as normal or abnormal [46]. The authors extracted features us-

ing discrete wavelet transformation and employed kernel-based techniques, achieving

high classification accuracy.

Decision Trees

Decision Trees are interpretable, non-parametric supervised learning algorithms

used for both classification and regression tasks. The core principle behind decision

trees is the recursive partitioning of the input feature space into subsets that become

progressively more homogeneous with respect to the target variable. This is achieved
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by selecting features and split points that minimize impurity at each internal node of

the tree [47].

During tree construction, the algorithm evaluates candidate splits using impurity

measures such as Gini impurity, which quantifies the likelihood of misclassification

in classification tasks; entropy, which assesses information gain from a split; and

variance reduction, commonly used in regression to reduce prediction error. Based

on the chosen criterion, the data is split to form branches, and this process continues

recursively until a predefined stopping condition is met. These conditions may include

reaching a maximum tree depth, a minimum number of samples in a node, or achieving

a pure node where all instances belong to the same class.

The resulting decision tree structure resembles a flowchart, where each internal

node represents a decision rule based on a specific feature and threshold. Each branch

corresponds to a decision outcome, and each leaf node contains a final prediction,

either a class label in classification tasks or a numerical value in regression. This

hierarchical structure allows decision trees to provide clear and interpretable decision

paths, making them particularly useful in applications where model transparency is

important.

Random Forest

Random Forests (RFs) are ensemble learning methods that construct multiple

decision trees and aggregate their predictions [48]. Each decision tree in the ensem-

ble is trained on a distinct bootstrap sample, which is generated by sampling with

replacement from the original training dataset. To further reduce correlation be-

tween individual trees, a random subset of features is selected at each node when

determining the optimal split.

For a given input x, the prediction is obtained by majority voting (for classifica-
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tion):

ŷ = mode{h1(x), h2(x), . . . , hT (x)},

where each ht(x) is a decision tree trained on a bootstrap sample of the data. The

randomness is introduced by selecting a random subset of features at each split.

In medical imaging, RFs are often used for lesion detection and classification

tasks. For disease classification, Ma et al. developed an RF-based method that inte-

grates multiple morphological metrics to distinguish individuals with mild cognitive

impairment from normal controls [49]. Utilizing voxel-based, deformation-based, and

surface-based morphometry, their model achieved approximately 80% accuracy across

various datasets, highlighting its robustness in early MCI diagnosis. In prognostic pre-

diction, a study applied an RF-based random survival forest (RSF) model to MRI

data for predicting progression-free survival in patients with locoregionally advanced

nasopharyngeal carcinoma [50]. The RSF model, incorporating both clinical and ra-

diomic features, showed superior predictive performance compared to traditional Cox

models, suggesting its potential utility in risk stratification.

2.3.2 Deep Learning Approaches

Deep learning methods have become the dominant approach in medical imaging

due to their ability to learn complex spatial representations directly from raw images

[51]. Deep learning models learn hierarchical representations directly from raw data,

greatly reducing the need for handcrafted features. We detail two widely used deep

learning methods in medical imaging: Convolutional Neural Networks (CNNs) and

Transformer-based models.

Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a class of deep learning models that

process image data through convolutional layers [52].
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For an input image X ∈ RH×W and a filter F ∈ Rkh×kw , the convolution operation

is defined as:

(X ∗ F)(i, j) =

kh∑
m=1

kw∑
n=1

X(i + m, j + n) · F (m,n),

where kh and kw denote the kernel size, and the output is a 2D feature map capturing

localized spatial patterns (e.g., edges or textures).

Following the convolution, a non-linear activation function is applied to introduce

non-linearity into the model. To reduce the spatial dimensions of the feature maps

and improve computational efficiency, CNNs typically include pooling layers. Max

pooling, for instance, replaces a local patch of values with the maximum value within

that region, preserving dominant features while discarding less important ones. This

downsampling step also provides some degree of translation invariance. By stacking

multiple convolutional, activation, and pooling layers, CNNs build hierarchical repre-

sentations of the input data, enabling them to detect low-level features in early layers

and more abstract, high-level patterns in deeper layers.

Many studies have used 2D CNNs in medical imaging [53]. In the context of

Alzheimer’s disease detection, a study implemented and compared several deep learn-

ing models, including 2D CNNs, on 3D MRI volumes [54]. The approach involved

splitting each MRI scan into 2D slices, thereby neglecting the connection among 2D

image slices in an MRI volume. Similarly, another study proposed three approaches

that leverage 2D CNNs on 3D MRI data for Alzheimer’s disease classification [55].

The methods were tested on the Alzheimer’s Disease Neuroimaging Initiative dataset

across two popular 2D CNN architectures, demonstrating the potential of 2D CNNs

in handling 3D MRI data for disease classification. In infant brain age classification,

research explored the feasibility of using 2D CNNs on a small dataset of 3D MRI

images [56]. The study found that a 2D CNN applied to central axial thick slabs

achieved an accuracy of 90%. For glioma segmentation in MRI scans, a novel frame-

work was devised that converts 3D patches into 2D slices for processing through a
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2D CNN [57]. This method involved extracting 3D patches from each modality, cal-

ibrating slices via a squeeze and excitation block, and then feeding them into a 2D

CNN for pixel-wise classification.

To better capture spatial context, 3D CNNs have been developed in medical imag-

ing field. In the realm of brain tumor classification, 3D CNNs have been employed

to analyze MRI volumes, capturing spatial hierarchies and contextual information

inherent in the data [58]. This approach allows for the extraction of intricate fea-

tures across the 3D structure, leading to improved classification performance. For

instance, Mzoughi et al. (2020) proposed a deep multi-scale 3D CNN architecture for

glioma brain tumor classification into low-grade and high-grade gliomas using whole

volumetric T1-Gadolinium MRI sequences [59]. Their model effectively merged both

local and global contextual information, resulting in enhanced classification accuracy.

Similarly, a study by Anaraki et al. (2019) introduced a hybrid deep neural network

combining a genetic algorithm and 3D CNN for brain tumor classification [60]. This

model utilized MRI data to classify brain tumors into three types: glioma, menin-

gioma, and pituitary tumors, demonstrating high accuracy in multi-class classification

tasks.

Transformer-Based Models

Transformers are a class of deep learning models that rely on the attention mech-

anism to capture relationships between elements in an input sequence. Originally

developed for natural language processing tasks [61], Transformers have since been

successfully applied in computer vision due to their ability to model both local and

global contextual dependencies.

The core component of the Transformer architecture is the attention mechanism,

which allows the model to dynamically focus on the most relevant parts of the input

when constructing contextualized representations. These are achieved by computing a
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weighted sum over a set of input vectors, referred to as the values. The contribution

of each value is determined by its similarity to a corresponding query vector, as

measured against a set of key vectors.

Let Q ∈ Rn×dk , K ∈ Rn×dk , and V ∈ Rn×dv denote the query, key, and value ma-

trices, respectively, where n is the number of input elements, dk is the dimensionality

of the query and key vectors, and dv is the dimensionality of the value vectors. The

scaled dot-product attention is computed as:

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V (2.3-11)

In this formulation, the matrix product QK⊤ ∈ Rn×n contains pairwise similar-

ity scores between each query and key. These scores are scaled by
√
dk to prevent

large gradient values during training. The softmax function is applied row-wise to

normalize the scores into a probability distribution, which is then used to compute a

weighted sum of the value vectors. The result is a new set of representations in Rn×dv ,

where each row reflects the contextualized information integrated from the rest of the

sequence.

Self-attention is a special case of this mechanism in which the queries, keys, and

values are all derived from the same input. Given an input sequence X ∈ Rn×d, self-

attention begins by projecting X into three distinct subspaces using learned weight

matrices:

Q = XWQ, K = XWK , V = XW V , (2.3-12)

where WQ,WK ,W V ∈ Rd×dk are trainable parameters. These linear projections

allow the model to map the same input into query, key, and value roles. To increase the

expressiveness of the model, the Transformer applies multiple self-attention operations

in parallel, each referred to as a head, using independently learned projection weights.
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The outputs of these attention heads are concatenated and passed through a feed-

forward neural network.

Transformers have been increasingly adopted in medical imaging due to their

ability to model long-range dependencies through self-attention mechanisms. This

capability allows for capturing global context, which is particularly beneficial in com-

plex image analysis tasks. In 2D medical imaging, transformers have been applied

to various tasks, including classification and segmentation. For instance, a study

implemented the Vision Transformer (ViT) architecture to classify 2D biomedical

images [62]. The ViT model processes images by dividing them into patches, linearly

embedding these patches, and then applying transformer layers to capture global re-

lationships. This approach demonstrated competitive performance compared to tra-

ditional CNNs. Another approach, TransMed, combines CNNs and transformers to

efficiently extract low-level features of images and establish long-range dependencies

between modalities [63]. This model has been applied to multi-modal medical image

classification tasks, demonstrating improved performance over traditional methods.

Furthermore, the AFTer-UNet model integrates axial fusion transformers into a U-

Net architecture for medical image segmentation [64]. This design captures both local

and global dependencies in 2D medical images, leading to enhanced segmentation ac-

curacy .

While most transformer-based models have been implemented in 2D settings, re-

search on 3D transformer models remains in early stages. The UNETR model, for

instance, utilizes a transformer as an encoder to learn sequence representations of

input volumes, effectively capturing global multi-scale information [65]. This model

connects the transformer encoder to a decoder via skip connections at different reso-

lutions, following a U-shaped architecture. The UNETR has shown promising results

in multi-organ segmentation tasks. Another notable approach is the SegFormer3D

model, which introduces a lightweight and memory-efficient transformer architec-
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ture for 3D medical image segmentation [66]. SegFormer3D employs a hierarchical

transformer to extract multiscale volumetric features and an all-multilayer percep-

tron (MLP) decoder, which consists of fully connected layers that process and refine

feature representations to generate segmentation masks. This design achieves a signif-

icant reduction in parameter count and computational complexity while maintaining

performance.

Transformer-based architectures, while powerful, typically involve a significantly

higher number of parameters compared to traditional CNNs, which makes them con-

siderably more data-intensive. For example, the original ViT architecture contains

over 85 million parameters, and 3D variants such as UNETR, designed for volumetric

medical image segmentation, include approximately 91 million parameters. Although

these high-capacity models offer exceptional representational power and flexibility,

they also pose a substantial risk of overfitting when trained on limited datasets—an

issue especially relevant in clinical research where annotated imaging data is often

scarce. To address these challenges, lighter-weight architectures like SegFormer3D

have been developed, typically incorporating fewer than 20 million parameters. These

models aim to balance performance and computational efficiency, making them more

practical for medical imaging tasks where large annotated datasets are not always

available. For instance, UNETR was trained on more than 1,000 3D MRI volumes

from the Medical Segmentation Decathlon (MSD) dataset, while SegFormer3D has

shown strong performance on datasets comprising only 100 to 300 3D volumes.

2.3.3 Applications in SCI

Machine Learning has been increasingly applied to SCI research, with studies

primarily focusing on segmentation, diagnostic classification, and prognostication [51].

While these applications have demonstrated promising results, major gaps persist,

particularly in SCI severity assessment based on imaging data, the lack of 3D deep
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learning methods, and insufficient multimodal approaches.

Segmentation

Segmentation has been the primary focus of Machine Learning applications in

SCI, aiming to automate spinal cord and lesion delineation from MRI scans. McCoy

et al. (2019) developed a 2D CNN-based segmentation model to detect spinal cord

contusions in T2-weighted MRI scans [67]. This model processed individual axial

slices rather than utilizing full volumetric information, limiting its ability to capture

spatial injury progression across vertebral levels. The study analyzed data from a

large cohort of 862 participants, of which 65% were able to walk either at discharge

or at one-year follow-up, and 35% were unable to walk, based on FIM motor scores.

Similarly, SCIseg, a deep learning segmentation tool, was designed for spinal cord

and lesion segmentation, but it also relied on 2D processing rather than a fully 3D

approach [68]. The SCIseg model was trained on MRI data from 191 SCI patients ac-

quired from three different sites. The dataset included a heterogeneous mix of lesion

etiologies (traumatic, ischemic, hemorrhagic), spinal levels (cervical, thoracic, lum-

bar), and acquisition protocols (axial/sagittal orientations and isotropic/anisotropic

resolutions). While these methods have improved segmentation accuracy and automa-

tion, they fail to leverage 3D spatial continuity, which is crucial for comprehensive

SCI analysis.

Diagnostic Classification

Machine learning models have been employed to classify SCI based on imaging

and non-imaging biomarkers. However, most classification studies rely on extracted

features rather than end-to-end image-based learning. For instance, Arslan et al.

(2012) utilized SVM and hierarchical clustering analysis to classify SCI patients based

on skin impedance rather than MRI scans [25]. Their study included 15 patients with
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traumatic SCI (13 paraplegic and 2 tetraplegic) and 15 age-matched healthy control

subjects between 18 and 55 years of age. Skin impedance was measured bilaterally at

key dermatomal points spanning from C3 to S1, excluding certain regions (e.g., C2,

L1–L3, S2–S5) due to anatomical or participant limitations. All patients had chronic

traumatic SCI with a duration ranging from 3 to 20 years. Similarly, Tay et al.

(2014) used SVM and k-Nearest Neighbors (KNN) classifiers to analyze FA values as

predictive biomarkers, but these models were trained on precomputed features rather

than raw imaging data [26]. Their study included DTI scans from 14 individuals, 9

patients with spinal cord abnormalities in the cervical region and 5 healthy controls.

DTI images were generated from 26–28 axial slices spanning from the midbrain to

the T1 or T2 spinal cord level, with slices outside the C1–C7 range excluded to

avoid artifacts. These studies demonstrate the potential of Machine Learning for SCI

classification but highlight a critical gap—current approaches largely exclude direct

image-based classification, reducing their ability to generalize across different datasets

and imaging protocols.

Prognostication

Predicting functional outcomes is essential for rehabilitation planning in SCI pa-

tients. Several Machine Learning models have been developed to predict AIS scores

and long-term motor recovery. Okimatsu et al. (2022) implemented a CNN-based

radiomics model to predict one-month neurological outcomes using MRI scans. The

study retrospectively analyzed 215 patients, using a total of 294 sagittal T2-weighted

MR images. These patients all had documented AIS grades at both admission and

one month post-injury. However, their approach relied on extracted radiomic features

rather than learning directly from imaging data [69]. Facchinello et al. (2021) used

regression tree analysis to predict functional recovery based on clinical and demo-

graphic parameters [70]. Their prospective study included 172 hospitalized SCI pa-
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tients, with outcomes quantified using the Spinal Cord Independence Measure (SCIM)

within the first year post-injury. Predictive variables included both continuous inputs

(age, Injury Severity Score, delay before surgery) and categorical features ( trauma

mechanism, energy of injury, neurological level, ASIA grade, early complications such

as spasticity and infections). Two models were developed: a simplified model using

only four predictors (age, ASIA grade, neurological level, energy of trauma), and a

comprehensive model using eleven predictors.

Wiguna et al. (2024) proposed a deep learning model for SCI severity determi-

nation using axial and sagittal T2-weighted MRI scans [27]. Their study aimed to

classify cervical SCI severity by segmenting the spinal cord and analyzing lesion char-

acteristics. The dataset included MRI scans from 294 patients with traumatic and

nontraumatic cervical SCI collected from 2019 to 2022. Two senior resident physi-

cians manually labeled the images, ensuring high-quality ground truth annotations.

The researchers implemented a CNN to process axial and sagittal MRI scans, using

segmentation accuracy metrics such as Dice Score (0.94) and Intersection over Union

(IoU, 0.89) for axial segmentation, and Dice Score (0.92) with IoU (0.85) for sagit-

tal segmentation. Classification accuracy was evaluated using the F1 Score, achiev-

ing 0.72, with an area under the curve (AUC) of 0.79. Their model demonstrated

promising results for identifying SCI severity from MRI images, but it was limited

to T2-weighted MRI and used 2D images rather than a full 3D volumetric approach.

While the study successfully incorporated deep learning into SCI severity assessment,

it lacked multimodal integration, such as DTI or NODDI, and did not leverage 3D

spatial continuity for a more comprehensive evaluation. To the best of our knowl-

edge, this is the only study that has attempted SCI severity assessment directly from

imaging data, highlighting the significant gap in existing literature. This underscores

the need for future research to expand into 3D deep learning models and incorporate

multiple MRI modalities to enhance SCI severity prediction.
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CHAPTER 3

Research Objectives and Approach

3.1 Research Objectives

The overarching goal of this research is to advance the assessment of spinal cord

integrity and injury severity through the integration of advanced multimodal MRI

techniques and machine learning models. This work aims to address the critical

gap in pediatric spinal cord imaging by establishing age-stratified normative quanti-

tative MRI biomarkers, which are essential for distinguishing normal developmental

changes from pathology. Furthermore, this study seeks to develop automated machine

learning-based frameworks to enhance the accuracy and objectivity of SCI severity

assessments, ultimately improving clinical decision-making and patient outcomes. To

achieve these goals, this research is structured around the following specific aims:

Aim 1: Establish Age-stratified Normative Quantitative Structural and

Hybrid Diffusion MRI Biomarker Database of the Pediatric Spinal Cord.

We will collect advanced multi-parametric MRI data, including T1-weighted, T2-

weighted, HYDI, and MTI, from 150 healthy pediatric subjects aged 6 to 17 years.

From the HYDI data, we will estimate DTI, NODDI, and DKI metrics, allowing us to

derive key diffusion properties such as FA, MD, AD, and RD. Additionally, NODDI

metrics such as NDI and ODI, as well as DKI metrics including MK and AK, will

be extracted. These microstructural features, along with macrostructural metrics

like CSA, AP width, and RL width, will be integrated to create a comprehensive

normative database.
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Aim 1 Hypothesis: We hypothesize that structural (CSA, AP, RL widths) and

diffusion (FA, MD, AD, RD, NDI, ODI, MK, AK) MRI biomarkers of the pediatric

spinal cord will exhibit significant linear or nonlinear correlations with age in typically

developing children aged 6–17 years (p < 0.05).

Aim 2: Develop an Integrated Multimodal Machine Learning Framework

for Automated Severity Assessment in Chronic Pediatric SCI.

Building on the normative data from Aim 1, we will integrate structural and

diffusion MRI metrics with demographic variables such as age, gender, and height.

Utilizing extant data from 25 pediatric SCI patients and 150 typically developing (TD)

participants, we will employ machine learning algorithms to analyze the relationships

between extracted imaging biomarkers and clinical outcomes, specifically AIS scores.

By focusing on extracted features, this approach is optimized for the smaller dataset

and allows us to leverage well-defined biomarkers for injury assessment.

Aim 2 Hypothesis: We hypothesize that a multimodal machine learning model

trained on extracted structural and diffusion MRI biomarkers will predict injury sever-

ity in chronic pediatric SCI patients with statistically superior performance compared

to unimodal models. The improvement will be demonstrated through cross-validated

performance metrics, with statistical significance evaluated using paired t-tests or

Wilcoxon signed-rank tests (p < 0.05).

Aim 3: Develop a Machine Learning Model for Severity Assessment Using

Multi-modal MRI in Acute Adult SCI.

We will utilize CNNs enhanced with attention mechanisms to analyze raw struc-

tural MRI and DTI and clinical assessment data in the acute phase for 190 adult

patients with acute SCI. Unlike Aim 2, where extracted imaging biomarkers are used

due to the smaller dataset size, Aim 3 leverages the larger dataset by using raw mul-
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timodal MRI images as input. By directly analyzing the spatial and microstructural

information from the images, the model will predict injury severity and localization,

specifically AIS scores.

Aim 3 Hypothesis: We hypothesize that an end-to-end deep learning model

trained on raw multimodal MRI data from adult acute cervical SCI subjects will

predict injury severity with significantly improved performance compared to single-

modality models. The improvement will be demonstrated through cross-validated

performance metrics, with statistical significance evaluated using paired t-tests or

Wilcoxon signed-rank tests (p < 0.05).

3.2 Significance

Establishing a Pediatric Normative MRI Database

This study represents the first effort to establish a comprehensive pediatric spinal

cord MRI biomarker database, addressing a critical gap in standardized reference

values for spinal cord development. Currently, spinal cord imaging lacks pediatric-

specific normative benchmarks, making it challenging to differentiate normal devel-

opmental variations from pathology [20]. By collecting multimodal MRI data (T2-

weighted, DTI, NODDI, and MTI) from TD children, this project aims to provide

the first large-scale dataset for spinal cord structure and microstructure in pediatrics.

The normative biomarkers derived from this dataset will enable early detection of ab-

normalities and facilitate more precise clinical decision-making [71]. Beyond clinical

applications, this unprecedented dataset will serve as a foundation for future spinal

cord research, enabling novel insights into spinal cord maturation, injury response,

and neurodevelopmental disorders [72].
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Machine Learning for Chronic Pediatric SCI Assessment

In pediatric SCI, injury severity assessment and tracking progression over time

remain challenging due to the complex interplay of demographic and clinical factors

[73]. To date, no prior study has applied machine learning for SCI severity assessment

in pediatric patients. Current clinical assessments rely heavily on subjective tools like

the AIS, which suffer from high inter-rater variability and limited sensitivity to subtle

injury-related changes [73]. This study aims to pioneer the first multimodal machine

learning framework for pediatric SCI, leveraging both structural and diffusion MRI

biomarkers alongside demographic factors to predict SCI severity. Existing machine

learning approaches have focused on diagnostic classification but have not been used

for severity grading in pediatric populations [25, 70]. To address this, our approach

will integrate deep learning with quantitative MRI biomarkers, providing a more

precise and objective severity assessment compared to traditional clinical evaluations.

By combining multiple MRI modalities and using extracted spinal cord features, this

study seeks to offer a novel predictive framework that could enhance personalized

rehabilitation strategies and improve long-term patient management.

Automated Assessment for Acute Adult SCI

Acute SCI demands rapid and precise assessments to inform clinical decisions and

prevent secondary complications. Traditional assessment methods often rely on visual

interpretation of MRI scans, which may overlook subtle changes crucial for prognosis

and treatment planning [51]. While machine learning-based approaches have been

explored for acute adult SCI, only one prior study attempted image-based severity

assessment, and it was limited to 2D image slices and a single MRI modality [27].

This study aims to develop the first 3D multimodal deep learning model for SCI sever-

ity classification using T2-weighted and DTI data. Unlike prior studies that relied

on manually extracted imaging features, our approach will directly process raw mul-
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timodal MRI data through deep learning architectures with attention mechanisms,

enabling a richer representation of spinal cord pathology. By leveraging 3D volumet-

ric data, our model seeks to capture complex spatial relationships along the spinal

cord, improving accuracy and generalizability in predicting AIS severity categories.

This study intends to set a new standard for automated SCI severity assessment,

offering a clinically applicable model that enhances early intervention strategies and

personalized treatment planning.

3.3 Approach

3.3.1 Study Population

The study population consists of both pediatric and adult subjects, categorized

based on their spinal cord condition to align with the specific research aims. All data

collection and retrospective data analysis have received IRB approval from Thomas

Jefferson University Hospital. Sample sizes for each aim were determined based on a

combination of statistical power analyses, precedent in neuroimaging literature, and

requirements for robust machine learning model development, while accounting for

clinical feasibility and population heterogeneity.

For Aim 1, which focuses on establishing a normative pediatric MRI biomarker

database, the study will recruit 150 TD children and adolescents aged 6–17. Partic-

ipants must meet specific inclusion criteria, including the absence of neurological or

musculoskeletal disorders and normal age-appropriate cognitive and motor develop-

ment. Subjects with MRI contraindications, such as metal implants or claustrophobia,

or those with poor image quality due to motion artifacts will be excluded. A power

analysis was conducted to ensure that a sample size of 150 provides sufficient statis-

tical power for the primary analyses. For detecting gender differences in spinal cord

MRI biomarkers using a two-sample t-test, this sample size achieves approximately
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85% power to detect a medium effect size (Cohen’s d = 0.5) at a significance level of

a = 0.05, assuming an approximately balanced gender distribution. Furthermore, to

evaluate associations between age and MRI biomarkers using Pearson correlation, a

sample size of 150 provides 85% power to detect a medium correlation effect (r = 0.35)

at a = 0.05. Therefore, the selected sample size is adequately powered to support the

planned stratified analyses and to assess developmental trends across age and sex.

For Aim 2, which aims to develop an automated framework for severity assess-

ment in chronic pediatric SCI, a total of 175 subjects will be used. This includes 25

pediatric SCI patients who have been recruited and evaluated with structural MRI

and AIS motor scores, and 150 TD children, who are the same subjects recruited

for Aim 1. These subjects will be categorized into three groups: TD, motor incom-

plete SCI, and motor complete SCI. Subjects with unrelated neurological disorders

or MRI scans of insufficient quality will be excluded. Although the number of SCI

subjects is modest, this reflects all available eligible cases with high-quality imaging

and confirmed clinical assessments. A post hoc power analysis indicates that with 25

SCI and 25 TD subjects, we are powered (80%) to detect large effect sizes (Cohen’s

≥ 0.8) at a = 0.05. The assumption of a large effect size is justified based on our

preliminary analyses, which reveal marked structural differences between healthy and

motor-impaired pediatric populations. These differences are particularly pronounced

in spinal cord cross-sectional area and diffusion metrics, variables known to vary

substantially between TD and SCI groups. Moreover, multiple recent deep learning

studies have demonstrated effective modeling using similarly sized datasets. For in-

stance, a CNN-based method was successfully trained for voxel placement in brain

tumors using 125 glioma patients (Lee et al., 2023), and a V-Net-based model for 7T

MRI synthesis was trained on just 18 paired 3T–7T scans (Cui et al., 2023)[74, 75].

Similarly, a classifier trained on 83 Traumatic Brain Injury patients and 40 controls

achieved over 92.8% accuracy by leveraging data augmentation strategies [76]. These
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examples support the feasibility of Aim 2’s classification task with the available data.

For Aim 3, which focuses on severity assessment in acute adult cervical SCI, a total

of 190 adult subjects who have been retrospectively identified and collected will be

used. These participants presented to the Jefferson Hospital Emergency Department

between 2010 and 2019 following acute traumatic SCI. All underwent MRI within

1–24 hours post-injury and were evaluated with complete AIS assessments, providing

representation across AIS grades A through D for a four-class classification task. All

imaging data were acquired as part of routine clinical care and have been repurposed

for research under IRB approval. No external or public datasets will be used. Eligible

participants must have acute traumatic SCI at cervical levels (C1–C8), confirmed

through clinical and radiological evaluations. Exclusion criteria encompass severe

comorbidities that impact spinal function and incomplete or low-quality imaging data.

A one-way ANOVA power analysis with four groups (assuming a moderate effect size,

f=0.55, α = 0.05, and power = 0.8) suggests a minimum of 161 subjects, which our

dataset exceeds. The assumption of a moderate-to-large effect size is reasonable, given

the known structural and functional disparities across AIS grades in the acute phase

of injury. Additionally, several deep learning studies have demonstrated successful

model development for medical imaging tasks using datasets with fewer than 250

subjects [69, 70].

3.3.2 Data Acquisition

MRI data acquisition will follow standardized protocols to ensure uniformity and

reproducibility across the study population. All imaging will be performed using

a 3 Tesla Siemens Prisma MRI scanner at Jefferson Hospital, utilizing sequences

optimized for spinal cord assessment. Imaging protocols differ between pediatric and

adult cohorts, with pediatric subjects undergoing comprehensive multimodal imaging

and adult data retrospectively collected from Jefferson’s SCI archive.
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For pediatric subjects (Aim 1, and 2), the following sequences will be ac-

quired:

• T1-weighted imaging: Acquired in two slabs covering C1 to T11 with overlap

to ensure seamless stitching. Imaging parameters include TR = 2000 ms, TE

= 3.72 ms, and slice thickness = 1 mm. The acquisition matrix is 192 × 260 ×

320, with a 0.5 mm isotropic resolution, providing high anatomical detail.

• T2-weighted imaging: Performed in two slabs spanning C1 to T11 with over-

lap to facilitate segmentation and vertebral level labeling. Parameters include

TR = 1500 ms, TE = 120 ms, and slice thickness = 0.8 mm. The acquisi-

tion matrix is 64 × 320 × 320, ensuring high spatial resolution for structural

analysis.

• HYDI: Acquired in two slabs covering C1 to T11 with overlap to maintain

consistency across levels. Data are collected with multi-shell b-values of 0, 800,

1000, and 2000 s/mm², using an acquisition matrix of 100 × 40 × 48 with a

slice thickness of 5 mm.

• MTI: Acquired with and without off-resonance magnetization transfer pulses

at a frequency shift of 1000 Hz. Imaging parameters include TR = 35 ms, TE

= 3.13 ms, and slice thickness of 5 mm. The acquisition matrix is 256 × 256 ×

22, enabling the calculation of MTR for assessing myelin integrity.

For adult subjects (Aim 3), MRI data will be retrospectively collected from

Jefferson’s SCI archive, including patients with acute cervical SCI (within 1–24 hours

post-injury). The following sequences will be extracted:

• T2-weighted imaging: Acquired in one slab covering C1 to T1, with TR =

1500 ms, TE = 120 ms, and 0.8 mm isotropic resolution. The acquisition matrix

is 256 × 256 × 58, ensuring high anatomical precision.
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• DTI: Performed in one slab covering C1 to T1, with 32 diffusion directions and

a b-value of 800 s/mm². The acquisition matrix is 256 × 256 × 58.

Additionally, all pediatric SCI subjects will undergo the AIS assessment on the

day of their MRI scan, while the assessment has already been completed for adult

SCI subjects at the day of their MRI scan. This evaluation provides crucial clinical

data, enabling direct correlation between neuroimaging biomarkers and functional

impairment.

3.3.3 Pediatric Data Preprocessing and Feature Extraction

The data preprocessing pipeline is designed to ensure consistency, accuracy, and

reproducibility of extracted quantitative MRI features across different imaging modal-

ities. The pipeline is divided into three main stages: (1) Structural Image Prepro-

cessing, which processes T1- and T2-weighted images for anatomical reference and

structural biomarker extraction; (2) Diffusion Image Preprocessing, which processes

HYDI data to extract advanced diffusion metrics; and (3) MTI Preprocessing, which

computes MTR values to assess myelin integrity. All preprocessing steps align the

data to the T2-weighted structural reference, enabling region-specific feature extrac-

tion from C1 to T11.

Structural Image Preprocessing: T1- and T2-Weighted Images

T1- and T2-weighted images serve as the structural reference for all other

imaging modalities, providing a foundation for extracting morphometric features and

enabling the alignment of advanced imaging sequences. The preprocessing pipeline,

as shown in Figure 6, follows these steps:

1. Stitching of Multi-Slab Acquisitions: Since T1 and T2 acquisitions are

collected in multiple slabs to optimize resolution and coverage, we first stitch
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Figure 6: Pediatric Structural MRI preprocessing pipeline including stitching, seg-
mentation, and vertebral labeling (C1–T11). Shape analysis extracts mor-
phometric features, while template registration aligns data to the PAM50
spinal cord template for standardized analysis.

the slabs together into a continuous spinal cord volume. This ensures that

the entire cervical and upper thoracic spinal cord (C1–T11) is available for

segmentation and analysis.

2. Automated Spinal Cord Segmentation: The Spinal Cord Toolbox (SCT)

is used to segment the spinal cord from surrounding tissues [77]. Two segmen-

tation methods are applied, and a quality control step ensures that the best

segmentation result is selected for further analysis.

3. Vertebral Level Labeling: Vertebral levels from C1 to T11 are assigned.

This step ensures consistent feature extraction across all subjects.

4. Registration of PAM50 Template to Structural Images: To enable stan-

dardized anatomical analysis, each subject’s T2-weighted spinal cord image is

registered to the PAM50 spinal cord template using the SCT [77, 78]. The reg-

istration process begins with automatic centerline detection, leveraging a deep

learning-based model trained to accurately localize the spinal cord center. A

rigid transformation is first applied to correct for gross differences in position

and orientation between the subject image and the PAM50 template, followed
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Figure 7: Diffusion MRI Processing Pipeline for Spinal Cord Imaging. The pipeline
includes motion correction, shell restriction, and tensor estimation to derive
FA for a single slab. Segmentation and coregistration align FA maps to the
T2-weighted image and PAM50 template. FA values are extracted per
vertebral level, then aggregated across slabs for C1–T11 coverage. The
same process applies to other diffusion metrics.

by an affine transformation to account for inter-subject differences in scale and

shear. Subsequently, a slice-wise nonlinear registration is performed along the

spinal cord axis to finely warp each axial slice to the corresponding region of

the template, allowing for localized anatomical alignment [79]. This allows us

to bring all extracted features into a common anatomical space and generate

white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) masks

for precise tissue-based analyses.

5. Extraction of Structural MRI Features: From the preprocessed and la-

beled T2-weighted images, we extract key morphometric biomarkers at each

vertebral level (C1–T11), including CSA, AP diameter, and RL diameter.

Diffusion Image Preprocessing: HYDI

The preprocessing pipeline for HYDI data includes the following steps:

1. Motion Correction: Datasets are corrected for subject motion and eddy cur-

rent distortions to ensure accurate alignment of diffusion-weighted images.

2. Shell Restriction: The relevant shells in the HYDI dataset are used to es-

timate DTI, NODDI, and DKI images, each of which provides unique insights
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into spinal cord microstructure.

3. Tensor/Metric Estimation: From the diffusion models, we estimate the fol-

lowing metrics: DTI metrics include FA, MD, AD, and RD; NODDI metrics

include NDI and ODI; and DKI metrics include MK, AK, and RK.

4. Segmentation and Coregistration: Each diffusion-derived metric is seg-

mented to isolate the spinal cord and registered to the T2-weighted image.

This ensures that all features are analyzed in the T2 space and aligned with the

PAM50 template for standardized analysis.

5. Extraction at Each Vertebral Level: After coregistration, all extracted

parameters (FA, MD, AD, RD, NDI, ODI, MK, AK, and RK) are quantified at

each vertebral level from C1 to T11.

Figure 7 illustrates the processing pipeline for a single imaging slab, specifically

for FA extraction as an example. The same pipeline is applied to the second slab, and

the results are aggregated to generate a complete C1 to T11 dataset. Additionally,

this process is identical for extracting other diffusion tensor metrics (e.g., MD, AD,

RD) as well as NODDI and DKI estimates, ensuring a comprehensive analysis of

spinal cord microstructure.

MTI Preprocessing

The preprocessing pipeline for MTI includes the following steps:

1. Correction for B0/B1 Field Inhomogeneities: Spatial variations in the

magnetic field are corrected to ensure accurate magnetization transfer ratio

(MTR) calculations.

2. Segmentation and Coregistration: MTI images are aligned to the T2-

weighted image and segmented to isolate spinal cord regions. This step ensures
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that MTR values are computed within the spinal cord boundaries.

3. MTR Computation: The MTR is calculated at each vertebral level, providing

a quantitative measure of myelin content and macromolecular integrity.

By applying this rigorous preprocessing pipeline, all extracted quantitative MRI

metrics are aligned to the T2 structural reference, allowing precise region-specific

feature extraction from C1 to T11.

3.3.4 Adult Data Preprocessing

For Aim 3, the preprocessing pipeline is designed to prepare T2-weighted and DTI

data for image-based machine learning models. Unlike the pediatric pipeline, feature

extraction is not performed directly; instead, the preprocessed images are used as

inputs for training deep learning models. The pipeline consists of the following steps:

1. DTI Motion Correction: DTI datasets are corrected for subject motion

and eddy current distortions to ensure accurate alignment of diffusion-weighted

images.

2. DTI Feature Extraction: FA, MD, AD, and RD are computed from the DTI

data.

3. DTI and T2 Segmentation: The spinal cord is segmented from surrounding

tissues in all images.

4. DTI and T2 Registration: The DTI-derived metrics (FA, MD, AD, RD) are

registered to the corresponding T2-weighted image. This ensures that all data

is analyzed in the T2 space.

Figure 8 illustrates the preprocessing steps for FA extraction, following a structured

workflow to ensure consistency and accuracy. The same pipeline is applied to all

other diffusion metrics, including MD, AD, and RD.
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Figure 8: Adult Spinal Cord MRI Preprocessing Pipeline. The figure illustrates the
pipeline for FA extraction, with the same steps applied to other diffusion
metrics (MD, AD, RD). The process includes motion correction, feature
extraction, segmentation, and registration to align all metrics to the T2-
weighted image for deep learning model training.

3.3.5 Statistical Analysis

The statistical analysis will focus on establishing normative quantitative MRI

biomarkers for the pediatric spinal cord, supporting Aim 1 of this study. The ex-

tracted features from T2-weighted imaging, diffusion models (DTI, NODDI, and

DKI), and MTI will be analyzed at each vertebral level from C1 to T11. Extracted

features will be reported separately for each age group, allowing for a detailed assess-

ment of spinal cord development across childhood and adolescence.

For each MRI-derived parameter, means, standard deviations, and confidence in-

tervals will be computed for every age group (6–17 years). These statistics will be

further stratified by sex to account for anatomical and demographic variations. The

extracted values will be presented in tabular format summarizing age-specific distri-

butions and illustrated using line plots to visualize trends in spinal cord maturation.

To assess significant differences in MRI biomarkers across age groups and between

sexes, data distributions will be evaluated using the Shapiro–Wilk test. Depending on

normality, parametric tests (one-way ANOVA, t-tests) or non-parametric tests (e.g.,

Kruskal–Wallis, Mann–Whitney U) will be conducted.

Associations between continuous demographic variables (age, height) and MRI
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biomarkers will be analyzed using Pearson correlation for normally distributed data

and Spearman’s rank correlation otherwise. Multiple linear regression models will be

used to assess joint effects of demographic predictors (age, height, sex) on MRI out-

comes, controlling for potential confounders. Results will be considered statistically

significant at p ¡ 0.05, and effect sizes will be reported to interpret the magnitude of

effects and practical significance of observed effects.

3.3.6 Machine Learning Model Development

To develop an automated framework for AIS severity assessment, machine learning

models will be tailored to the extracted biomarkers for pediatric SCI (Aim 2) and

imaging data for adult SCI (Aim 3). These models will leverage CNNs and attention

mechanisms to classify spinal cord injury severity based on structural and diffusion-

derived quantitative features or directly from MRI images.

For Aim 2, our objective is to classify AIS severity into two categories, motor

complete (AIS A, B) and motor incomplete (AIS C, D), by leveraging a set of quanti-

tative imaging features extracted from spinal cord data. The imaging features consist

of structural measurements and diffusion metrics derived from T2-weighted and DTI

images, respectively. Specifically, the structural features include the CSA, AP width,

and RL width obtained from T2-weighted images. The diffusion metrics include FA,

MD, AD, and RD. These features are extracted at each vertebral level from C1 to

T11, yielding a feature matrix that encapsulates the spatial distribution of both the

spinal cord’s morphology and its microstructural integrity.

Initially, the extracted imaging features are organized into a feature matrix X ∈

RL×F , where L denotes the number of vertebral levels (e.g., L = 11 for C1 through

T11) and F is the number of imaging features per level (with F = 7 in this case).

This matrix serves as the sole input to the first stage of our model, which is designed

to learn the spatial relationships along the spinal axis.
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Figure 9: CNN Architecture for Aim 2 - Automated Severity Assessment in Pediatric
SCI. The proposed framework for processes extracted structural and dif-
fusion features along C1 to T11 through multiple convolutional and pool-
ing layers to extract hierarchical features. These extracted features are
then combined with demographic information and passed through fully con-
nected layers to predict the severity of SCI.

To capture these spatial dependencies, a one-dimensional (1D) CNN is employed.

The 1D CNN processes the feature matrix as a sequential signal along the vertebral

levels. Pooling layers are interleaved between convolutional layers to downsample

the feature maps, thereby increasing the receptive field and capturing both local and

global patterns across spinal levels.

Following the convolution and pooling stages, the resulting high-level feature maps

are flattened into a one-dimensional feature vector. At this point, the demographic

information including age, gender, and height is concatenated to the CNN-derived

feature vector. This approach ensures that the rich spatial information extracted

from the imaging data is augmented with important patient-specific factors, thereby

providing a more comprehensive representation for classification.

The combined feature vector is then forwarded to a series of fully connected lay-

ers that serve to integrate the information from both the imaging and demographic

domains. The final layer of the network employs a softmax activation function to

produce a probability distribution over the two AIS categories (motor complete and
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motor incomplete) and TD. The overall architecture for Aim 2 is illustrated in Figure

9.

To address class imbalance and improve model generalizability, data augmenta-

tion techniques are applied during training. Specifically, Gaussian noise injection,

where random noise sampled from a Gaussian distribution is added to the imaging

features, and feature scaling are employed to simulate measurement variability and

enhance the diversity of training samples. Depending on the degree of imbalance,

additional strategies such as weighted loss functions, or oversampling of minority

classes may be implemented to ensure robust performance across all categories. Fur-

thermore, regularization techniques, including dropout in fully connected layers and

L2 regularization (weight decay), are used to mitigate overfitting. Model parameters

are optimized using an adaptive optimization algorithm that dynamically adjusts the

learning rate throughout training.

For Aim 3, we propose a comprehensive 3D multimodal deep learning model

to classify AIS grades (A, B, C, D) from coregistered T2-weighted and DTI images

(including FA, MD, AD, and RD maps). The overarching objective is to capture both

the global spatial context and the fine microstructural characteristics of the spinal

cord. The input data consist of a composite volumetric dataset where each voxel is

represented by multiple channels corresponding to different imaging contrasts. Specif-

ically, the input volume X ∈ RH×W×D×C , has spatial dimensions H, W , D and C

channels (with C = 5 representing T2, FA, MD, AD, and RD). Prior coregistration of

the T2 and DTI images ensures that each voxel is spatially aligned across modalities,

which is critical for accurately capturing the anatomical and microstructural details

of the spinal cord.

Given the high dimensionality of the 3D data and the potential for redundant

information, an autoencoder is integrated into the model to perform dimensionality

reduction and feature compression. In our approach, the encoder fθ(·) is constructed
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Figure 10: Deep Learning Framework for Aim 3 - Severity Assessment in Acute Adult
SCI. The proposed model integrates multimodal MRI data through a deep
learning pipeline. A convolutional encoder extracts hierarchical spatial
representations, followed by a multi-headed attention mechanism to cap-
ture long-range dependencies. A fully connected layer then classifies injury
severity, while a deconvolutional layer enables feature reconstruction for
interpretability.

using several 3D convolutional layers with non-linear activation functions (e.g., ReLU)

that progressively reduce the spatial dimensions while increasing the feature depth.

This transformation results in a compact latent representation z = fθ(X), z ∈

Rh×w×d×k, where h ≪ H, w ≪ W , d ≪ D, and k denotes the number of latent

feature channels. During a pretraining phase, a decoder is employed to reconstruct

the input from z. This step ensures that the latent space effectively captures the

most salient and discriminative features while discarding noise and redundancy.

Following dimensionality reduction, the latent representation is fed into a 3D

CNN that extracts hierarchical spatial features. The 3D CNN comprises a series of

convolutional layers that apply volumetric filters to learn local patterns and textures.

These convolutional layers are interleaved with 3D pooling layers, which gradually

reduce the spatial resolution of the feature maps and allow the network to capture

more abstract, global features indicative of the spinal cord’s structural integrity. This
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hierarchical feature extraction is fundamental to learning both low-level details and

high-level anatomical structures relevant to AIS classification.

To further enhance model interpretability and to ensure that the network empha-

sizes clinically pertinent regions, an attention mechanism is incorporated. A dedi-

cated attention subnetwork processes the CNN-derived feature maps and produces a

3D attention map using additional convolutional layers followed by a softmax acti-

vation function. This attention map is then applied via element-wise multiplication,

which effectively amplifies regions with high clinical relevance while suppressing less

informative areas.

Subsequently, the refined feature maps are flattened and passed through one or

more fully connected layers to aggregate the extracted features. The final classification

layer utilizes a softmax activation function to output a probability distribution over

the four AIS grades. The network is trained using a cross-entropy loss function.

To mitigate overfitting and improve generalizability, regularization techniques are

applied throughout the network. Batch normalization is implemented after convo-

lutional layers to stabilize the training process, dropout is introduced in the fully

connected layers to reduce co-adaptation among neurons. The optimization is car-

ried out using an adaptive algorithm which dynamically adjusts the learning rate

based on the gradients during training. This framework aims to enhance automated

severity assessment in acute spinal cord injury by leveraging multimodal MRI data,

deep feature extraction, and attention mechanisms, as illustrated in Figure 10.

3.3.7 Ethical Considerations

Ethical considerations are paramount in this study to ensure compliance with

institutional guidelines and protect participant welfare. All study procedures will ad-

here to the principles outlined in the Declaration of Helsinki and will be reviewed and

approved by Institutional Review Boards (IRBs) at participating institutions. In-
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formed consent will be obtained from all participants or their legal guardians prior to

enrollment, with detailed explanations of study objectives, procedures, and potential

risks.

To maintain participant confidentiality, all MRI and clinical data will be anonymized

and stored in a secure database with restricted access. Participants will have the right

to withdraw from the study at any time without consequences. Special attention will

be given to ensuring the ethical inclusion of pediatric participants, with assent ob-

tained in addition to parental consent. Regular monitoring and compliance checks

will be conducted to uphold ethical standards throughout the study duration.
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CHAPTER 4

Preliminary Results and Future Works

This chapter presents the preliminary results obtained from the ongoing study

across all three specific aims, along with the planned future work. The analyses

performed thus far provide insights into normative spinal cord structure in pediatric

populations, machine learning-based classification of pediatric SCI, and preprocessing

of acute adult SCI data for future classification tasks.

Aim 1: Establishing Normative Pediatric MRI Biomarker

Database

To date, we have collected MRI data from 127 TD pediatric subjects. The de-

mographic distribution of the TD cohort is summarized in Figure 11. The cohort

includes 72 females and 55 males, with ages ranging from 6 to 17 years. For all

scanned subjects, T2-weighted and DTI images were analyzed to extract quantitative

biomarkers, including structural metrics (CSA, AP width, RL width) and diffusion

metrics (FA, MD, AD, RD). Figures 12 and 13 illustrate an example analysis for a

single subject. These measurements were extracted across C1 to T11 vertebral lev-

els using the SCT toolbox [77]. Statistical analyses examined the influence of age

and gender on spinal cord dimensions. We assessed correlations between CSA, AP

Width, and RL Width with age and gender at each vertebral level. The analysis

revealed strong age-related correlations for CSA and RL width across upper cervical

levels. For instance, at vertebral level C1, CSA showed a correlation coefficient of

r = 0.50 (p < 0.0001), and RL width r = 0.41 (p = 0.001). Similarly, at C2, CSA
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Figure 11: The distribution of TD pediatric subjects by age (6–17 years) and sex
(female and male). The total number of subjects is 127, with 72 females
and 55 males.

Figure 12: T2-Weighted MRI Analysis for Aim 1 – Spinal Cord Segmentation and
CSA Measurements. From left to right: T2-weighted sagittal MRI, Auto-
mated spinal cord segmentation, Vertebral-level labeling from C1 to T11,
CSA extraction along the spinal cord.
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Figure 13: DTI Analysis for Aim 1 – FA Measurements in the Pediatric Spinal Cord.
(a) Raw sagittal HYDI image. (b) Estimated FA map. (c) Automated
spinal cord segmentation overlay. (d, e) FA map overlaid on T2-weighted
MRI, highlighting microstructural features from C1 to T11. (f) Cross-
sectional FA maps at different vertebral levels, with WM and GM seg-
mentations used for extracting FA values in each region.

correlated with age at r = 0.49 (p < 0.0001) and RL width at r = 0.56 (p < 0.00001).

Gender-based comparisons showed that males consistently exhibited larger CSA and

RL widths. Notably, at C2, the RL width difference between males and females was

statistically significant (p = 0.033), and similar trends were observed across neighbor-

ing levels. These findings emphasize the importance of considering both age and sex

when establishing normative reference values for pediatric spinal cord morphology.

Figure 14 illustrates the average CSA, AP width, and RL width of the spinal cord

across vertebral levels, stratified by gender. The analysis included 72 female and 55

male subjects, with average ages of 12.66 ± 3.40 and 12.32 ± 3.23 years, respec-

tively. Across nearly all vertebral levels, males exhibited slightly larger structural

measurements than females, particularly in the cervical and upper thoracic regions.

This trend is most pronounced in the CSA and RL measurements, where the male

group showed visibly higher values than females, especially between C1 and C6. The
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Figure 14: Gender-based comparison of spinal cord structural measures across verte-
bral levels. The plots show the average AP width, RL width, and CSA of
the spinal cord for male (n = 55) and female (n = 72) pediatric partici-
pants.

AP width showed a less consistent but still slightly elevated pattern in males. The

CSA plot reveals a characteristic dip in values around the cervicothoracic junction

(C6–T1), followed by a gradual increase in the thoracic levels, consistent with known

anatomical transitions. The RL diameter plot exhibits similar anatomical curvature,

with peak widths in upper cervical regions and narrowing in thoracic segments.

Moving forward, we will continue collecting data to reach a total of 150 TD sub-

jects. Our focus will be on increasing the representation of 6- and 7-year-old children,

as well as male subjects, to ensure a balanced dataset that captures early devel-

opmental changes in spinal cord morphology. Additional analyses will incorporate

DKI, NODDI, and MT imaging to further characterize microstructural and myelin-

59



related changes in the spinal cord. Further investigation into age- and gender-specific

variations in spinal cord biomarkers will be conducted by stratifying the cohort by

biological sex and discrete age groups. Structural and microstructural MRI metrics

will be compared across these subgroups to evaluate developmental trajectories and

sex-based differences. To facilitate reproducibility, all de-identified imaging-derived

features and associated demographic variables will be made publicly available upon

study completion and publication.

Aim 2: Machine Learning-Based Classification of Pediatric

SCI Severity

To assess spinal cord injury severity in pediatric patients, we have collected MRI

data from 25 SCI subjects, in addition to the TD cohort. These data allow for direct

comparisons between injured and healthy spinal cords, facilitating the extraction of

discriminative imaging biomarkers for machine learning applications. Structural and

diffusion metrics from T2-weighted and DTI imaging were analyzed to assess differ-

ences between TD and SCI subjects. Initial analyses revealed significant reductions

in CSA and FA in SCI subjects indicating compromised microstructural integrity.

A deep learning-based classification model was developed using 60 TD and 20

SCI subjects to distinguish SCI severity based on T2-weighted MRI features. We

implemented a CNN-based model trained on extracted spinal cord structural features,

including CSA, RL width, and AP width. The CNN architecture, illustrated in

Figure 15, consists of multiple convolutional layers for feature extraction, followed

by fully connected layers and a final softmax classification layer. The model was

trained using the Adam optimizer, with categorical weighted cross-entropy as the

loss function. Training was performed for 50 epochs with early stopping to prevent

overfitting, using an 80-20 train-test split.
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Figure 15: CNN architecture used for pediatric SCI classification. The model consists
of three convolutional layers (3×3 kernel) with increasing filter sizes (32,
64, and 128), each followed by max pooling. Extracted features are passed
through fully connected layers and a softmax classifier for final prediction.

Although the number of SCI subjects is limited, we took multiple steps to mitigate

overfitting and ensure generalizability. We used a relatively lightweight architecture (

with near 40K parameters), incorporated early stopping, and monitored both training

and validation loss to avoid overfitting. The loss function was weighted to account for

class imbalance, and the data split (80–20) ensured that test samples were entirely

unseen during training.

To evaluate the CNN’s performance, we compared it against traditional machine

learning classifiers, including RF and SVM. These models were trained on the same

extracted spinal cord features without deep feature learning. Model performance

was assessed using accuracy, sensitivity, specificity, and F1-score. The CNN model

significantly (p < 0.05) outperformed traditional classifiers, achieving an accuracy

of 96.59% (95% CI: 94.50%–98.68%) in distinguishing SCI from TD subjects. In

contrast, the Random Forest and SVM models achieved 85.32% and 89.47% accuracy,

respectively. The CNN also demonstrated superior sensitivity (94.87%) and specificity

(97.89%), highlighting its ability to effectively classify pediatric SCI. The results

indicate that deep learning captures complex spatial dependencies in spinal cord
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morphology that traditional models are unable to leverage.

Building on this binary classification, we extended the model to a clinically rel-

evant three-class problem: TD, motor complete (AIS A/B) SCI , and motor incom-

plete (AIS C/D) SCI. Using the same CNN architecture and spinal cord features,

the model achieved 94.92% accuracy (95% CI: 92.10%–97.74%) on the test set. The

model demonstrated strong performance across all severity categories, including near-

perfect precision for AIS A and B groups, and substantially outperformed traditional

models, including Random Forest (74.00%) and SVM (68.89%).

These results highlight the value of spinal cord structural features as biomark-

ers for SCI severity and demonstrate the power of CNNs in modeling these complex

spatial relationships. Future work will focus on integrating additional imaging modal-

ities, particularly diffusion and microstructural metrics from DTI, to further improve

severity prediction and generalizability.

Aim 3: Preprocessing of Acute Adult SCI Data for Classifi-

cation

To facilitate automated severity classification in acute adult SCI, we have com-

pleted comprehensive data preprocessing on MRI scans from 190 adult SCI subjects.

This preprocessing ensures high-quality, standardized inputs for deep learning models

by addressing image artifacts, aligning structural and diffusion images, and extracting

relevant biomarkers.

The preprocessing pipeline began with motion correction to minimize artifacts

in diffusion-weighted images, ensuring consistency in DTI-derived metrics. Follow-

ing motion correction, segmentation and vertebral labeling were performed using the

Spinal Cord Toolbox (SCT), enabling accurate localization of spinal levels from C1 to

T11. After segmentation, DTI parameter estimation was conducted to generate FA,
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MD, AD, and RD maps, providing diffusion-based insights into spinal cord integrity.

These maps were then coregistered with T2-weighted images to align structural and

microstructural data spatially, ensuring multimodal consistency across subjects. Fi-

nally, a rigorous quality control process was implemented to verify segmentation

accuracy and diffusion metric integrity, removing any low-quality scans that could

compromise classification performance.

The completion of this preprocessing pipeline has resulted in a high-quality dataset,

ready for deep learning-based severity assessment. This dataset will serve as the

foundation for training classification models capable of distinguishing between dif-

ferent levels of SCI severity. The next step involves integrating this dataset into a

multi-modal learning framework, incorporating both T2-weighted and DTI metrics

to develop models for predicting AIS severity categories in acute SCI patients.

Future Work

Building upon the preliminary findings, future work will focus on expanding data

collection, developing machine learning models, and integrating multimodal MRI

data. The planned research directions are outlined in Table 1, which presents the

structured timeline for completing the remaining research tasks. For Aim 1, data

collection will continue until October 2025, with image preprocessing occurring si-

multaneously. After October 2025, we will begin benchmark generation and the

establishment of normative values based on extracted biomarkers. This will be fol-

lowed by statistical analysis to identify age, height, and gender-related patterns in

spinal cord biomarkers. We expect to complete this aim by November 2025.

For Aim 2, while data collection for Aim 1 continues, we will begin developing

machine learning models using the currently available data for both TD vs. SCI clas-

sification and SCI severity prediction, starting in July 2025. This initial development

phase will allow us to have a functional model ready by the time data collection is
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complete. Once the full dataset is available, we will retrain and further improve the

model using the complete data. We expect to complete this aim by January 2026.

In Aim 3, the primary focus will be on a stepwise model development approach

for acute adult SCI severity classification. Initially, we will develop simple, single-

modality baseline models, starting with CNN-based architectures trained on T2-

weighted and DTI images separately. Once these models are established, the next

phase will involve multimodal integration, combining structural and diffusion images

to improve predictive performance. Finally, we will develop advanced models incor-

porating attention mechanisms and convolutional autoencoders for multimodal SCI

severity classification. We expect to complete this aim by September 2025.

The final phase of the dissertation will focus on thesis writing, revisions, and

defense preparation. Thesis drafting will begin in September 2025, with results from

each aim progressively integrated as they are finalized. Revisions and feedback will
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start in December 2025, ensuring continuous refinement. The final defense is expected

to take place in March 2026, followed by necessary revisions and submission.
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in Parkinson’s disease. Abstract accepted at ASNR 2025.
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Pre- and postoperative cross-sectional and diffusion measurements distal from

spinal cord injury site. Abstract accepted at ASNR 2025.

67



CHAPTER 5

Conclusion

This proposal presents a novel approach to SCI assessment by integrating ad-

vanced MRI techniques and machine learning models across pediatric and adult pop-

ulations. It is structured around three specific aims, each addressing critical gaps in

SCI evaluation: establishing a pediatric normative MRI biomarker database, devel-

oping a machine learning-based severity classification framework for pediatric SCI,

and creating an automated severity assessment model for acute adult SCI using mul-

timodal MRI.

The first aim pioneers the development of the first pediatric spinal cord MRI

biomarker database, filling the gap in standardized reference values. This dataset will

provide a critical foundation for early diagnosis and monitoring of pediatric SCI. The

second aim introduces the first machine learning approach to pediatric SCI severity

classification. Traditional assessments like AIS suffer from subjectivity, whereas this

study employs deep learning models for automated classification. The third aim

advances acute adult SCI assessment by developing the first 3D multimodal deep

learning model for severity grading. Unlike prior studies that rely on 2D image slices

or single-modality approaches, this study processes full volumetric data from a large

acute adult SCI dataset.

This research addresses major gaps in SCI assessment by integrating multimodal

MR imaging, machine learning, and objective severity prediction models. The pre-

liminary results validate the feasibility of machine learning-based models for SCI

classification and severity assessment, demonstrating superior performance compared

68



to traditional classifiers. The proposed methodologies will enhance SCI diagnosis,

improve prognostic accuracy, and optimize treatment planning, reducing reliance on

subjective clinical evaluations.
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[68] Enamundram Naga Karthik, Jan Valošek, Andrew C Smith, Dario Pfyffer, Simon
Schading-Sassenhausen, Lynn Farner, Kenneth A Weber, Patrick Freund, and
Julien Cohen-Adad. Sciseg: Automatic segmentation of intramedullary lesions
in spinal cord injury on t2-weighted mri scans. Radiology: Artificial Intelligence,
7(1):e240005, 2024.

[69] Sho Okimatsu, Satoshi Maki, Takeo Furuya, Takayuki Fujiyoshi, Mitsuhiro Kita-
mura, Taigo Inada, Masaaki Aramomi, Tomonori Yamauchi, Takuya Miyamoto,
Takaki Inoue, et al. Determining the short-term neurological prognosis for acute
cervical spinal cord injury using machine learning. Journal of Clinical Neuro-
science, 96:74–79, 2022.
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