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① Range Anxiety 

Addressing Barriers to Electric Vehicle Adoption

② Slow Charging Times

2/44

[m
ill

io
n

]

[%
]

[%
]

[s] [s]



© Temple University, DSLab

• Introduction
− Significance of State-of-Charge dynamics (range anxiety)
− Implications of Fast-charging (slow charging times)
− State-of-the-art methods
− Our proposed solution

• Methodology 
− Generic approach
− Introducing domain knowledge to the models
− Improve the modeling technique: Hyperparameter tuning and Monte Carlo search
− Adaptive Learning and Optimization Approach

• Implementation and Results
− Modeling using experimental data
− Optimal Charging Strategy

• Summary and Future Work

Outline
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INTRODUCTION
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Motivation: Range Anxiety

Motivation
• Barriers to EV adoption: range anxiety

o Fear of lacking enough energy to reach a destination
o Due to uncertainty in range predictions

• Increased demand for advanced BMS 
o BMS (battery management system)

• Need knowledge of the battery state for increased performance/safety
o SOC (state of charge): akin to the fuel gauge on conventional vehicles

• Direct measurements of SOC are not possible
• SOC must be obtained from available battery measurements

o Electrical current 𝐼, voltage 𝑉, temperature 𝑇

Objective
• Develop accurate, efficient and control-oriented SOC models
• Capitalize on access to battery Input/Output data

o Achieve high performance, improved operational safety, extended longevity

SOC: charge
     level

Range Anxiety

Fuel Gauge
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Motivation: Slow Charging Times

Motivation

• EV adoption is hindered by slow charging times

• Level 2 chargers (240V) are most common
o US-DOT: 10-hours to charge EV (0% - 80%)

• Charging EV takes much longer than refueling ICEV
o ICEV (internal combustion engine vehicle)

• Demand for improved battery technologies
o minimize charge time, maintain safe operation

Objective

• Charging strategy to increase performance & mitigate aging

• Test efficacy of our solution
o Manufacturer recommended charging procedure

o Alternative fast-charging procedure
6/44

Slow Charging Times

Level 2 chargers: common in home, 
workplace, and public settings

transportation.gov
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https://www.energy.gov/node/2697942

Lithium-ion Battery

System of Interest: Li-ion Battery (LiB)

• Complex nonlinear dynamical system

– Varying operating modes (temperature), Degradation (capacity fade)

Objective 

• Charge battery as fast as possible

• Need advanced controls to optimize performance & safety

• Need accurate knowledge of battery state (e.g., SOC)

Challenges

• LiB cycle-life is influenced by charging protocol

• Trade-off between charging-speed and lifespan

• Fast-charging risks: high currents, high temperatures

• High temperatures result in thermal degradation 

– deterioration of battery performance and lifespan

– electrolyte decomposition, lithium plating, side reactions

[1] Doyle, M., et al. Modeling of galvanostatic charge 

and discharge of the lithium/polymer/insertion cell.

7/44

• Accurate modeling often requires physics-based methods [1]

– Has high computational complexity: not suited for real-time

– High modeling cost: needs knowledge of battery composition 

https://www.energy.gov/node/2697942
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Literature Review: Passive Fast Charging

• Fast charging has been explored through: 
o Passive charging strategies

o Active charging strategies

Passive charging techniques [2]

• Model-free methods with predefined charging profiles 

• Defined by current (𝐼), voltage (𝑉), and/or power (𝑃) constraints 

• Methods include: 

o Constant-current constant-voltage (CC-CV)

• Ignore the response of the battery 

o Can result in unsafe operation: high temperatures (𝑻)

• Solutions can violate safety constraints
CC-CV

[2] Gao, Y., et al. Classification and review of the charging strategies for commercial lithium-ion batteries.
8/44
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State-of-the-art: Fast Charging

Passive Charging Strategies

Constant Current Constant Voltage (CCCV)

• Anseán, D., et al. (2016). Fast charging technique for high power 
LiFePO4 batteries: A mechanistic analysis of aging. 

• Shi, R., et al. (2017). Constant current fast charging of electric 
vehicles via a DC grid using a dual-inverter drive.

Multi-stage CC (MSCC)

• Tahir, M., et al. (2023). Overview of multi-stage charging strategies 
for Li-ion batteries

• Lee, C. H., et al. (2021). Taguchi-based optimization of the four-stage 
constant current charge pattern.

Positive Pulse Charging (PPC)

• Purushothaman, B. K., et al. (2005). Reducing mass-transport 
limitations by application of special pulsed current modes. 

• Aryanfar, A., et al. (2014). Dynamics of lithium dendrite growth and 
inhibition: pulse charging. 

• Jeong, Y. T., et al. (2023). Insight into pulse-charging for lithium 
plating-free fast-charging lithium-ion batteries.

Active Charging Strategies

Linear Quadratic Control
• Fang, H., Wang, Y., & Chen, J. (2016). Health-aware and user-involved battery charging 

management for electric vehicles: Linear quadratic strategies. IEEE Transactions on 
Control Systems Technology, 25(3), 911-923. 

Pontryagin's minimum principle
• Park, S., Lee, D., Ahn, H. J., Tomlin, C., & Moura, S. (2020, December). Optimal control 

of battery fast charging based-on Pontryagin’s minimum principle. In 2020 59th IEEE 
Conference on Decision and Control (CDC) (pp. 3506-3513). IEEE.

Model Predictive Control
• Berliner, M. D., Cogswell, D. A., Bazant, M. Z., & Braatz, R. D. (2022). A mixed 

continuous-discrete approach to fast charging of li-ion batteries while maximizing 
lifetime. IFAC-PapersOnLine, 55(30), 305-310.

• Klein, R., Chaturvedi, N. A., Christensen, J., Ahmed, J., Findeisen, R., & Kojic, A. (2011, 
June). Optimal charging strategies in lithium-ion battery. In Proceedings of the 2011 
american Control Conference (pp. 382-387). IEEE.

• Kujundžić, G., Ileš, Š., Matuško, J., & Vašak, M. (2017). Optimal charging of valve-
regulated lead-acid batteries based on model predictive control. Applied Energy, 187, 
189-202.

• Kolluri, S., Aduru, S. V., Pathak, M., Braatz, R. D., & Subramanian, V. R. (2020). Real-
time nonlinear model predictive control (NMPC) strategies using physics-based models 
for advanced lithium-ion battery management system (BMS). Journal of The 
Electrochemical Society, 167(6), 063505.

• Liu, J., Li, G., & Fathy, H. K. (2016). An extended differential flatness approach for the 
health-conscious nonlinear model predictive control of lithium-ion batteries. IEEE 
Transactions on Control Systems Technology, 25(5), 1882-1889.

PPC

MSCC

CCCV
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Model-based methods: include 2 steps

• Step-1: Use model to calculate battery states (e.g., SOC)

– Reduced-order electrochemical model

– Empirical models and state observers

• Step-2: Use control/optimization scheme to improve performance

– Closed-loop optimization problem

– minimize time to reach a SOC | maximize SOC within charging duration

• Common approach: model predictive control (MPC) [3,4]

– Can handle complex dynamics

– Can include safety constraints to mitigate aging

– High computational cost

– Simplified models: can be inaccurate; don't capture battery’s full range

– Can lead to conservative or infeasible solutions

Literature Review: Active Fast Charging

Diagram of Model Predictive Control
Reduced Order Dynamics

[3] Kujundžić, G., et al. Optimal charging of valve-regulated lead-acid batteries based on model predictive control.

[4] Kolluri, S., et al. Nonlinear MPC strategies using physics-based models for lithium-ion battery management system 10/44
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State-of-the-art: Fast Charging

Passive Charging Strategies

Constant Current Constant Voltage (CCCV)

• Anseán, D., & González, M., et al. (2016). Fast charging technique for high 
power LiFePO4 batteries: A mechanistic analysis of aging. 

• Shi, R., & Lehn, P. W., et al. (2017). Constant current fast charging of electric 
vehicles via a DC grid using a dual-inverter drive.

Multi-stage CCCV

• Tahir, M., & Blaabjerg, F., et al. (2023). Overview of multi-stage charging 
strategies for Li-ion batteries

• Lee, C. H., & Jiang, J. A., et al. (2021). Taguchi-based optimization of the four-
stage constant current charge pattern.

Pulse Charging

• Purushothaman, B. K., & Landau, U., et al. (2005). Reducing mass-transport 
limitations by application of special pulsed current modes. 

• Aryanfar, A., & Hoffmann, M. R., et al. (2014). Dynamics of lithium dendrite 
growth and inhibition: pulse charging. 

• Jeong, Y. T., & Lee, J. W., et al. (2023). Insight into pulse-charging for lithium 
plating-free fast-charging lithium-ion batteries.

Active Charging Strategies

Linear Quadratic Control

• Fang, H., & Chen, J., et al. (2016). Health-aware battery charging 
management for electric vehicles: Linear quadratic strategies.

Pontryagin's minimum principle

• Park, S., & Moura, S., et al. (2020). Optimal control of battery fast 
charging based-on Pontryagin’s minimum principle.

Model Predictive Control (MPC)

• Berliner, M. D., & Braatz, R. D., et al.  (2022). A mixed continuous-
discrete approach to fast charging of li-ion batteries.

• Klein, R., & Chaturvedi, N. A., et al. (2011). Optimal charging 
strategies in lithium-ion battery. 

• Kujundžić, G., & Vašak, M., et al. (2017). Optimal charging of valve-
regulated lead-acid batteries based on model predictive control. 

• Kolluri, S., & Braatz, R. D., et al. (2020). Nonlinear MPC strategies 
using physics-based models for Li-ion battery management system. 

• Liu, J., & Fathy, H. K., et al. (2016). An extended differential flatness 
approach for the health-conscious nonlinear MPC of Li-ion batteries. 11/44

Charging Model: Equivalent Circuit Model

Charging Model: Single Particle Model
(reduced-order electrochemical model)

Reduced Order Dynamics

Model Predictive Control
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❑ Coulomb Counting [5] 

• Current integration normalized by capacity 

• Simple implementation, low complexity 

• Prone to drift due to measurement errors

Literature Review: Existing Modeling Approaches

𝑆𝑂𝐶[𝑘] = 𝑆𝑂𝐶[𝑘 − 1] + න
0

𝑘ℎ 𝐼(𝑡)

𝐶𝑏𝑎𝑡
𝑑𝑡

Where:
• 𝑆𝑂𝐶[𝑘]            SOC at time kh [%]     
• 𝑆𝑂𝐶[𝑘 − 1]    Initial SOC [%]
• 𝐼                        Electrical current [A]
• 𝑡 = 𝑘ℎ             Time [h]
• ℎ                        Sampling time   
• 𝐶𝑏𝑎𝑡                  Battery capacity [Ah]

[5] Ng, K. S., et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries.

12/44
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✓ Coulomb Counting

❑ Open Circuit Voltage (OCV) method [6]
• Empirical mapping between voltage and SOC

• Simple implementation, low complexity 

• Limited operational range, needs multiple mappings

• LiBs have relatively flat charge/discharge curves

• Small voltage change over wide SOC range

Literature Review: Existing Modeling Approaches

[6] Zheng, F., et al. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries.

[-] Lithium-ion state of charge (SOC) measurement - coulomb counter method - OCV. PowerTech Systems - PowerTech Systems. (n.d.). 

https://www.powertechsystems.eu/home/tech-corner/lithium-ion-state-of-charge-soc-measurement/ 

[V
]

[%]
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✓ Coulomb Counting

✓ Open Circuit Voltage (OCV) method

❑ Equivalent circuit modeling (ECM) [7]
• Uses electrical components to describe the battery behavior

• Resistors and capacitors

• Developed from measurable battery data

• Narrow operating range, requires multiple models  

• Poor low SOC and low temperature performance

Literature Review: Existing Modeling Approaches

[7] Natella, D., et al. A co-estimation framework for SOC and parameters of LiB 

with robustness to usage conditions.

Equivalent Circuit Model Diagram [7]

14/44
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Existing Modeling methods
✓ Coulomb Counting
✓ Open Circuit Voltage (OCV) method
✓ Equivalent circuit modeling (ECM)

Our Solution: Battery Digital Twin
❑ Explicit data-driven modeling (PhITEDD)
• Identifies sparse models from input/output data

• Simple architecture: library of terms & set of coefficients
• Library terms: transformations of measurement data
• Coefficients: denote importance of each term

• Tunable modeling approach - specialized for LiB 
• Introduce domain knowledge: physics informed
• Models re-calibrated on new data (temperature)

• Optimal model: accurate, efficient, valid across operating range
• SOC levels (0% to 100%), Temperature (−20°C to 40°C)

• Physics-informed & Temperature-dependent Explicit Data-driven

Our Solution: Battery Modeling 

Modeling MethodMODEL DEVELOPMENT
Radar Chart of Battery 

Modeling Methods

15/44
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METHODOLOGY
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• Often physical systems have few terms that define the dynamics

• Dynamics represented with function (𝑓(∙)) of states (𝑥) and inputs (𝑢)

𝑥[𝑘 + 1] = 𝑓(𝑥[𝑘], 𝑢[𝑘])

• 𝑓(∙) can be represented with a library (𝚯(∙)) that consist of linear and 
nonlinear terms (candidate transformations) of 𝑥 and 𝑢

Θ(X, U) =
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑋 𝑋2 ⋯ sin 𝑋 ⋯ 𝑈 𝑈2 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

where 𝑋 and 𝑈 time series data matrices

• The sparse nonlinear model is given by the combination of the library 

Θ X, U  and a set of coefficients/weights Ξ:

𝑿′ = 𝚯 𝑿, 𝑼 𝚵

Sparse Identification of Nonlinear Dynamics (SINDyC)

[8] Brunton, S., et al. Sparse identification of 

nonlinear dynamics with control (SINDYc). 

17/44
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Identifying sparse vector of coefficients Ξ

Model• Set of coefficients, one for every library term
Ξ = 𝜉1 𝜉2 ⋯ 𝜉𝐷

𝑇

• Sparsity Promoting Regularization (Ridge, ℓ2 norm) 

– Minimizes error between known data (𝑋′) and predicted data (ΘΞ)

– Penalizes the count of non-zero coefficients with 𝜆

• Sequentially thresholded ridge regression (STRidge)

– Eliminates coefficients with small magnitudes, less than 𝜉𝑡ℎ

– If 𝜉𝑖 < 𝜉𝑡ℎ ⇒ 𝜉𝑖 = 0

Ξ∗ = argminΞ 𝑋′ − ΘΞ 2 + 𝜆 Ξ 2 + 𝜉𝑡ℎ Ξ 0

• Sparse (simpler) models are more generalizable 

[9] Kulkarni, C. S., et al. Sparse regression and adaptive feature generation for the discovery of dynamical systems 18/44
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Challenges:

• Generic libraries (e.g., polynomial terms) only work for simple/known problems

• Selecting the optimal library terms from a vast pool of candidates is challenging

o Method can learn incorrect representation of the data

• Varying hyperparameters can produce significantly different models

o Method can fit the wrong nonlinear model, even with good library terms

• Dependence on a single dataset for model development

o Challenging to create model that works well under changing operating conditions (e.g. temperature)

Our Solutions:

• Physics-informed set of library terms 

o Including domain knowledge to the learning process

• Monte Carlo Library Search of additional nonlinear terms 

o Improved accuracy and generalizability with tailored library 

• Automated hyperparameter tuning with training and validation error and sparsity

o Optimal balance between accuracy and complexity

• Re-calibration of model coefficients for distinct operating condition

o Ensures efficacy across full operating spectrum, while maintaining minimal complexity 19/44

Challenges with Nonlinear Sparse Modeling
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• The library includes:

– Model Outputs (𝑥): SOC

– Model Inputs (𝑢): electrical current (𝑰), voltage (𝑽)

• Model structure due to need for accurate SOC 
prediction from available 𝐼 and 𝑉 measurements

• Candidate library terms

– Polynomial exponents (e.g., 𝑉2, … , 𝐼2, …)

– Mixing (e.g., 𝑉 ⋅ 𝑆𝑂𝐶, 𝑉 ⋅ 𝐼, …)

– Nonpolynomial exponents (e.g., 𝑉1.2, … , 𝐼2.2, …)

▪ Sinusoidal transformations (e.g., sin 𝑉 , … , cos 𝐼 , …)

▪ Exponential (e.g., 𝑒𝑉 , 𝑒𝐼 , …)

▪ Integral (e.g.,  𝐼)

Selection of Candidate Library Terms

SINDYc Model

𝑆𝑂𝐶[𝑘 + 1] = 𝛩 𝑆𝑂𝐶[𝑘], 𝐼[𝑘], 𝑉[𝑘] 𝚵

20/44
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• Assumption of sparse modeling holds if the function 
space (library) is broad

o Coverage of the high-dimensional search-space 

o Can yield intractable problem / inefficient solution 

• Random search of library terms (MCLS)

o Efficient exploration of large search-space 

o Leads to improved performance (accuracy)

• Sequentially thresholded ridge regression (STRidge)

o It works by defining threshold, 𝜉𝑡ℎ: if 𝜉𝑖 < 𝜉𝑡ℎ ⇒ 𝜉𝑖 = 0

• 𝜉𝑡ℎ is selected from experience and/or trial-and-error 

• Can fit a wrong model, even with a good library

• Automated grid-search for optimal threshold 𝜉𝑡ℎ
∗

o Search-space from analysis of the non-thresholded 
coefficients Ξ computed via pseudoinverse 

aSINDY: Library and Hyperparameter Optimization

Hyperparameter Autotuning Monte Carlo Library Search (MCLS)

21/44
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• LiB operational range includes:

– SOC levels: 0% to 100%

– Temperatures (𝑇): −20°𝐶 to 40°𝐶

• Battery capacity varies depending on 𝑇

– Reduced capacity at low temperatures

• Stage-2 optimization of model coefficients 

• Allow for re-calibrating coefficient on new data 

– Different temperature conditions, 𝑇𝑖

• Maintains the optimal model structure (library) from MCLS

– Maintains connection to the physics

• Optimizes accuracy in new conditions via a RMSE-based 
cost function 

• Yields optimal model valid across operating conditions

aSINDY: Re-calibration of Model Coefficients

22/44
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• Method based on a direct data-driven control framework

– Searches for optimal inputs without visiting all combinations

– Optimizes response while satisfying Input and Outputs constraints

• Optimize charging profile (𝐼) for minimum charge-time

• Ensure safe operation and mitigate battery aging 

– Satisfy constraints: max 𝑇, max 𝑉

• Flexible data generation 

– Full-order dynamics (physics-based model) or PhITEDD

– Applicable to actual battery 

• Allows for hybrid (mixed continuous-discrete) charging framework 

– Continuous: direct simulation of operating modes (e.g., CC, CV, pulse charging)

– Discrete: dynamic transition between operating modes

• Maximizes current; transition between operating modes to meet constraints
 

• Ensures solution by initializing with a sub-optimal baseline

Overview of Learning and Optimization Process #1

23/44

Battery Model/Data 
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Learning and Optimization Process

• Step-1: Jacobian Learning 
– Learn Jacobian (𝕁) from input/output battery data

– Maps the input 𝑢 (𝐼) to each of the 𝑞 outputs 𝑦 (𝑆𝑂𝐶, 𝑉, 𝑇)

     𝛥𝑦𝑗 = 𝕁𝑗
𝑇 [𝑘]𝛥𝑢[𝑘] , 𝑗 = [1, 𝑞],  𝕁𝑗

𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑟𝑜𝑤 𝑜𝑓 𝕁

– Jacobian is updated via RLS at every iteration

• Step-2: Optimization

a) Conduct simulation/experiment for a given 𝐼 (input 𝑢)

b)Use insight from outputs and 𝕁 to map out next 𝐼

            𝑢[𝑘 + 1] = 𝑢[𝑘] + [𝕁𝑇[𝑘]𝐺 𝜌𝐼 + 𝕁 𝑘 𝕁𝑇 𝑘
−1

 ](𝑦𝑑 − 𝑦[𝑘]))

     𝜌 > 0: constant, 𝐼: identity, 𝐺: controller gain, 𝑦𝑑: target

• Initializes with a baseline solution

– Baseline solution: constant current constant voltage (CCCV) 

• Iteratively improves 𝐼 until convergence to the optimum (𝐼∗)

Overview of Learning and Optimization Process #2

• Y: outputs
• U: inputs
• Yd: target output 

Diagram of Learning and Optimization Method

24/44
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peak current (𝐼𝑝), pulse on-time (𝑡𝑝) 

relaxation time (𝑡𝑟), pulse period (𝑃)

• Maximize charge level (𝑆𝑂𝐶) within a duration (𝑡𝑓) 

• Constraints enforced to mitigate aging effects
– 𝑇 constraints: avoid overheating / thermal degradation

– 𝑉 constraints: prevent over-charging/discharging

• Optimization problem 
– 𝑰∗: optimal charging profile

– 𝑺𝑶𝑪𝒅 / 𝑺𝑶𝑪(𝒕): desired SOC (100%) / SOC level from latest iteration

– 𝒖𝒃 / 𝒍𝒃: upper/lower bounds

Solution: hybrid charging strategy

1) Positive pulse charging (PPC) to apply high current
– PPC is defined by waveform parameters 

– Proper selection can prevent side reactions

2) CV to avoid continuing temperature rise

• Initialize with information (𝐼) from CCCV strategy

• Optimize: waveform parameters, switch to CV

Optimal Charging Problem Formulation

25/44
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Battery Digital Twin and Fast Charging

26/44
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• The battery experiments conducted on LGM50 cell

– Cylindrical cell

– Capacity: 5Ah

– Positive electrode: NMC 811

• The experimental procedures includes

i. Cycling (charging/discharging) the cell three times with 
constant current constant voltage (CCCV)

ii. Fully charging the battery with CCCV at the maximum 
allowable rate of 0.3 C-rates 

iii.Resting the cell for two hours 

iv.Employing our in-house stochastic current input until 
the voltage drops to the lower voltage limit of 2.5V

v. Storing the battery input/output data. 

• Similar steps were followed for the experiments 
corresponding to EPA cycles. 

Experimental Setup

State-of-Charge (𝑺𝑶𝑪)Voltage (𝑽) Temperature (𝑻)

Battery Outputs

27/44

Experimental Data Collection

[10] Moura, S. J., et al. Genetic identification of the Doyle–Fuller–

Newman model from experimental cycling of a LiFePO4 cell.

Battery Input [10]

epa.gov/sites/default/files/2015-10/us06col.txt

[A
]
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• Model accuracy and complexity depend on good initial settings for the learning algorithm 

• Tested different settings to obtain sparse models with good predictive performance

Study of Library Terms (𝚯𝐛𝐥)

• We explored  combinations of library terms and their effects on model order and accuracy

• Goal: identify the most relevant terms to characterize the SOC dynamics (baseline library Θ𝑏𝑙)

Study of Data Sampling Rate

• Studied the accuracy of models developed with data sampled at different rates

– Sampling rate: time interval at which data is collected

• Goal: identify the best sampling-rate for data-driven modeling of Lithium-ion batteries

Optimizing Initial Model Parameters / Settings

28/44
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• Test different combinations of libraries terms: 
– Polynomial exponents (PE)

– Mixing (M) 

– Sinusoids (S)

– Nonpolynomial exponents (NE) 

– Exponential (Exp)

– Integral of current (Int)

• Input/Output Data: UDDS drive cycle

• Develop a model for each different library

• Best library selected based on predictive 
performance (RMSE) and sparsity (fewest terms)

Study of Library Terms

PE:       Θ =
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑉 𝑉2 ⋯ 𝐼2 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

PE,S:    Θ =
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑉 𝑉2 ⋯ sin 𝑉 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮

PE,Exp: Θ =
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑉 𝑉2 ⋯ exp 𝑉 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮

Example of combinations of 
Library terms

Library Terms RMSE Number of Parameters Notes

PE, M, S, NE 7.1 36 Similar performance, 
relatively unaffected by 

individual Exp or Int
PE, M, S, NE, Exp 6.8 40

PE, M, S, NE, Int 6.6 37

PE, M, S, NE, Exp, Int 3.5 41 Improved via both EXP, Int

PE, M, S, Exp, Int 0.02 26 Improved by removing NE 

29/44
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• Test changes in  model performance (RMSE) when developed with data sampled at different rates
• Range of sampling rates: 50 [ms] to 1000 [ms]

– Limits selected based on EPA drive cycles (1s) and commercially available battery testers 

• Data corresponds to the UDDS drive cycle

Test 1
• Examined varying sampling rate while preserving initial and final SOC levels (varying sample size)
• Datasets of varying sample sizes from 1,800 samples (1s) to 36,000 samples (50ms)
Test 2
• Examined varying sampling rate while preserving consistent sample sizes 
• Datasets were under-sampled from large set of sequential charging\discharging cycles

– Large set based on a 50 ms sampling rate

Goal: Identify optimal sampling rate for modeling lithium-ion batteries
• Assess source of changes in performance:

– Variations in sample size = more data (Test 1)
– Ability to capture detailed battery dynamics with faster sampling rates (Test 2)
– Combination of both factors

Data Resampling Study
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Test 1: Varied sample rates, varied sample size

• Best performance achieved 50ms

Summary of Data Resampling Study

Sampling Rate RMSE Terms 

50 [ms]     (36000 samples) 5.44e-6 26

150 [ms]   (12000 samples) 1.45e-4 26

250 [ms]   (7200 samples) 6.55e-4 26

350 [ms]   (5150 samples) 1.74e-3 26

450 [ms]   (4000 samples) 3.52e-3 26

550 [ms]   (3270 samples) 5.99e-3 26

650 [ms]   (2770 samples) 8.89e-3 26

750 [ms]   (2400 samples) 1.23e-2 26

850 [ms]   (2120 samples) 1.54e-2 26

950 [ms]   (1900 samples) 1.78e-2 26

1000 [ms] (1800 samples) 2.19e-2 26

Test 2: Varied rates, same sample size

• Best performance achieved 50ms
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(b) Discharge Pulse (red) , (c) Charge Pulse (green)
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Pulse Relaxation Study

[10] Derakhshan, M et al. Detecting mechanical indentation from the time constants of Li-ion batteries.

[11] Tsai, P. C., et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries.

• Validation of empirical sampling rate optimization
• Examination of response to pulse-relaxation tests

• 2-part study: charging / discharging
• Initialize battery at 50% SOC
• Apply pulse followed by rest until steady-state (SOC)

• Part-1: Discharging
o Discharge Pulse: 𝐼 = −0.05𝐴 for 1 second
o Rest Period: 𝐼 = 0.0𝐴 for 14 seconds

• Part-2: Charging
o Charge Pulse: 𝐼 = 0.05𝐴 for 1 second
o Rest Period: 𝐼 = 0.0𝐴 for 14 seconds

• Analyzed response at rest to find SOC time scale
• Dynamics evolve in the order of milliseconds
• Aligns with time scale for charge transfer kinetics [10]
• Follow Butler–Volmer eq., exhibits high SOC dependency [11]
• Sampling rates of milliseconds are needed to capture SOC 

dynamics from measurement data
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MODEL DEVELOPMENT

Battery Input

epa.gov/sites/default/files/2015-10/us06col.txt

State-of-Charge (𝑺𝑶𝑪)Voltage (𝑽) Temperature (𝑻)

Battery Outputs

Battery Digital Twin of SOC Dynamics (PhITEDD)

• Developed SOC model using battery input/output data
− Training/Validation data: Stochastic drive cycle

− Cross-Validation data: US06 (highway driving) cycle

• Initialization: model development 
− Baseline physics-informed library 

− Optimal sampling rate: 50 [ms]

− Standard operating temperature: 25°C
[A

]
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• Incorporated physics-informed terms derived from electrochemical (DFN) model 
− Enhance interpretability, generalizability, and computational efficiency

• Lithium transport is a diffusion process with trigonometric and exponential terms
− 𝐞𝐱𝐩 ∙ , 𝒔𝒊𝒏(∙)

• Charge transfer follows the Butler-Volmer equation has hyperbolic functions
− 𝐬𝐢𝐧𝐡(∙), 𝒄𝒐𝒔𝒉(∙)

• Electrolyte’s electric potential is a combination of current and electrolyte concentration

− 𝑰

• Voltage is the difference in the solid potential between the cathode and anode

− 𝑽

• SOC relates to initial values and the solid concentration

− 𝑺𝑶𝑪

• Time history of current is captured with integral term
−  𝑰 

• Polynomials & mixing included for other nonlinearities

Physics-Informed Library Terms
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SOC Prediction Results: Experimental data @25°C

• Trained & Validated model with stochastic cycle 

Prediction Error

• Training RMSE: 2.2e-6

• Validation RMSE: 4.8e-4

• ECM RMSE: 2.4e-2

• Cross-Validated on unseen data US06 cycle

– Input profiles (𝐼, 𝑉) and initial 𝑺𝑶𝑪 (100%)

Prediction Error

• Cross-Validation RMSE: 8.5e-4

• ECM RMSE: 2.5e-2

Number of Terms: 8

[%
]

[%
]

[s] [s]

[%
]

[s]

[%
]

[s]

R
M

SE PhITEDD 4.8e-4

ECM 2.5e-2
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• LiB operational range includes:
– SOC levels: 0% to 100%

– Temperatures (𝑇): −20°𝐶 to 40°𝐶

• Battery capacity varies depending on 𝑇

Physics-Informed Temperature Dependent Explicit Data-Driven (PhITEDD)

MODEL DEVELOPMENT

[s]

[%
] [C
]
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• Coefficients correspond to the 8 model terms (normalized coefficients) 

• Coefficients C1 through C6 experience negligible changes with change in temperature

• Coefficients involving 𝑉 (C7 and C8) display the highest temperature dependency

– Temperature dependency of 𝑉 terms is associated with changes in battery's voltage response

• The final model achieved an average RMSE of 1.1e-3 across −20°𝐶 to 40°𝐶 

Physics-Informed Temperature Dependent Explicit Data-Driven (PhITEDD)

Mean-RMSE 1e-3

[C]

[C][C]
[°

C
]
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PhITTED vs State-of-the-art

Modeling Requirements
Computational Time

(UDDS cycle = ~29,000 [sec])
Accuracy (RMSE)

PhITEED • Dynamic Response data
• Data across various temperatures ~260 [sec]

~1e-3
@−20°𝐶 to 40°𝐶

ECM • Charge/Discharge Profiles
• OCV curves
• Impedance data (EIS tests)
• Data across various temperatures
• Multiple models per SOC range

~12 [sec]
~3e-2 

@ 25°𝐶

DFN Knowledge of battery composition
• Physical properties
• Material properties
• Electrochemical parameters

~196,000 [sec] -
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PPC+CV

• 𝑡𝑓: 4,000s 

• 𝑇𝑚𝑎𝑥: 57°𝐶
[C

]
[%

]
[V

]
[C

-r
at

e]

Fast Charging CCCV

• 𝑡𝑓: 4,000s 

• 𝑇𝑚𝑎𝑥: 64°𝐶

• 𝑡𝑓: 12,000s

• 𝑇𝑚𝑎𝑥: 27°𝐶

Standard CCCV

Optimal Charging Strategy

Optimal Strategy
• Charging-rate: 2.5C (12.5A) pulse
• Charging Time: 4,000s (1.1 hour) 

–  SOC level: 0% - 100%

• Satisfied safety constraints
– 𝑉 of 4.2 or lower
– 𝑇 of 57°𝐶 or lower

Alternative strategies
• Charged 66% faster than standard strategy 

– Standard strategy: CCCV 0.3C (1.5A) charging rate

• Lower temperatures than fast charging CCCV
– Fast charging CCCV: 2C (10A) charging rate
– Temperature reached 64°𝐶 (7°𝐶 hotter)
–  Can lead to accelerated battery degradation
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SUMMARY
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• We tackle two major challenges in battery electric vehicles 
– range anxiety and slow charging times 

• Develop high-accuracy physics-informed battery digital twin for real-time state 
forecasting, even in temperature extremes

– Prediction error (RMSE) < 1%

• Accurate and efficient model from operando data

• Model valid  across operational range: error < 𝟏% 
– Temperature extremes (−𝟐𝟎°𝑪), low SOC (0%)

– Aggressive dynamic charging / discharging cycles

• Optimized library with physics inspired terms via Monte Carlo library search

• Optimal coefficients that balance accuracy and complexity via Autotunner

• Our method significantly reduced modeling cost
– OCV method: requires many SOC curves, one per C-rate

– ECM: requires multiple sets of coefficients for different SOC levels

• Without knowledge of the battery’s composition, needed for physics-based methods

Summary #1

Terms 8
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• Adaptive optimization for constraint-based optimal charging

• Incorporated full-order physics-based battery model (DFN/P2D)

– Includes thermal effects

• Solution met fast charging demands while ensuring safe operation 

– Prevented over-heating: 𝑇 of 57°𝐶 (90% of max 63 °𝐶) or lower

– Prevented over-charging: 𝑉 of 4.2 or lower

– Helped mitigate negative effects on battery health

• Charged 66% faster than standard 0.3C CCCV strategy

• Comparable 2C CCCV strategy subjected LiB to high temperatures

– 7°C  above limit, can lead to adverse effects on battery health

Summary #2
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• Expand optimization criteria to minimize damage to cyclable life of battery 

– Quantified by capacity fade 

• Perform experiments on batteries with different chemistries and form factors

• Improve the efficiency of our optimization approach 

– Substitute electrochemical model with accurate physics-inspired battery digital twin

Future Work 
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