Physics-inspired and Control-Oriented Modeling of Lithium Batteries for Accurate State-of-Charge Prediction and Fast-Charging

Renato J. Rodriguez Nunez

Advisor

Damoon Soudbakhsh, Ph.D. - Department of Mechanical Engineering

Committee

Philip Dames, Ph.D. - Department of Mechanical Engineering **Fei Ren, Ph.D. -** Department of Mechanical Engineering **Joseph Picone, Ph.D. -** Department of Electrical and Computer Engineering **Yan Wang, Ph.D.** - Nikola Motor Co.

Addressing Barriers to Electric Vehicle Adoption

Outline

- Introduction
	- [−] Significance of State-of-Charge dynamics (range anxiety)
	- [−] Implications of Fast-charging (slow charging times)
	- [−] State-of-the-art methods
	- [−] Our proposed solution
- Methodology
	- [−] Generic approach
	- [−] Introducing domain knowledge to the models
	- [−] Improve the modeling technique: Hyperparameter tuning and Monte Carlo search
	- [−] Adaptive Learning and Optimization Approach
- Implementation and Results
	- [−] Modeling using experimental data
	- [−] Optimal Charging Strategy
- Summary and Future Work

INTRODUCTION

Motivation: Range Anxiety

Motivation

- Barriers to EV adoption: range anxiety
	- ^o Fear of lacking enough energy to reach a destination
	- \circ Due to uncertainty in range predictions
- Increased demand for advanced BMS ^o BMS (battery management system)

Range Anxiety

- Need knowledge of the battery state for increased performance/safety ^o SOC (state of charge): akin to the fuel gauge on conventional vehicles
- Direct measurements of SOC are not possible
- SOC must be obtained from available battery measurements \circ Electrical current *I*, voltage *V*, temperature *T*

Objective

- Develop accurate, efficient and control-oriented SOC models
- Capitalize on access to battery Input/Output data
	- o Achieve high performance, improved operational safety, extended longevity

Motivation: Slow Charging Times

Motivation

- EV adoption is hindered by slow charging times
- Level 2 chargers (240V) are most common \circ US-DOT: 10-hours to charge EV (0% - 80%)
- **Charging EV takes much longer than refueling ICEV** ^o ICEV (internal combustion engine vehicle)
- Demand for improved battery technologies ^o **minimize charge time, maintain safe operation**

Objective

- Charging strategy to increase performance & mitigate aging
- Test efficacy of our solution
	- ^o Manufacturer recommended charging procedure
	- ^o Alternative fast-charging procedure

Level 2 chargers: common in home, workplace, and public settings transportation.gov

Lithium-ion Battery

System of Interest: Li-ion Battery (LiB)

- Complex nonlinear dynamical system
	- Varying operating modes (temperature), Degradation (capacity fade)

Objective

- Charge battery as fast as possible
- Need advanced controls to optimize performance & safety
- Need accurate knowledge of battery state (e.g., SOC)

Challenges

- LiB cycle-life is influenced by charging protocol
- Trade-off between charging-speed and lifespan
- Fast-charging risks: high currents, high temperatures
- High temperatures result in thermal degradation
	- deterioration of battery performance and lifespan
	- electrolyte decomposition, lithium plating, side reactions

Charge Charge Meter <https://www.energy.gov/node/2697942> [1] Doyle, M., et al. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. • Accurate modeling often requires physics-based methods [1]

- Has high computational complexity: not suited for real-time
- 7/44 – High modeling cost: needs knowledge of battery composition

How Lithium-ion Batteries Work

Literature Review: Passive Fast Charging

- Fast charging has been explored through:
	- ^o Passive charging strategies
	- \circ Active charging strategies

Passive charging techniques [2]

- Model-free methods with predefined charging profiles
- Defined by current (I) , voltage (V) , and/or power (P) constraints
- Methods include:
	- ^o Constant-current constant-voltage (CC-CV)
- Ignore the response of the battery
	- ^o **Can result in unsafe operation: high temperatures ()**
- Solutions can violate safety constraints

[2] Gao, Y., et al. Classification and review of the charging strategies for commercial lithium-ion batteries.

State-of-the-art: Fast Charging

Passive Charging Strategies

Constant Current Constant Voltage (CCCV)

- Anseán, D., et al. (2016). Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging.
- Shi, R., et al. (2017). Constant current fast charging of electric vehicles via a DC grid using a dual-inverter drive.

Multi-stage CC (MSCC)

- Tahir, M., et al. (2023). Overview of multi-stage charging strategies for Li-ion batteries
- Lee, C. H., et al. (2021). Taguchi-based optimization of the four-stage constant current charge pattern.

Positive Pulse Charging (PPC)

- Purushothaman, B. K., et al. (2005). Reducing mass-transport limitations by application of special pulsed current modes.
- Aryanfar, A., et al. (2014). Dynamics of lithium dendrite growth and inhibition: pulse charging.
- Jeong, Y. T., et al. (2023). Insight into pulse-charging for lithium plating-free fast-charging lithium-ion batteries.

Literature Review: Active Fast Charging

Model-based methods: include 2 steps

- Step-1: Use model to calculate battery states (e.g., SOC)
	- Reduced-order electrochemical model
	- Empirical models and state observers
- Step-2: Use control/optimization scheme to improve performance
	- Closed-loop optimization problem
	- minimize time to reach a SOC **| maximize SOC within charging duration**
- Common approach: model predictive control (MPC) [3,4]
	- Can handle complex dynamics
	- Can include safety constraints to mitigate aging
	- High computational cost
	- Simplified models: can be inaccurate; don't capture battery's full range
	- Can lead to conservative or infeasible solutions

[3] Kujundžić, G., et al. Optimal charging of valve-regulated lead-acid batteries based on model predictive control. [4] Kolluri, S., et al. Nonlinear MPC strategies using physics-based models for lithium-ion battery management system

State-of-the-art: Fast Charging

Active Charging Strategies

Linear Quadratic Control

• Fang, H., & Chen, J., et al. (2016). Health-aware battery charging management for electric vehicles: Linear quadratic strategies.

Pontryagin's minimum principle

• Park, S., & Moura, S., et al. (2020). Optimal control of battery fast charging based-on Pontryagin's minimum principle.

Model Predictive Control (MPC)

- Berliner, M. D., & Braatz, R. D., et al. (2022). A mixed continuousdiscrete approach to fast charging of li-ion batteries.
- Klein, R., & Chaturvedi, N. A., et al. (2011). Optimal charging strategies in lithium-ion battery.
- Kujundžić, G., & Vašak, M., et al. (2017). Optimal charging of valveregulated lead-acid batteries based on model predictive control.
- Kolluri, S., & Braatz, R. D., et al. (2020). Nonlinear MPC strategies using physics-based models for Li-ion battery management system.
- Liu, J., & Fathy, H. K., et al. (2016). An extended differential flatness approach for the health-conscious nonlinear MPC of Li-ion batteries. $11/44$

Literature Review: Existing Modeling Approaches

❑ Coulomb Counting [5]

- Current integration normalized by capacity
- Simple implementation, low complexity
- Prone to drift due to measurement errors

$$
SOC[k] = SOC[k-1] + \int_0^{kh} \frac{I(t)}{C_{bat}} dt
$$

Where:

• $SOC[k]$ SOC at time kh [%]

•
$$
SOC[k-1]
$$
 Initial SOC [%)

• *I* Electrical current [A]

•
$$
t = kh
$$
 Time [h]

\n- $$
h
$$
\n
\nSampling time

•
$$
C_{bat}
$$
 Battery capacity [Ah]

[5] Ng, K. S., et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries.

Literature Review: Existing Modeling Approaches

 \checkmark Coulomb Counting

❑ Open Circuit Voltage (OCV) method [6]

- Empirical mapping between voltage and SOC
- Simple implementation, low complexity
- Limited operational range, needs multiple mappings
- LiBs have relatively flat charge/discharge curves
	- Small voltage change over wide SOC range

13/44

Dynamical Systems Lab

[6] Zheng, F., et al. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries. [-] *Lithium-ion state of charge (SOC) measurement - coulomb counter method - OCV*. PowerTech Systems - PowerTech Systems. (n.d.). • Simple implementation, low complexity
• Limited operational range, needs multiple mappings
• LiBs have relatively flat charge/discharge curves
• Small voltage change over wide SOC range
• Small voltage change over wide

Literature Review: Existing Modeling Approaches

- \checkmark Coulomb Counting
- ✓ Open Circuit Voltage (OCV) method
- ❑ Equivalent circuit modeling (ECM) [7]
	- Uses electrical components to describe the battery behavior
		- Resistors and capacitors
	- Developed from measurable battery data
	- Narrow operating range, requires multiple models
	- Poor low SOC and low temperature performance

© Temple University, DSLab

Equivalent Circuit Model Diagram [7]

Our Solution: Battery Modeling

Existing Modeling methods

- ✓ Coulomb Counting
- Open Circuit Voltage (OCV) method
- Equivalent circuit modeling (ECM)

Our Solution: Battery Digital Twin

❑ Explicit data-driven modeling (**PhITEDD**)

- Identifies sparse models from input/output data
- Simple architecture: library of terms & set of coefficients
	- Library terms: transformations of measurement data
	- Coefficients: denote importance of each term
- Tunable modeling approach specialized for LiB
	- Introduce domain knowledge: physics informed
	- Models re-calibrated on new data (temperature)
- Optimal model: accurate, efficient, valid across operating range
	- SOC levels (0% to 100%), Temperature (-20° C to 40° C)
- **Physics-informed & Temperature-dependent Explicit Data-driven**

METHODOLOGY

Sparse Identification of Nonlinear Dynamics (SINDyC)

- Often physical systems have **few terms** that define the dynamics
- Dynamics represented with function ($f(\cdot)$) of states (x) and inputs (u)

 $x[k + 1] = f(x[k], u[k])$

• $f(\cdot)$ can be represented with a **library (** $\Theta(\cdot)$ **)** that consist of linear and nonlinear terms (candidate transformations) of x and u

$$
\Theta(X, U) = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ X & X^2 & \cdots & \sin(X) & \cdots & U & U^2 & \cdots \\ \vdots & \vdots \end{bmatrix}
$$

where X and U time series data matrices

• The sparse nonlinear model is given by the combination of the library

 $\Theta(X, U)$ and a set of coefficients/weights Ξ :

$$
X'=\Theta(X,U)\Xi
$$

© Temple University, DSLab

[8] Brunton, S., et al. Sparse identification of nonlinear dynamics with control (SINDYc).

Identifying sparse vector of coefficients Ξ

- Set of coefficients, one for every library term **Model Model** $\Xi = [\xi_1 \quad \xi_2 \quad \cdots \quad \xi_D]^T$
- Sparsity Promoting Regularization (Ridge, ℓ_2 norm)
	- Minimizes error between known data (X') and predicted data ($\Theta \Xi$)
	- Penalizes the count of non-zero coefficients with λ
- Sequentially thresholded ridge regression (STRidge)
	- Eliminates coefficients with small magnitudes, less than ξ_{th}
	- If $|\xi_i| < \xi_{th} \Rightarrow \xi_i = 0$

 $\Xi^* = \text{argmin}_{\Xi} (||X' - \Theta \Xi||_2 + \lambda ||\Xi||_2 + \xi_{th} ||\Xi||_0$

• Sparse (simpler) models are more generalizable

$$
X' = \Theta(X, U)\Xi
$$

Challenges with Nonlinear Sparse Modeling

Challenges:

- Generic libraries (e.g., polynomial terms) only work for simple/known problems
- Selecting the optimal library terms from a vast pool of candidates is challenging
	- ^o Method can learn incorrect representation of the data
- Varying hyperparameters can produce significantly different models
	- ^o Method can fit the wrong nonlinear model, even with good library terms
- Dependence on a single dataset for model development
	- \circ Challenging to create model that works well under changing operating conditions (e.g. temperature)

Our Solutions:

- Physics-informed set of library terms
	- ^o Including domain knowledge to the learning process
- Monte Carlo Library Search of additional nonlinear terms
	- ^o Improved accuracy and generalizability with tailored library
- Automated hyperparameter tuning with training and validation error and sparsity
	- \circ Optimal balance between accuracy and complexity
- Re-calibration of model coefficients for distinct operating condition
	- \circ Ensures efficacy across full operating spectrum, while maintaining minimal complexity

Selection of Candidate Library Terms

- The library includes:
	- $-$ Model Outputs (x) : **SOC**
	- Model Inputs (u) : electrical current (I) , voltage (V)
- Model structure due to need for accurate SOC prediction from available I and V measurements
- Candidate library terms
	- Polynomial exponents (e.g., V^2 , ..., I^2 , ...)
	- Mixing (e.g., $V \cdot SOC$, $V \cdot I$, ...)
	- Nonpolynomial exponents (e.g., $V^{1.2}$, ..., $I^{2.2}$, ...)
	- Sinusoidal transformations (e.g., $sin(V)$, ..., $cos(I)$, ...)
	- **Exponential (e.g.,** e^V **,** e^I **, ...)** $\Theta(SOC, I, V) = \begin{vmatrix} | & | & | & | & | & | & | & | \\ 1 & V^n & \cdots & V^n I^n & \sin(V) & \cdots & e^V & \cdots & \int(I) \\ | & | & | & | & | & | & | & | & | \end{vmatrix}$
	- **·** Integral (e.g., \int *I*)

SINDYc Model $SOC[k + 1] = \Theta(SOC[k],I[k],V[k])$ Ξ

aSINDY: Library and Hyperparameter Optimization

Monte Carlo Library Search (MCLS) Hyperparameter Autotuning

- Assumption of sparse modeling holds if the function space (library) is broad
	- ^o Coverage of the high-dimensional search-space
	- ^o Can yield intractable problem / inefficient solution
- Random search of library terms (MCLS)
	- ^o Efficient exploration of large search-space
	- ^o Leads to improved performance (accuracy)

- Sequentially thresholded ridge regression (STRidge) o It works by defining threshold, ξ_{th} : if $|\xi_i| < \xi_{th} \Rightarrow \xi_i = 0$
- ξ_{th} is selected from experience and/or trial-and-error
- Can fit a wrong model, even with a good library
- Automated grid-search for optimal threshold ξ^*_{th}
	- ^o Search-space from analysis of the non-thresholded coefficients Ξ computed via pseudoinverse

aSINDY: Re-calibration of Model Coefficients

- LiB operational range includes:
	- SOC levels: 0% to 100%
	- Temperatures (T): $-20\degree C$ to $40\degree C$
- Battery capacity varies depending on T
	- Reduced capacity at low temperatures
- Stage-2 optimization of model coefficients
- Allow for re-calibrating coefficient on new data
	- Different temperature conditions, T_i
- Maintains the optimal model structure (library) from MCLS
	- Maintains connection to the physics
- Optimizes accuracy in new conditions via a RMSE-based cost function $\min_{\Xi_{T_i}} J(\Xi_{T_i}) \stackrel{\text{def}}{=} E_{T_i}(\text{SOC}, \widehat{\text{SOC}})$
- Yields optimal model valid across operating conditions

Overview of Learning and Optimization Process #1

- Method based on a direct data-driven control framework
	- Searches for optimal inputs without visiting all combinations
	- Optimizes response while satisfying Input and Outputs constraints
- Optimize charging profile (I) for minimum charge-time
- Ensure safe operation and mitigate battery aging
	- Satisfy constraints: max T , max V
- Flexible data generation
	- Full-order dynamics (physics-based model) or PhITEDD
	- Applicable to actual battery
- Allows for hybrid (mixed continuous-discrete) charging framework
	- Continuous: direct simulation of operating modes (e.g., CC, CV, pulse charging)
	- Discrete: dynamic transition between operating modes
- Maximizes current; transition between operating modes to meet constraints
- Ensures solution by initializing with a sub-optimal baseline

Adaptive Optimization Algorithm

Overview of Learning and Optimization Process #2

Learning and Optimization Process

- Step-1: Jacobian Learning
	- Learn Jacobian (J) from input/output battery data
	- Maps the input $u(I)$ to each of the q outputs $y(SOC, V, T)$ $\Delta y_j = \mathbb{J}^T_j\;[k]\varDelta u[k]$, $j=[1,q],\;\;\mathbb{J}^T_j$ is the j^{th} row of $\mathbb J$
	- Jacobian is updated via RLS at every iteration
- Step-2: Optimization
- a) Conduct simulation/experiment for a given *I* (input u) b)Use insight from outputs and J to map out next I

 $u[k+1] = u[k] + [\mathbb{J}^T[k]G(\rho I + \mathbb{J}[k]\mathbb{J}^T[k])^{-1}$ $](y_d - y[k]))$ $\rho > 0$: constant, *I*: identity, *G*: controller gain, y_d : target

- Initializes with a baseline solution
	- Baseline solution: constant current constant voltage (CCCV)
- Iteratively improves I until convergence to the optimum (I^*)

- Y: outputs
- U: inputs
- Y_d: target output

Diagram of Learning and Optimization Method

Optimal Charging Problem Formulation

- Maximize charge level (SOC) within a duration (t_f)
- Constraints enforced to mitigate aging effects
	- $-$ T constraints: avoid overheating / thermal degradation
	- $-$ V constraints: prevent over-charging/discharging
- Optimization problem
	- I^* : optimal charging profile
	- $\mathbf{SOC}_d / \mathbf{SOC}(t)$: desired SOC (100%) / SOC level from latest iteration
	- $\boldsymbol{u} \boldsymbol{b}$ / $\boldsymbol{l} \boldsymbol{b}$: upper/lower bounds

Solution: hybrid charging strategy

- 1) Positive pulse charging (PPC) to apply high current
	- PPC is defined by waveform parameters
	- Proper selection can prevent side reactions
- 2) CV to avoid continuing temperature rise
- Initialize with information (I) from CCCV strategy
- Optimize: waveform parameters, switch to CV

subject to the constraints:
$$
T(t) \leq T_{ub}
$$

$$
V_{lb} \leq V(t) \leq V_{ub}
$$

25/44

Battery Digital Twin and Fast Charging

Experimental Data Collection

- The battery experiments conducted on LGM50 cell
	- Cylindrical cell
	- Capacity: 5Ah
	- Positive electrode: NMC 811
- The experimental procedures includes
- i. Cycling (charging/discharging) the cell three times with constant current constant voltage (CCCV)
- ii. Fully charging the battery with CCCV at the maximum allowable rate of 0.3 C-rates
- iii.Resting the cell for two hours
- iv.Employing our in-house stochastic current input until the voltage drops to the lower voltage limit of 2.5V
- v. Storing the battery input/output data.
- Similar steps were followed for the experiments corresponding to EPA cycles.

[10] Moura, S. J., et al. Genetic identification of the Doyle–Fuller– Newman model from experimental cycling of a LiFePO4 cell.

Optimizing Initial Model Parameters / Settings

- Model accuracy and complexity depend on good initial settings for the learning algorithm
- Tested different settings to obtain sparse models with good predictive performance

• Goal: identify the best sampling-rate for data-driven modeling of Lithium-ion batteries

28/44

Dynamical Systems Lab

Study of Library Terms

© Temple University, DSLab

匪

Data Resampling Study

- Test changes in model performance (RMSE) when developed with data sampled at different rates
- Range of sampling rates: 50 [ms] to 1000 [ms]
	- Limits selected based on EPA drive cycles (1s) and commercially available battery testers
- Data corresponds to the UDDS drive cycle

Test 1

- Examined **varying sampling rate** while **preserving initial and final SOC levels** (varying sample size)
- Datasets of varying sample sizes from 1,800 samples (1s) to 36,000 samples (50ms)

Test 2

- Examined **varying sampling rate** while **preserving consistent sample sizes**
- Datasets were under-sampled from large set of sequential charging\discharging cycles
	- Large set based on a 50 ms sampling rate
- **Goal:** Identify optimal sampling rate for modeling lithium-ion batteries
- Assess source of changes in performance:
	- Variations in sample size $=$ more data (Test 1)
	- Ability to capture detailed battery dynamics with faster sampling rates (Test 2)
	- Combination of both factors

Summary of Data Resampling Study

Test 1: Varied sample rates, varied sample size

Best performance achieved 50ms

Test 2: Varied rates, same sample size

• Best performance achieved 50ms

Pulse Relaxation Study

- Validation of empirical sampling rate optimization
- Examination of response to pulse-relaxation tests
- 2-part study: charging / discharging
- Initialize battery at 50% SOC
- Apply pulse followed by rest until steady-state (SOC)
- Part-1: Discharging
	- Discharge Pulse: $I = -0.05A$ for 1 second
	- Rest Period: $I = 0.0A$ for 14 seconds
- Part-2: Charging
	- Charge Pulse: $I = 0.05A$ for 1 second
	- Rest Period: $I = 0.0A$ for 14 seconds
- Analyzed response at rest to find SOC time scale
- Dynamics evolve in the order of milliseconds
- Aligns with time scale for charge transfer kinetics [10]
- Follow Butler–Volmer eq., exhibits **high SOC dependency** [11]
- Sampling rates of milliseconds are needed to capture SOC dynamics from measurement data

 (h) B is Rabange ti i Bund Set (hx) and (hx) change in h ulse (hx) change h

32/44

Dynamical Systems Lab

[10] Derakhshan, M et al. Detecting mechanical indentation from the time constants of Li-ion batteries.

[11] Tsai, P. C., et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries.

Battery Digital Twin of SOC Dynamics (PhITEDD)

- Developed SOC model using battery input/output data
	- [−] Training/Validation data: Stochastic drive cycle
	- [−] Cross-Validation data: US06 (highway driving) cycle
- Initialization: model development
	- Baseline physics-informed library
	- [−] Optimal sampling rate: 50 [ms]
	- [−] Standard operating temperature: 25°C

MODEL DEVELOPMENT

Physics-Informed Library Terms

- Incorporated physics-informed terms derived from electrochemical (DFN) model
	- [−] Enhance interpretability, generalizability, and computational efficiency
- Lithium transport is a diffusion process with trigonometric and exponential terms
	- $-$ **exp** (\cdot) , **sin** (\cdot)
- Charge transfer follows the Butler-Volmer equation has hyperbolic functions
	- $\sinh(\cdot)$, $cosh(\cdot)$
- Electrolyte's electric potential is a combination of current and electrolyte concentration − *I*
- Voltage is the difference in the solid potential between the cathode and anode
- SOC relates to initial values and the solid concentration − SOC
- Time history of current is captured with integral term − [I
- **Polynomials** & **mixing** included for other nonlinearities

− *V*

SOC Prediction Results: Experimental data @25°C

- Trained & Validated model with stochastic cycle **Prediction Error**
- Training RMSE: 2.2e-6
- Validation RMSE: 4.8e-4
- ECM RMSE: 2.4e-2

• Cross-Validated on unseen data US06 cycle

– Input profiles (I, V) and **initial** *SOC* (100%)

Prediction Error

- Cross-Validation RMSE: 8.5e-4
- ECM RMSE: 2.5e-2

Physics-Informed Temperature Dependent Explicit Data-Driven (PhITEDD)

- LiB operational range includes:
	- SOC levels: 0% to 100%
	- Temperatures (T): -20° C to 40° C
- Battery capacity varies depending on T

MODEL DEVELOPMENT

36/44

Dynamical Systems Lab

[%]

100

75

50

25

 $\mathbf 0$

0

2000

Physics-Informed Temperature Dependent Explicit Data-Driven (PhITEDD)

- Coefficients correspond to the 8 model terms (normalized coefficients)
- Coefficients C1 through C6 experience negligible change with change in temperature
- Coefficients involving V (C7 and C8) display the highest proporature dependency
	- Temperature dependency of V terms is associated with c' des in battery's voltage response
- The final model achieved an average RMSE of 1.1e \sim $\sqrt{20^\circ C}$ to 40[°]

PhITTED vs State-of-the-art

Optimal Charging Strategy

Optimal Strategy

- Charging-rate: 2.5C (12.5A) pulse
- Charging Time: 4,000s (1.1 hour)
	- SOC level: 0% 100%
- **Satisfied safety constraints**
	- $-V$ of 4.2 or lower
	- T of 57 \degree C or lower

Alternative strategies

- **Charged 66% faster than** standard strategy
	- Standard strategy: CCCV 0.3C (1.5A) charging rate
- **Lower temperatures** than fast charging CCCV
	- Fast charging CCCV: 2C (10A) charging rate
	- Temperature reached $64^{\circ}C$ (7°C hotter)
	- Can lead to accelerated battery degradation

Summary #1

- We tackle two major challenges in battery electric vehicles
	- range anxiety and slow charging times
- Develop high-accuracy physics-informed battery digital twin for real-time state forecasting, even in temperature extremes
	- Prediction error (RMSE) $< 1\%$
- Accurate and efficient model from operando data
- Model valid across operational range: error $< 1\%$
	- Temperature extremes $(-20^{\circ}C)$, low SOC (0%)
	- Aggressive dynamic charging / discharging cycles
- Optimized library with physics inspired terms via Monte Carlo library search
- Optimal coefficients that balance accuracy and complexity via Autotunner
- Our method significantly reduced modeling cost
	- OCV method: requires many SOC curves, one per C-rate
	- ECM: requires multiple sets of coefficients for different SOC levels
- Without knowledge of the battery's composition, needed for physics-based methods

© Temple University, DSLab

Temperature $\begin{bmatrix} C \end{bmatrix}$ **41/44**

Summary #2

- Adaptive optimization for constraint-based optimal charging
- Incorporated full-order physics-based battery model (DFN/P2D)
	- Includes thermal effects
- Solution met fast charging demands while ensuring safe operation
	- Prevented over-heating: T of 57°C (90% of max 63 °C) or lower
	- Prevented over-charging: V of 4.2 or lower
	- Helped mitigate negative effects on battery health
- Charged 66% faster than standard 0.3C CCCV strategy
- Comparable 2C CCCV strategy subjected LiB to high temperatures
	- -7° C above limit, can lead to adverse effects on battery health

Adaptive Optimization Algorithm

Future Work

- Expand optimization criteria to minimize damage to cyclable life of battery
	- Quantified by capacity fade
- Perform experiments on batteries with different chemistries and form factors
- Improve the efficiency of our optimization approach
	- Substitute electrochemical model with accurate physics-inspired battery digital twin

Acknowledgements

Advisor

• Damoon Soudbakhsh, Ph.D.

Committee

- Philip Dames, Ph.D.
- Fei Ren, Ph.D.
- Joseph Picone, Ph.D.
- Yan Wang, Ph.D. (Nikola Motor Co.)

Sponsors

Ford Motor Company

• University Research Project

Office of Naval Research (ONR)

• Grant Number: N000142312612

Physics-inspired and Control-Oriented Modeling of Lithium Batteries for Accurate State-of-Charge Prediction and Fast-Charging

Renato J. Rodriguez Nunez Advisor: Damoon Soudbakhsh

Selected Publications

- 1) Fast Charging of Li-ion Batteries via Learning and Optimization. In ECC'24. IEEE
- 2) Physics-Informed & Temperature-Dependent Battery Digital Twin. Energy '24 (rev.)
- 3) Impact of light-weighting & battery technologies on EV sustainability. EIA Review '24
- 4) Data-driven Discovery of LiB SOC Dynamics. J. Dyn. Syst. Meas. Control '24
- 5) Data-driven control: Theory and applications. In ACC'23. IEEE
- 6) Discovering governing equations of LiBs pertaining SOC. In ACC'23. IEEE
- 7) A physics-inspired machine learning nonlinear model LiB. In ACC'23. IEEE
- 8) Modeling of LiBs for real-time analysis and control. In ACC'22. IEEE
- 9) Adaptive takeoff maneuver optimization for America's cup. J. Sail. Tech. '22
- 10) On automating hyperparameter optimization for ML applications. SPMB '21. IEEE

