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Introduction
• Li-ion batteries (LiBs) in modern life

• High energy density
• Low self-discharge
• Rechargeable

• Battery Management Systems (BMS)
• Performance
• Safety
• Reliability

• BMS need State-of-Charge (SOC)
• SOC is the remaining charge in battery
• Not measurable (Need to be estimated)
• Complex dynamics (Need to be predicted)
• Current technology limits the operating range of batteries

ØObjective
• Create accurate, efficient, and control-oriented SOC model
• Develop algorithm to estimate SOC
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Outline
• Literature Review on SOC Estimation and Modeling

• Objectives

• Methods

o Interpretable data-driven model

o Physics-inspired model

o Tuning parameters

o Noise mitigation

o Framework to estimate SOC

o Experiments

• Results and Discussion

• Conclusion and Future work
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Battery Dynamics Modeling
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SOC and Voltage have Complex Dynamics

Equivalent Circuit 
Models (ECM) Mechanistic ModelsMachine Learning 

ModelsEmpirical Models

?

FidelitySimplicity
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Battery Dynamics Modeling: Empirical Models
• Historical data
• Statistical methods
• Coulomb counting; e.g. Ghoulam et al., 2022

• SOC-voltage mapping; e.g. Xing et al., 2014

Very simple
Very sensitive to operating condition
Require large and high-quality datasets to build model
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Battery Dynamics Modeling: Mechanistic Models (1)
• Express the process inside the battery with analytical equations

• Electrochemical reactions
• Heat and mass transport

Ø Porous Electrode Theory (Started by Newman’s Group)
• Pseudo-two-Dimensional (P2D) model; Doyle et al., 1993
• P2D model with aging; Ramadass et al., 2004
• Doyle-Fuller-Newman (DFN) (P2D with thermal dynamics); Thomas et al., 2002

ü Suitable for analysis and diagnosis
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Ø Simplified P2D models
• Single Particle Model (SPM); Chaturvedi et al., 2010
• Single Particle Model with electrolyte and Temperature (SPMeT); Park et al., 2021
• Multiple Particle Model (MPM); Majdabadi et al., 2015

üSuitable for control and optimization
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Battery Dynamics Modeling: Mechanistic Models (2)
Capture the dynamics of the modeled processes, detailed insight
High interpretability, allow for design and performance optimization
Extrapolatable to a wide range of conditions for complex models

Require many parameters, several not available
Based on idealized principles, not always apply
Only predict the modeled phenomena
Computationally expensive with added complexity
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Model Number of parameters Computational Complexity

DFN 33 High

SPMeT 31 Medium

SPM 20 Low
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Battery Dynamics Modeling: ECMs (1)
vEquivalent Circuit Model (ECM)

• Express the battery’s dynamic with electrical components

• ECM with simple passive electrical elements; e.g. Schmidt et al., 2016
• Determine Open circuit voltage (OCV) from voltage and current
• Estimate SOC via SOC-OCV mapping

• ECM with fractional-order or distributed elements; Wildeuer et al., 2021
• Using impedance spectra
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Battery Dynamics Modeling: ECMs (2)
vECM

Use measurable data (current and voltage)

• ECM with passive electrical components:
Simple with low computational cost
Narrow operating range due to lack of physics-based information
Need to use look-up tables with many sets, still limited due to being linear 

• ECM with fractional-order or distributed elements:
Connections to internal processes of LiBs
Larger operating conditions
Require impedance spectra
Need specific devices with careful experimental control
Not suitable for real-time applications

sites.temple.edu/dslab/

Introduction Review Objective Method Simulation Noise 
Mitigation Experiment Estimation Conclusion

9/51



Battery Dynamics Modeling: ML (1)
vData-driven Model/Machine Learning

• Express the battery’s dynamic from measurable data
• Black box modeling

• Support vector machine (SVM); Feng et al., 2019

• Clustering with genetic algorithm; Hu et al., 2016
• Neural network (NN); How et al., 2020

• Recurrent NN; Vidal et al., 2022
• Long short-term memory recurrent NN; Chemali et al., 2018
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Battery Dynamics Modeling: ML (2)
vData-driven Model/Machine Learning

No need for internal parameters (using measurable data)
Adaptable to new chemistries or conditions by retraining

Can use novel features instead of traditional metrics (e.g., voltage, current)
Low implementation cost, suitable for real-time applications
Require rich and informative dataset to capture operating conditions
Needs an extensive set of data to build model
Risk of overfitting with complex algorithms
Can lead physically inconsistent results and lack interpretability (no connection to physics)
Too many features reduce stability (ill-conditioned problem due to correlated terms)
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Battery Dynamics Modeling
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Battery Dynamics Modeling: Hybrid Models (1)
• ECM: Increasing operating range and accuracy

• ECM + Machine learning
• ECM + deep learning; Su et al., 2023
• ECM + NN; Borah et al., 2024

• ECM + Kalman filter; Yao et al., 2024

Refine estimates; suitable for aggressive input
Mitigate noise effect
Extend ECM operating range
Lack of interpretability

Require large datasets for training
Limited accuracy in low SOC regions
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Battery Dynamics Modeling: Hybrid Models (2)
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• Mechanistic: Increasing accuracy and reducing computational time
• SPM + Machine learning

• SPM + recurrent NN; Saehong Park et al., 2017
• SPM with thermal dynamics + feed forward NN; Tu et al., 2023

• Mechanistic models + Kalman filter
• SPM + Kalman filter; Fang et al., 2014
• P2D + Kalman filter; Smiley et al., 2018

• Physics-informed NN, Hofmann et al., 2023
• Solving SPM with electrolyte equations with NN; Xue et al., 2023

Improve accuracy by capturing complex unmodeled dynamics with ML
Extend operating range of simplified model (ECM and SPM)
Require large datasets for training machine learning
Need many internal parameters for mechanistic models
Increase complexity in balancing mechanistic and machine learning 
components
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Proposed Approach
• Desired Model:
ü Interpretable and control-oriented data-driven model

• Uncover governing equations not fitting data only

üConnection to physics
üPerform well in unseen data
• Interpretable input/output modeling techniques:
• Dynamic mode decomposition (DMD); Tu, 2013

• Approximate linear system

• Sparse identification of nonlinear dynamics (SINDy); Brunton et al., 2016
• Nonlinear reduced order model through sparsification of a library of potential terms
• Require remarkably less data comparing to NN
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Dynamics of LiB is highly nonlinear

SINDy challenges:
Selecting library terms
Selecting sparsification parameters
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Objective
vMain objective: Develop a tractable data-driven model to discover the governing equations of Li-ion 

batteries
qHypothesis: Voltage and SOC dynamics can be represented by a few terms from the measured data, 

and SOC levels can be accurately estimated via these learned dynamics
ØAim 1: Discovering Battery's Voltage and SOC dynamics

• Create a nonlinear interpretable data-driven model for Li-ion battery
• Enhance the modeling technique by including physics-inspired terms
• Formulate a multi-objective cost function to capture the dynamics

ØAim 2: Robust Modeling with Noisy Data
• Extend data-driven model using a Joint Unscented Kalman Filter to mitigate noise effects
• Develop a co-estimation framework to update model parameters using measurement data

ØAim 3: Data Generation and Model Development
• Generate data from a detailed cylindrical cell battery model
• Design experiments on a single cell at different temperatures
• Conduct experimental studies and collect data
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Roadmap
• Discover governing equation of Li-ion batteries

• Using the measurable data
• Physics-inspired
• Generalizability

• Reduce measurement noise effect
• Using Joint Unscented Kalman Filter

• Co-estimation framework
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Sparse Identification of Nonlinear Dynamics 
• SINDy is based on sparse linear regression; Brunton et al., 2016

• Results in reduced order nonlinear model
• Detect the governing equation

• Notable extensions to SINDy
• SINDy with control (SINDyC); Brunton et al., 2016
• AIC-inspired on training data; Mangan et al., 2017
• Constraint dynamics; Loiseau & Brunton, 2018
• Including switching dynamic; Li et al., 2019; Mangan et al., 2019
• PDE; Messenger & Bortz, 2021
• MPC; Fasel et al., 2021
• Sensitivity analysis: Naozuka et al., 2022
• Ensemble model; Fasel et al., 2022

• There are several extensions; however, they mostly left the choice of library terms and 
sparsification parameters which based on the original formulation overfits the model
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Sparse Identification Method

𝑥[𝑘 + 1] = 𝑓 𝑥[𝑘], 𝑢[𝑘]  

Library of potential terms:

Θ(X, U) =
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑋 𝑋! 𝑈 𝑋𝑈 𝑋!𝑈! sin 𝑋
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑋 = 𝑥[𝑘] 𝑥[𝑘 + 1] ⋯ 𝑥[𝑘 + 𝑚 − 1] ", 𝑋′ = 𝑥[𝑘 + 1] 𝑥[𝑘 + 2] ⋯ 𝑥[𝑘 + 𝑚] "

𝑈 = 𝑢[𝑘] 𝑢[𝑘 + 1] ⋯ 𝑢[𝑘 + 𝑚 − 1] "

• By defining sparse vector of coefficients Ξ:

𝑋′ = Θ 𝑋, 𝑈 Ξ
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: 	 𝑎𝑥[𝑘] + 𝑏𝑥![𝑘] + 𝑐𝑢[𝑘] + 𝑑𝑥[𝑘]𝑢[𝑘] + 𝑒𝑥![𝑘]𝑢![𝑘] + 𝑓sin[𝑘]
0 1 0 4 −1.4 0

𝑥[𝑘 + 1] = 𝑥![𝑘] + 4𝑥[𝑘]𝑢[𝑘] − 1.4𝑥![𝑘]𝑢![𝑘]
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Identifying Sparse Vector of Coefficients Ξ
Ξ = 𝜉# 𝜉! ⋯ 𝜉$ "

• Ridge Regularization problem:

Ξ∗ = argmin& 𝑋′ − ΘΞ ! + 𝜆 Ξ !

𝜆: regularization parameter

• Suitable for correlated terms

• Promoting sparsity: Sequentially thresholded ridge 

regression (STRidge)

• 𝜉$%: if 𝜉& < 𝜉$% ⇒ 𝜉& = 0
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Tuning Sparsification Parameters (𝜆, 𝜉!")
• Original Approach: Akaike information criterion (AIC)-inspired loss function:

𝐴𝐼𝐶 = 2𝑁 − 2 ln N𝐿 , N𝐿 is the maximum value of the likelihood function

ℒ Ξ = 𝑁 ln
𝑋* − Θ 𝑋,𝑈 Ξ !

!

𝑁 + 𝜖 + 2𝐾

𝑘 is the number of nonzero coefficients in Ξ, and 𝑁 is the number of measured data in time. 
𝜖 ≪ 1 to avoid overfitting the data.
• Goal is to balance accuracy and complexity
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Limitations of Generic Model
vPreliminary results using SINDy: predict voltage with generic terms and AIC cost function
vVery limited operating condition

• Lack of connection to physics
• Exact terms to be included in the library

• Adding too many terms results in ill-conditioned problems with correlated terms
• Cost function using only training data

ØNext Steps
ü Create physics-inspired library
ü Design multi-objective cost function
ü Predict both voltage and SOC simultaneously
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NL Control-Oriented Model of Batteries
• Measurable data

• Voltage and SOC are the states ([𝑉	 SOC] ≡ 𝑋)
• Current is the input (𝐼 ≡ 𝑈)

[𝑉+,#, SOC+,#] = 𝑓 𝑉+	, SOC+, 𝐼+
𝑉+,# = Θ 𝑉+, SOC+, 𝐼+ Ξ#
SOC+,# = Θ 𝑉+, SOC+, 𝐼+ Ξ!

• Data to create the data-driven models
• Python Battery Mathematical Modelling (PyBaMM)
• 21700 cylindrical Li-ion cell with material NMC 811 parameters set (5000 mAh)
• DFN Model

• First step: determine a library based on battery physics
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𝐽$(𝑥)

Φ)

Φ*

Physics-Informed Library (1)
• DFN model 

• Solid and electrolyte concentrations: sin(⋅) , exp ⋅
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Physics-Informed Library (2)
• DFN model:	sin ⋅ , 	exp ⋅
• Overpotential (Butler-Volmer): sinh(⋅)
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𝐽$(𝑥)

Φ)

Φ*

Physics-Informed Library (3)
• DFN model:	sin ⋅ , 	exp ⋅ ,	 sinh(⋅)
• Electrolyte’s electric potential: 𝑓(𝐼, 𝑐-)
• Solid electric potential: 𝑓 𝜂, 𝜙-, 𝑈
• SOC: ∫ 𝐼
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Automated Optimization Algorithm
• Three datasets for modeling:
• Training dataset:

• Building the model
• Input and output of this set are known

• Validation dataset:
• Optimizing the hyperparameters of the identified model

• Test dataset:
• Evaluating the performance of the identified model
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Training Dataset
• Electrical current is employed to generate data
• Stochastic current signal up to 2C/4C-rate charge/discharge with 50 ms sampling time
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Validation Dataset

• US06 drive cycle • Current profile
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Test Dataset

• Urban Dynamometer Driving Schedule 
(UDDS)

• Current profile
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Introducing Hyperparameter Formulation
• The sparsification parameters are tuned with the training, validation set and number of terms

min
.,0!"

𝒥 Ξ ≔𝜌#E' 𝑥, d𝑥 + 𝜌!E1(𝑥, d𝑥) + 𝜌2𝐾
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Optimal Voltage Dynamics Model
• Number of active terms depends on the hyperparameters (𝜆, 𝜉'()
• Red region suggests diminishing returns
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Simulation Results (1)
• Voltage and SOC are calculated simultaneously
• Training data NRMSE

• Voltage: 3.2×10+7 
• SOC: 10+8
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Simulation Results (2)
• US06 validation data NRMSE:

• Voltage: 6.1×10+"

• SOC: 2.2×10+9

• UDDS test data NRMSE:
• Voltage: 6.3×10+"

• SOC: 2.8×10+"
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Enhancing Model
• Current Model

ü Works for perfect measurement
ü No uncertainty (e.g., with simulated data)

• Issue on actual implementation
• Noisy data both in training and validation
• Error in estimations

• Solution for noisy data and improve estimation
• Kalman Filter →	Adapt the model 

ü Mitigate noise effect
ü Connect SOC dynamics and SOC-Voltage map
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Joint Unscented Kalman Filter
• Avoid needs for linearization, suitable for nonlinear systems
• Address uncertainty in voltage state and coefficients concurrently

• Ξ3,# 𝑘 + 1 = Ξ3,# 𝑘 + 𝑤& 𝑘
• 𝑉 𝑘 + 1 = 𝜃3,# 𝑘 Ξ3,# 𝑘 + 𝑤4 𝑘
• 𝑉5 𝑘 = 𝑉 𝑘 + 𝑣4[𝑘]

• Update 𝑉and Ξ3,# with the noisy output (Voltage)
• Utilize the updated voltage for the SOC prediction

• SOC 𝑘 + 1 = 𝜃3,! 𝑘 Ξ3,! 𝑘
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Simulation Results with Added Noise (1)
• Voltage data has 5% Gaussian noise as a measurement noise
• Training data NRMSE

• Voltage: 10+" 
• SOC: 1.008×10+:
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Simulation Results with Added Noise (2)
• US06 validation data NRMSE:

• Voltage: 1.1×10+"

• SOC: 5.0963×10+9

• UDDS test data NRMSE:
• Voltage: 9.0568×10+7

• SOC: 1.1585×10+7
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Selecting Battery for Experiment
• NMC batteries: Efficient, dependable

• Less Cobalt: Reduce price
• Increasing Nickel: Higher capacity and lower weight

• LGM50 21700 cylindrical cell with NMC 811 cathode

sites.temple.edu/dslab/

Average cost structure of Li-ion cell
https://www.bloomberg.com/news/newsletters/2021-09-14/ev-
battery-prices-risk-reversing-downward-trend-as-metals-surge
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Designing Experiment
• Electrical current is employed to generate data
• 1C-rate: 4.8 A, fully charge the battery in 1 hour with constant current
vMax current for constant current charging: 0.3C-rate

• 𝑇 = 10℃, 25℃, 40℃

sites.temple.edu/dslab/
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Experimental Results
• Stochastic electrical current signal up to 1C/2C-rate charge/discharge with 50 ms sampling time
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Tuning Sparsification Hyperparameters
• Multi-objective cost function

min
.,0!"

𝒥 Ξ ≔𝜌#E' 𝑥, d𝑥 + 𝜌!E1(𝑥, d𝑥) + 𝜌2𝐾
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Model Using Experimental Data (1)
• calculate SOC with Coulomb counting:

 SOC t = SOC 0 − 0
; ∫)

$ 𝜂<𝐼𝑑𝜏

• 𝜂6:
7#$%&"'()*#
7&"'()*#

• Training data RMSE
• Voltage: 2.1×10+"V 
• SOC: 8.6×10+"
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Model Using Experimental Data (2)
• Aggressive highway validation data RMSE:

• Voltage: 8×10+7 V 
• SOC: 9.9×10+"	(ECM+EKF: 6.3×10+!)

• City test data RMSE:
• Voltage: 6×10+7 V
• SOC: 1.2×10+!
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SOC Estimation: Co-estimation Framework
• Adding uncertainty in SOC dynamics due to noisy current and unknown initial value
• Address uncertainty in both states and coefficients concurrently

• Ξ3,# 𝑘 + 1 = Ξ3,# 𝑘 + 𝑤& 𝑘
• 𝑉 𝑘 + 1 = 𝜃3,# 𝑘 Ξ3,# 𝑘 + 𝑤4 𝑘
• SOC 𝑘 + 1 = 𝜃3,! 𝑘 Ξ3,! 𝑘 + 𝑤8[𝑘]
• 𝑉5 𝑘 = 𝑉 𝑘 + 𝑣4[𝑘]

• Update 𝑉, SOC and Ξ3,# with the noisy output (Voltage)
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Co-estimation Results (1)
• US06 Validation data

• Initial SOC: 0.8 (20% uncertainty)
• SOC RMSE after convergence: 0.0102
• ECM+EKF fails to estimate SOC
• Voltage RMSE: 0.0008V
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Co-estimation Results (2)
• UDDS Test data
• Initial SOC: 0.8 (20% uncertainty)
• SOC RMSE after convergence: 0.0130

• ECM+EKF fails to estimate SOC
• Voltage RMSE: 0.0006V

• Battery tester voltage accuracy: ±0.02% full-scale range (±0.0004V)

• Similar to maximum absolute error of voltage (0.0004V)
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Co-estimation Result on Different Conditions

• Temperature:10℃ • Temperature:40℃
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Evaluate the transferability of the model to cold and warm environments by only adjusting the coefficients
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Conclusion
Developed tractable data-driven modeling techniques for complex 
systems:
• Formulating nonlinear sparse modeling with hyperparameters
• Tuning of sparsification hyperparameters via a novel cost function
• Augmented the technique with a joint unscented Kalman filter to work 
with noisy data and co-estimation

Contributions to energy storage systems:
• Detailed analysis of complex electrochemical models of Li-ion batteries 

to determine physics-informed library terms
• Validated the modeling technique on DFN models
• Designed and conducted experiments to generate modeling data
• Created a control-oriented, tractable, interpretable battery model
• Developed a technique to determine voltage-SOC mapping to replace 
the currently used look-up tables from extensive experiments
• Online SOC estimation via introduced co-estimation framework
• Validated performance across diverse operating ranges, proving 
robustness and adaptability
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Future Work
• Testing in other Operating Conditions: Assess model performance in extreme conditions
• Fast Charging: Design optimal current profile using the model to reduce charging time
• Applications to other Cell Chemistries: Evaluate and extend the model to other 

chemistries (e.g., sodium-ion)
• Ensemble Machine Learning: Improve model accuracy and generalizability
• Adaptive Modeling: Evaluate model’s online adaption on aged cells
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• “Online Co-Estimation of State of Charge and Voltage Dynamics of Li-ion Batteries via Physics-Inspired Modeling,” IEEE Trans. Transp. Electrif, (Under Review), IF: 7.2

• “Homogenized Mechanical-Electrochemical-Thermal Model of a Lithium-ion Cell,” eTransportation, (Under Review), IF: 15

• “The Impact of Lightweighting and Battery Technologies on the Sustainability of Electric Vehicles: A Comprehensive Life Cycle Assessment,” Environmental Impact 
Assessment Review (2024), IF: 9.8

• “A Data-Driven Framework for Learning Governing Equations of Li-ion Batteries and Co-Estimating Voltage and State-of-Charge,” Journal of Energy Storage (2024), IF: 8.9

• “Data-driven Discovery of Lithium-Ion Battery State of Charge Dynamics,” Journal of Dynamic Systems, Measurement, and Control (2023) 

Conferences:
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