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ABSTRACT

American Cancer Society estimates that in 2021 nearly 300,000 women in the United States

will be diagnosed with invasive breast cancer, and about 43,600 women will die from breast

cancer. While many have access to health care and cancer screening, women from rural or

underdeveloped communities often have limited access. Therefore, there is a need for an

inexpensive and easy-to-use breast cancer identification device, which can be employed in

small clinics to provide support to primary care physicians.

This work aims to develop a method to characterize breast tumors and tissue using

non-invasive imaging modalities. The proposed bimodal imaging system has tactile and

multispectral imaging capabilities. Tactile imaging modality characterizes tumors by esti-

mating their depth, size, and stiffness, along with the Tactile Index. Multispectral imaging

modality identifies breast asymmetry, texture, and inflammation changes, together with the

Spectral Index. These indices are combined with the BCRAT Index, the risk score devel-

oped by the National Institute of Health, to form the Multimodal Index for personalized

breast cancer risk assessment.

In this study, we will describe the development of the bimodal imaging system. We

will present the algorithms for tactile and multispectral modalities. Tactile and Multispec-

tral Profile Diagrams are developed to capture broad imaging signals in a compact and

application-specific way. A Tactile Profile Diagram is a pictorial representation of the rel-

ative depth, size, and stiffness of the imaged tumor. A Multispectral Profile Diagram is

a representative pattern image for breast tissue superficial optical properties. To classify

the profile diagrams, we employ the Convolutional Neural Network deep learning method.

We will describe the results of the experiments conducted using tissue-mimicking phan-

toms and human in-vivo experiments. The results demonstrate the ability of the method to

classify and quantify tumor and tissue characteristics. Finally, we describe the method to

calculate Multimodal Index for the malignancy risk assessment via tactile and multispectral

imaging modalities and the risk probability based on the health records.
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CHAPTER 1

INTRODUCTION

In this first chapter, we outline the contributions of the dissertation work with the research

goals. Next, we list the peer-reviewed publications. Finally, we present an outline of the

dissertation.

1.1 Contributions

There are eight main contributions in this dissertation.

• The combination of tactile imaging and multispectral imaging is proposed to aid

doctors in breast cancer diagnostic decisions.

• Tactile Imaging Probe’s hardware, firmware, and software are developed to facilitate

tactile imaging.

• A novel method to analyze tactile imaging data by constructing Tactile Profile Di-

agrams is proposed. These pattern images with the encoded tumor depth, size, and

stiffness information from sets of tactile images are developed and analyzed.

• Convolutional Neural Network classification models are built to extract information

about tumors’ depth, size, and stiffness from Tactile Profile Diagrams.

• Experimental evaluations of the developed methods are completed on the custom

made breast tissue mimicking phantoms, and on in-vivo human data.

• Multispectral Imaging Probe’s hardware and software are designed and implemented

to support multispectral imaging.

• A novel method to analyze multispectral imaging data by constructing Multispectral

Profile Diagrams is developed. The pattern images with the encoded tissue optical

differential properties information from sets of multispectral images are developed

and analyzed.
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• Convolutional Neural Network classification models are proposed to gather infor-

mation about affected breast tissue asymmetry, texture, and inflammation size from

Multispectral Profile Diagrams. The models are trained and validated.

• A bimodal breast tissue and tumor phantom design is described. The custom phan-

tom mimics the mechanical and optical properties of the human breast tissue. The

phantom was fabricated and tested.

• A method to combine mechanical and optical properties estimations from the dual

modality imaging with additional patient’s health information into a single individu-

alized Multimodal Index for breast cancer risk assessment is proposed and tested.

1.2 Research Goals

The main goal of this research is to develop a bimodal imaging system for identifying breast

cancer risk. The two modes of the imaging system are tactile imaging and multispectral

imaging. We develop Tactile Imaging Probe’s hardware and software, as well as its algo-

rithms, to measure the mechanical properties, such as the tumor size, stiffness, and depth

within the breast tissue. We develop Multispectral Imaging Probe and its algorithms to

characterize superficial breast tissue properties, such as inflammation, texture, and asym-

metric changes. Finally, we propose a method to calculate Multimodal Index of the imaged

breast tumor and tissue using the characterization indices obtained from the two imaging

modalities and the patient’s health information.
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1.3 Peer-reviewed Publications

Here is the list of peer-reviewed publications:

1. V. Oleksyuk, D. Caroline, S. Pascarella, R. Kendzierski, and C.-H. Won, “Tissue In-

clusion Characterization using Tactile Profile Diagrams,” Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society (EMBC 2021)

(Submitted for review).

2. S. Choi, V. Oleksyuk, and C.-H. Won, “Breast Tumor Malignancy Classification us-

ing Smartphone Compression-induced Sensing System and Deformation Index Ra-

tio,” Annual International Conferences of the IEEE Engineering in Medicine and

Biology Society (EMBC), Montreal, Canada: Jul. 2020.

3. V. Oleksyuk, R. Rajan, F. Saleheen, D. Caroline, S. Pascarella and C.-H. Won, “Risk

score based pre-screening of breast tumor using compression induced sensing sys-

tem,” Sensors Journal, IEEE, Vol.18 (10), pp. 4038-4045, 2018.

4. F. Saleheen, V. Oleksyuk, and C.-H.Won, “Itchy skin region detection using hyper-

spectral imaging,” Proc. SPIE Defense-Commercial Sensing, Paper 10656-7, Balti-

more, MD: USA, 2018.

5. V. Oleksyuk, F. Saleheen, D. Caroline, S. Pascarella and C.-H. Won, “Classification

of breast masses using tactile imaging system and machine learning algorithms,”

IEEE Signal Processing in Medicine and Biology Symposium, Philadelphia, PA:

USA, Jan 2017.

6. V. Oleksyuk, F. Saleheen, D. Caroline, S. Pascarella, C.-H. Won. “KNN classi-

fication of tactile imaging data,” 2017 International Symposium on Innovation in

Information Technology and Application (ISIITA17), Danang: Vietnam, Jan. 2017.

7. C.-H. Won, J. Goldstein, V. Oleksyuk, D. Caroline, S. Pascarella. “Tumor size and

elasticity estimation using smartphone-based compression-induced scope,” 39th An-

nual International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC 17), JeJu Island: S. Korea, July 2017, pp. 4106-4109.
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8. F. Saleheen, Z. Wang, W. Moser, V. Oleksyuk, J. Picone, C.-H. Won, “Effectiveness

of virtual open laboratory teaching assistant for circuits laboratory,” 123rd ASEE

Annual Conference, New Orleans, LA: USA, June 2016.

9. V. Oleksyuk, F. Saleheen, W. Moser, and C.-H. Won, “Tactile imaging sensor for

mechanical properties quantification of breast tumor,” IEEE Biomedical Circuits and

Systems Conference (BioCAS), Atlanta, GA: USA, Oct. 2015.

10. A. Sahu, F. Saleheen, V. Oleksyuk, C. McGoverin, N. Pleshko, A. Harati, J. Picone

and C.-H. Won, “Characterization of Mammary Tumors Using Noninvasive Tactile

and Hyperspectral Imaging Sensors,” Sensors Journal, IEEE, Vol.14 (10), pp. 3337-

3344, 2014.

11. A. Sahu, F. Saleheen, V. Oleksyuk, Y. Chen, and C.-H. Won, “Tactile and hyper-

spectral imaging sensors for mammary tumor characterization,” Sensors, 2013 IEEE,

Baltimore, MD: USA, Nov 2013.

12. F. Saleheen, V. Oleksyuk, A. Sahu, and C.-H. Won, “Non-invasive mechanical prop-

erties estimation of embedded objects using tactile imaging sensor,” Proc. SPIE

8719, Smart Biomedical and Physiological Sensor Technology X, Baltimore, MD:

USA, May 2013.

13. F. Saleheen, A. Sahu, V. Oleksyuk, and C.-H. Won, “Normal force estimation using

tactile imaging sensor,” Bioengineering Conference (NEBEC), 2012 38th Annual

Northeast, Philadelphia, PA: USA, Mar. 2012, pp. 119-120.
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1.4 Dissertation Outline

This dissertation consists of eight chapters.

Chapter 2 presents the background information on normal and abnormal breast physi-

ology. This chapter also gives a review of current breast cancer screening techniques and

the general overview of tactile and multispectral imaging.

Chapter 3 describes the Tactile Imaging Probe. The hardware design and acquisition

software are presented in detail. We explain size and stiffness estimation algorithms de-

signed to work on sets of tactile images. Then we present the automatic data pre-processing

software. Next, we describe the development of the Tactile Profile Diagrams as a method

to capture the dynamic properties of the signal. We also present an overview of different

types of classification methods and outline algorithms for tumor depth, size, and stiffness

estimation using Tactile Profile Diagrams and Convolutional Neural Network.

Chapter 4 presents the results from the Tactile Imaging Probe experiments conducted

using silicone breast tissue mimicking phantoms and using in-vivo human study. We also

show how estimations of depth, size, and stiffness of a tumor with CNN can improve the

size calculation.

Chapter 5 describes the multispectral imaging modality. We present the hardware de-

sign and the acquisition software. Then, we describe the image pre-processing techniques

to improve data quality. Later, we outline methods for the Multispectral Profile Diagram

development, the optical properties estimation from the diagrams using deep learning clas-

sification, and the Spectral Index developed to characterize optical tissue properties. Mul-

tispectral modality is effective in detecting inflammatory breast cancer manifestations.

Chapter 6 shows the results from the Multispectral Imaging Probe experiments. The

design of a bimodal tissue mimicking phantom is given, and experiments are described.

Chapter 7 outlines the method for Multimodal Index calculation for breast cancer risk

assessment based on the Tactile Index, Spectral Index, and the patient’s personal data

(BCRAT Index). This chapter also presents the results from Multimodal Index calcula-

tion using phantom data.

Chapter 8 presents conclusions and future research.
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CHAPTER 2

BACKGROUND

In this chapter, we review human breast physiology, breast diseases, and breast cancer

screening techniques and tools. We also review tactile imaging and multispectral imaging

in biomedical applications.

2.1 Breast Diseases

There is a broad spectrum of breast diseases, some of which are benign, and some are

malignant or cancerous. Depending on the diagnosis, a patient gets a specific procedure

and treatment plan to follow [5]. It is crucial to know breast anatomy and physiology to

understand breast cancer.

2.1.1 Normal Breast Physiology

The breast consists of multiple tissues with structural and supportive functions [6]. Fig. 2.1

shows the breast composition. The main components of the breast are skin, superficial

fascia, and breast parenchyma. Skin is the protective layer that is covering the breast. It

includes nipple and areola complex. The deep layer of skin, dermis, merges with the su-

perficial fascia, which in turn transitions to the breast parenchyma. The breast parenchyma

consists of several tissues, such as fibrous stroma, glandular epithelium, fat, and supporting

structures [6]. The parenchyma is built of segments called lobes in a radial arrangement.

The lobes are divided into smaller structures, lobules, and milk collecting ducts converging

within the nipple region [6, 7]. The breast undergoes physiological changes over a lifes-

pan, causing the change in the breast composition. For example, the proportion of glandular

tissue to fat tissue decreases with age [6], and it lowers the density of the breasts.
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Figure 2.1: Breast anatomy

2.1.2 Benign Breast Diseases

Benign breast diseases are breast diseases that cause pain, with or without masses or nipple

discharge, but they are not cancerous. The vast majority of women (90%), who require

attention from a health care specialist, have benign conditions [8].

There are several main causes of benign breast conditions: fibrocystic breast disease,

benign breast tumors, and breast inflammation or mastitis [5]. The benign conditions are

not cancerous by definition, yet they may elevate chances for patients to develop breast

cancer in the future. Doctors use a detailed patient’s health history review and a careful

physical examination to diagnose a breast disease [5].

Fibrocystic breast disease is caused by hormonal changes. The breast feels lumpy and

painful. The lumps are the fluid-filled lobules, which are also called cysts. They are more

common in younger women [8]. More than half of all pre-menopausal women go through

Fibrocystic change [5].

Benign breast masses are mostly caused by fibroadenoma [5]. The lumps are composed
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of fibrous and epithelial tissues and are very mobile during a breast examination [8].

Mastitis is an infection of breast tissues, which is common for lactating women and

women with large breasts. Mastitis manifestations are pain, fever, swelling, none, single or

multiple breast masses, and an abscess-like inflammation [6]. Mastitis has a rapid onset,

yet short term if treated properly [9].

2.1.3 Malignant Breast Diseases

Many different malignant or cancerous breast diseases are known. Their ability to invade

surrounding tissues differentiates them from benign conditions. The disease manifestations

for each patient are defined by the type of cancer and the time of the diagnosis. Possible

symptoms of breast cancer include sudden breast mass development, discharge, breast skin

color or texture changes, nipple shape changes, or itch development [5].

The most common cancerous breast tumors are invasive ductal and lobular adenocarci-

nomas, which are cancers of ductal or lobular glandular tissues, respectively [5].

Ductal carcinoma in situ and lobular carcinoma in situ are the conditions where tumors

did not cross the inner membranes and invade other surrounding tissues. These conditions

carry an increased risk for a patient to develop cancer [5].

Inflammatory breast cancer (IBC) is rare (about 2% of breast cancers) but a very ag-

gressive type of breast cancer, which often develops in women at a relatively young age

[10, 11]. IBC is characterized by a very rapid onset of symptoms (from days to up to 3-6

months) [9, 12] and is unilateral in most cases [10, 13].

IBC symptoms are similar to mastitis symptoms; however, unlike mastitis, IBC is non-

infectious in nature. While the local breast tissue temperature may be increased [9, 12, 14],

it does not cause fever or the elevated number of white cell count in the blood [12].

A palpable tumor may or may not be present in patients with IBC [9, 12]. Most fre-

quently, IBC develops without an underlying tumor [15].

The breast absolute or relative asymmetry is higher for IBC patients [16]. Nipple

changes, such as flattening, crusting, or retraction, are common in IBC patients [9, 14].

IBC is also characterized by skin texture changes. The shortening in the length of

suspensory ligaments of Cooper, which is a part of stroma (Fig. 2.1), causes stiffening of
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the breast and changes in breast skin texture. Breast skin is characterized by thickening

and distortion in 80% of patients with IBC [12]. The texture changes cause the breast skin

to look like an orange peel, which is commonly referred to by doctors as peau d’orange

appearance [17]. Peau d’orange of the breast, bruising [14], ridging [9, 10, 12, 14], and

ulceration [14] are all common texture changes for breast cancer patients.

While IBC symptoms are very similar to mastitis symptoms, in IBC patients, the area

of the affected reddened skin (inflammation area) usually involves the entire breast [7]. The

color of inflammation ranges from pink to violet [18, 19, 20, 21], which may be presented

in patches [14].

2.2 Breast Disease Management

Breast masses are the most common breast disease manifestation, where the majority of

them being benign [7]. Breast masses can be detected by patients during self breast ex-

amination (SBE), by medical practitioners during a clinical breast examination (CBE), or

during a routine screening mammogram [5]. In modern practice, SBE and CBE are not

the primary tools for a cancer diagnosis; however, they are very important supplemental

screening techniques to mammography, ultrasound, or MRI imaging. CBE is used to iden-

tify the affected tissues and even to find 15% of the malignant tumors undetected during

mammography [6].

Regular breast cancer screenings are recommended for asymptotic women [7]. Women

with an increased risk for developing breast cancer should follow a more frequent evalu-

ation procedure schedule than the one developed for the regular public [5]. The patient’s

health history plays a role in breast cancer risk assessment. The American Cancer Society

specifies many types of well-established breast cancer risk factors, which are the advanced

age, family history of breast cancer, the inheritance of some gene mutations, dense breast

tissue, a benign breast condition, early menarche, late menopause age, chest radiation, un-

healthy weight, alcohol consumption, no physical activity, no children, not breastfeeding,

hormonal therapy, hormonal birth control, and breast implants [22].

The National Institute of Health developed an interactive online tool for breast cancer
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risk assessment based on the Gail model, which can be used by patients and clinicians

[4]. The Gail model was created in 1989 by Dr. Mitchell Gail and his colleagues from

NIH based on the large case study of 280,000 women. It is a statistical breast cancer risk

assessment algorithm, which gives 5-year and 10-year probabilistic estimates of a woman

developing breast cancer compared with the average risk. The model was initially devel-

oped for white women; since then, the model was supplemented and improved to work for

Afro-American, Asian, and Hispanic women as well. The Gail model is instrumental in es-

timating highly individual breast cancer risk and in improving the breast cancer screening

guidelines [23].

When a tumor is found, physicians complete a detailed assessment of the tumor and

the affected breast, evaluate for the possibility of malignancy, and aim to give an accurate

diagnosis [7]. To do so, most often, they use mammography and ultrasound imaging to

visualize the breast tissues and suspicious masses. Mammography is a powerful breast

cancer screening tool, which helps detect microcalcifications, commonly caused by can-

cer. Ultrasound technology aids medical doctors in differentiating cysts from solid tumors.

The patients with cysts usually do not need further evaluations, yet the patients with solid

masses are scheduled to undergo a biopsy procedure and exclude malignancy. Other sup-

plemental tests are available to support the diagnosis [5].

To date, there are many prognostic factors identified for breast cancer patients. How-

ever, the most significant of them are the presence and the amount of metastasis in axillary

lymph nodes and the tumor size. These two factors are used to stage the tumor, and there-

fore, they are the ones that define the treatment plan for the patient. The more metastatic

lymph nodes are found, and the larger tumor is, the more ominous survival prognosis is

given to the patient by doctors [6].

Doctors should exclude the possibility of inflammatory breast cancer (IBC) in patients

with symptoms similar to mastitis [7]. However, there are no standard diagnostic criteria

for IBC available at this time [10, 12]. Clinicians diagnose IBC in several steps: a visual

observation of symptoms in the suspicious breast, a review of the patient’s medical history,

completion of a physical examination, and a pathological evaluation of a skin biopsy sam-

ples and/or needle or core biopsy samples for invasive carcinoma [9, 10]. An inflammation



11

(erythema) area has to occupy at least one-third of the breast for IBC diagnosis [9, 12].

The detection of erythema in African Americans may be challenging because redness is

less pronounced in this group [10]. The timing of the IBC diagnostic is very important.

If a patient was treated for mastitis for more than 7-14 days with no results, IBC may be

suspected [9, 18]. There is a need to detect IBC early.

2.3 Breast Imaging Techniques

Multiple imaging technologies are developed for breast cancer screening purposes, such as

screening mammography, ultrasound, magnetic resonance imaging, computer tomography,

ultrasound elastography, thermography, optical imaging, and others [7, 24]. The goal for

screening is to detect the disease early and to give the best chance of survival and cure to

the patient. Positive screening result follows by additional tests to confirm malignancy [7].

Here we provide a brief overview of different breast imaging modalities.

Mammography

Mammography is a gold standard method for breast cancer screening [7, 24]. It relies on

low-dose X-rays to image the breast placed between a source and detector plates. Microcal-

cification in the breast, which can indicate malignancy, looks brighter on the mammogram,

whereas the breast tissues look darker. However, it is challenging to detect early-stage ma-

lignancy, especially in women with dense breasts. Therefore, additional screening tests are

used as supplements to obtain better results for cancer detection. Recently, a digital 3D

mammography was developed to characterize breast tissues better. The modality uses the

functional principles of mammography yet is modified to acquire three-dimensional views

of the breast.

Computer-aided detection (CAD) is a set of machine learning algorithms developed

to support doctors with the identification of small tumors, which has now become a stan-

dard feature in modern mammography machines. Besides all of its advantages, CAD is

associated with a high false positive rate and may mislead radiologists [24].

Ultrasound

Ultrasound (US) is the first choice for the supplemental to mammography diagnostic
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modality and can also be used as a stand-alone test in some cases. It is used to image

patients, which had inconclusive mammogram results due to high breast density or other

factors [7].

The US method uses high frequency sound waves to image the tissues. A US transducer

sends and senses the reflected inside the tissue waves to construct the ultrasound image.

The images are generated in real-time, while the transducer is moved over the region. The

cons of the method are the high rate of false positives and false negatives during screening.

One of the notable advancements in US technology is the development of ultrasound

breast elastography, which can characterize tissue elasticity. There are two types of US

elastography: free-hand elastography and shear wave elastography. The first relies on the

light compression of the transducer on the tissue during acquisition, which creates a dis-

placement field for strain estimation. The second method relies on the generated additional

shear waves in transducers, which are used for strain estimation as well. Stiffness informa-

tion is displayed as a range of colors, and the elastography image is superimposed over the

corresponding US image [25].

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) uses a single proton (a hydrogen nucleus) to im-

age tissues. It is possible because different tissue types are composed of molecules with

different amounts of hydrogen nuclei. MRI is using the magnetic properties of the nuclei

to analyze the tissues. The patient is placed in a magnetic field, and then radio frequency

waves are applied to acquire an image sequence.

The pros of the method include high contrast of the images, no radiation concerns to

patients, the ability to image both breasts together, and the ability to image dense breasts

efficiently. The cons of the method are the high cost of the imaging [7], high false-positive

rate, and microcalcifications that may not be shown correctly on images [24].

Positron Emission Tomography

Positron emission tomography (PET) is a nuclear medicine imaging technique, which

uses gamma rays to image tissues and visualize their functional characteristics. To distin-

guish benign from malignant tumor images, PET modality uses the differences in levels of

glucose metabolism. The relatively higher level of metabolism in the tissue will indicate
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malignancy.

PET is a useful supplemental method for detecting and staging breast cancer. It also

can be coupled with MRI and mammography to overcome the issue with breast density and

the menopausal status of a woman. There are also negative aspects of this method. The

PET experiment cost is high, the resolution of the images is low, and patients are exposed

to radiation [24].

Thermography

Thermography imaging of the breast is sometimes also called digital infrared imaging.

It is designed to use the infrared light spectrum for breast cancer detection [7]. Cancerous

and pre-cancerous tissues are characterized by increased growth and higher metabolism

than surrounding normal tissues. When the tissue becomes cancerous, it starts to draw

more blood supply. These changes are causing the increased temperature in the affected

areas, which can be detected by thermography. Thermography is a promising screening

modality; however, its performance suffers from high false positive rate, high sensitivity to

the test conditions, and image interpretation difficulties [24].

Diffuse Optical Imaging

Diffuse Optical Imaging (DOI) uses the near infrared wavelength band (650 nm - 1000

nm) to find tumors within a breast. The two types of DOI: diffuse optical tomography

and diffuse optical mammography, use the same principle yet different wavelengths for

imaging. The pros of the method are that it is non-invasive and not ionizing. It can give a

quantitative assessment of the imaged tissues for hemoglobin saturation and concentration.

The cons of the method are the difficulty to accurately measure biochemical components,

to reconstruct an image, and the use of contrast mechanisms [24].

Electrical Impedance-based Imaging

The human body is a collection of tissues with different permeability properties. Re-

search shows that cancerous tissues have lower impedance than normal tissues [24]. Two

imaging methods are developed based on that property: electrical impedance tomography

(EIT) and electrical impedance scanning (EIS). Multiple electrodes are placed on the breast

to detect the impedance level samples, and then images are reconstructed from the values

and analyzed [24]. The pros of the imaging method include its non-ionizing nature, the



14

possibility of continuous patient monitoring, and the chance of cost reduction for the di-

agnostic. The cons of the methods are the comparatively low resolution of the impedance

methods to computer tomography or MRI images, challenging image reconstruction algo-

rithms, and complex hardware implementation [26].

Computer Tomography

Computer tomography (CT) uses X-rays to capture planar images or slices of the body.

CT algorithms can recreate three-dimensional images from the taken slices, which can

help to localize the tumor. The combination of CT imaging with PET is used to define the

stage for metastatic cancers because it is able to assess the location of the tumor and the

metabolism level of it [24].

CT method has multiple advantages with high quality of anatomical details visualiza-

tion, yet uses 70 times higher level of ionizing radiation than a chest x-ray to complete a

test [27]. The multiple uses of CT can increase the risk of cancer [28]. In addition, approxi-

mately 50% of the CT imaging procedures require to use of the intravenous iodine contrast

agent, to which patients may develop from mild to fatal allergic reactions [29].

2.4 Summary

This chapter presents an overview of breast physiology and the typical manifestations of

benign and malignant breast diseases. Next, the breast disease management strategies are

outlined. Finally, we gave the list and a short description of the available breast cancer

imaging modalities.

Despite all of the advancements in imaging technology, no imaging method stands

out for breast cancer pre-screening. Most imaging modalities are for diagnostic purposes.

There is a strong need for a multimodal imaging method for breast cancer pre-screening.
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CHAPTER 3

TACTILE IMAGING PROBE

In this chapter, we introduce Tactile Imaging Probe (TIP) for breast tumor characterization,

its principle, and hardware design. We will also describe the acquisition software and

its capabilities. Next, we outline the algorithm and the graphical user interface for the

size and stiffness estimation. We describe the method to capture the tactile properties of

the tissue under compression by constructing Tactile Profile Diagrams, the pattern images

with tissue tactile information. We describe the method to estimate the size and stiffness

of the embedded tumors directly from Tactile Profile Diagrams. Finally, we introduce

Convolutional Neural Network models to classify Tactile Profile Diagrams based on the

depth, size, and stiffness.

3.1 Tactile Imaging Modality

Research shows that cancerous masses tend to be stiffer than benign ones [30, 31], and in

some studies, malignant tumors are found to be tenfold stiffer than normal breast tissue

through compression experiments [32]. It is also shown that mechanical imaging can clas-

sify breast tumors as benign or malignant [33]. Moreover, the size of the detected tumor

defines its grade during diagnosis and defines the future treatment plan for the patient [6].

We developed Tactile Imaging Probe (TIP) and its algorithms to mimic human touch

sensation and to non-invasively measure the size and stiffness of embedded tumors [34, 35].

We also introduced the malignant/benign classification method to support doctors.

Tactile imaging modality is an inexpensive, non-invasive, and non-ionizing method for

breast tumors characterization. This method provides information about the tumor’s me-

chanical properties for pre-screening purposes.
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3.2 Sensing Principle and Hardware Design

The Tactile Imaging Probe (TIP) is designed to mimic human touch sensation. From tactile

images, TIP algorithms quantify the size and stiffness of the imaged tissues and tumors.

Fig. 3.1 shows sensing principle and hardware design of Tactile Imaging Probe. TIP

uses a transparent and highly flexible polymer as a sensing element, which is made from

Polydimethyl siloxane (PDMS). We insert visible light to scatter within the sensing ele-

ment using four light emitting diodes (LEDs) and the principle of total internal reflection

[36]. When the sensing element is compressed against tissue with a tumor, its contact

surface is deformed. This deformation causes the scattered within the polymer light to es-

cape and to be captured by the lens-camera unit. We use a UI-3240CP-NIR monochrome

CMOS Camera (IDS Imaging Development Systems GmbH, Obersulm, Germany), and a

5 Megapixel 12 mm lens (Schneider, Rhineland-Palatinate, Germany). The size of a tac-

tile image is 1024 pixel × 1280 pixel. The depth of the pixel is 8 bit, which makes the

pixel value range from 0 to 255. The image acquisition rate is 20 images per second [37].

Attachment A and Attachment C provide supplemental information on TIP hardware and

firmware development.

The compression force is measured with an FC22 Force Sensor (TE Connectivity, USA)

attached on top of the camera body. The typical number of images in one acquisition

session is 50.

The controller unit consists of a microcontroller (SparkFun Pro Micro 5V/16 MHz,

SparkFun Electronics, Niwot, Colorado, USA) and its circuitry to manage the brightness

of the LEDs, as well as the force-camera synchronization. Fig. 3.2 shows the design of

the controller circuit [38]. The controller circuit is positioned outside of the TIP main

body to decrease the hand-held probe’s weight. Attachment B additionally describes the

implementation and setup of the controller circuit.

The image data, together with the corresponding compression force data, are contin-

uously transferred to the laptop during acquisitions and saved to its hard drive using TIP

acquisition software. Finally, we use TIP calculation software to analyze the images and

the force information and to quantify the mechanical properties of the embedded tumors.
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Figure 3.1: TIP principle and hardware design

Figure 3.2: TIP controller circuit
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3.3 Acquisition Software Design and Implementation

Acquisition software is used to control the acquisition through the controller unit, and to

transfer the data from the camera and the force sensor to the laptop. Fig. 3.3 shows the TIP

prototype connected to the laptop with the acquisition software graphical user interface

(GUI) on the screen.

Figure 3.3: TIP prototype connected to TIP GUI

The software is based on the "ueyedemo" project bundled with the IDS uEye Linux

SDK. The GUI is developed with Qt Creator and Qt 4.8, uses MinGW C++ Compiler and

OpenCV 2.4.13 library. The initial version of the GUI was developed by our group based

on the application script examples given by IDS Imaging Development Systems GmbH

[38]. We developed it further to satisfy the operational requirements from doctors and to

make the overall operation procedure easier.

The TIP acquisition software operation has three sequential steps: setup, capture, and

results. The setup step allows the parameter to be set for the camera, controller, and force

sensor, as well as the input of the information about the imaging session and the tumor.

Fig. 3.4 shows the TIP GUI setup.

After the setup is complete, we move to the capture step. Information about the current

sample and the acquisition session number are displayed. Dynamic force information is

provided on the screen in real-time as a value in Newtons and a color bar. The Zero button
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Figure 3.4: TIP GUI setup

can be used to offset the force sensor. When the Start button is pressed, a number of tactile

images with the corresponding forces are captured and saved to the session folder on the

hard drive. The number of images in one session can be set from 1 to 270. The system takes

20 images per second. The applied force level is visualized on the side panel as a dynamic

status bar. The bar area covers the range of forces from 0 to 50 N. Also, colors are assigned

to different levels of compression force. The compression of up to 5 N is not sufficient

and will give the yellow color of the force status bar. Compressions between 5 N and 45

N will show the green color of the force status bar. This range is the typical acquisition

range. Compressions over 45 N will be indicated in red. These forces are considered to be

excessive.

Fig. 3.5 shows the TIP GUI capturing capabilities. After images from one compression

session are saved, the software creates an additional folder with the false colored images

for better visualization of the results.

Fig. 3.6 shows the folders with 50 tactile images and the corresponding force informa-

tion from one compression session. Each image file name includes time and information

about the acquisition. The image file names are in the following format:

Case#<number>_TumorEstimationModel_TumorLocation_Compression#_YYYY-MM-

DD_<Time in ms>_TIP_im#<image number>_<force in N>N.bmp.
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Figure 3.5: TIP GUI capturing capabilities

Figure 3.6: Example of the images saved during one TIP acquisition session
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The final step is the results section. It is designed to present the operator with the pre-

liminary calculations of size and stiffness of the tumor, the confidence in the calculations,

as well as the preliminary malignancy score estimation in the range from 0 (benign) to 5

(malignant). This step should help the operator to evaluate the quality of the completed

acquisition, and to decide if additional compressions are needed. Fig. 3.7 shows the TIP

GUI Results Tab.

Figure 3.7: TIP GUI results tab

3.4 Mechanical Properties Estimation Algorithm

The mechanical properties estimation algorithm evaluates the size and stiffness of the tu-

mors by analyzing the tactile imaging sets with the corresponding applied force information

from TIP acquisition sessions [34, 35].

3.4.1 Numerical Simulation for TIP Sensing Element

We completed a numerical simulation for the TIP sensing element to understand how the

contact surface of the sensor deforms during its compression against an embedded tumor.

We used ABAQUS simulation software (ABAQUS Inc., RI, USA) to create the model.
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To complete the simulation, we specified the components of TIP and multiple sam-

ples of tissue with tumors, their dimensions, and stiffness. We set up the sensing element

dimensions (23 mm × 23 mm × 12 mm) and specified its stiffness as Young’s modulus

value (27 kPa). We also specified the thickness of the glass plate (3 mm), which supports

the sensing element’s internal side. Next, we specified a range of breast tissue and tumor

properties based on our breast mimicking phantom characteristics, which will be discussed

in Chapter 4. We varied the size of the tumor from 5 mm to 30 mm and the stiffness of

the tumor from 15 kPa to 465 kPa. We also varied the depth of the tumor within the tissue

from 2 mm to 20 mm (the depth layer). Finally, we specified the range of applied force to

TIP (5 N - 30 N), which caused the deformation of the polymer in contact with the tissue

sample. Fig. 3.8 outlines our ABAQUS model setup.

Figure 3.8: ABAQUS simulation setup

The results from the numerical modeling are summarized in Fig. 3.9. The three graphs

describe the deformation effect from varying tumor size, stiffness, and depth, respectively,

for the selected 26 N applied force. Each of these parameters has a unique effect on the

formed tactile image, so it is possible to develop algorithms to estimate these properties

from the sets of TIP images.
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Figure 3.9: ABAQUS simulation results
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3.4.2 Tumor Size Estimation: 3D Interpolation

To estimate the size of a tumor from a set of tactile images, we developed a three dimen-

sional (3D) interpolation models [34]. The 3D interpolation method relates the size of the

tumor as diameter measure, D, applied forces in compression, ~f , and the sum of pixel inten-

sities value on the corresponding tactile images, ~Ip. We built several interpolation models

to adjust the method for different tumor sizes and depths. To use the modeled surfaces

for size calculation, we employ Equation (3.1). To prepare for the calculation, we collect

applied force data, ~f , from the force sensor, calculate the sum of pixel intensities from

the corresponding tactile images, and use the estimated depth information from the TIP

operator. Then we use Equation (3.1) to calculate the size of the tumor.

D(~f ,~Ip) =
i=n

∑
i=0

j=m

∑
j=0

pi j fiIp j . (3.1)

The size estimation model coefficients, pi j, define the shape of the modeled surface. Indices

n and m in Equation (3.1) denote the order of the polynomial for the size estimation. We

developed a third order polynomial surface for the 3D interpolation (i.e., n=3, m=1), which

fits our empirical data the most. We also build four 3D models for four different imaging

scenarios. The four models are designed for large and deep inclusions, large and shallow

inclusions, small and deep inclusions, and small and shallow inclusions. Fig. 3.10 shows

an example of the model for large (D > 12 mm) and deep (> 10 mm) tumors. The size and

depth thresholds depend on the application.

3.4.3 Tumor Region Stiffness Estimation

The extend at which the sensing element gets deformed during TIP compression against

the embedded tumor within the tissue is called the deformation index. The amount of

deformation depends on the tumor’s size and stiffness, as well as on the stiffness properties

of the surrounding tissue. When the conditions of the depth, size, and applied force are

fixed, the stiffer tumor deforms the surface of the sensing element more than the softer

tumor. Fig. 3.11 shows the surface deformation of the TIP sensing element in compression

against stiffer inclusion vs. a softer inclusion.
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Figure 3.10: Example of a 3D interpolation model

Figure 3.11: TIP sensing element deformation
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Every image is defined as a multiple of 8-bit grayscale numbers (0 to 255) with the size

of 1024× 1280 pixel. Consider that the reference force fre f is applied to the contact region

(phantom), which produces a reference image Mre f , which is 1024 × 1280 matrix. The ith

tactile image, Mi, is obtained after applying a force fi. The change in the pixel intensities

can be represented as (3.2).

∆M = Mi−Mre f , (3.2)

here i = 1, 2, 3 ... .

The change in the force values corresponding to change in pixel intensity can be calcu-

lated as given below:

∆ fi = fi− fre f , (3.3)

where i = 1, 2, 3 ... .

The deformation index, DI, is the slope value of the graph plotted with the sum of pixel

intensities ∆Mi vs. the change in the applied force ∆ fi, which is calculated using (3.4).

DIi =
∑

n
l=1 ∑

m
k=1 ∆Ml,k

i
∆ fi

, (3.4)

where the ith tactile image has l rows and k columns.

3.5 Semi-automatic Mechanical Properties Estimation GUI

We developed a semi-automatic mechanical properties estimation graphical user inter-

face using GUIDE application in MATLAB named MP_EST_GUI. TIP operator can use

MP_EST_GUI to load one set of tactile images, eliminate outlier samples within the set,

visualize the compression force data, automatically search for the best compression subset

to be analyzed, plot the stress-strain characteristic for the selected subset, and calculates

preliminary size and stiffness of the tumor. The GUI also allows the operator to define the

subset manually and to make the estimations.

Fig. 3.12 shows MP_EST_GUI results for an imaging session with 270 images. There

were three compressions within that acquisition session. In Fig. 3.12(a), the GUI auto-

matically selected the best compression for analysis out of the three, which is between the



27

two red points on the left graph. Fig. 3.12(b) presents MP_EST_GUI results for the same

imaging session, yet when we manually selected another subset for analysis and changed

the depth estimation. The results show changes in size and stiffness estimation.

Figure 3.12: GUI visualizations and calculations

The best compression identification step is completed by calculating the gradient of the

force data array and searching for its peaks shown for a compression session in Fig. 3.13.

The peaks indicate the end of each compression. Data to the left of a gradient peak location

and before the next peak location correspond to an applied compression. If there were no
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peaks found, it means only one compression was applied. Following, the algorithm selects

the maximum and minimum points from each compression range. The decision on which

compression to use during the analysis depends on the compression size in Newton. The

largest compression has to be selected because it will give the best estimation performance.

The algorithm will verify the compression length, which has to be at least 20 data points.

Figure 3.13: Automatic detection of compression ranges

The GUI is very useful for processing multiple TIP sessions, where we want to decrease

the calculation time yet obtain quality results. The operator is able to process data in an

interactive manner and visually verify the tactile imaging data.

3.6 Tactile Profile Diagram

Clinical data is highly multimodal due to the variety of sensors and diagnostic devices. The

data can be one- or multi-dimensional; it can be stationary or dynamic, depending on how

it was generated. Therefore, different methods are applied to the analysis of medical data.

Time series data is one of the most popular data in the field. One patient in a hospital can

generate a large amount of such data. The dynamic data can produce more useful informa-

tion about the patient’s condition than the static data; however, due to the computational

limitations, not all of it will be analyzed and used for classification.
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Clinical time series data analysis was explored by many researchers [39, 40]. Recently,

researchers directed their attention to the processing of the series of data with deep learning

tools by visualizing time series data via pattern images [41, 42]. The reconstructed patterns

from time-series data are given names such as Gramian Angular Summation/Difference

Fields and Markov Transition Field [43].

One of the fields, which explores the dynamic properties of time-series signals for a

long time, is the speech processing field. In speech processing and recognition, it does

not make much sense not to process sounds over a wide range of frequencies and time

[44]. Spectrograms are the way of visualization speech signals [45, 46]. A spectrogram

is a visual representation of the time-varying frequencies of an acoustic signal. It reflects

on acoustic energy stored within the signal over a period of time [45]. Spectrogram can

be presented as grayscale or a color plot Fig. 3.14. Human hearing relies on signals from

the cochlea of the inner ear. These signals are functionally similar to how spectrograms are

developed [47], so it makes sense to represent audio signals via spectrograms [44].

Figure 3.14: Example of a speech signal representation via a spectrogram
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Human touch sensation is based on signals from tactile sensors throughout our body,

which are processed in the parietal lobe of our brain [48]. The tactile signals are processed

in our brain very similarly to the visual signals [49]. Tactile Imaging Probe (TIP) is devel-

oped to measure the tactile properties of touched tissues [34, 50]. So far, we have described

how TIP and its algorithms estimate the size and stiffness of embedded tumors from the

series of tactile images.

Tactile images are dynamic time series data that contain a large amount of informa-

tion about the imaged tissue. We can extract the application-specific information (tumor’s

stiffness and size) from the data by creating pattern images for each tactile imaging set.

We want to use the dynamic tactile information as a temporal signal from TIP acquisi-

tion sessions to improve the tumor characterization. With that goal in mind, we propose a

method of combining sets of multiple tactile images into one representative diagram, called

the Tactile Profile Diagram (TPD).

TPD is a complex tactile image, which fuses the information from a set of 50 single

tactile images and gives a possibility of using the dynamic information from tactile imaging

with TIP.

3.6.1 Tactile Profile Diagram Construction

One raw TIP image characterizes the stiffness distribution of a region for an instantaneous

value of the compression force [34]. Here we present a method to construct a Tactile Profile

Diagram (TPD) as a representative pattern image from a set of TIP images.

TPD is a compact pictorial representation of the relative stiffness and size of the imaged

tumor. TPDs should be constructed using imaging data from the same range of applied

forces during TIP acquisition. The range of forces in our experiments is from 15 N to 45

N. The method to create a TPD from a set of tactile images is as follows.

We acquire a set of images with TIP by compressing it on the region with a tumor. The

number of raw tactile images, Ii(x,y), in a set is i = 1,2, ...,N (in our experiments N = 50).

Variables x and y are the horizontal and the vertical coordinates respectively of a pixel

within an image Ii. We apply an averaging filter with a non-overlapping sliding window

of size 10 pixels × 10 pixels to each Ii(x,y) to reduce the level of white noise within the
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images, decrease image size without the loss of tactile information, and improve the speed

of computations. The pixel values in the created reduced image, Ri(m,n), corresponding to

the average values of pixel intensities in the window at each step. The number of reduced

images in the set, N, is the same as the number of original images (N = 50). The size of

the reduced images is 103 pixels (m) × 128 pixels (n). The reduced images are the more

compact copies of TIP raw images.

Each tactile image, Ii, has a corresponding compression force value. The ~f is the vector

of forces of size N× 1. Similar to the pre-load step during Instron tests [51], we select a

reference force, fre f , and its corresponding reference reduced image, Rre f (m,n), from the

set to account for the imperfections at the test tissue surface. Empirically, we chose 5 N as

fre f . To obtain the vector of the change in compression force, ∆ fi, we subtract the reference

force value from the force vector, following 3.3.

Subsequently, we complete pixel-wise subtraction of the reference reduced image,

Rre f (m,n), from all reduced images, Ri(m,n), in the set to create an image set ∆Ri, which

represents the change in tissue deformation under compression. These images describe the

deformation of the silicon sensing element of the TIP.

∆Ri(m,n) = Ri(m,n)−Rre f (m,n), (3.5)

Next, we find the maximum intensity value, ∆Rmax, present in the ∆Ri images set. Then

we subtract each pixel value in ∆Ri images from ∆Rmax to get the change of deformation

images, ∆Wi, of the tissue with inclusion, and not of the sensing probe’s material.

∆Wi(m,n) = ∆Rmax−∆Ri(m,n), (3.6)

To construct a Tactile Profile Diagram, we calculate Young’s modulus index values,

Y MI(m,n), which is the stiffness estimation parameter for each pixel location in ∆Wi

(Fig. 3.15). We mimic the definition of Young’s modulus and calculate Y MI in a pixel

location (m,n) as a slope of the compression force over an area (the compression change

Delta fi) vs. the deformation change due to the compression (the change in deformation ∆Wi

for the tissue with inclusion). To calculate the slope in each pixel location (m,n), N data

points will be available from a TIP set. Finally, a TPD is obtained by plotting Y MI(m,n)
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for m = 1...103 and n = 1...128 (Fig. 3.15). If ∆ fi is divided by the contact area and ∆Wi is

correlated with the strain, then Y MI(m,n) is directly related to the young’s modulus of the

tissue at any given point at (m,n).

Figure 3.15: Tactile Profile Diagram generation

3.6.2 Mechanical Properties Estimation Algorithm from Tactile Profile Diagram

To use Tactile Profile Diagrams for mechanical property estimation, the diagrams have

to be segmented due to the high level of hardware-related noise in their perimeter. Then

size and stiffness can be estimated from TPDs directly using the methods described in this

section.

TPD Segmentation

Similar to the Canny edge detection method [52], we utilize the directional gradient of

TPD to find a region of interest for calculations. Because an image gradient is the direc-

tional change of the pixel intensity in an image, one can use it to detect intensity changes

associated with the inclusion region vs. the changes due to the perimeter noise. We use

MATLAB 2019a function imgradient(Y MI,′ sobel′) to create a gradient magnitude image,

Gmag(m,n), and a gradient direction image, Gdir(m,n), from a TPD [53]. Next, we create

a composite image, G(m,n), from a difference between Gmag(m,n) and Gdir(m,n) using

im f use(Gmag,Gdir,′ di f f ′). We semi-manually select the region of interest in the center of

G(m,n) image by following the edges of the circular region in Matlab using drawassisted
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function. The selected region corresponds to the inclusion indentation into the probe during

the TIP test. After applying the created with drawassisted function mask to GmagS(m,n)

image, the segmented GmagS(m,n) has zero-valued pixels outside of the selected region,

and non-zero pixels inside it. The segmentation method steps are shown in Fig. 3.16.

Figure 3.16: Tactile Profile Diagram segmentation

Tumor Size Estimation

The tumor’s size is estimated by summing the number of non-zero pixels within the seg-

mented image GmagS(m,n). Next, this value is related to the tumor’s size with the use of a

linear regression model. Use (3.7) to find the size of the inclusion, D, in mm.

D = aNp +b, (3.7)

where Np is the number of nonzero pixels in the segmented area, a= 0.0019 and b= 7.1028

are the empirical coefficients. The coefficients are developed by linear interpolation to the

data points of known inclusion sizes vs. Np from the corresponding GmagS(m,n). Fig. 3.17

shows steps for size calculation.

Tumor Region Stiffness Estimation

Stiffer the inclusion, the larger is the change in TPD pixel intensities, and the greater are the

pixel intensities of the segmented gradient magnitude image GmagS. Therefore, we define
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Figure 3.17: Tumor size calculation from a TPD

a) Load a TPD; b) calculate Gmag(x,y); c) detect edges of the tumor; d) calculate the number

of pixels within the selected region inside the edges

Stiffness Index, SI, as the measure of the tumor’s stiffness based on the collection of local

stiffness measurements (Y MI), where Y MI is directly related to the Young’s modulus of

the tissue at any given point on the corresponding TPD 3.6.1. The calculation of SI follows

(3.8).

SI =
∑m ∑n GmagS(m,n)

Np
, (3.8)

Therefore, in one number, SI represents the sum of all gradient magnitudes divided by

the number of nonzero pixels. Stiffer the inclusion, the intensity changes will be larger, and

SI will be larger.

3.7 Classification Methods

In this section, we develop classification methods to extract desired information about the

imaged tumor from Tactile Profile Diagrams. We will use the results of the classifications

to calculate the Tactile Index. Additionally, classification results will improve tumors’

mechanical property calculation using Tactile Imaging Probe algorithms described earlier

in this chapter.
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Here we provide a method to apply pattern recognition techniques, such as Convolu-

tional Neural Network, to Tactile Profile Diagrams. Using the method, we estimate the

depth, size, and stiffness of tumors from TPDs. We discuss in length the method and the

designed classification models.

3.7.1 Overview of Machine Learning Classification Methods

Artificial intelligence (AI) is applied to a wide variety of research topics [1]. It is used in

engineering, medicine, and science to improve people’s life.

The challenge presented to AI is to solve the problems, which humans can perform, yet

found difficult to explain how it was done. The computers’ ability to mimic human vision

and speech are examples of such problems. The way to enable computers to perform such

tasks is to let them learn from the smaller and less complex tasks, which can be easily

described [1].

A complex task will include many layers of simpler concepts built and defined one over

another. This idea of multiple layers is translated into the concept of AI deep learning

(DL). A person uses years and decades of experience and knowledge to complete everyday

tasks. This knowledge differs from person to person. It is difficult to express knowledge in

a formal way, and it is difficult to teach it to computers. The attempts to define knowledge

about the world proved to be very challenging [54]. On the other hand, machine learning

(ML) is a modern tool in AI, which allows computers to learn concepts from data directly.

There are three main types of ML algorithms, depending on the way how they learn:

supervised, unsupervised, and reinforced learning. A supervised ML algorithm learns from

a data set with labels (annotations), which means the model has input and output for train-

ing. Examples of supervise learning algorithms include support vector machines (SVM),

k-nearest neighbors (KNN), and decision trees. An unsupervised algorithm learns the fea-

ture representation from the data without labels, which means that the model is given only

an input. Examples of unsupervised learning algorithms include the principal component

analysis (PCA), and k-means clustering. The reinforcement learning algorithm interacts

with the environment and learns through a rewards system [1, 55].

Simple ML algorithms, such as logistic regression or naive Bayes, are very dependent
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on the data representation. The data is represented as a set of features. So the choice of

features influence the results of the algorithms and is somewhat subjective. While it may

be easy to create a set of features for one application, it may be challenging for others. It is

possible to use ML to discover the feature representation for a given task. This concept is

called representation learning, and it currently outperforms manual feature learning [1].

Some of the algorithms were inspired by our knowledge about living systems. For

example, artificial neural network algorithms were designed to mirror brain structure and

functions to learn. The network systems are the combinations of layers, where each layer

is composed of multiple nodes (neurons). The neurons transmit information ("fire") if the

given condition is met [55]. Autoencoders are successful neural network algorithms, which

rely on representation learning. One of the main goals in the design of these algorithms is

to be able to explain the factors of variation within the data, yet it is not always easy to do.

In recent years, this problem with explaining variations within data is solved by intro-

ducing deep learning. Deep learning algorithms were inspired by neural networks, and are

able to represent complex concepts as sets of simple representations presented in multiple

layers. Fig. 3.18 explains the way how deep learning represents an image of a person in

simple concepts. The DL system learned edges in the image first, then the corners and

contours were learned based on the edges. Next, the object parts were learned based on the

previous knowledge of corners and edges. Finally, the object on the picture was classified

as a person.

3.7.2 Convolutional Neural Network (CNN) Classification

Convolutional Neural Network (CNN) is a special type of neural network designed to work

with the data presented in grids: time-series (1D data), and images (2D data) [1, 56]. CNN

is a neural network that uses convolution operation instead of matrix multiplication in at

least one of its layers [1].

The structure of the network was inspired by the visual cortex hierarchy and presented

by Fukushima [57]. Since then, it was applied for visual object recognition and image

classification tasks with good performance [58].

One CNN layer usually contains three steps to complete. The first step is convolution,
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Figure 3.18: Deep learning representation [1]
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which produces a set of linear activations. Followed by the detection (perception) step,

where the linear activations are combined with nonlinear activation functions. Finally, the

pooling step makes the output invariant to small translations [1].

Convolution

To explain the idea behind convolution, let us introduce a sensor system for an airplane

location. This example was inspired by Goodfellow’s introduction to the convolution oper-

ation [1]. The sensor system will have the output z(t), which is the location of the airplane

in time t. To have the value of x at any time t, z and t have to be real values.

To reduce the amount of noise in the sensor output, we compute a weighted average of

several output values, assigning higher weights to the newer readings. To implement that,

we apply a weight function w(a) at each time instance with a representing the age of the

signal measurement. The calculated s function (3.9) will correspond to the clean sensor’s

output and is called convolution. Asterisk sign () is a common notation for the convolution

operation.

s(t) =
∫

z(a)w(t−a)da = (z∗w)(t). (3.9)

The convolution operation is used not only to implement the weighted average, yet it is

very useful for many other applications. In the study area of convolutional networks, z(t)

is called the input, w is called the kernel, and the feature map is the output.

Because computers are not capable of processing continuous data and the sensor output

are discrete readings in time, we need to define the discrete convolution function (3.10).

s(t) =
∞

∑
a=−∞

z(a)w(t−a)da = (z∗w)(t). (3.10)

To apply convolution to an image I, we need to use a two-dimensional kernel W as well.

The two-dimensional convolution will look as follows.

S(i, j) = ∑
m

∑
n

I(m,n)W (i−m, j−n) = (I ∗W )(i, j). (3.11)

The commutative property of convolution allows us to write the following.

S(i, j) = ∑
m

∑
n

I(i−m, j−n)W (m,n) = (W ∗ I)(i, j). (3.12)
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Very often, in Convolutional Neural Network implementation, cross-correlation is used

instead of convolution. Cross-correlation is the same as convolution but does not involve

the flipping of the kernel [1].

S(i, j) = ∑
m

∑
n

I(i+m, j+n)W (m,n) = (W ∗ I)(i, j). (3.13)

Fig. 3.19 demonstrates the convolution operation via cross-correlation [1].

Figure 3.19: Convolution operation via cross-correlation

Applying convolution to an image creates a map of features of that image. Some types

of input image transformations, such as scale or rotation, will not be adequately handled by

convolution [1]. Therefore, the augmentation of training data can improve the performance

of a CNN model.

Detection

Detection is done by using a detection algorithm on the output of a convolution step. The

detection functions are also called activations.
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Perceptron. The most simple detector is the perceptron. It has two possible outputs:

yes (1) or no (0), and can be defined as follows [55].

f (x) =

1 wx+b > 0

0 otherwise
(3.14)

where x is input signal, w are weights, b is bias, and wx is the dot product ∑
m
j=1 w jx j.

Unfortunately, the perceptron algorithm has serious flaws. It does not allow for a neuron

to learn gradually, only with sharp changes. Therefore other activation functions were

introduced.

Sigmoid. The sigmoid activation function defined as

f (x) =
1

1+ e−x . (3.15)

The function is continuous and gives the neuron ability to learn in tiny steps [55].

Hyperbolic Tangent. Similar to sigmoid function is the tanh activation, which is de-

fined as

f (x) = tanh(x). (3.16)

ReLU. Another activation function is called a rectified linear unit (ReLU). It gained

great popularity in recent years due to its practical compatibility with different applications.

ReLU is defined as

f (x) = max(0,x). (3.17)

Leaky ReLU. The leaky rectified linear unit (Leaky ReLU) is a modification of ReLU,

yet Leaky ReLU allows small learning when the neuron is not activated. Leaky ReLU is

defined as

f (x) =

 x x > 0

ax otherwise
(3.18)

where a is the slope parameter.

ELU. Another modifications to the linear rectified unit function is the exponential linear

unit (ELU) [59].

f (x) =

 x x > 0

a(ex−1) otherwise
(3.19)



41

where a is a hyper-parameter to be tuned.

All of the discussed activation functions are plotted in Fig. 3.20.

Figure 3.20: Common activation functions

Pooling

Pooling is an essential part of a CNN model, which was inspired by the complex structure

of brain visual cortex cells [58]. Small translational variations (shifts of pixels) in the input

image can be compensated by using pooling. It allows us to find a particular feature on the

image without caring much where precisely the feature is on the image [1].

A pooling replaces the feature map pixels with the generalized neighboring pixel statis-

tics [1]. There are many ways to implement pooling, yet the most common is the Max

pooling, which replaces the pixel value on the feature map with the maximum pixel value

of its neighboring pixels [60]. Fig. 3.21 illustrates how the Max pooling works [61].

Model Compilation

There are three main steps required to compile a CNN model [55]. All three of them are

briefly summarized here.
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Figure 3.21: Max pooling operation

Optimization

The optimizer is an algorithm used to update the model training weights. The most

common algorithm used for optimization is the gradient descent algorithm [55]. The most

commonly used optimizers are Adam and Adamax optimizers introduced by Kingma [62],

as well as RMSprop [55].

A large amount of training data is necessary for the good generalization of deep learn-

ing. To learn, a model searches for the combination of parameters that minimizes the

objective or loss function for the given training dataset. Because the amount of data is

very large, the model training involves drawing random subsets (batches) from the training

set and learning the parameters from one batch at a time. One training epoch is com-

pleted when the model finished learning in batches from the available training data [63].

In addition, deep learning methods heavily rely on the fast version of the gradient descent

algorithm - the stochastic gradient descent algorithm (SGD), to be able to process a large

amount of data [1].

Objective function

The objective functions or loss functions are used by optimizers with the goal of mini-

mization of the loss during the weights update [55]. The loos function should be meaningful

to the application because it will define how well the model will perform on the data during

tests [63]. The most commonly used objective functions are as follows.

MSE optimizer uses the mean square error calculation between the prediction and the
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true value. The function is expressed as following [55].

MSE =
1
n

n

∑
i=1

(γ−Y )2. (3.20)

where γ is a vector of n predictions, and Y is the vector of n observations.

The binary cross-entropy optimizer employs the logarithmic function and is used in

binary label prediction [55].

The categorical cross-entropy optimizer is a logarithmic loss for multiple classes. The

optimization is used for the multiclass classification and is described as follows [55].

Li = Σ jti, jlog(pi, j) (3.21)

where ti, j is the target, and pi, j are predictions.

Model Evaluation

After a CNN model is compiled, it has to be evaluated. There are several common

evaluation metrics: recall, precision, and accuracy [55].

Recall is the number of correct positive predictions divided by the number of all sam-

ples that had to be positive.

Precision is the number of correct positive predictions divided by the number of posi-

tive predictions by the classifier.

Accuracy is defined as the total number of the correct predictions to the total number

of the given predictions.

Evaluation of a CNN model should not be done on the same data it was trained on, yet

on a separate validation set. If the model is trained and evaluated on the same data, the

model will become overfit. It means the model will learn the training data very well and

will classify it with high accuracy, yet will have a poor performance on the data not from

the training set [63]. During multiple epochs of learning, the model begins to tune to the

validation data as well. Therefore, as a final step after tuning the model, it needs to be

tested on the independent dataset, which does not include data from training or validation

[63].

It is important to avoid overfitting. On an accuracy vs. epochs plot, an overfit model will

show a linear increase of training accuracy until nearly 100%, while the validation accuracy
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will stop improving at some point. On a model loss vs. epochs plot, the overfit model’s

validation loss reaches some value and then stops decreasing or even starts to increase,

while the training loss keeps linearly decrease to approach 0 [63].

The common methods to prevent overfitting of a model are data augmentation, the

addition of a Dropout layer before Dense layers, or the use of regularization techniques

[63]. Data augmentation techniques increase the number of representative samples in a

dataset by generating new samples from the available data. If the initial dataset is small,

data augmentation may not be sufficient. In this case, the addition of a Dropout layer

before Dense layers may decrease overfit. A Dropout layer allows to randomly drop the

number of training parameters before the classification step. Regularization can be added

during model training to limit the number of filters per convolution layer or the depth of

the network itself [63].

3.8 Classification of Tactile Profile Diagrams

Classification of Tactile Profile Diagrams, which are the one-image representations of mul-

tiple TIP images, is designed to extract the tumor’s depth, size, and stiffness information.

TPDs carry the compact fused information about tissue inclusion mechanical property from

multiple TIP images acquired under different compression forces. The acquisition force

information is incorporated into the TPD image in an application-meaningful way. Clas-

sification of TPDs can help to characterize the mechanical properties of tumors and to

distinguish malignant from benign ones [33].

TPDs are different than typical images. They are rough estimates of tumors in the form

of pattern images. We use a special type of deep learning, Convolutional Neural Network,

which is used for image pattern recognition and classification for classification of Tactile

Profile Diagrams.

In this work, we will use three CNN models to classify imaged tumors depth (deep or

shallow), size (small, medium, or large), and stiffness (soft or stiff). These classification

results in the form of class probabilities will be used for Tactile Imaging Probe Index cal-

culation for the breast cancer risk assessment and to aid tumors’ size calculations with TIP
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algorithms [34]. Fig. 3.22 presents the described TPD classification steps.

Figure 3.22: TPD classification steps

3.8.1 Depth Classification Model

We designed a CNN sequential model without a feedback loop for tumor depth evaluation,

with three convolution layers, three Max pooling layers, and activation functions for the

feature learning part. The model is designed as a binary classifier to distinguish shallow

and deep tumors.

Fig. 3.23 shows the structure of the depth classification model, and details on the model

are given in Fig. 3.24. The classification part of the model includes four dense layers

with ReLU and ELU activation functions and Dropout layers of 0.3 and 0.2. The final

fully connected layer has Softmax activation function and two nodes, corresponding to

the shallow or deep classes. We employ Adamax optimizer, and accuracy as the metric

for the model performance evaluation during training. The Python script for the model

development is given in Appendix E.

The data for training and validation of the model is developed from tactile phantom

imaging data combined into Tactile Profile Diagrams dataset for depth classification. The

dataset development and model training are described in Chapter 4. With the sufficient

training data and the modified final layer, the model can output multiple depth ranges

(classes) if required by the application.
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Figure 3.23: TPD depth classification model (TPDModelDepth)

Figure 3.24: Depth classification model training details
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3.8.2 Size Classification Model

For tumor size evaluation, we developed another CNN sequential model. The model was

designed to distinguish the sizes of tumors. It also has three convolution layers, three Max

pooling layers, and activation functions for the feature learning part.

The structure of the model is shown in Fig. 3.25, and details on the model development

are given in Fig. 3.26. The classification is implemented via four dense layers with ReLU

and ELU activation functions and Dropout layers of 0.3 and 0.2. The final fully connected

layer has Softmax activation function and three nodes, corresponding to the small, medium,

or large classes. We used Adamax optimizer, and Accuracy as the metric for the model

performance evaluation during training. The Python script for the model development is

given in Appendix E.

Figure 3.25: TPD size classification model (TPDModelSize)

The data for training and validation of the model is developed from the tactile phantom

imaging data combined into the Tactile Profile Diagrams dataset for size classification. The

dataset development and model training are described in Chapter 4.

3.8.3 Stiffness Classification Model

For tumor stiffness evaluation from Tactile Profile Diagrams, we designed and trained a

third sequential CNN model named TPDModelStiffness. As with two previous models,

it has three convolution layers, three Max pooling layers, and activation functions for the

feature learning part.
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Figure 3.26: Size classification model training details
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The structure of the model is presented in Fig. 3.27. The details on the model develop-

ment are given in Fig. 3.28. The classification is done using four dense layers with ReLU

and ELU activation functions and Dropuot layers of 0.3 and 0.2. The final fully connected

layer has Softmax activation function and two nodes, corresponding to the soft and stiff

classes. Similar to the other two models, we used Adamax optimizer, and Accuracy as the

metric for the model performance evaluation during training. The model was built to dis-

tinguish tumors with different stiffness. The Python script for the model development is

given in Appendix E.

Figure 3.27: TPD stiffness classification model (TPDModelStiffness)

The data for training and validation of the model is developed from the tactile phantom

imaging data combined into the Tactile Profile Diagrams dataset for stiffness classification.

The dataset development and model training are described in Chapter 4.

3.9 Summary

In this chapter, we described the sensing principle and design of Tactile Imaging Probe.

Then we outlined the capabilities of the developed TIP acquisition software. We presented

the calculation algorithms for tumor size and stiffness estimation from sets of tactile im-

ages. We also proposed a method to extract the application specific information from the

sets of TIP images and combine it into a pattern image or Tactile Profile Diagram for each

corresponding tactile imaging set. Next, we described algorithms for tumor size and stiff-

ness estimation from Tactile Profile Diagrams directly. Finally, we outlined the method to
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Figure 3.28: Stiffness classification model training details
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estimate depth, size, and stiffness of tumors by employing Convolutional Neural Network

pattern recognition capabilities on Tactile Profile Diagrams.
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CHAPTER 4

TACTILE IMAGING PROBE EXPERIMENT

In this chapter, we describe the Tactile Imaging Probe experiments. We outline the de-

velopment of breast tissue and tumor phantoms. Next, we present the experimental setup

and results for size and stiffness estimation from tactile images using phantom data and in-

vivo human patients’ data. Furthermore, we show examples of constructed Tactile Profile

Diagram for varying tumors. We also show the performance of Tactile Profile Diagrams

classification with Convolutional Neural Network to estimate depth, size, and stiffness of

the tumors for phantom data and for in-vivo human data. Finally, we show the TPD classifi-

cation results with CNN models improve the performance of the size calculation algorithm.

4.1 Phantom Development

Here we outline the construction of the breast tissue mimicking phantom. The phantom is

necessary to test the capabilities of the Tactile Imaging Probe.

4.1.1 Review of Phantoms that Mimic Mechanical Properties of Tissues

The Tactile Imaging Probe experiments require custom breast tissue mimicking phan-

toms. Multiple studies have been done on developing tissue-like artificial breast phantoms

[64, 65, 66, 67, 68, 69, 70, 71]. The phantoms were made from different types of mate-

rials, which are inorganic or organic by nature. The most commonly used materials for

mechanical phantoms are gelatin, agar, fibrin, Polydymethyl siloxane, Polyvinyl chloride,

and Polydymethyl alcohol (PVA) silicones.

Not many of the mechanical property tissue phantoms incorporate tumors within the

synthetic tissue. Researchers who work in breast cancer research develop phantoms with

tissue inclusions to test methods. Egorov and Sarvazyan fabricate a SEMICOSIL hydrogel

tissue and tumor mimicking phantom [72]. The inclusions had varying sizes yet constant

stiffness.
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Polyvinyl chloride (PVC) and Polydimethyl siloxane (PDMS) phantoms are well suited

for mechanical property estimation experiments [34, 36, 73]. In this work, we developed

a phantom with tissue-like mechanical characteristics and with embedded inclusions using

PDMS plastisol. The phantom is composed of multiple layers and is durable even with re-

peated mechanical compressions. It includes palpable PDMS inclusions of variable depth,

stiffness, and size.

4.1.2 Proposed Phantom Design

The proposed mechanical property breast tissue phantom is composed of multiple layers.

The base material of the tissue layers is Polydimethyl siloxane (PDMS) due to its safety and

easiness to use, adjustable stiffness, and high tolerance to heat and mechanical compres-

sions. Polydimethyl siloxane is commercially available silicone rubber. It is composed of

two materials: Base agent (A) and Curing Agent (B). We used RTV 6136-D1 (Momentive

Performance Materials, Waterford, NY), a low viscosity silicone dielectric gel, to prepare

PDMS. Two components A and B were mixed in a different mixing ratio by weight.

We developed four types of tissue layers using PDMS: base, intermediate, depth, and

skin layers. Figure 4.1 shows the schematics of the phantom and its layers. The description

of each layer is also provided on the figure. The spherical tumors are manually cut out of

cured PDMS cubes with a range of stiffness. The spherical tumors are manually cut out of

cured PDMS cubes with a range of stiffness to mimic different tumor sizes and stiffness

characteristics.

The base layer is a supportive layer, which mimics ribs and muscles under breast tissues.

The PDMS ratio (A:B components) of the layer is 1:20 (629 kPa). Intermediate layers of

different thicknesses (10 mm, 12 mm, 14 mm, 16 mm and 18 mm) are developed to embed

the tumors of different diameters (10 mm, 12 mm, 14 mm, 16 mm and 18 mm). Examples

of four manually cut tumor mimicking samples (12 mm, 14 mm, 16 mm, and 18 mm) are

shown in Fig. 4.2. PDMS ratio of the intermediate layer is 1:2 (94 kPa). Depth layers are

made of PDMS ratio 1:2 (94 kPa) to vary the depth of the embedded tumors. Depth layers’

thicknesses are the following: 2 mm, 4 mm, 6 mm, 8 mm, 10 mm, 12 mm, and 14 mm. The

skin layer is a thin (< 1 mm) and transparent PVC layer 78 kPa. It serves as a protective
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Figure 4.1: Breast phantom for TIP experiments

layer for compression experiments.

Figure 4.2: Phantom tumor samples

The PDMS ratios (A:B components) of the tumors are the following: 1:2.5, 1:3, 1:3.5,

1:4, 1:4.5, 1:5, 1:5.5, 1:6; 1:7, 1:8, 1:9, 1:10, 1:12.5, 1:15; 1:17.5, 1:20. These PDMS

mixing ratios are covering Young’s Modulus range from approximately 130 kPa to 629

kPa. All of Young’s moduli of the PDMS samples were obtained using the compression

technique with the Instron 5944 testing machine [74]. Each of the stiffness levels had four

cube size samples for the test with Instron (Figure 4.3, Attachment D).
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Figure 4.3: PDMS samples from Instron test

4.2 Phantom Experiment

In this section, we outline the experimental design for Tactile Imaging Probe to test its

capabilities and algorithms. We estimate the size and stiffness of tumors directly from the

sets of TIP images and later present the results [34].

4.2.1 3D Interpolation for Size Estimation Using Tactile Images

To estimate the size of embedded tumors TIP images, we developed three-dimensional

interpolation surfaces for four different cases: small and shallow tumors, small and deep

tumors, large and shallow tumors, and large and deep tumors. Tumors smaller than 12 mm

are considered small, and tumors above 12 mm in diameter are considered large. Depths

smaller than 10 mm are shallow in this study, and depths above 10 mm are deep. The 3D

interpolation model is a calibration technique for TIP size estimation from sets of tactile

images. However, the calibration may differ if the same PDMS sensing element is used for

experiments for an extended amount of time. The PDMS becomes less translucent, and the

calibration requires adjustment.

We developed interpolation models for both PDMS sensing element conditions. The

first model was developed for the new condition of PDMS. We built the models from the

TIP dataset, which contained images of small inclusions (8.05 mm, 9.86 mm, 11.70 mm)

and large inclusions (13.63, 16.38 mm, 19.47 mm). The shallow samples had 0 mm depth,

and deep samples had 10 mm depth. Each sample was repeated in 3 trials. The Young’s
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modulus of all samples was above 250 MPa.

The second 3D interpolation model was developed for the used condition of the sensing

element. Small size samples included 9.81 mm and 11.94 mm inclusions. The sizes of the

large samples were 16.08 mm and 22.48 mm. Deep samples were embedded in 10 mm

depth, and shallow samples were embedded in 5 mm depth. Each sample was repeated in

3 trials as well. The Young’s modulus of all samples was above 250 MPa.

We used MATLAB to fit the data from the tests and to build four models for each

PDMS condition (new PDMS probe and used PDMS probe). The models’ shape is given

by Equation 3.1, which can be rewritten as follows.

D( f , I) = P00 +P10 f +P01I +P20 f 2 +P11 f I +P02I2 +P30 f 3 +P21 f 2I +P12 f I2 +P03I3,

(4.1)

where D( f , I) correspond to the function of tumor’s size, which depends on TIP applied

force, f , in N, and sum of intensities, I, from the corresponding tactile image (see Sec-

tion 4.2.1 for details).

The calculated polynomial interpolating parameters for the models presented in Ta-

ble 4.1. As an example, Fig. 4.4 shows the 3D size interpolating models for the used

PDMS condition. The four plots correspond to small and shallow, small and deep, large

and shallow, and large and deep tumors size estimation models. Larger samples have fewer

variations among the three trials, and as a result, the sizes of larger tumors will be estimated

with higher accuracy than of smaller tumors.

4.2.2 Size and Stiffness Estimation Using Tactile Images

The test objective of this experiment was to determine the depth and size of tumors that

TIP can detect. We used different tumor depths (0 mm, 3 mm, 5 mm, 10 mm, 12 mm and

15 mm), and tumor sizes (3 mm, 10 mm, 15 mm and 18 mm) for this experiment. We also

used two types of tumor stiffness: softer tumor inclusion (1:3 ratio A:B or 134 kPa) and

stiffer tumor inclusion (1:20 ratio A:B or 466 kPa). The inclusions were tested in 2017

using Instron testing machine to determine the true elastic modulus values for the tumor

samples.
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Table 4.1: TIP size estimation interpolation parameters

Parameters

PDMS Probe Condition
New Used New Used

Size: small Size: large
Depth: shallow

P00 -724.70000 -37.17000 -104.80000 -10.48000
P10 -11.77000 -1.69400 0.36490 0.20650
P01 1.341e-05 3.956e-07 1.821e-06 2.115e-07
P20 -0.02005 0.00303 - 0.003634
P11 1.33e-07 6.948e-09 -2.243e-09 -1.192e-09
P02 -8.124e-14 - -9.583e-15 -
P30 - - - -
P21 1.017e-10 - - -
P12 -3.736e-16 - 8.705e-19 -
P03 1.631e-22 - 1.731e-23 -

R-square 0.8845 0.2245 0.9952 0.9838
Depth: deep

P00 634.80000 -20.73000 -9.11400 -16.71000
P10 -13.56000 0.32120 0.59430 0.347300
P01 -8.161e-06 2.6e-07 1.463e-07 2.717e-07
P20 -0.17210 0.002390 -0.02784 0.005321
P11 2.126e-07 8.178e-12 -4.067e-09 -9.882e-10
P02 2.635e-14 - - -
P30 -0.0002036 - 4.47e-05 -
P21 1.066e-09 - 1.38e-10 -
P12 -7.875e-16 - - -
P03 - - - -

R-square 0.7327 0.7913 0.9682 0.9788
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Figure 4.4: 3D Interpolating models for the used PDMS

Polyvinyl chloride (PVC) was used to prepare multiple layers of the breast phantom.

There are four layers; base, intermediate, depth, and protective layer, as shown in Fig 4.5.

The PVC materials we used were "regular liquid plastic," "super-soft liquid plastic," and

"softener" (M - F Manufacturing Company Inc., TX, USA). The base layer was made from

"regular liquid plastic." The intermediate and depth layers were softer and were made of

"regular liquid plastic" plus "softener" with the 1:1 ratio and addition of skin color dye

(Flesh Tone Silicone Pigment, Smooth-On Inc.). The thin protective layer was made from

the "super soft liquid plastic" material.

During the tests, we varied the depth by adding different layers from 0 mm to 23 mm to

estimate the maximum depth of the tumor that the TIP can detect [34]. The results of size

and stiffness estimation experiments are presented in Table 4.2 and Table 4.3.

Soft Tumor

At superficial depth (0 mm), the tumor phantom sizes 10 mm, 15 mm, and 18 mm are

detected better with a less size error percentage of 1.87%, 9.61%, and 18.12%, respectively.
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Table 4.2: Size and Deformation Index estimation at shallow tumor depths

Tumor True Size Estimated Size Size Error, DI
inclusion (mm) (Mean) (%) (104)

Softer

3 8.24 174.78++ 3.32
10 10.77 1.87 5.06
15 13.56 9.61 12.13
18 14.74 18.12 25.94

Stiffer

3 8.55 185.51++ 3.59
10 9.50 5.01 8.68
15 13.92 7.20 15.81
18 14.95 16.94 29.56

(a) Depth=0 mm

Softer

3 8.26 175.40++ 2.71*
10 9.59 13.54 3.57
15 13.58 9.47 3.25
18 13.95 22.51 2.53

Stiffer

3 6.07 102.22++ 2.07*
10 8.66 13.35 3.88
15 12.20 18.70 5.97
18 14.07 21.83 9.95

(b) Depth=3 mm

Softer

3 8.34 178.13++ 2.17
10 9.24 15.97 3.38
15 13.20 12.03 4.02
18 13.63 24.27 9.41

Stiffer

3 8.58 186.14++ 3.61
10 8.68 13.15 4.53
15 11.69 22.10 6.18
18 13.97 22.41 17.47

(c) Depth=5 mm
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Table 4.3: Size and Deformation Index estimation at deep tumor depths

Tumor True Size Estimated Size Size Error, DI
inclusion (mm) (Mean) (%) (104)

Softer

3 8.37 179.14++ 3.38
10 8.65 24.67 2.26
15 13.30 11.36 3.09
18 14.13 21.49 5.97

Stiffer

3 7.93 164.36++ 3.80
10 9.03 9.68 3.50
15 13.65 8.98 4.36
18 13.93 22.61 10.60

(d) Depth=10 mm

Softer

3 n/a n/a 2.19
10 8.95 23.40 3.04
15 12.99 13.38 2.66
18 14.78 17.92 3.53

Stiffer

3 n/a n/a 2.98
10 9.22 7.77 3.15
15 14.13 5.78 2.70
18 14.40 20.03 4.212

(e) Depth=12 mm

Softer

3 n/a n/a 1.88*
10 8.58 23.97 2.94*
15 13.77 8.23 2.04
18 14.73 18.19 3.69

Stiffer

3 n/a n/a 1.47*
10 8.84 11.64 2.37*
15 14.10 5.98 2.98
18 14.69 18.38 4.60

(f) Depth=15 mm
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Figure 4.5: Breast phantom for tactile experiments

As the depth increased from 0 mm to 15 mm, the size estimation error only increased

slightly, which shows the sensitivity of TIP and the accuracy of measuring the tumor size

in varying depth. The 3 mm size estimation shows a large error, which shows that size

detection performance of TIP decreases when the tumor sizes are less than 3 mm.

Stiffer Tumor

The 1:20 samples are stiffer than 1:3; hence theoretically, the 1:20 samples represent

malignant tumors, which are considered to be stiffer than benign tumors. The result shows

that TIP can determine the size of 1:20 samples more accurately than that of 1:3, and the

error is smaller. This shows that TIP is able to detect malignant tumors or stiffer growths

over benign or non-stiff tumors. The phantom testing showed that the TIP is able to de-

termine the size of tumors above 3 mm in size up to 18 mm and to a depth of up to 15

mm.

Deformation Index (DI)

The deformation index is calculated as described in Chapter 3, and the results are pre-

sented in Table 4.2 and Table 4.3. Comparing the same size tumors at the same depth

between the softer and stiffer tumors, we note that the values follow a similar pattern as

explained above. The stiffer samples show a higher deformation index than the softer sam-

ples. At a depth of 15 mm, a small sized-tumor showed a large error due to the difficulties
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in detecting deeply embedded tumors.

4.3 In-vivo Human Experiment Using Tactile Images

The TIP was tested in a pilot study of twenty-one human patients (IRB# 22050 Temple

University) to determine the accuracy of the device in a real healthcare environment [34].

The patients were scheduled for a biopsy, where the histopathology reports from the biopsy

were used as the truth values in the classification output of TIP. Patients were randomly

selected by the radiologists.

4.3.1 Size and Stiffness Estimation

For the human patient experiments, the physicians initially approximate the location, size,

and depth of the masses. The doctors were instructed to use a 12 mm threshold for size

and a 10 mm threshold for depth. However, if the mass was approximated as more than

30 mm in diameter, the 3D interpolation for large and deep inclusions was used for size

calculation. The results from the human patients’ experiments in-vivo are shown in Table

4.4. The patients used for the studies had tumors in varying sizes from 11 mm to 60.8 mm,

which was determined from the ultrasound images (true tumor size in Table 4.4).

From the results, the serial numbers from 1 to 15 have a size estimation error of less than

20%. In these cases, the estimated size values are close to the real values. For example, in

serial number 10, a patient with a small tumor of size 11 mm in a depth of 7 mm is showing

a very good estimated size and is found to be malignant through the histopathology report.

This shows the ability of the TIP to detect small tumors at deeper depth if it is stiffer

or malignant. In serial numbers 16 to 21, the error percentage increased from 20% to

70%. This is mainly due to the non-palpable nature of the tumor and the human error in

estimating the depth and size.

The deformation index is also given in Table 4.4. We observe that the malignant tumors

(denoted with "+" symbol) show a higher deformation index than the benign cases. The

malignant and benign cases are confirmed using histopathology reports. The malignant

tumors have deformation index values above 50,000, whereas benign tumors have smaller
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Table 4.4: The in-vivo test results for estimating size and deformation index using TIP

Serial True tumor Calculated tumor Error DI
number size (mm) size (mm) (%) (104)

1+ 54.20 57.19 5.52 6.79
2+ 56.40 52.95 6.12 4.19
3+ 43.30 46.33 7.00 4.91

4 12.20 13.15 7.79 2.56
5 60.40 54.37 9.98 1.60
6 17.70 15.77 10.90 1.39
7 13.90 15.5 11.51 3.88

8+ 53.80 60.82 13.05 4.31
9+ 60.80 52.49 13.67 3.58

10+ 11.00 9.39 14.64 9.34
11 35.00 40.31 15.17 1.90

12+ 53.80 45.04 16.28 3.30
13 17.50 14.58 16.69 2.74
14 14.00 16.56 18.29 3.62

15+ 24.29 19.65 19.10 5.04
16+ 12.00 14.7 22.50 5.47

17 20.10 14.04 30.15 9.40
18+ 35.90 50.23 39.92 5.58

19 20.06 11.86 40.88 2.90
20 11.02 15.96 44.83 10.75
21 30.61 52.23 70.63 4.58

+ Represents the malignant cases: information obtained by clinical pathology reports
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deformation index values. This pattern is due to the fact that malignant tumors are stiffer

than benign tumors.

4.3.2 Breast Tumor Risk Score

After the size and deformation index of tumors are estimated using TIP, we calculate the

Risk Score to classify tumors as benign or malignant.

Risk Score is a unitless numerical value, which can be used as a scale to classify the

tumor as malignant and benign. Based on the calculated size of the tumor and measured

deformation index, the breast tumors are classified as benign and malignant using the scor-

ing method. The Risk Score ranges from 0 to 5, where zero represents the benign, and five

represents the malignant tumor. A marginal threshold value was set, where any risk score

below the threshold is considered benign. The calculated Risk Score is based on the below

equation,

RiskScore =
[

W1×S
Smax

+
W2×DI

DImax

]
R, (4.2)

where W1 and W2 are the two weights used for size and deformation index, respectively, S

represents the estimated size value, Smax is the maximum estimated size value, DI is the

calculated deformation index, DImax is the maximum calculated deformation index. R = 5

is the highest value of Risk Score used.

To classify tumors, we choose the pair of weights (W1 and W2), which gives the best

classification sensitivity and specificity for a training subset (20 patients). We computed

the Receiver Operating Characteristic (ROC) curve with different weights for each training

subset, where W1 and W2 varied from 0 to 1 in steps of 0.1. The sum of the weights has

to be one by using any of the eleven combinations (e.g., 0.1 and 0.9, 0.2 and 0.8, etc.).

The optimal weights and corresponding threshold values were determined. For each pair

of weights, we computed the ROC curve varying the threshold values from the smallest

calculated score to the largest calculated score in a subset. Then we looked for minimum

distance from the (0, 1) point in the ROC graph to the curve, where (0, 1) point is a perfect

classifier. In Fig. 4.6, a sample ROC curve is shown with the optimal point at (0.1818, 1),

which corresponds to 100% sensitivity and 82% specificity. The corresponding threshold
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value for the risk score came out to be 1.99, and the optimal weight came out to be W1 =

0.3 and W2 = 0.7. Then the test subset (1 patient) was classified as malignant or benign

with the found weights and threshold. The classification results are compared with original

clinical pathological reports, as shown in Table 4.5. From the table, we note that except for

two false positive cases, the rest of the cases are accurately classified.

Figure 4.6: ROC curve to determine the threshold

We employed the Leave-One-Out-Cross-Validation (LOOCV) technique to validate the

human test results to determine the performance of the TIP during the pilot study. The

sensitivity, specificity, and accuracy of the system were measured to assess the reliability

of the TIP. These performance metrics were calculated based on the Risk Score using the

below equations,

SensitivityT IP =
T P

T P+FN
(%), (4.3)

Speci f icityT IP =
T N

T N +FP
(%), (4.4)

AccuracyT IP =
T N +T P

T N +FP+T P+FN
(%), (4.5)

were T P, T N, FP, and FN represent true positive, true negative, false positive, and false

negative cases, respectively. False positive is considered to be a case where benign masses
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Table 4.5: Risk Score based classification of tumors using TIP output

Serial Pathology Calculated TIP
Number Results Risk Score Classification

1 Malignant 3.62 Malignant
2 Malignant 2.67 Malignant
3 Malignant 2.74 Malignant
4 Benign 1.16 Benign
5 Benign 1.86 Benign
6 Benign 0.84 Benign
7 Benign 1.65 Benign
8 Malignant 3.00 Malignant
9 Malignant 2.46 Malignant

10 Malignant 3.27 Malignant
11 Benign 1.61 Benign
12 Malignant 2.40 Malignant
13 Benign 1.25 Benign
14 Benign 1.59 Benign
15 Malignant 2.13 Malignant
16 Malignant 2.15 Malignant
17 Benign 0.65 Benign
18 Malignant 3.05 Malignant
19 Benign 1.24 Benign
20 Benign 4.42 Malignant++
21 Benign 2.78 Malignant++

++ Denotes false positive cases
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are classified as malignant, whereas false negative are cases where malignant masses are

classified as benign. True positives are correctly classified malignant cases. True negatives

are correctly classified as benign cases.

For our data set, SensititvityT IP, Speci f icityT IP and AccuracyT IP are calculated to be

100%, 82%, and 90.5%, respectively. We note that the optimal weights for all of the subsets

came out to be W1 = 0.3, W2 = 0.7. The optimal threshold came out to be 1.99. Those

optimal weights may not be the global optimal values. However, weighing stiffness more

than the size seems to agree with the literature and the experiences of doctors.

4.4 Tactile Profile Diagrams Using Phantom Data

Tactile Profile Diagram (TPD) is a representative pattern image of a TIP image set and a

pictorial representation of relative stiffness and size of the tumor. Therefore we hypothesize

that it is possible to estimate the size and stiffness of tumors from their corresponding TPDs.

4.4.1 Construction of Tactile Profile Diagrams

We constructed Tactile Profile Diagrams using the method outlined in Section 3.6. Repre-

sentative samples of the TPDs, their corresponding volumetric reconstructions, composite

gradient images, and segmented magnitude gradient images are presented in Fig. 4.7. Col-

umn a) of the table describes a stiff and small tumor. Column b) of the table shows a stiff

and large tumor. The following c) column represents a soft and small inclusion. Finally,

d) column shows a soft and large inclusion. One can see the differences in the area of

high-intensity regions for smaller and larger inclusion. The sharpness and height of the 3D

reconstruction peaks, and the average magnitude of the GmagS images, contain the infor-

mation about the stiffness of inclusions. Also, the "fuzziness" of the edges in composed

gradient images seemed to correlates with inclusion’s stiffness.

4.4.2 Size and Stiffness Estimation from Tactile Profile Diagrams

To validated the proposed TPD method for the size and stiffness estimation, we performed

the experiments with custom tissue and tumors phantom. We incorporated in the phantom
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Figure 4.7: Tactile Profile Diagram results
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Table 4.6: Size interpolation development samples

Sample Size, mm Num. of Pixel (Mean ± STD)

1 9.73 2329 ± 149
2 11.98 3548 ± 832
3 16.17 5058 ± 306
4 16.08 4323 ± 278
5 20.16 8450 ± 529

five different tumor sizes (10 mm, 12 mm, 14 mm, 16 mm, and 18 mm), eight tumor

depths (0 mm, 2 mm, 4 mm, 6 mm, 8 mm, 10 mm, 12 mm, and 14 mm), and 17 PDMS

ratios of component B to vary the tumor stiffness (2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9,

10, 12.5, 15, 15.5, 20, plastic ball). We completed the imaging for each combination of

depth, size, and stiffness in 13 to 20 trials. TIP was applied in a normal direction to the

tissue. The compression forces started at 0 N and were gradually increased to 45 N during

the experiments. Each imaging trial corresponds to an independent compression with TIP.

The phantom dataset, obtained by TIP imaging using the phantom, contains thousands of

entries. This dataset was used for Tactile Profile Diagrams development and classification.

We developed a linear interpolation model to calculate the size of the tumors from

TPDs directly. All the samples for the model training test were stiff samples with Young’s

modulus above 250 MPa. The sizes of the samples are described in Table 4.6. The depth

for each tumor was 4 mm. The results of the linear interpolation fit to the training data are

shown in Fig. 4.8. The model allows estimating the size of the imaged tumor from the sum

of pixels within the deformed region on the corresponding TPD.

Table 4.7 describes the phantom used for the size and stiffness calculation directly from

TPDs. Fig. 4.9 shows the phantom component layers, and Fig. 4.10 shows the photo

of the test samples used for the test. The size and stiffness estimation results from the

TPD method are presented in Table 4.8. The shaded rows correspond to stiff tumors. The

calculated values are the average values of the three trials with stiff acrylic inclusions. The

1 mm to 3 mm depth will show a similar error as the 4 mm depth. But with 8 mm depth,

the error will increase. The means and standard deviations of the relative size estimation

errors are from 1.1% to 33.26% for shallow and from 16.24% to 45.46% for deep tumors.
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Figure 4.8: Linear size interpolation model results

Table 4.7: Properties of the phantom components

Description Material Thickness/Size, mm Elastic Modulus, kPa

Tissue Layers
Base PDMS 15 629
Intermediate PVC 12, 14, 16 7
Depth PVC 4 7

Spherical Inclusions
Stiff Acrylic 11.90, 15.65, 17.20 250000
Soft PDMS 12.30, 14.20, 16.34 197

Figure 4.9: Test phantom components and their placement during the TIP experiments

Figure 4.10: Samples for size and stiffness calculation from TPDs
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Table 4.8: Size and Stiffness Index calculation for the phantom dataset

Test
Mean Calc.
Size, mm

True Size,
mm

Calc. Error,
%

Mean Calc.
SI

True YM,
kPa

Shallow Tumors
1 11.79±1.58 11.92 1.11 0.28±0.10 250000
2 11.75±1.00 12.15 3.25 0.26±0.05 169.00
3 14.19±1.37 15.99 11.28 0.56±0.28 250000
4 10.87±0.21 16.29 33.26 0.05±0.03 169.00
5 22.49±0.98 23.02 2.31 1.56±0.04 250000
6 14.58±0.70 20.92 30.32 0.41±0.21 169.00

Deep Tumors
7 9.31±1.13 11.92 21.89 0.07±0.01 250000
8 10.08±0.20 12.15 17.05 0.05±0.02 169.00
9 12.07±0.41 15.99 24.53 0.29±0.16 250000

10 11.12±0.16 16.29 31.72 0.02±0.01 169.00
11 19.28±0.73 23.02 16.24 2.16±0.34 250000
12 11.41±1.24 20.92 45.46 0.03±0.00 169.00

Shaded rows correspond to stiff tumors

Stiffness index (SI) results which represent the tumor stiffness are visualized via plots

for shallow and deep inclusions separately in Fig. 4.11. Lower SI values (in red) are ob-

tained for the softer inclusions, and larger SI values (in blue) are obtained for the stiffer

inclusions considering similar size and depth.

4.4.3 Classification of Tactile Profile Diagrams

We developed three models to classify TPDs on classes with respect to the underlying

tumor’s depth, size, and stiffness. Here we describe the results for TPD classification using

Convolutional Neural Network (CNN).

To built CNN models, we used the following hardware configuration: Intel (R) Xeon(R)

Gold 5122 CPU @ 3.60 GHz (4 cores), 16.0GB, 64bit Windows 10. We built the models

using Spider 3, Python 3.7.3, TensorFlow 1.14.0, and Keras 2.2.4.
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Figure 4.11: Stiffness Index for shallow and deep inclusions

During data pre-processing step, the number of images in each class for training should

be the same, or the trained model will be biased towards the larger class. One of the

simplest methods to resolve this issue is to randomly upsample the smaller class. The

balance is achieved by adding random copies of the existed images in the underrepresented

class [75]. For all models we used the random upsampling method to balance the classes.

We trained the models for 50 epochs with a batch size of 200 TPDs. We employed

Adamax optimizer during training and Accuracy as the metric for models performance

evaluation during models training. The accuracy and loss results for the three models and

the examples of TPD classification are shown on figures later in this chapter. The models

were further tested on a set aside subset of phantom data, and the results are presented in

Section 4.4.3.

Depth Classification Model

The first CNN model is responsible for the tumor depth estimation. The description of the

model is given in Section 3.8.1. The model was trained and tested on the data set obtained

from the PDMS phantoms described in Section 4.4.2.

To train the TPDModelDepth model, we used samples of varying sizes (10 mm, 12 mm,

14 mm, 16 mm, 18 mm, 23 mm) and stiffness (from 130 kPa to >250 MPa). We included

a shallow subset: depths 0 mm, 2 mm, and 4 mm, and a deep tumors subset: depths of 6

mm, 8 mm, 10 mm. During the model development, the data division was 80% for training



73

and 20% for validation. The model was trained on 6768 TPDs, validated on 1692 TPDs.

Figure 4.12 shows the accuracy and loss plot for the training and test subsets. The final

validation accuracy of the classification is 0.97.

Figure 4.12: Accuracy and loss during training of TPDModelDepth over 50 epochs

The depth classification model Python implementation is given in Attachment E. Fig-

ure 4.13 shows six random TPD from the validation subset classified. There are examples

of Shallow class samples (Class 0) and Deep class samples (Class 1). The figure shows

classification predictions for each of the samples as a bar diagram. Text notations under

TPD sample images show the model classification results with the winning class proba-

bility and the true class of the sample in parenthesis. Blue color bars correspond to the

correctly classified TPDs. The red color bar signifies an incorrectly classified TPD.

Size Classification Model

The second TPD CNN model is responsible for classifying tumor sizes as Small, Medium,

and Large. The description of the model is given in Section 3.8.2. The model was trained

and tested on the dataset obtained from the phantoms described earlier.

During training the TPDModelSize model, we included varying depths (0 mm, 2 mm,

4 mm, 6 mm, 8 mm, and 10 mm) and stiffness (from 130 kPa to >250 MPa). The sizes

were 10 mm, 12 mm, 14 mm, 16 mm, 18 mm, and 23 mm. We divided the dataset on three

classes depending on the tumor’s size: small (10 mm and 12 mm), medium (14 mm and

16 mm), and large (18 mm and 23 mm). Inclusions larger than 23 mm and smaller than 10



74

Figure 4.13: Examples of tumors depth classification using TPDModelDepth

mm were not used due to the TIP operational range limitations. The model was trained on

6789 TPDs and validated on 1696 TPDs.

Figure 4.14 shows the accuracy and loss plot along 50 epochs for training and valida-

tion subsets. The final validation accuracy was 0.96.

Figure 4.14: Accuracy and loss during training of TPDModelSize over 50 epochs

The size classification model implementation is given in Attachment E. Figure 4.15

shows six random TPD from the test subset classified. There are Small (Class 0) samples,

Medium (Class 1) samples, and Large (Class 2) samples. The figure shows the classifica-
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tion predictions for each of the samples as a bar diagram. The blue color corresponds to

the correctly classified TPDs.

Figure 4.15: Examples for tumors size classification using TPDModelSize

Stiffness Classification Model

The Stiffness model was trained on sizes 10 mm, 12 mm, 14 mm, 16 mm, 18 mm, 23 mm.

We included 0 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm depths into the dataset. The

stiffness of embedded tumors ranged from 130 kPa to more than 250 MPa. The soft tumors

subset included 130 kPa to 316 kPa samples. The stiff tumor subset included tumors from

376 kPa to more than 250 MPa elastic modulus values. These ranges correspond to the

stiffness of benign vs. malignant tumors available in the literature [30]. The model was

trained on 6788 TPDs and validated on 1697 TPDs. The description of the model is given

in Section 3.8.3.

Figure 4.16 shows the accuracy and loss plot for the training and validation subsets.

The final validation accuracy of the classification is 0.90.

The stiffness classification model implementation is given in Attachment E. Figure 4.17

shows six random TPD from the validation subset classified. There are Soft (Class 0)

samples and Stiff (Class 1) samples. The figure shows the classification predictions for
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Figure 4.16: Accuracy and loss during training of TPDModelStiffness over 50 epochs

each of the samples as a bar diagram. The blue color bars correspond to the correctly

classified TPDs. The red color bar signifies an incorrectly classified TPD.

Figure 4.17: Examples of tumors stiffness classification using TPDModelStiffness

Test Classification Results

To further analyze the developed models, we completed classification of depth, size, and

stiffness for the set of phantom data that was used for size and stiffness estimation in Ta-

ble 4.8. Results from TPD classification are presented in Table 4.9. In the table, the green
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shaded rows indicate deep tumors, the light brown rows indicate stiff tumors, and light and

darker blue rows correspond to medium and large size inclusions, respectively. The clas-

sification accuracy for depth, size, and stiffness for the test set are 92%, 67%, and 83%,

respectively. The misclassified cases are shown in red color. The low size accuracy can

be explained that the samples for the TPDModelSize were taken some time ago, and the

PDMS sensing element slightly changed its properties, as discussed in Section 4.2.1.

Table 4.9: CNN classification results for the phantom data

Sample
#

Depth Stiffness Size
CNN
Class

CNN Class
(Prob±STD)

CNN
Class

CNN Class
(Prob±STD)

CNN
Class

CNN Class
(Prob±STD)

1 Shallow 0.71±0.02 Stiff 0.55±0.23 Med 0.49±0.10
2 Shallow 0.73±0.00 Soft 0.72±0.01 Small 0.55±0.03
3 Shallow 0.68±0.05 Stiff 0.59±0.25 Med 0.58±0.00
4 Deep 0.71±0.01 Stiff 0.58±0.09 Med 0.41±0.01
5 Shallow 0.73±0.00 Stiff 0.73±0.00 Large 0.58±0.00
6 Shallow 0.52±0.10 Soft 0.64±0.09 Large 0.43±0.17
1 Deep 0.71±0.02 Stiff 0.51±0.20 Small 0.42±0.14
2 Deep 0.66±0.06 Stiff 0.50±0.15 Med 0.39±0.15
3 Deep 0.58±0.25 Stiff 0.72±0.01 Med 0.57±0.00
4 Deep 0.69±0.07 Soft 0.71±0.03 Small 0.40±0.18
5 Deep 0.63±0.07 Stiff 0.73±0.00 Large 0.58±0.00
6 Deep 0.73±0.00 Soft 0.51±0.22 Small 0.45±0.17

Accuracy 0.92 0.83 0.67

Note: Green color indicates true deep inclusions, light brown color corresponds to true

stiff tumors, light blue and dark blue colors indicate true Medium and Large inclusions,

respectively. The red color font shows incorrectly classified samples.

4.5 Tactile Profile Diagrams Using In-vivo Human Data

To test Tactile Profile Diagrams method on in-vivo data, we used a pilot human dataset

consisted of 13 patients: 5 malignant and 8 benign cases (IRB# 22050 Temple Univer-
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sity). The patients were scheduled for a biopsy after TIP acquisition, and we collected the

histopathology reports for these patients later from the clinicians.

4.5.1 Size and Stiffness Estimation from Tactile Profile Diagrams

We calculated the size and stiffness of the tumors from the corresponding TPDs, and the

results are shown in Table 4.10. The patient numbers colored in gray correspond to the

malignant cases, and the rest are the eight benign cases. The light blue rows and the dark

blue rows correspond to the medium size and the large size tumors, respectively. The

light brown rows indicate the stiff tumors among soft tumors. The stiffness of tumors was

estimated by clinicians after manual palpation.

Samples 1, 2, 11, 12, and 13 are out of the TIP accuracy range; therefore, they show

large estimation errors. The size error for the in-range samples is 17.07±11.63%. The

stiffness estimation results generally follow the convention that stiffer samples have larger

SI and softer have lower SI within similar in size and depth tumors.

4.5.2 Classification of Tactile Profile Diagrams

We used a small human dataset to test the developed methods. CNN classification accuracy

for depth, stiffness, and size were 92%, 92%, and 69%, respectfully. Results are presented

in Table 4.11. The low size estimation error can be again attributed to the differences in

PDMS probe condition between the imaging experiments for the model development and

the time of human data acquisition.

4.6 TPD Classification as Preliminary Step for Size Calculation

In this section, we show that TPD classification with CNN models can be integrated as an

initial estimate to improve the size and deformation index calculation algorithms’ perfor-

mance.

We selected five representative samples to show the integration method. First, we built

a TPD for each sample. Next, we classified the TPD using TPDModelDepth, TPDModel-

Size, and TPDModelStiffness models. Finally, we used the depth and size classes to select
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the 3D interpolation model for the tuned size calculation. The results are presented in Ta-

ble 4.12 and in Table 4.13. The size calculation result based on the selected with CNN

classification 3D interpolation model is shown in bold for each sample. For the sample

set, all of the selected models gave the smallest size estimation error, except Sample #5,

shown in red. Sample #5 was correctly classified by CNN as a soft sample. We applied an

empirical adjustment to the softness of Sample #5 by adding 8 mm to each model’s calcu-

lated size. After the adjustment, the large shallow model gave the lowest error out of four.

Therefore, we suggest that by estimating tumor depth, size, and stiffness parameters with

CNN models, we can better calculate the size of the tumor.

4.7 Summary

To verify the performance of the system and the algorithms, first, we developed a breast tis-

sue mimicking phantom with the mechanical properties of breast tissues and tumors. Then,

we completed phantom experiments with TIP to create the application specific dataset. We

calculated the size and stiffness of tumors from the sets of tactile images using the phantom

data and data from human experiments. Size calculation errors were 1.87%, 9.61%, and

18.12% for 10 mm, 15 mm and 18 mm shallow tumors sizes, respectively, for phantom

experiments. The tumors’ depth increase brought a slight increase in the size calculation

error. Additionally, stiffer tumors showed a higher measure of stiffness (DI) vs. the softer

tumors of similar depths and sizes. In the case of a human dataset, besides calculating the

size and stiffness of the tumors, we also calculated Malignancy Risk Score for patients to

classify malignant and benign cases. The classification sensitivity, specificity, and accuracy

of the 21 patients’ pilot dataset were 100%, 82%, and 91%, respectively.

Next, we proposed the Tactile Profile Diagrams method to encode dynamic tactile in-

formation from TIP as pattern images. We showed the calculation method and results for

size and stiffness estimation directly from TPDs using phantom data and a human patients’

in-vivo dataset. Later, we developed CNN classification models to classify the depth, size,

and stiffness of tumors from TPD images and demonstrated their capabilities. The vali-

dation accuracy for the depth, size, and stiffness classification were 97%, 96%, and 90%,
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respectfully. Tumors size calculation from phantom data TPDs directly showed error range

from 1.10% to 33.26% for shallow tumors, and from 16.24% to 45.46% for deep tumors.

Softer inclusions had smaller SI values for the samples of similar size and depth, while

stiffer samples showed higher values.

Finally, we proposed the method to improve tumors size calculation by using the es-

timation information from TPD CNN classification. The method was verified on a small

phantom dataset to eliminate the need for subjective size and depth estimation inputs from

a TIP operator and to improve tumors size estimation from tactile images.
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Table 4.10: Results for human data size and stiffness estimation

Patient
#

US Size,
mm

Calc. Size,
mm

Calc. Error,
%

Doctor Est.
Stiffness

SI Calc.

1 7.00 11.57 65.35 soft 0.19
2 7.50 9.38 25.01 stiff 0.47
3 12.20 15.19 24.48 stiff 0.14
4 13.90 15.52 11.69 soft 0.12
5 14.00 17.08 22.01 stiff 0.12
6 15.00 13.97 6.89 soft 0.07
7 17.70 18.78 6.12 soft 0.24
8 18.00 17.50 2.78 soft 0.11
9 30.61 20.51 32.99 soft 0.24

10 32.70 23.02 29.59 soft 0.15
11 53.80 26.64 50.49 stiff 0.16
12 53.80 25.18 53.20 stiff 0.13
13 54.20 23.86 55.98 stiff 0.17

Gray color indicates malignant tumors. The red font shows tumor sizes outside of TIP

range.

Table 4.11: CNN classification results for the human dataset

Patient
Depth Stiffness Size

US Est.
Class

CNN
Class

Doctor Est.
Class

CNN
Class

US Est.
Class

CNN
Class

1 deep shallow soft soft small small
2 shallow shallow stiff stiff small small
3 shallow shallow stiff stiff small large
4 shallow shallow soft soft medium medium
5 shallow shallow stiff stiff medium medium
6 shallow shallow soft soft medium small
7 shallow shallow soft soft large large
8 deep deep soft soft large large
9 shallow shallow soft soft large medium

10 deep deep soft stiff large large
11 shallow shallow stiff stiff large large
12 shallow shallow stiff stiff large small
13 shallow shallow stiff stiff large large

Accuracy 0.92 0.92 0.69
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Table 4.12: CNN classification results for the selected samples

Sample #
True Values CNN Classified

Depth, mm Stiffness, kPa Size, mm Depth Stiffness Size

1 5 250000 15.99 Shallow Stiff Med
2 10 250000 11.92 Deep Stiff Small
3 10 250000 15.99 Deep Stiff Med
4 10 250000 23.02 Deep Stiff Large
5 5 169 20.92 Shallow Soft Large

Note: Green color indicates deep tumors.

Table 4.13: Size calculation results for the selected samples

Sample #

Calc. Size, mm
(Mean±STD)

Size Error, %
(Mean±STD)

Calc. Size, mm
(Mean±STD)

Size Error, %
(Mean±STD)

Shallow Deep
Small Size Models Results

1 12.99±0.49 18.76±3.08 13.94±0.24 12.82±1.53
2 6.13±0.18 48.60±1.52 10.75±0.10 9.82±0.88
3 7.42±0.39 53.58±2.42 11.36±0.16 28.98±1.00
4 15.88±0.53 31.00±2.29 15.24±0.27 33.78±1.15
5 5.68±0.24 72.85±1.16 10.59±0.13 49.36±0.62

5adj 13.68±0.24 34.61±1.16 18.59±0.13 11.12±0.62
Large Size Models Results

1 15.60±0.17 2.46±1.07 17.29±0.23 8.13±1.43
2 13.41±0.05 12.50±0.44 14.29±0.09 19.88±0.73
3 13.82±0.16 13.55±0.98 14.86±0.18 7.05±1.10
4 16.39±0.15 28.82±0.65 18.44±0.16 19.91±0.71
5 13.27±0.08 36.58±0.36 14.12±0.11 32.49±0.51

5adj 21.27±0.08 1.66±0.36 22.12±0.11 5.75±0.51

Note: Bold font reveals the selected 3D interpolation model by CNN classification for

size calculation. The red font shows the case of selection the sub-optimal 3D interpolation

model.
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CHAPTER 5

MULTISPECTRAL IMAGING PROBE

In this chapter, we describe the design and development of the Multispectral Imaging Probe

to characterize the superficial properties of the potentially cancerous tissues. We developed

a method to extract differential tissue properties from the sets of Multispectral Imaging

Probe images by introducing pattern images or Multispectral Profile Diagrams.

5.1 Overview of the Modality

In Chapter 2, we gave an overview of breast imaging technologies, including near-infrared

(NIR) and thermal imaging. The two methods use near-infrared or infrared (IR) light spec-

trum to image breast tissues. The advantages of these spectral methods are their non-

ionizing nature and the ability to characterize the breast tissue metabolic properties.

Hyperspectral imaging is commonly used to image samples with high resolutions in

the spectral and spatial domains. It requires significant acquisition time, special setup and

conditions, as well as sophisticated and complex image analysis [76]. Because the tissue

optical properties change when the tissue becomes malignant due to angiogenesis and hy-

permetabolic activity, hyperspectral imaging has great potential in cancer diagnostic appli-

cations. Tissue absorption in the near infrared region is the lowest, so the light can penetrate

deepest into the tissue. For this reason, NIR imaging is the primary type of hyperspectral

imaging for biological tissues [2, 77].

In our previous work, we used hyperspectral imaging for mammary tumor character-

ization [73]. The method evaluated levels of deo-xyhemoglobin (Hb), oxy-hemoglobin

(HbO2), water (H2O), and lipid chromophores within the tissue regions.

The typical absorption band of water is 970 nm from the second vibrational overtone

of the O-H bond [78]. The typical absorption NIR band for lipids is 930 nm, which corre-

sponds to the second overtone of C-H stretching [78].

Pulse oximetry, optical tomography, and optical mammography methods measure amounts
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of deoxy- and oxy-hemoglobin chromophores [79, 80, 81]. Researchers use a range of NIR

wavelengths to target each of the blood chromophores. The typical wavelengths to measure

deoxy-hemoglobin are 660 nm, 670 nm, 760 nm or 780 nm. Oxy-hemoglobin is usually

measured at 808 nm, 840 nm, or 940 nm wavelengths [79, 80, 81].

For the current work, we build on our expertise in hyperspectral imaging of mammary

tumors and use a multispectral imaging modality for breast tumor tissue characterization.

Instead of imaging the whole NIR spectrum, we target the mentioned chromophores by

tuning the imaging system to the chromophore-revealing wavelengths. We verify the target

wavelengths proposed in the literature and select the wavelengths for MIP acquisitions.

The test results are discussed later in this document.

5.2 Hardware Design and Imaging Principles

Hyperspectral imaging collects and processes information for a scene from across the elec-

tromagnetic spectrum. Fig. 5.1 illustrates the difference between an RGB image and a

hyperspectral image. The goal of hyperspectral imaging is to obtain the spectrum for each

pixel in the image of the scene, to finding objects, identify materials, or detect metabolic

changes.

Figure 5.1: Hyperspectral image vs. bitmap image [2]

Biological tissues are composed of multiple molecular types, which cause their non-

homogeneous optical properties. Light scatters and gets absorbed while traveling through

the tissue (Fig. 5.2). The difference in refractive indices causes the light to be scattered

within the tissue.
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Figure 5.2: Light reflectance, scattering, and transmission within a tissue sample

The depth of light penetration is an important characteristic of optical measurements.

The imaging depth depends on the tissue absorption properties [82]. Light absorption is at

its minimum at the NIR range from 600 nm to 1300 nm for most living tissues (Fig. 5.3).

In that range, the scattering is greater than absorption, so the light diffuses into the tissue

the most and can reach the depth of up to 15 mm [2].

Figure 5.3: Absorption spectra of different tissue chromophores [3]

Chromophores are the tissue components that absorb light, and their absorbance de-

pends on the wavelength as shown in Fig. 5.3. Light travels in a random path within tissue

while scattering, which is the principle of diffused reflectance. The gradual histopathology

changes of the unhealthy tissue will be captured by the reflectance spectra shape of that
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region.

In this dissertation work, we design the acquisition hardware to make it less expen-

sive and bulky than common hyperspectral imaging systems. Our design is adjusted to the

breast imaging application. We shift from hyperspectral imaging (tenths of wavelengths) to

the multispectral imaging idea to reduce the acquisition time and data storage requirements.

We target the most significant deo-xyhemoglobin, oxy-hemoglobin, water, and lipids chro-

mophores [73], instead of taking images for the entire NIR spectrum. The number of

images to acquire, store, and analyze will decrease to only four per sample. We complete

wavelengths selection experiments to identify the four wavelengths of interest from the

suggested range of wavelengths presented in the literature [79, 80, 81] for this application.

The results from the wavelengths selection imaging experiments are presented later in this

document.

Next, we selected hardware components for the multispectral imaging system. For hy-

perspectral imaging of mammary tumors in our previous work [73], we used Retiga EXi

F-M-12-C hyperspectral camera (QImaging, Surrey, BC, Canada) and a VeriSpec NIR liq-

uid crystal tunable filter (LCTF) (Cambridge Research, and Instrumentation Inc., Woburn,

MA, USA). The camera with the lens had an LCTF block, pictured in Fig. 5.4. Because the

TIP video camera (IDS UI-3240CP-NIR) has NIR sensitivity, and the Xenoplan 1.4/23mm,

5-megapixel lens (Schneider Optics Inc., Hauppauge, NY) is designed to work with NIR

spectra, we compared two cameras to assess the possibility of using TIP’s camera and lens

(Fig. 5.5) for multispectral imaging.

We also make sure that the two cameras have comparable quantum efficiency of their

imaging sensors. Figure 5.6 shows the comparison of the quantum efficiency characteristics

between the two sensors. The data about both sensors was re-plotted from the specification

documentation for each camera [37, 83]. Table 5.1 shows a broader comparison of the

two cameras’ parameters, also taken from the specification documents. We can see from

Table 5.1 that the key properties for the two cameras are very similar, and the imaging

performance of the TIP’s camera (IDS UI-3240CP-NIR) is comparable to the hyperspectral

camera (Retiga EXi F-M-12-C) performance.

To further verify the idea of using IDS UI-3240CP-NIR camera for NIR imaging in
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Figure 5.4: Hyperspectral camera acquisition system (Retiga EXi F-M-12-C)

Figure 5.5: TIP camera (IDS UI-3240CP-NIR) and lens

Figure 5.6: Comparative characteristic of the quantum efficiency curve for IDS UI-

3240CP-NIR vs. Retiga EXi F-M-12-C
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Table 5.1: Comparative characteristics of the two cameras (IDS UI-3240CP-NIR vs. Retiga

EXi F-M-12-C)

Parameter IDS UI-3240CP-NIR Retiga EXi F-M-12-C

Sensor Type CMOS CCD
Resolution, µm 5.3×5.3 6.45×6.45
Max Image Size, pixel 1,280×1,024 1,390×1,040
Pixel Depth, bit 8 12
Acquisition Speed, f/s 60 10
Dimension, mm 29L×29W×29H 150L×76W×64H

our work, we complete an empirical comparison of the two cameras. Both cameras were

focused on the same image sample. The illumination and distance settings were exactly the

same for both setups. The setup of the experiment is shown in Fig. 5.7.

Figure 5.7: Two imaging systems setups

From the comparative research on the topic and the completed imaging experiment, we

found the more compact and less expensive IDS UI-3240CP-NIR camera had very similar

imaging performance to the performance of Retiga EXi F-M-12-C camera for breast tissue
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imaging application. The spectral response and the pixel resolution are alike. The hyper-

spectral camera has the larger pixel depth and the larger image area size. The optics is bet-

ter in the Retiga camera. Nevertheless, the resulting images from the experiments showed

very good quality for both cameras at different tested wavelengths. The temperature condi-

tions influenced the performance of both cameras and have to be taken into account during

acquisitions by allowing appropriate time for the cameras to cool off during imaging ex-

periments. It is reasonable to assume that the performance of IDS UI-3240CP-NIR camera

will match the needs of the application.

The final Multispectral Imaging Probe design includes the TIP camera and the lens

with four bandpass filters attached to it using a filter wheel (Thorlabs Inc., Newton, NJ).

The filters are the hard coated OD 4.0 10 nm bandpass filters (Edmund Optics Inc., Bar-

rington, NJ). They will limit the imaged reflected light to the target wavelengths. Broad

spectrum two quartz tungsten halogen lamps (500 W each) are used as light sources during

experiments. Fig. 5.8 shows Multispectral Imaging Probe (MIP) components and setup.

Figure 5.8: Multispectral Imaging Probe components and experimental setup
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5.3 Acquisition Software

We create a MIP acquisition graphical user interface (GUI) by modifying the TIP GUI

software in Qt (The Qt Company, Espoo, Finland) described in Chapter 3 to meet the

specific needs of multispectral imaging experiments. Using the modified GUI software

(tactile-qt-gui_v5_Temple_Experiment_Multispectral), we optimize the device operation

procedures and acquisition time. Screenshots for the Setup tab and Capture tab views of

the GUI are shown in Fig. 5.9.

Figure 5.9: Multispectral Imaging Probe graphical user interface

On the Setup tab, MIP operator can specify the test sample information within GUI,

the directory where to save the imaging data, and the number of images to acquire in one

press of the acquisition button. This specified number of images (five on the screen shot) is

equivalent to the number of experimental trials.

The Capture tab shows the imaging wavelength, target directory information and con-

tains the Start button to initialize the acquisition for each wavelength. One imaging session

corresponds to one of the selected wavelengths. The software default is four imaging ses-

sions for each of the four selected wavelengths. The session name changes automatically

from 1 to 4 after each acquisition of a trial set to reflect the imaging wavelength. Each

wavelength set of trial images with the corresponding acquisition information are automat-

ically saved in a directory with four sub-folders corresponding to each wavelength.
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5.4 Imaging Wavelengths Selection

We complete experiments to select the four imaging wavelengths for Multispectral Imaging

Probe. We empirically confirm the suggested in the literature bands of peak absorption for

deo-xyhemoglobin (Hb), oxy-hemoglobin (HbO2), water (H2O), and lipid chromophores

[78, 79, 80, 81, 84]. Based on these experiments, we select four optical bandpass filters to

use with the MIP system for acquisitions.

Fig. 5.10 shows the absorption vs. wavelength spectra of the four key chromophores

(Hb, HbO2, H2O, and lipid) available in the literature [80]. To identify the Hb and HbO2

Figure 5.10: Spectra of the key tissue absorbents in NIR window

absorption peaks, we used two samples of blood: an ex-vivo venous bovine blood sample,

and an in-vivo venous human blood sample. The bovine blood was used to fabricate our

multispectral phantoms for experimental imaging with MIP. Therefore a sample of it was

tested in this experiment to identify hemoglobin peaks. Hand veins of a human volunteer

were imaged to obtain human blood hemoglobin peaks in-vivo from the selected vain re-

gions to compare results with bovine hemoglobin peaks, to identify the oxy-hemoglobin

peak, which is very difficult to implement in a phantom and to facilitate future MIP clini-
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cal trials. We also tested the water and porcine lard samples to identify the corresponding

absorption peaks of H2O and lipid. Additionally, we tested a PDMS sample to characterize

the absorption spectrum of the phantom material.

For the wavelengths selection experiments, we use Retiga EXi F-M-12-C hyperspectral

imaging system with VeriSpec NIR liquid crystal tunable filter to image the samples and

to characterize their absorption responses. We take hyperspectral images for each 10 nm

band from 650 nm to 1100 nm. Two quartz tungsten halogen lamps (500 W each) are used

for tissue samples illumination. Visualization of images and analysis of the spectral data

is performed using ENVI v4.5 (Exelis Visual Information Solutions, Boulder, CO, USA)

and MATLAB (The MathWorks, Inc., Natick, MA, US). Results from these experiments

are presented in Chapter 6.

5.5 Optical Properties Estimation with Multispectral Imaging Probe

We describe the method to use Multispectral Imaging Probe (MIP) for breast tissue super-

ficial optical property estimation.

5.5.1 Image Pre-processing

Image pre-processing in this work involves data normalization and image registration. The

normalized multispectral images are aligned to improve the optical properties characteri-

zation performance of MIP.

Image Normalization

Reflectance normalization is done to normalize the raw acquisition image data to the

reflectance or absorption values. Normalization decreases the effect of the inhomogeneous

illumination of the imaged region and the hardware-related noise, such as the dark current

of the imaging sensor. The dark current level increases with temperature and integration

time.

In our test setup, we acquire one additional image for normalization purposes. The

image is taken with a closed lens, where no external light should reach the sensor. This

image will characterize the dark current level in the imaging sensor. We also placed a
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white diffuse reflectance target (National Institute of Standards and Technology certified

99% Spectralon white diffuse reflectance target) near each imaging sample during experi-

ments. The intensity information from the Spectralon standard area is used to convert raw

multispectral images, Iraw, to normalized reflectance images, Inorm.

All four multispectral images from one test sample set have to be pre-processed and

normalized. The conversion from raw images to normalized images is done pixel by pixel

using the following equation [2, 73].

Inorm =
Iraw− Idark

Iwhite− Idark
, (5.1)

were Iraw is the reflectance intensity from the raw multispectral images obtained during the

experiments, Iwhite represents pixel intensity of the white reflectance standard, Idark is the

black current pixel intensity.

Image Registration

Image registration searches for the geometric transformation of multiple images of the

same scene to align them. In our case, we align four images that captured reflectances in

the four selected wavelength bands. Image registration is a necessary step for multispectral

image alignment and analysis [85, 86, 87]. We are mostly interested in translational distor-

tions due to the nature of MIP tests. We use Matlab image registration tools equipped with

Sobel filters to carry out the proper alignment of four multispectral images in one set.

5.5.2 Multispectral Profile Diagram

To characterize the superficial optical properties of the breast tissue, we will implement

the same idea that was developed for the sets of TIP images. In this section, we describe

how we can construct Multispectral Profile Diagrams (MPD) from the sets of pre-processed

(normalized and aligned) multispectral images. MPDs carry unique information about the

optical properties of breast tissue from four imaging bands fused in one pattern image.

The wavelength bands are selected to target the chromophores of interest in breast cancer

application, such as deoxy-hemoglobin, oxy-hemoglobin, lipids, and water.

Hyperspectral and multispectral image fusion is an active area of research. Hyper-

spectral images are high dimensional and characterized by information redundancy and
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sparsity. Therefore, one of the major issues that have to be solved to analyze hyperspectral

and multispectral images is feature reduction or extraction [88]. Multiple methods for fea-

ture extraction are developed by scientists for various applications, such as remote sensing,

biometrics, and medical diagnostic [88, 89, 90, 91, 92]. The feature extraction and classifi-

cation methods are divided on non-supervised, supervised, and semi-supervised techniques

[88]. Deep learning methods for classification and feature extraction are especially under

consideration for the task [93]. Some methods incorporate knowledge about human visual

perception to extract features for better recognition performance [89]. However, all of these

methods do not account for the application context information in the data. To the best of

our knowledge, there is no method available in hyperspectral image analysis to incorporate

the tissue optical index calculation into the dimensional reduction or multimodal image

fusion.

From our previous research developments, we know that a higher total hemoglobin con-

tent indicates higher tissue blood volume and malignancy. Higher water content suggests

malignancy as well. Decreased lipid content indicates that the parenchymal adipose tissue

has been displaced, which is a warning sign of malignant tumors [73]. The reflectance

changes of these chromophores are combined into Tissue Optical Index (TOI) formulation

expressed via Equation (5.2). The lower TOI values suggest high metabolic activity and

the increased probability of malignancy [73].

TOI =
RH2O(RHb +RHbO2)

Rlipid
, (5.2)

where RHb is the total reflectance of deoxy-hemoglobin chromophores, RHbO2 denotes the

total reflectance of oxy-hemoglobin chromophores, RH2O is the reflectance of water, and

Rlipid expresses the reflection of lipids within the imaged tissue.

The tissue optical index was calculated for the manually segmented multipixel patch

within the imaged tissue region. In this work, we construct a Multispectral Profile Diagram

from the four multispectral images and calculate TOI for each pixel in the aligned image

set. It helps to extract the high resolution information on the chromophores’ concentration

automatically without manual region selection for each hyperspectral imaging set in ENVI

software.
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After MIP multispectral images are pre-processed and aligned, we create a Multispec-

tral Profile Diagram for the imaged tissue sample. Each pixel of the Multispectral Profile

Diagram is calculated using Equation (5.3). When calculations are done for each pixel

location, the Multispectral image is made and shown in Fig. 5.11.

MPDM×N =


c1,1(a1,1+b1,1)

d1,1
,

c1,2(a1,2+b1,2)
d1,2

, . . .
c1,N(a1,N+b1,N)

d1,N
c2,1(a2,1+b2,1)

d2,1
,

c2,2(a2,2+b2,2)
d2,2

, . . .
c2,N(a2,N+b2,N)

d2,N
...

... . . . ...
cM,1(aM,1+bM,1)

dM,1
,

cM,2(aM,2+bM,2)
dM,2

, . . .
cM,N(aM,N+bM,N)

dM,N

 , (5.3)

where am,n corresponds to the multispectral image taken to capture Hb concentration, bm,n

is the multispectral image taken to capture HbO2 concentration, cm,n corresponds to the

multispectral image taken to capture Water concentration, and dm,n is the multispectral

image taken to capture Lipid concentration. m = 1,2, . . . ,M is the image row number,

n = 1,2, . . . ,N is the image column. The size of a reconstructed MPD (M×N) is the same

size as individually acquired multispectral images (1280 pixels×1024 pixels).

Figure 5.11: Construction of a Multispectral Profile Diagram

We present an example of a Multispectral Profile Diagram in Fig. 5.12. The MPD image

was reconstructed from a set of four multispectral images using Equation (5.3). The figure

also shows a matching photograph of the sample and the corresponding MPD in false color.
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Figure 5.12: An example of Multispectral Profile Diagram
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Each pixel on MPD pattern image carries unique information about the tissue proper-

ties. The mimicked malignant region (in red) within the original sample, translates to the

area with lower values of MPD pixels (Fig. 5.13). This matches with the assumptions of

lower TOI values for malignant tissue regions in our previous work [73].

Figure 5.13: Multispectral Profile Diagram data points

Optical tissue property can also be used for other applications, for example, automatic

tissue segmentation, morphology classification, or segmentation. Material optical property

can be similarly incorporated into material characterization/classification, fault detection,

and remote sensing by tuning the imaging bends for the specific application.

5.5.3 Multispectral Profile Diagrams for Differential Tissue Properties Estimation

To characterize the superficial optical properties of breast tissue, we encode the broad imag-

ing information via Multispectral Profile Diagrams, which are application-specific pattern

images. Next, we develop a method to find the following parameters: differential asym-

metry, differential texture, and differential inflammation from a set of two Multispectral

Profile Diagrams. These parameters showed potential in classifying the tumors as malig-

nant or benign, which allows doctors to decide the stage of the disease [10, 18, 19, 20, 94].

The differential parameters reflect the difference between the normal breast and the

diseased breast tissue in terms of lateral asymmetry, skin texture, and local inflammation.
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The differential MPD idea is similar to the background normalization idea. Because all

of the patients have distinct anatomy of normal breast tissues, the abnormal tissues will

have differing manifestations. Therefore, tissue normalization is crucial for abnormality

detection in clinical applications, especially IBC.

To measure the differential parameters, we propose the Differential MPD method. A

Differential MPD image, MPDdi f f , is constructed by taking a weighted absolute difference

between the MPD of the affected breast, MPDAbnormal , and the smoothed MPD image of

the normal (or reference) breast of the same subject, MPDSNormal , using Equation (5.4). We

present an example of differential MPD image and its component MPD images in Fig. 5.14.

MPDdi f f =
∣∣K×MPDAbnormal−MPDSNormal

∣∣, (5.4)

where K is an empirical constant coefficient.

Figure 5.14: Formation of a Differential Multispectral Profile Diagram

To emphasize the difference texture features on Differential MPD images, we applied a

custom edge enhancement filter described as Equation (5.5) to the Differential MPDs.

h =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 −8

. (5.5)

A filter, h, or the 5×5 neighborhood of point A on an image MPDdi f f (x,y) in a spatial

domain, is moved through the image to compute an output texture-enhanced image [86].

The visualization of the image filtering process is shown in Fig. 5.15. The filter is moved
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along the traced path (gray line in the figure), and the texture-enhanced MPDdi f f (x,y) image

is computed.

Figure 5.15: Image filtering in the spatial domain

Two examples of texture-enhanced Differential MPD images are shown in Fig. 5.16.

Using this technique, we emphasize the tissue surface texture (in our case, pitted vs. not

pitted skin texture) and preserve the image intensity information for inflammation detection

at the same time. This step is crucial for the texture classification task.

5.5.4 Segmentation of Differential Multispectral Profile Diagrams

For IBC assessment, it is important to measure the percentage of the inflammation-affected

area from a Differential Multispectral Profile Diagram. The affected region shows as darker

pixels than the pixels of the surrounding tissue; therefore, it is easy to use MATLAB-

assisted segmentation tool to select the region and to compare it with the total tissue area.

The manual segmentation example is shown in Fig. 5.17.

5.6 Classification of Multispectral Profile Diagrams

In this section, we outline the method to classify and quantify the differential parame-

ters from Multispectral Profile Diagrams (MPD) using CNN classification models. Fig-
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Figure 5.16: Two examples of Differential Multispectral Profile Diagram texture-

enhancement

Figure 5.17: Inflammation segmentation on a Differential Multispectral Profile Diagram
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ure 5.18 shows the steps we perform for classification of Differential Multispectral Profile

Diagrams.

Figure 5.18: Classification of Differential Multispectral Profile Diagrams

We develop a CNN classification model for each of the three differential parameters:

asymmetry, texture, and inflammation. We built the CNN models by utilizing structure and

development suggestions from [63, 95]. We trained MPDModelAsymmetry, MPDModel-

Texture, and MPDModelInflammation on asymmetry, texture, and inflammation texture-

enhanced Differential MPD datasets, respectively.

Next, we describe each classification model separately. We will use class probabilities

for asymmetry, texture, and inflammation from the classification to construct MIP Index.

5.6.1 Asymmetry Classification Model

The description of the asymmetry classification model is presented in Fig. 5.19 and Fig. 5.20.

The model contains three convolutional layers with ELU activations, and Max pooling lay-

ers for feature extraction. The four fully connected layers are added for the classification

task. We utilize Dropout layers to improve the classification accuracy of the model. We

employ Adamax optimizer, and Accuracy as the metric for the model performance evalu-

ation during training. The final fully connected layer has Softmax activation function and
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two nodes, corresponding to the Symmetric and Assymetric classes. The Python script for

the model development is given in Appendix F.

Figure 5.19: Asymmetry classification model structure (MPDModelAsymmetry)

The data for training and validation of the model is developed from multispectral phan-

tom imaging data combined into Differential Multispectral Profile Diagrams dataset for

asymmetry classification. The dataset development and model training are described in

Chapter 6.

5.6.2 Texture Classification Model

Fig. 5.21 and Fig. 5.22 outline the texture classification model structure. The model con-

sists of three convolutional layers, including one complex layer, Max pooling layers, and

ELU activations for the feature extraction. The four fully connected layers are responsible

for the classification. We use normalization and Dropout layers to improve the performance

of the model. We employ Adamax optimizer, and Accuracy as the metric for the model per-

formance evaluation during training. The final fully connected layer has Softmax activation

function and two nodes, corresponding to the Not Pitted and Pitted classes. The Python

script for the model development is given in Appendix F.

The multispectral phantom imaging data was used for training and validation of the

model. Multispectral images were combined into Differential Multispectral Profile Dia-

grams dataset for texture classification. The dataset development and model training are

described in Chapter 6.
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Figure 5.20: Asymmetry classification model details

Figure 5.21: Texture classification model structure (MPDModelTexture)
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Figure 5.22: Texture classification model details
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5.6.3 Inflammation Classification Model

Fig. 5.23 and Fig. 5.24 present the proposed model description for inflammation classifi-

cation. The model includes four convolutional layers, including three complex layer struc-

tures, ELU activations, and Max pooling layers for feature extraction. The three fully

connected layers are added for the classification task. We employ Adamax optimizer, and

Accuracy as the metric for the model performance evaluation during training. The final

fully connected layer has Softmax activation function and two nodes, corresponding to the

Less inflammation and More inflammation classes. The Python script for the model devel-

opment is given in Appendix F.

Figure 5.23: Inflammation classification model structure (MPDModelInflammation)

We used the multispectral phantom imaging data to create Differential Multispectral

Profile Diagrams dataset for inflammation classification model development. The dataset

was split independently on training and validation subsets for training and validation of the

model, respectively. The dataset development and model training are described in Chap-

ter 6.
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Figure 5.24: Inflammation classification model details
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5.7 Summary

In this chapter, we described the Multispectral Imaging Probe development. We outlined

its hardware design, the principle of operation, and the imaging data analysis strategies for

MIP imaging modality.

We presented a method to fuse optical tissue-characterizing information from four mul-

tispectral images into one application-meaningful pattern image, a Multispectral Profile

Diagram. We also described the reasoning and development of Differential Multispectral

Profile Diagrams to characterize breast tissues with attention to individual anatomical and

physiological differences in patients and to aid IBC pre-screening.

Finally, we propose to classify Multispectral Profile Diagrams using Convolutional

Neural Network models to extract valuable information about breast tissue asymmetry,

texture, and inflammation automatically. The classification results from these three models

are used to calculate Spectral Index, and further, Multimodal Index for breast cancer risk

assessment.
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CHAPTER 6

MULTISPECTRAL IMAGING PROBE EXPERIMENTS

In this chapter, we describe the multispectral imaging experiments and present our results.

We also introduce a custom tissue phantom, which mimics superficial optical properties of

breast tissues. These phantoms help us train and test the classification models to charac-

terize differential asymmetry, texture, and inflammation parameters. This phantom can be

combined with the mechanical properties phantom for bimodal imaging experiments.

6.1 Optical Property Phantom

Here, we complete a short survey on the available tissue phantoms, which mimic the optical

properties of human tissues. We describe the design of the optical phantom and describe

how the phantoms are fabricated for our application.

6.1.1 Review of Optical Property Phantoms

Fluid-based phantoms are very convenient and commonly used to mimic the optical prop-

erty of living tissues in lab settings. They are relatively easy to fabricate and to make

changes to their property. The majority of the liquid phantoms are water-based, with the

addition of scattering and absorption agents [96]. However, liquid phantoms need to be in a

secure container, and they are difficult to transport. In addition, the liquid phantom mixture

can be unstable, with the larger particles concentrated at the bottom of the container [69].

To overcome these difficulties, researchers are developing solid phantoms from a vari-

ety of materials, such as Delrin plastic, PDMS, wax, polyester resin, epoxy resin, agar gel,

gelatin, and fibrin. The absorption and scattering agents that are used to fabricate the solid

phantoms are intralipid, hemoglobin, dyes, titanium dioxide, carbon black, ferric chloride,

and silica spheres [64, 65, 66, 67, 69, 70, 97].

Unfortunately, hydrogels (agar and gelatin) are not durable, they cannot withstand me-

chanical compressions, and they melt at room temperature. The difficulty with silicone
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phantoms such as PDMS is in the challenge of adding organic additives. Fibrin can be used

for optical property phantoms because it is a naturally occurring protein in humans, and

it can be easily mixed with different types of scattering and absorption agents [32]. Also,

Polyvinyl alcohol (PVA) is commonly used for many types of optical imaging phantoms

[32].

Some of the phantoms are able to mimic several types of tissue property - multimodal

imaging phantoms. Lamouche et al. [64] provide a review of the possible materials for

optical coherence tomography phantom, which has to possess the optical and mechanical

properties of tissues. The study found that no one material is perfect for the application,

yet several of them can be implemented. They state the advantages and disadvantages

of the phantom materials. They suggest using silicone if a volumetric phantom will be

made, yet prefer fibrin when adding organic agents is necessary. They also mentioned that

PVA phantoms could provide the ability to tune the mechanical property of the phantom,

yet the adding of optical characteristics to such phantom is difficult. However, in another

study, researchers incorporate optical property in the PVA phantom to calibrate an optical

tomograph [69].

Researchers also mimicked the optical and acoustic property of tissues with Polyvinyl

chloride (PVC), titanium dioxide, and a black plastic coloring agent [98].

Price et al. [32] were able to combine mechanical and x-ray attenuation properties in

phantom. They developed a new phantom material, which was a solution of Polyvinyl

alcohol in ethanol and water. The material underwent freeze-thaw cycles to obtain the

desirable elastic property. Depending on the firmness of the material, it had varying x-ray

attenuation properties.

One of the latest multimodal phantoms with tunable mechanical, optical, and acoustic

properties was developed from multiple compounds (gelatin, agar, PDMS silicone) and

additives (blood mimicking fluid, bovine blood serum, intralipids, microbeads, India Ink

and dyes) [99]. In the study, the authors proposed a multilayered design with the ability to

change the property as desired by adding or removing phantom layers.
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6.1.2 Phantom Development

Multispectral Imaging Probe and its algorithms are developed to characterize the superfi-

cial optical property of tissues, which can help distinguish cancer from benign tissue. The

targeted features, such as breast tissue differential asymmetry, differential texture, and dif-

ferential inflammation size, skin pigmentation level, and depth of the inflammation, are

implemented in the phantom.

After reviewing the available literature on optical property phantoms [32, 64, 69, 99],

and based on our tactile phantom fabrication experience from previous work [34, 100],

we decided to create a multicomponent phantom from PDMS with mixed in organic and

inorganic components. We complete a preliminary study of mixing a small amount of

organic absorbers (bovine blood and porcine lard) with PDMS material prior to curing.

The study shows that the mixture cured well, and we can use a small amount of the organic

components with PDMS material.

For custom MIP phantom, we made multiple thin layers of silicone (Polydymethyl

siloxane) with added artificial coloring agents (Smooth-On Inc., Macungie, PA), water,

lipids, and bovine blood (Lampire Biological Laboratories, Pipersville, PA) to mimic nor-

mal breast tissue, and breast tissue with asymmetry, texture, and inflammation changes.

Different amounts of coloring agents were added to the PDMS silicone layers to mimic

different skin color tones in the phantom. Breast tissue inflammation depth was also im-

plemented in our phantom. The reflectance variations due to PDMS concentration are ex-

perimentally validated in Section 6.2 and show the negligible effect on imaging reflectance

spectra.

The design of the MIP phantom is shown in Fig. 6.1. We made multiple normal

breast tissue samples and samples with the asymmetry, texture, and inflammations changes.

Asymmetric changes in the breast phantom are introduced by placing the mimicked nipple

in random locations on the phantom during imaging. To implement breast tissue texture

changes, we pinch with small tweezers pit-like regions on the top of cured PDMS samples

to mimic the skin texture changes described in the literature. Inflammation changes are

implemented by adding different amounts of blood in varying patterns to the skin-colored
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Figure 6.1: MIP phantom design

PDMS samples (abnormal samples), in contrast to the samples of skin color only (normal

samples).

We made 240 abnormal inflammation pattern samples and 10 normal samples for clas-

sification training purposes. This amount of the test samples allows us to complete MIP

experiments and collect a meaningful dataset for the application. Fig. 6.2 presents the de-

scription and amount of the phantom samples. We also fabricated a small representative set

of four additional abnormal inflammation pattern samples and two normal samples using

the third pigmentation level to test the developed algorithms.

Figure 6.2: Description and quantity of MIP samples

All phantom samples are 150 mm in diameter. Each of the 5 pigmentation levels has
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40 abnormal inflammation pattern samples and 2 normal samples. Normal samples have

no blood mixed in them. The abnormal inflammation samples have 4 levels of blood (0.15

ml, 0.25 ml, 0.5 ml, 0.75 ml) with 50 samples of each pigmentation level. Fig. 6.3 shows

examples of the fabricated phantoms.

Figure 6.3: Skin tone and blood amount variations in MIP phantoms

To image differential parameters with MIP, such as asymmetry, texture, and inflam-

mation changes, we consider sets of phantom samples. We build abnormal samples, which

represent the diseased breasts. These samples include one or more abnormal features. Then

we also build normal samples, which represent the normal breasts and no abnormal breast

tissue changes.

In our experiments, normal and abnormal phantom samples are imaged separately with

MIP in five imaging sessions (trials). We imaged phantoms with different combinations and

extend of asymmetry, texture, and inflammation parameters implemented in them. There

are three cases: no features implemented, or one feature implemented on one sample, or

several features implemented on one phantom sample. Each normal and abnormal sample

is imaged separately and then combined in a set for further analysis.

To mimic breast tissue inflammation changes, we create random patterns, while adding

blood into the silicone phantoms (Fig. 6.4). We also implement the depth of inflammation

parameter into our phantoms. During phantom fabrication, we notice that the mixed-in
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blood tends to keep the pattern yet blood molecules gravitate toward the bottom of the

sample before PDMS media is cured. That allows us to have 2 variations of depth (shallow:

0 mm and deep: 5 mm) for the same inflammation pattern phantom sample by imaging it

from both sides.

Figure 6.4: MIP phantom test patterns and depths

To mimic texture and asymmetry tissue changes, we do not produce additional silicone

phantoms, yet reuse the existent ones with or without inflammation changes explained

previously. The differential texture parameter was implemented by pinching with small

tweezers on the silicone surface at multiple random locations. The differential asymmetry

parameter was done by shifting one of the phantom nipples to a different location during

MIP acquisition (Fig. 6.5).

6.2 Wavelengths Selection Results

The first step of MIP experiments was to verify the target wavelengths for multispectral

image acquisitions. We employed the Retiga EXi hyperspectral camera to image the sam-

ples in the NIR window from 650 nm to 1100 nm in the step of 10 nm, to observe the

spectra, and to verify our assumptions about the absorption properties of the MIP phantom

components.

The imaged samples of PDMS, water, lipids (as porcine lard), deoxy-hemoglobin and

oxy-hemoglobin (ex-vivo bovine blood sample and in-vivo over veins of a human volunteer)

shown in Fig. 6.6. The amount of liquid samples (water, lipids, and bovine blood) was 3
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Figure 6.5: MIP asymmetry parameter implementation

ml each. Bovine blood was used in the phantom fabrication. We compare its spectra with

the venous human blood to see the differences that we can expect from the MPD method

in humans. Each sample was imaged in 3 trials, and the results were averaged.

Figure 6.6: Wavelengths selection experiment samples

After collecting the images for each sample in 3 trials, we used ENVI v4.5 (Exelis

Visual Information Solutions, Boulder, CO, USA) to select the regions of interest and to

analyze the reflectance and absorption/diffusion spectra. Reflectance spectra for all five

samples from Fig. 6.6 are presented in Fig. 6.7 (a).

It is not easy to analyze the reflectance spectra and find the corresponding wavelengths
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Figure 6.7: Reflectance and absorption/scattering spectra for the experimental samples
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for the key chromophores because most of the literature discusses absorption spectra in dif-

ferent tissues and materials, and not the reflectance spectra. Therefore, we used Kubelka-

Munk method [101, 102, 103] to translate our reflectance results into absorbance/scattering

data for the wavelengths selection task. The absorbance/scattering spectra for the five sam-

ples presented in Fig. 6.7 (b).

To better visualize and analyze the absorbance/scattering peaks, we plotted spectra of

water, lipids, and PDMS separately from blood samples spectra in Fig. 6.8. We can see

from this plot, that PDMS medium contributes very little to the optical absorption in the

NIR window, which is the ideal condition for further experiments. We also can confirm

that the literature suggested wavelengths to characterize chromophores of water and lipids

(discussed in Chapter 5). Absorption of Lipids is the most prominent around 930 nm,

whereas the water’s absorption spectrum shows a peak around 970 nm.

Figure 6.8: Absorbance/scattering spectra for water, lipids, and PDMS samples

To analyze the results for bovine and human blood samples, we plotted the correspond-

ing samples’ absorbance/scattering spectra in Fig. 6.9. The human blood values were offset

to the level of the bovine blood sample spectra. We added the difference in values between

650 nm values from both samples to the human blood values for all wavelengths. The

blood absorption/diffusion spectra display small peaks around 670 nm, 770 nm, and 940

nm. Based on the literature discussed in Chapter 5, first two values correspond to deo-

xyhemoglobin and the last one to oxy-hemoglobin chromophores. The signal from the
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human blood in-vivo has a smaller magnitude than the bovine blood sample due to the na-

ture of the experiment. Imaging of veins in-vivo solved the issue of being able to image

HbO2 chromophore; however, the sample cannot be called fully homogeneous, which is

required for the Kubelka-Munk method. It suggests that the signal was not purely from

blood but also from the skin with pigmentation and vein walls. In addition, the amount of

blood in veins was less than 3 ml, as each of the liquid test samples had. But the relative

peaks are aligned in both cases. The 670 nm peak was not pronounced in the bovine blood

sample, so for the dissertation work, we selected the distinctive 770 nm wavelength for the

Hb. We confirmed the 94 nm wavelength for HbO2 characterization from the human blood

distinct peak.

Figure 6.9: Absorbance/scattering spectra for the blood samples

Our final results from the wavelengths selection experiments presented in Fig. 6.10

show the selected wavelengths from our experiments on the tissue chromophores absorbance

spectra [80]. Our results matched the literature (Section 5.1).
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Figure 6.10: Selected wavelengths for MIP

6.3 Differential Multispectral Profile Diagrams Using Phantom Data

We created a large dataset of Differential Multispectral Profile Diagrams by combining

MPDs of the individual MIP phantom samples of mimicked normal and diseased breast

tissues. Further, we arbitrarily selected representative data from the set for training, valida-

tion, and independent test of the classification models. Examples of composed Differential

Multispectral Profile Diagrams are shown in Fig. 6.11.

Differential MPD examples 1 - 4 illustrate asymmetry phantoms, where 1 - 2 are sym-

metric, and 3 - 4 are asymmetric examples with varying inflammation patterns. Examples

5 - 8 show texture changes in Differential MPD samples. Examples 5 - 6 are not pitted and

do not have changes in texture, and examples 7 - 8 have implemented texture change as

pitted regions. Distinct inflammation levels are shown with examples 9 - 12. Examples 9 -

10 have about 1/3 of the phantom area showcase inflammation change, whereas examples

11 - 12 have the most of the phantom with inflammation.
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Figure 6.11: Examples of Differential Multispectral Profile Diagrams
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6.3.1 Construction of Differential Multispectral Profile Diagrams

Two examples of Differential Multispectral Profile Diagrams with asymmetry, texture, in-

flammation, and inflammation depth changes are shown in Fig. 6.12. In both phantom

samples, asymmetry change shows as two misaligned nipples. After close inspection of

the texture change samples, one can note the pitted and the inflammation regions. Both In-

flammation samples contain mimicked inflammation regions, yet they cover different area

in size (2/3 and 1/3 of the area). The inflammation depth samples illustrate the effect of in-

flammation depth on the corresponding Differential MPDs. The inflammation region in the

deep samples is less pronounced than in superficial samples. Consequently, not all blood

amounts and patterns will be distinguishable in deep samples subset during data analysis.

The samples of mimicked deep inflammation (5 mm depth) with higher blood concentra-

tion (0.5 ml and 0.75 ml) have more chances to be distinguished and classified correctly.

Figure 6.12: Examples of Differential MPDs from two phantom samples



121

6.3.2 Classification of Differential Multispectral Profile Diagrams

We developed three models to classify Differential Multispectral Profile Diagrams with

respect to asymmetry, texture, and inflammation. The results from models training and

classification are presented in the following sections.

To built these models, we used the same hardware and software as we used for TPD

classification models development (Section 4.4.3). To balance data, we used the random

upsampling method (Section 4.4.3). We employed Adamax optimizer during training, and

Accuracy for models performance evaluation.

The accuracy and loss results for the three models and the examples of Differential

MPDs classification are shown on figures later in this chapter. The models were further

tested on a set-aside subset of phantom data, and the results are presented in Section 6.3.3.

Asymmetry Classification Model

Our asymmetry classification model was trained on 30720 samples of two balanced via

random upsampling classes. The samples were obtained from pairwise combinations of

240 affected and 6 normal MPDs of MIP samples. Validation of the model was completed

using 7656 samples. The independent test was done on 1344 set aside samples. The manu-

ally selected subsets for the model’s training, validation, and test was approximately 75%,

20%, 5%, respectively. The manual method for dataset division allowed to represent each

skin pigmentation level and inflammation size equally within the classes.

The asymmetry model description is presented in Section 5.6.1, and the model imple-

mentation is given in Attachment F. The results are shown in Fig. 6.13. One can see from

the plot that MPDModelAsymmetry was able to quickly learn from the data and approach

high classification accuracy for training and validation subsets. The training accuracy for

5 epochs and 100 MPDs in a batch, validation accuracy, and test accuracy are 99%, 100%,

and 98%, respectfully.

In Fig. 6.14 we show six asymmetry classification examples. The two examples on

the top are the phantom samples with asymmetry. The four samples on the bottom are the

samples without asymmetry. The bar plots next to each sample show the output class prob-
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Figure 6.13: Asymmetry model training accuracy and loss

abilities of classification with MPDModelAsymmetry, where class 0 is Symmetric class,

and class 1 is Asymmetric class. Text notations under MPD sample images show model

classification results with the winning class probability and the true class of the sample in

parenthesis. The blue color on the bar plots indicates correct classification.

Figure 6.14: Asymmetry classification examples using MPDModelAsymmetry
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Texture Classification Model

The texture classification model was trained on 26880 samples of two classes. The classes

was initially balanced due to the experimental setup. The validation of the model was

completed using 7656 samples. The independent test was done on 3840 samples. The

manually selected subsets for the model’s training, validation, and test were approximately

70%, 20%, 10%, respectively. The manual method for dataset division allowed to represent

each skin pigmentation level and inflammation size equally within the classes.

The texture model description is presented in Section 5.6.2, and the model implemen-

tation is given in Attachment F. The model development results are shown in Fig. 6.15.

We can see from the plots that the model overfits beginning from the 5th epoch, yet still

approaches good validation accuracy. The model would benefit from larger and more repre-

sentative dataset. The training accuracy for 25 epochs and 100 MPDs in a batch, validation

accuracy, and test accuracy are 95%, 81%, and 83%, respectfully.

Figure 6.15: Texture model training accuracy and loss

Six examples of Texture model classification results are shown in Fig. 6.16. There are

Not Pitted and Pitted samples. The bar plots next to each sample show the output class

probabilities of classification with MPDModelTexture, where class 0 is Not Pitted class,

and class 1 is Pitted class. The text notation under the MPD sample image shows the model

classification results with the winning class probability and the true class of the sample in

parenthesis. The blue color on the bar plots indicates correct classification, and the red

color shows the incorrectly classified example.
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Figure 6.16: Texture classification examples using MPDModelTexture

Inflammation Classification Model

The inflammation classification model was trained on 12251 samples of two balanced via

upsampling classes. Validation of the model was completed using 3056 samples. The

independent test was done on 372 samples. The manually selected subsets for the model’s

training, validation, and test were approximately 77.5%, 20%, 2.5%, respectively. The

manual method for dataset division allowed to represent each skin pigmentation level and

inflammation size equally within the classes.

The inflammation model description is presented in Section 5.6.3, and the model imple-

mentation is given in Attachment F. The model development results are shown in Fig. 6.17.

Training accuracy for 20 epochs and 50 MPDs in a batch, validation accuracy, and test ac-

curacy are 0.85, 0.61, and 0.77, respectfully. The model significantly overfits yet shows

the potential for better classification on a larger and more representative dataset. We in-

vestigate the additional reasons for the poor model performance during the analysis of the

independent test results in the next section.

Six examples of MPDModelInflammation classification results are shown in Fig. 6.18.

There are random samples with Small Inflammation (Class 0) and Large Inflammation
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Figure 6.17: Inflammation model training accuracy and loss

(Class 1). One of the samples indicated with red color was miscalssified.

Figure 6.18: Inflammation classification examples using MPDModelInflammation

6.3.3 Test Classification Results

We completed an additional test to further characterize and visualize CNN classification

capabilities of differential MPDs. The test samples, which have different inflammation

patterns and blood amount, are shown in Fig 6.19. These samples were not included in the

classification models’ training or validation datasets. The samples’ description is presented
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in Table 6.1.

Figure 6.19: Independent classification test samples

The results from the Differential MPD classification of the independent test dataset are

presented in Table 6.2. In the table, the rows shaded in gray indicate asymmetric samples,

the rows shaded in green point to pitted samples, and the rows shaded in light brown vi-

sualize the large size inflammation samples. The misclassified samples are colored in red.

The classification accuracy for asymmetry, texture, and inflammation size parameters in

the independent test were 100%, 94%, and 88%, respectively.

The inflammation model performs better on the independent test than on the validation

set because we excluded samples with 0.15 ml and 0.25 ml blood concentrations. The

reason for the exclusion was to keep the more visible inflammation patterns for testing and

results evaluation. This exclusion of some samples was done to empirically understand the

causes of the inflammation model poor classification performance.
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Table 6.1: Independent classification test samples description

Sample Blood Amount, ml Inflammation Area, % Added Features

1 0.50 40 -
2 0.75 40 -
3 0.50 95 -
4 0.75 95 -
5 0.50 40 Pitted
6 0.75 40 Pitted
7 0.50 95 Pitted
8 0.75 95 Pitted
9 0.50 40 Asymmetric

10 0.75 40 Asymmetric
11 0.50 95 Asymmetric
12 0.75 95 Asymmetric
13 0.50 40 Asym Pitted
14 0.75 40 Asym Pitted
15 0.50 95 Asym Pitted
16 0.75 95 Asym Pitted
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Table 6.2: CNN classification results for the independent test dataset

Sample

Asymmetry Texture Inflammation
CNN Class Prob. CNN Class Prob. CNN Class Prob.
Sym. Asym. NotPit. Pitted Small Infl. Large Infl.

1 1.00 0.00 1.00 0.00 0.96 0.04
2 1.00 0.00 1.00 0.00 0.99 0.01
3 1.00 0.00 1.00 0.00 0.96 0.04
4 1.00 0.00 1.00 0.00 0.02 0.98
5 1.00 0.00 0.01 0.99 0.99 0.01
6 1.00 0.00 0.00 1.00 1.00 0.00
7 1.00 0.00 0.12 0.88 0.23 0.77
8 1.00 0.00 0.00 1.00 0.36 0.64
9 0.00 1.00 1.00 0.00 0.76 0.24

10 0.00 1.00 1.00 0.00 1.00 0.00
11 0.00 1.00 1.00 0.00 0.01 0.99
12 0.00 1.00 0.99 0.01 0.03 0.97
13 0.00 1.00 0.01 0.99 0.97 0.03
14 0.00 1.00 0.05 0.95 1.00 0.00
15 0.00 1.00 0.14 0.86 0.00 1.00
16 0.00 1.00 0.99 0.01 0.69 0.31

Accuracy 1.00 0.94 0.88

Note: The gray color indicates true Asymmetry class samples, the green color shows the

true Pitted class samples, and the pink color highlights the true Large Inflammation class

samples. Misclassified samples are indicated with red font color.
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6.4 Summary

In this chapter, we developed the test phantom and Multispectral Imaging Probe exper-

iments. We presented the literature overview on the silicone optical property phantom.

Further, we demonstrated the results from our target wavelengths selection experiment. We

verified the literature specified wavelengths for deo-xyhemoglobin, oxy-hemoglobin, wa-

ter, and lipids chromophores as 770 nm, 940 nm, 970 nm, and 930 nm, respectively. Next,

we showed the construction of Differential Multispectral Profile Diagrams and presented

examples of how asymmetry, texture, and inflammation features are implemented using

multispectral phantoms and Differential MPDs. Then, we described training and validation

details of three CNN classification models for asymmetry, texture, and inflammation size

evaluation. The probabilities from the classification via these tree models will be used for

Spectral Index calculation in the next chapter. Finally, we completed an independent test to

classify asymmetry, texture, and inflammation features using a representative subset with

higher blood concentration levels. The classification accuracy results on the subset were

100%, 94%, and 88% for asymmetry, texture, and inflammation size parameters, respec-

tively.
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CHAPTER 7

MULTIMODAL BREAST CANCER RISK ASSESSMENT

In this chapter, we present a method to evaluate the risk of cancer for the imaged breast

tissue and tumor region based on the results from two imaging modalities (Tactile Imaging

Probe and the Multispectral Imaging Probe), and the personalized risk probability from

the Breast Cancer Risk Assessment Tool (BCRAT) developed by National Cancer Institute

[4]. We describe the method to combine Tactile Index and Spectral Index with the BCRAT

calculator output to find Multimodal Index for the breast cancer risk assessment.

7.1 Review of Cancer Risk Calculations

Machine learning shows great potential in supporting doctors during clinical diagnostic

procedures [104]. Machine learning methods are more robust, capable, and better individ-

ualized, so they outperform the well established, manually developed empirical malignancy

risk scoring models. It gives additional information for the individualized cancer risk as-

sessment [105].

Accurate predictions on who will develop breast cancer are not available; however,

there are several well-known risk assessment methods [104]. These methods help pa-

tients and doctors to develop a custom breast diagnostic plan, or even schedule a preventive

surgery.

The Gail model [106] is the most popular tool for the five and ten-year cancer devel-

opment risk assessment based on a short questionnaire that women complete with their

doctors. The Claus model [107] gives age-specific risk probability of breast cancer for

women with a family history of breast cancer. The Tyrer-Cuzick model [108] tool esti-

mates a 10-year breast cancer risk based on a woman’s answers to a series of questions.

Researchers recently utilized Convolutional Neural Network to extract features from

medical images to calculate a cancer risk score and aid radiologists in diagnostic decisions

[109, 110]. During CNN classification, the class assignment is based on the probabilities
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calculated for each of the classes. The empirical probabilities signify how confident the

class decision is, and it can be used for the malignancy score calculation in cancer applica-

tions.

We propose to calculate cancer risk indices for both TIP and MIP modalities of our

bimodal imaging system separately and then combine these together with the BCRAT score

from NCI to provide an individualized Multimodal Index for patient breast cancer risk

assessment.

7.2 Tactile Index

The cancer probability from Tactile Imaging Probe is called Tactile Index. To calculate

Tactile Index, IndexT , we take the weighted average of the deep class probability from

the depth classification model, medium and large size class probabilities from the size

classification model, and stiff class probability from the stiffness classification model, as

follows.

IndexT = α1P11 +α2P12 +α3P13, (7.1)

where P11 corresponds to the deep tumor class probability from CNN TPDModelDepth

classification, P12 is the medium and large tumor class probability from CNN TPDMod-

elSize classification, and P13 corresponds to the stiff tumor class probability from CNN

TPDModelStiffness classification. α1, α2 and α3 are the corresponding weights for depth,

size and stiffness probabilities, respectively.

7.3 Spectral Index

The cancer probability from Multispectral Imaging Probe is called Spectral Index. We pro-

pose to calculate the Spectral Index, IndexS, using three multispectral imaging parameters

associated with breast cancer and their probabilities obtained from the asymmetry classifi-

cation model, texture classification model, and inflammation classification model. Eq. (7.2)

shows IndexS calculation.

IndexS = β1P21 +β2P22 +β3P23, (7.2)
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where P21 corresponds to Asymmetric class probability from MPDModelAsymmetry model

classification, P22 is the Pitted class probability from MPDModelTexture model classifica-

tion, P23 corresponds to the probability of Large Inflammation class probability (more than

2/3 of the area) from CNN MPDModelInflammation model classification. β1, β2, and β3

are the corresponding weights for the differential asymmetry, texture, and large inflamma-

tion probabilities, respectively.

7.4 NCI Breast Cancer Risk Assessment Tool

The National Cancer Institute made the Breast Cancer Risk Assessment Tool (BCRAT)

publicly available to calculate individual risk of developing breast cancer [4]. The proba-

bility is largely based on the well-known Gail model [106], which was further developed

by Costantino in 1999 [111]. Doctors and medical residents are currently encouraged to

use the tool in their practice [104].

BCRAT provides an online calculator, where women can enter information by answer-

ing questions about their health history (Fig. 7.1), and receive the predictions for develop-

ing breast cancer in five and in ten years in the future (Fig. 7.2). The women with higher

than average risk are suggested to talk to their primary care physicians on developing an

individualized screening plan.

We incorporate the NCI BCRAT calculation into the Multimodal Breast Cancer Risk

Assessment as the individualized health index named BCRAT Index, IndexBCRAT . Eq. (7.3)

shows the index calculation.

IndexBCRAT = P31, (7.3)

where P31 corresponds to the 5-year probability of developing breast cancer from BCRAT.

7.5 Multimodal Index

To calculate the Multimodal Index for breast cancer risk assessment, we propose to com-

pute the weighted sum of IndexT , IndexS, and IndexBCRAT as follows.

Multimodal Index = w1IndexT +w2IndexS +w3IndexBCRAT , (7.4)



133

Figure 7.1: The BCRAT calculator questions [4]

Figure 7.2: Example of the NCI BCRAT calculator results [4]
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where w1, w2, and w3 are the weights of the corresponding indices.

Fig. 7.3 shows the block diagram for the Multimodal Index calculation for breast can-

cer risk assessment. The index will range from 0 to 1, where values closer to zero will

correspond to the probability of the tissue with a tumor to be benign, and the values closer

to 1 will signify the higher probability of malignancy.

Figure 7.3: Multimodal Index development

7.6 Multimodal Index Results

Here we provide the description of the bimodal imaging phantom for the validation exper-

iments. Further, Multimodal Index calculation results are presented and analyzed.
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7.6.1 Bimodal Imaging Phantom

We designed a bimodal imaging phantom to validate the method for Multimodal Index

calculation. The requirement for the phantom was the ability to emulate breast tissue’s

mechanical and optical properties. We accomplished this task by reusing multiple inter-

changeable layers from the TIP phantom. We combine TIP phantom with MIP phantom

by placing MIP phantom layers one at a time on the top of the TIP mechanical property

phantom with an inclusion (Fig. 7.4).

Figure 7.4: Bimodal imaging phantom with optical and mechanical property

Fig. 7.5 shows the implementation of the bimodal imaging phantom with tactile and

multispectral imaging parameters. The left side of the figure shows an experimental setup

for multispectral imaging of the bimodal phantom. On the right, three views show the

tactile imaging phantom layers. We can use both phantom modalities at once for each

imaging acquisition. During tactile imaging, a 5 mm thick multispectral layer can be used

by itself as a depth layer or can be combined with other depth layers to achieve the desired

imaging depth.
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Figure 7.5: Bimodal imaging phantom

7.6.2 Multimodal Index Calculation Dataset

The dataset for the Multimodal Index calculation was developed by combining results from

the TIP phantom experiment subset (Section 4.4.3), and the MIP phantom experiment test

subset (Section 6.3.2). Larger and stiffer phantom inclusions correspond to larger and

stiffer breast tumors. Asymmetry changes, larger area of inflammation, and MIP samples

with pitted texture will mimic asymmetry, inflammation, and texture breast tissue changes.

For representative Tactile Index calculations, we used one trial classification results

from the TPD CNN models given in Table 4.9. For representative Spectral Index calcu-

lations, we used classification results for samples 2, 4, 7, 10, 13, and 15 from the test of

MPD CNN models given in Table 6.2. The results are presented and discussed in the next

section.
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7.6.3 Multimodal Index Calculation Results

In this section, we show the results for Tactile Index, Spectral Index, and Multimodal Index

calculations for breast cancer risk assessment.

Tactile Index calculation for a small set of samples from Table 4.9 test results are

shown in Table 7.1. For the Tactile Index calculation, we used Equation (7.1), as 0.1 ∗

prob(Deep) + 0.2 ∗ (prob(Med) + prob(Large)) + 0.7 ∗ prob(Sti f f ). We assigned the

weights based on our empirical knowledge from a previous publication [34], where stiff-

ness had a weight of 0.7.

From the results in Table 7.1, we note that Tactile Index is lower for softer and smaller

inclusions. It increases when the inclusion is stiffer and larger. The increased index value

correlates with the assumptions about the malignant tumors being stiffer and larger.

Spectral Index calculation results for a small subset from Table 6.2 set are presented in

Table 7.2. For Spectral Index calculation, we used Equation (7.2), as 0.2∗ prob(Asymmetric)+

0.2 ∗ prob(Pitted)+ 0.6 ∗ prob(Large In f lammation). The weights are empirical and re-

quire further evaluation in future work. Spectral Index is lower for tissue samples with

less inflammation and no texture or asymmetry changes. It is the highest when tissue has

a large area of inflammation with asymmetry and pitted texture. The results correlate with

the malignancy assumptions for the superficial breast tissues.

Finally, we calculated Multimodal Index, shown in Table 7.3. For the Multimodal Index

calculation, we used Equation (7.4), as 0.7 ∗ Spectral Index+ 0.3 ∗ Tactile Index. The

weights were assigned empirically. We omitted the NCI BCRAT Index in this experiment

because our test data developed purely from phantom data and did not have information

about human patients. However, the BCRAT Index can be incorporated into the Multimodal

Index calculation for human patients breast cancer risk assessment as Tactile Index and

Spectral Index.

The light red-colored cells in Table 7.3 indicate mimicked malignant cases. As ex-

pected, the results for the Multimodal Index in these cases are the highest. The light gray

color in the last column of the table points to the cases with increased multimodal malig-

nancy risk. The results for Multimodal Index in these cases are close to the middle of the
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Table 7.1: Tactile Index calculation results

Sample
#

Depth
CNN Model
Class (Prob.)

Stiffness
CNN Model
Class (Prob.)

Size
CNN Model
Class (Prob.)

Tactile
Index

Shallow Deep Soft Stiff Small Med Large

1 0.69 0.31 0.37 0.63 0.24 0.54 0.22 0.62
2 0.73 0.27 0.73 0.27 0.51 0.26 0.22 0.31
3 0.69 0.31 0.27 0.73 0.21 0.57 0.21 0.70
4 0.28 0.72 0.52 0.48 0.37 0.40 0.23 0.54
5 0.73 0.27 0.27 0.73 0.21 0.21 0.58 0.70
6 0.64 0.36 0.69 0.31 0.22 0.55 0.23 0.41
7 0.28 0.72 0.54 0.46 0.49 0.28 0.23 0.50
8 0.29 0.71 0.39 0.61 0.25 0.53 0.22 0.65
9 0.27 0.73 0.29 0.71 0.22 0.57 0.21 0.72
10 0.27 0.73 0.73 0.27 0.21 0.58 0.21 0.42
11 0.40 0.60 0.27 0.73 0.21 0.21 0.58 0.73
12 0.28 0.72 0.56 0.44 0.55 0.23 0.22 0.47

Note: The green color indicates mimicked deep tumors, the gray color highlights the mim-

icked stiff tumors, the light blue color shows mimicked medium size tumors, and the dark

blue color indicates large mimicked tumors. The red font color identifies the incorrectly

classified tumors using the CNN models.
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Table 7.2: Spectral Index calculation results

Sample
#

Asymmetry Texture Inflammation
Spectral

Index
CNN Model
Class (Prob.)

CNN Model
Class (Prob.)

CNN Model
Class (Prob.)

Sym. Asym.
Not

Pitted
Pitted

Small
Infl.

Large
Infl.

1 1.00 0.00 1.00 0.00 0.99 0.01 0.01
2 1.00 0.00 1.00 0.00 0.02 0.98 0.59
3 1.00 0.00 0.12 0.88 0.23 0.77 0.63
4 0.00 1.00 1.00 0.00 1.00 0.00 0.20
5 0.00 1.00 0.01 0.99 0.97 0.03 0.41
6 0.00 1.00 0.14 0.86 0.00 1.00 0.97
7 1.00 0.00 1.00 0.00 0.99 0.01 0.01
8 1.00 0.00 1.00 0.00 0.02 0.98 0.59
9 1.00 0.00 0.12 0.88 0.23 0.77 0.63

10 0.00 1.00 1.00 0.00 1.00 0.00 0.20
11 0.00 1.00 0.01 0.99 0.97 0.03 0.41
12 0.00 1.00 0.14 0.86 0.00 1.00 0.97

Note: The gray color indicates samples with asymmetry, the green color highlights the

pitted samples, and the pink color indicates samples with large mimicked inflammation.

All samples are correctly classified using the CNN models.
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Table 7.3: Multimodal Index calculation results

TPD
Sample

MPD
Sample

Tactile
Index

Spectral
Index

Multimodal
Index

1 shallow 1 0.62 0.01 0.19
2 shallow 2 0.31 0.59 0.51
3 shallow 3 0.70 0.63 0.65
4 shallow 4 0.54 0.20 0.30
5 shallow 5 0.70 0.41 0.50
6 shallow 6 0.41 0.97 0.80

1 deep 1 0.50 0.01 0.15
2 deep 2 0.65 0.59 0.61
3 deep 3 0.72 0.63 0.66
4 deep 4 0.42 0.20 0.27
5 deep 5 0.73 0.41 0.51
6 deep 6 0.47 0.97 0.82

Note: The blue-colored cells indicate mimicked benign cases. The gray-colored cells show

the cases with increased chances of malignancy. The light red-colored cells point to the

mimicked malignant cases.

scale from 0 to 1. The light blue-colored cells indicate mimicked benign cases. The results

for the Multimodal Index in these cases are the lowest.

The results for the Multimodal Index calculation are visualized in Fig. 7.6. Each of

the mimicked cases has four test samples. Blue bars correspond to mimicked benign sam-

ples, red bars show mimicked malignant samples, and gray bars point to test samples with

elevated probability of being malignant (benign/malignant cases). We can see from the

figure that it is difficult to separate mimicked malignant, malignant/benign, and benign

cases using only the Tactile Index (Fig. 7.6(a)) or only the Spectral Index (Fig. 7.6(b)). In

Fig. 7.6(a), we note that we cannot draw linear thresholds to separate the cases using only

Tactile Index data. In Fig. 7.6(b), we can see that it is possible to have two linear thresholds

to separate the cases, yet some of Malignant and Benign/Malignant test samples’ results

nearly overlap. However, Fig.7.6(c) shows that we can better differentiate these three mim-

icked cases by calculating Multimodal Index, and separate them with two linear thresholds.
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Figure 7.6: Multimodal Index calculation results
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The test samples with calculated Multimodal Index below threshold 0.35 correspond to the

mimicked benign cases. The test samples with Multimodal Index greater than 0.62 cor-

respond to the mimicked malignant cases. And the samples with calculated Multimodal

Index between 0.35 and 0.62 are the mimicked cases with increased malignancy risk.

7.7 Summary

In this chapter, we derived the method to calculate the Multimodal Index for breast cancer

risk assessment using the probabilities of the key features from Tactile Imaging Probe and

Multispectral Imaging Probe, as well as the probability of malignancy based on the patient’s

health records from the NCI’s Breast Cancer Risk Assessment Tool. We used deep learning

capabilities to extract the probabilities associated with the features from imaging data of

TIP and MIP modalities and to use it for the highly individualized Multimodal Index for

breast cancer risk assessment.

We calculated Multimodal Index for a small yet representative phantom dataset. In this

experiment, NCI BCRAT Index was equal to zero because we only used phantom data and

no human data. Our Multimodal Index results had consistently higher values for the mim-

icked malignant cases. The suggested threshold for the malignant samples in this dataset

was 0.62. The calculated Multimodal Index values for mimicked benign cases were below

0.35 threshold. We also hypothesize that the incorporation of BCRAT Index in Multimodal

Index calculation for human patient cases will help distinguish malignant tumors more ac-

curately. Furthermore, other imaging modalities can be introduced to Multimodal Index

calculation in the future. The method can be useful for healthcare providers to assess a

patient’s breast cancer risk from multiple modalities.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Here we will provide our conclusions for the Ph.D. dissertation and will outline the plan

for the future work.

8.1 Conclusions

In this dissertation, we developed the bimodal imaging system and algorithms to capture the

tactile and multispectral properties of breast tissues and provide the cancer risk assessment.

• We advanced Tactile Imaging Probe to evaluate tactile characteristics of embedded

tumors such as depth, size, and stiffness. Experiments on custom breast tissue mim-

icking silicone phantoms and in-vivo human trials were completed to calculate size

and stiffness for embedded tumors. The method required preliminary estimation of

tumors’ depth and size by an operator to guide the calculations. Further, we proposed

the Tactile Profile Diagrams to efficiently capture the tactile property of tumors and

encode it in the form of pattern images. Because Convolutional Neural Network

gained wide popularity as an excellent method for pattern classification, we applied

it to classify Tactile Profile Diagrams. In our experiments, we showed good accuracy

in classifying tumors based on their depth, size, and stiffness using Tactile Profile

Diagrams and Convolutional Neural Network. The CNN-estimated depth, size, and

stiffness of tumors can improve size calculation error and eliminate the need for pre-

liminary estimation of tumors’ depth and size by the operators.

• We developed Multispectral Imaging Probe to evaluate superficial optical properties

of breast tissues aiming to characterize manifestations of inflammatory breast can-

cer. The probe utilizes the same hardware as TIP, yet without the tactile sensing

element on the front of the camera lens. Instead, MIP uses a mechanical rotary at-

tachment with four bandpass filters. The bands were selected during wavelengths
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selection experiments and targeted hemoglobin, oxy-hemoglobin, water, and lipid

chromophores. We proposed a method to create Multispectral Profile Diagrams to

capture the superficial optical properties as pattern images. MPDs were also classi-

fied with CNN models to characterize breast tissue inflammation, texture, and asym-

metry parameters. The results showed the possibility of using these methods for

superficial breast tissues, yet need to be developed for the higher accuracy on a large

and more representative dataset.

• Lastly, we developed a method to calculate the individualized Multimodal Index for

breast cancer risk assessment in patients. The probabilities of features obtained from

the tactile and multispectral imaging modalities data combined with the individual

breast cancer risk probability from National Cancer Institute, give the opportunity to

assess the breast tissue and tumor from different points of view and lead to a better

individualized patient’s breast cancer risk assessment.

8.2 Future Work

In this dissertation, we demonstrated how to acquire bimodal imaging data from breast

mimicking phantoms and human patients using tactile and multispectral probes. We also

presented methods for extracting important parameters from the bimodal data using in-

terpolation methods and Convolutional Neural Network classifiers. We used the weighted

average method with empirically suggested weights to consolidate the parameters and form

Tactile, Spectral, and BCRAT indices for the validation of the breast cancer risk assessment

method. We envision three possible directions for the future work, as follows.

• Development of Multimodal Index for breast cancer risk assessment using classifica-

tion techniques for parameters consolidation and malignancy prediction.

• Research on the proper distribution of weights during Multimodal Index calculation

to obtain useful and clinically meaningful results for patients [6].

• An extensive literature review on size and stiffness of malignant and benign tumors,

asymmetry, texture, and inflammation of malignant and benign breast tissues, com-



145

bined with a statistically significant amount of patients’ clinical records on these

mentioned parameters to simulate a larger and more representative realistic dataset

for malignancy prediction accuracy improvement (Figure 8.1).

Figure 8.1: Future developments in Multimodal Index methodology
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APPENDIX A

HARDWARE CHARACTERISTICS OF TIP PROTOTYPES

Three generations of TIP prototypes are summarized in Table A.1.

Table A.1: Comparative hardware characteristics for three generations of TIP prototypes

Parameters TIP 1E TIP 3E TIP 4E

Camera AVT Guppy
F038C

IDS
UI-1220SE-M-GL

IDS
UI-3240CP-NIR

Interface IEEE 1394a USB 2.0 USB 3.0

Sensor

Sony ICX428
CCD

Type 1/2"
Mono

Aptina
CMOS

Type 1/3"
Mono

E2V
CMOS

Type 1/1.84"
Mono

Cell size,
µm × µm 8.4 × 9.8 6 × 6 5.3 × 5.3
Image size,
pixels × pixels 768 × 492 752 × 480 1024 × 1280
Pixel depth,bit 8

Lens
Kowa

16mm / F1.4
C2/3"

Kowa CCTV
6mm / F1.2

C1/2"

Schneider
12mm / F1.4

C2/3"
VIS-NIR

LEDs
4×White
D 3 mm

1500 MCD

4×White
D 3 mm

1200 MCD

4×White
D 3 mm

1100 MCD

Spacers #8×1/4" Aluminum Spacers
0.170" ID × 0.250" OD × 0.250" Matte

LED

Circuit control
1K

potentiometer
Arduino Pro Micro

5V/16MHz

Case - 3D printed design

Sensing element
size, mm
(L×W×H)

23 × 20 × 12

Power source 9V USB

Force sensor Mark-10 (external) FC22 (built in)
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APPENDIX B

TIP MICROCONTROLLER CIRCUIT IMPLEMENTATION

Microcontroller Hardware Implementation

The circuit design of the microcontroller circuit was given Fig. 3.2. Here we present hard-
ware implementation of the circuit. Fig. B.1(a) shows the circuit implementation and the
wired microcontroller. Fig. B.1(b) illustrates how the microcontroller is attached on the top
of the circuit to minimize the design size.

Figure B.1: TIP Microcontroller circuit implementation
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Microcontroller Firmware Installation

For TIP 4E, the tactile images have to be collected with force reading from the load cell.
At the same time, the LED brightness should be controlled. To ensure these functionalities,
a firmware code is required to be loaded into an Arduino microcontroller.

Pre-requisites:

1. Arduino Pro-Micro Dev 12640.

2. Arduino IDE version 1.6.10 (download from
https://www.arduino.cc/en/Main/OldSoftwareReleases).

3. Follow the instruction in this url as an example:
https://learn.adafruit.com/adafruit-feather-32u4-basic-proto/using-

with-arduino-ide.

Steps for uploading the firmware:

1. Open Arduino IDE

2. Find the file in the folder:

Documents -> Arduino -> TIS_Firmware_v1_3.

3. Open the file from IDE:

File -> Open -> TIS_Firmware_v1_3.ino.

4. Then select:
Tool - Board: "Adafruit Feather 32u4".

5. Check if the COM port is correct.

6. Upload the program

Microcontroller Firmware Script

// Filename: TIS_Firmware_v1_3.ino

#include <TimerOne.h>

//#include <TimerOne.h>

#include <avr/io.h>

#include <avr/interrupt.h>

/*

* Version 1.3

* Supports TimerOne-based LED dimming.



159

Send "b" to brighten and "d" to dim the LEDs

* Serial comms are at 57.6kbaud

* The force pin is read 5 times and averaged before being output.

*

*/

//Declare pins for PWM out, Force in

const int pwmpin=9;

const int forceInPin = A0;

const int switchPin = 7;

//const int debugPin = 8;

//Delare other variable

char state=0; //state for FSM

int trigger_mode = 0;

int force_readings[5]={0,0,0,0,0}; //5-force array for quick sum/average

int force_reading; //final force value to commit

uint16_t force_buffer[1005] = {0}; //Buffer to collect force

values to download after a capture

String force_reading_STR = "0"; //Force gauge reading as string

float dutyCycle = 99.0; //dimming variable

volatile unsigned int triggerCount= 1;

volatile unsigned int switchState=1;

int i=0; //for loop counter

ISR(INT6_vect){

switchState = digitalRead(switchPin);

}

void setup() {

pinMode(pwmpin, OUTPUT); //set the I/O pin to output

Timer1.initialize(100); //set timer1 to 10Khz (100 us)

Timer1.pwm(pwmpin,128); //set duty cycle to 25% (out ot 1023)

/*32u4 Datasheet 11.0.2 Interrupt mode setup

*ISC61 ISC60 Triggered By

* 0 0 INT6 low

* 0 1 Any logical change on INT6

* 1 0 Falling edge between two INT6 samples

* 1 1 Rising edge between two INT6 samples

*/

EICRB |= (1<<ISC60)|(1<<ISC61); //External Interrupt Control

Register B. Reg A controls ints 0 to 3. 1/1=Rising Edge detection

EIMSK |= (1<<INT6); //Ext. Int. Mask register.

This activates the interrupt on Pin 7 for ProMirco.
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It is Pin1 on the 32u4

noInterrupts();

Serial.begin(57600); //Start 57600kbps serial

interrupts();

}

void loop() {

//Begin Serial Communication

delay(1);

/*Watch for switch interrupt

* Upon interrupt, take a 5-averaged force reading

* and insert it into the force buffer. If this is

* software mode, send an ascii 'p' to signal a photo

*/

if(switchState == 1){

if(trigger_mode==0){

//digitalWrite(debugPin, HIGH);

switchState = 0; //clear switch state

force_readings[0] = analogRead(forceInPin);

force_readings[1] = analogRead(forceInPin);

force_readings[2] = analogRead(forceInPin);

force_readings[3] = analogRead(forceInPin);

force_readings[4] = analogRead(forceInPin);

force_reading = 0.2* int(addnum(force_readings));

force_buffer[triggerCount] = force_reading;

//digitalWrite(debugPin, LOW);

triggerCount++;

}

if(trigger_mode==1){

delay(600);

Serial.print('p');

}

}

while (Serial.available())

{

state = Serial.read(); // used to read incoming data

/*This section defines the functions you can access

* by sending an ASCII request over serial.

* The Print function always has lower priorty

* than any timer interrupt, so the dimming should be safe

*/
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switch(state)// see what was sent to the board

{

//Trigger Mode: send an 's' or 'h'

//to toggle between the flash trigger or

//acquiring when an 'r' is sent

case 's': //software trigger

trigger_mode = 1;

//Serial.print("st");

break;

case 'h': //hardware trigger

trigger_mode = 0;

//Serial.print("ht");

break;

/*Brightness: Sending a 'b' will

* increment the Brightness by one step and 'd' will

* decrement it by one step and return

* the current level with a 'b' on the end

*/

case 'b': //brighten LED

if (dutyCycle > 0)

{

dutyCycle = --dutyCycle; //decrement PWM duty cycle by 1

Timer1.pwm(pwmpin, (dutyCycle / 100) * 1023);

}

// return the brightness

Serial.print(String(100-(int)dutyCycle)+"b");

break;

case 'd': //dim LED

if (dutyCycle < 99)

{

dutyCycle = ++dutyCycle; //increment PWM duty cycle by 1

Timer1.pwm(pwmpin, (dutyCycle / 100) * 1023);

}

// return the brightness

Serial.print(String(100-(int)dutyCycle)+"b");

break;

/*Force Request: This is the less accurate force

* function that is called by the GUI to update the

* live force readout. It is called with 'f' every ~250ms.

* 5 measurements are taken and averaged to account for

* noise. The force should always be 4 digits appended with 'f'

*/
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case 'f': // if f was sent, return force reading

force_reading = analogRead(forceInPin);

if (force_reading < 1000){

force_reading_STR = String(force_reading);

force_reading_STR = "0"+force_reading_STR+"f";

Serial.print(force_reading_STR);

}

else{

force_reading_STR = String(force_reading);

force_reading_STR = force_reading_STR+"f";

Serial.print(force_reading_STR);

}

break;

/*Reading: This is the software trigger control

* for the force measurement with 'r'. It takes 5 readings,

* sums them, then takes an average. Again, it always

* returns 4 digits with a 'r' on the end.

*/

case 'r': // if r was sent, return force reading with reading flag

force_readings[0] = analogRead(forceInPin);

force_readings[1] = analogRead(forceInPin);

force_readings[2] = analogRead(forceInPin);

force_readings[3] = analogRead(forceInPin);

force_readings[4] = analogRead(forceInPin);

force_reading = 0.2*int(addnum(force_readings));

if (force_reading < 1000){

force_reading_STR = String(force_reading);

force_reading_STR = "0"+force_reading_STR+"r";

Serial.print(force_reading_STR);

}

else{

force_reading_STR = String(force_reading);

force_reading_STR = force_reading_STR+"r";

Serial.print(force_reading_STR);

}

break;

/*Download Force Buffer: Sending a 'q' will

* start returning every force from the earliest
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* to the most recent. The last value is not a force,

* but the total number of readings. This will

* give a checksum for botched transfers.

*/

case 'q': //query force list

i=0;

while(force_buffer[i] != 0){

force_reading_STR = String(force_buffer[i]);

if (force_buffer[i]<1000 && force_buffer[i]>99){

force_reading_STR = "0"+force_reading_STR+"q";

}

if (force_buffer[i]<100){

force_reading_STR = "00"+force_reading_STR+"q";

}

if (force_buffer[i]>=1000){

force_reading_STR = force_reading_STR+"q";

}

Serial.print(force_reading_STR);

delay(2); //it gets jumbled on the other end w/o this

i++;

}

Serial.print(String(triggerCount)+"t");

break;

/*Clear Force Buffer: Sending an x

* will reset the buffer and the trigger count and return 'x'

*/

case 'x': //clear force list

i=0;

while(force_buffer[i] != 0){

force_buffer[i] = 0;

i++;

}

triggerCount = 0;

Serial.print("x");

break;

//default case is just exit the loop. Should never happen.

default:

break;

}//end case

delay(1); //for loop stability
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} //end while

} //end loop

//summing function to create a 5-force reading average

//pointing to the array object prevents needless copying

int addnum(int *ptr)

{

int index, total=0;

for(index = 0; index < 5; index++){

if(*(ptr+index)<1000){

total += *(ptr+index);}

}

return(total);

}
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APPENDIX C

TIP LEDs ALIGNMENT PROCEDURE

Materials and Tools

The list of materials and tools for LED alignment is given in Table C.1.

Table C.1: List of materials and tools

Number Description Manuf./Destr. Q-ty

1 CMOS Camera
IDS UI-3240CP-NIR 1stVision 1

2 Schneider Lens (21-1001951)
2/3", 12mm, 1.4 1stVision 1

3 USB 3.0 Cable Amazon 1

4 FC22 Force Sensor Phidgets 1

5 Standard LEDs
Through Hole White Clear 1100mcd Mouser El. 4

6 Arduino Pro Micro - 5V/16MHz Sparkfun 1

8 Heat-Resistant Borosilicate Glass
1-3/4" Diameter, 1/8" Thick McMaster-Carr 1

9
#8×1/4" Aluminum Spacers

0.170" ID × 0.250" OD × 0.250" L
(unpolished, not shiny)

WidgetCo 4

10
3D Printed Case

Tube, Tube Cap, Camera holder,
Spectral tip, TIS tip

Temple University 1

Alignment Procedure

To align the LED light, one has to obtain parts listed in Table C.1 and strictly follow the
directions. The camera and its configuration highly influence the output of tactile image
quality.

Camera configuration
The focal length of the used lens is fixed. Aperture knob has to be adjusted to the 1.4.

The lens tube has to touch the glass plate. Use the TIS4E_parameters.ini settings for the
IDS camera, given in the next section.
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Spacers
The spacers are attached to the front-end as shown on Fig. C.1. They are perpendicular

(90 degrees) to the corresponding side of the PDMS probe surface. It is important to use
the listed unpolished spacers (Table C.1).

Figure C.1: LED and spacers configuration schematics in TIP design

LEDs
LEDs are placed into spacers at the far end. The direction of LED light is towards the

outer contact surface of the PDMS probe. Fig. 1 shows the LEDs alignment. The LEDs
are tilted approximately 45 degrees towards the outer surface of PDMS. LEDs have to be
dimmed to very low level (97 - 99 level using Arduino serial port configuration).

GUI parameters
LED brightness at 50. Can save up to 230 images (TactileQtGUI.pro).
Fig. C.2 demonstrates the hardware implementation of LEDs alignment.
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Figure C.2: Alignment implementation
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Camera Parameters Initialization Software

[Versions]

ueye_api_64.dll=4.81.12

ueye_usb_64.sys=4.81.0012

ueye_boot_64.sys=4.81.0012

[Sensor]

Sensor=UI324xCP-NIR

Sensor bit depth=0

Sensor source gain=0

FPN correction mode=0

Black reference mode=0

Sensor digital gain=0

[Image size]

Start X=0

Start Y=0

Start X absolute=1

Start Y absolute=1

Width=1280

Height=1024

Binning=0

Subsampling=0

[Scaler]

Mode=0

Factor=1.000000

[Multi AOI]

Enabled=0

Mode=1

x1=0

x2=0

x3=0

x4=0

y1=0

y2=0

y3=0

y4=0
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[Shutter]

Mode=2

Linescan number=0

[Log Mode]

Mode=3

Manual value=0

Manual gain=0

[Timing]

Pixelclock=30

Extended pixelclock range=0

Framerate=19.992143

Exposure=0.999579

Long exposure=0

Dual exposure ratio=0

[Selected Converter]

IS_SET_CM_RGB32=1

IS_SET_CM_RGB24=1

IS_SET_CM_RGB16=1

IS_SET_CM_RGB15=1

IS_SET_CM_Y8=1

IS_SET_CM_RGB8=1

IS_SET_CM_BAYER=8

IS_SET_CM_UYVY=1

IS_SET_CM_UYVY_MONO=1

IS_SET_CM_UYVY_BAYER=1

IS_CM_CBYCRY_PACKED=0

IS_SET_CM_RGBY=8

IS_SET_CM_RGB30=1

IS_SET_CM_Y12=1

IS_SET_CM_BAYER12=8

IS_SET_CM_Y16=1

IS_SET_CM_BAYER16=8

IS_CM_BGR12_UNPACKED=1

IS_CM_BGRA12_UNPACKED=1

IS_CM_JPEG=0

IS_CM_SENSOR_RAW10=8

IS_CM_MONO10=1

IS_CM_BGR10_UNPACKED=1
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IS_CM_RGBA8_PACKED=1

IS_CM_RGB8_PACKED=1

IS_CM_RGBY8_PACKED=8

IS_CM_RGB10V2_PACKED=8

IS_CM_RGB12_UNPACKED=1

IS_CM_RGBA12_UNPACKED=1

IS_CM_RGB10_UNPACKED=1

IS_CM_RGB8_PLANAR=1

[Parameters]

Colormode=6

Gamma=1.000000

Hardware Gamma=0

Blacklevel Mode=0

Blacklevel Offset=0

Hotpixel Mode=2

Hotpixel Threshold=0

Sensor Hotpixel=1

GlobalShutter=0

AllowRawWithLut=0

[Gain]

Master=0

Red=0

Green=0

Blue=0

GainBoost=0

[Processing]

EdgeEnhancementFactor=0

RopEffect=0

Whitebalance=0

Whitebalance Red=1.000000

Whitebalance Green=1.000000

Whitebalance Blue=1.000000

Color correction=0

Color_correction_factor=1.000000

Color_correction_satU=100

Color_correction_satV=100

Bayer Conversion=1

JpegCompression=0

NoiseMode=0
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ImageEffect=0

LscModel=0

WideDynamicRange=0

[Auto features]

Auto Framerate control=0

Brightness exposure control=0

Brightness gain control=0

Auto Framerate Sensor control=0

Brightness exposure Sensor control=0

Brightness gain Sensor control=0

Brightness exposure Sensor control photometry=0

Brightness gain Sensor control photometry=0

Brightness control once=0

Brightness reference=128

Brightness speed=50

Brightness max gain=100

Brightness max exposure=49.975579

Brightness Aoi Left=0

Brightness Aoi Top=0

Brightness Aoi Width=1280

Brightness Aoi Height=1024

Brightness Hysteresis=2

AutoImageControlMode=2

AutoImageControlPeakWhiteChannel=0

AutoImageControlExposureMinimum=0.000000

Auto WB control=0

Auto WB type=2

Auto WB RGB color model=1

Auto WB RGB color temperature=0

Auto WB offsetR=0

Auto WB offsetB=0

Auto WB gainMin=0

Auto WB gainMax=100

Auto WB speed=50

Auto WB Aoi Left=0

Auto WB Aoi Top=0

Auto WB Aoi Width=1280

Auto WB Aoi Height=1024

Auto WB Once=0

Auto WB Hysteresis=2

Brightness Skip Frames Trigger Mode=4

Brightness Skip Frames Freerun Mode=4

Auto WB Skip Frames Trigger Mode=4
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Auto WB Skip Frames Freerun Mode=4

[Trigger and Flash]

Trigger mode=0

Trigger timeout=200

Trigger delay=0

Trigger debounce mode=0

Trigger debounce delay time=1

Trigger burst size=1

Trigger prescaler frame=1

Trigger prescaler line=1

Trigger input=1

Flash strobe=0

Flash delay=0

Flash duration=0

Flash auto freerun=0

PWM mode=0

PWM frequency=20000000

PWM dutycycle=20000000

GPIO state=0

GPIO direction=3

GPIO1 Config=2

GPIO2 Config=2

[Sequence AOI]

NumberUsedAOI=0

StartX1=0

StartY1=0

Gain1=0

Exposure1=0.000000

ReadoutCycle1=1

BinningMode1=0

SubsamplingMode1=0

ScalerFactor1=0.000000

DetachImageParameter1=0

StartX2=0

StartY2=0

Gain2=0

Exposure2=0.000000

ReadoutCycle2=1

BinningMode2=0

SubsamplingMode2=0

ScalerFactor2=0.000000



173

DetachImageParameter2=0

StartX3=0

StartY3=0

Gain3=0

Exposure3=0.000000

ReadoutCycle3=1

BinningMode3=0

SubsamplingMode3=0

ScalerFactor3=0.000000

DetachImageParameter3=0

[Vertical AOI Merge Mode]

Mode=0

Position=0

Additional Position=0

Height=1

[Memory]

Camera memory mode=0
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APPENDIX D

YOUNG’S MODULUS TEST OF PDMS SAMPLES WITH
INSTRON 5944

Here, Young’s moduli of Polydimethyl siloxane (PDMS) samples were obtained using the
compression technique with the Instron 5944 testing machine. The purpose of this experi-
ment was to measure the Young’s Modulus of PDMS phantom components used in Tactile
Imaging Probe (TIP) experiments. PDMS of seventeen different mixing ratios were tested.
The mean Young’s modulus of PDMS was found to be 32.76 kPa, 37.41 kPa, 94.41 kPa,
129.70 kPa, 177.35 kPa, 196.58 kPa, 237.00 kPa, 281.20 kPa, 271.05 kPa, 315.84 kPa,
376.38 kPa, 416.12 kPa, 418.17 kPa, 444.18 kPa, 506.96 kPa, 532.69 kPa, 569.10 kPa,
583.75 kPa, 628.84 kPa for these seventeen samples.

Polydimethyl siloxane (PDMS) is a commercially available silicone rubber. The molec-
ular formula of PDMS is (C2H6OSi)n. It is low cost, nontoxic, chemically resistant and
stable against humidity and temperature variation. It is composed of two materials âĂŞ
Base agent (A) and Curing Agent (B). We used RTV 6136-D1 80LB KIT (R.S. Hughes,
Baltimore, MD), a low viscosity silicone dielectric gel, to prepare PDMS. Two components
A and B were mixed in a different mixing ratio by weight. As a curing agent (B) increases
in A : B ratio mixture, the resulting PDMS samples become harder.

PDMS samples were made with a wide range of A : B ratios to satisfy the requirements
of TIP breast phantom preparation. The mixed silicone material was poured into 37 mm
ÃŮ 37 mm tall plastic molds. The height of the poured silicone in each mold was 19 mm.
After curing, each PDMS cuboid was removed from molds and cut into four approximately
identical pieces for replication in the experiment (Figure 4.3).

A compression experiment with PDMS samples was done using INSTRON 5944. For
the test, we used a 1 kN load cell with a crosshead speed of 100 mm/min, and two 50 mm
compression anvils attached to the system. A sample was placed on the middle of the
bottom anvil for compression. The data capture frequency was set to 100 pts/s. The
pre-compression load is required to be applied on a sample so that the compression plate
touches the complete test material surface. We used a 0.2 N pre-compression load. The
range of the compressive strain of each sample was set to the 5%-25% range.

The load was applied until the test material deforms up to 30% of its height before
compression. From load cell signal force and vertical displacement were obtained. Using
(2) and (3), stress and strain can be calculated. So for one mixture ratio, there are four
test samples. Each sample was tested twice. Therefore, there are eight Young’s moduli
calculated using Instron’s software (Bluhill 3) for each PDMS ratio. In this experiment, we
considered 5-25% strain data for the calculation.

The Young’s moduli of PDMSs found from the compression experiment are listed in
the following tables. The linear region is observed from 5-25% strain, and linear curve
fitting was performed using Instron measuring machine software (Bluehill 3).
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Table D.1: PDMS Young’s Modulus results

PDMS Mixing Ratio
(Base : Curing) Sample

Young’s
Modulus,

kPa

Mean
Young’s Modulus,

kPa

Standard deviation
of the Mean,

kPa

1 : 1.4

1 34.78

32.76 3.65

2 35.07
3 36.49
4 37.17
5 31.30
6 30.88
7 29.58
8 26.82

1 : 1.5

1 35.54

37.41 1.36

2 36.75
3 36.95
4 35.93
5 38.19
6 37.66
7 38.99
8 39.28

1 : 2

1 89.98

94.41 2.75

2 90.62
3 94.30
4 96.83
5 94.91
6 94.76
7 97.12
8 96.74

1 : 2.5

1 129.93

129.70 2.23

2 127.29
3 132.19
4 127.91
5 129.03
6 127.01
7 132.30
8 131.94

1 : 3

1 174.29

177.35 6.45

2 173.69
3 170.82
4 169.65
5 178.57
6 186.76
7 179.06
8 185.93

1 : 3.5

1 189.66

196.58 5.55

2 199.47
3 191.81
4 191.80
5 198.04
6 207.04
7 196.89
8 197.95
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PDMS Mixing Ratio
(Base : Curing) Sample

Young’s
Modulus,

kPa

Mean
Young’s Modulus,

kPa

Standard deviation
of the Mean,

kPa

1 : 4

1 242.49

237.00 9.51

2 243.39
3 230.58
4 231.11
5 247.81
6 248.45
7 226.11
8 226.04

1 : 4.5

1 283.24

281.20 9.14

2 281.78
3 266.28
4 276.05
5 292.99
6 293.73
7 275.34
8 280.17

1 : 5

1 280.70

271.05 13.28

2 291.38
3 268.18
4 281.12
5 253.03
6 253.98
7 269.53
8 270.49

1 : 5.5

1 314.92

315.84 7.29

2 317.42
3 321.20
4 320.01
5 327.63
6 312.32
7 306.26
8 306.94

1 : 6

1 394.26

376.38 11.35

2 393.53
3 369.43
4 371.12
5 372.12
6 376.46
7 363.96
8 370.07

1 : 7

1 391.46

416.12 23.36

2 380.78
3 404.25
4 406.08
5 435.78
6 437.35
7 431.94
8 441.31
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PDMS Mixing Ratio
(Base : Curing) Sample

Young’s
Modulus,

kPa

Mean
Young’s Modulus,

kPa

Standard deviation
of the Mean,

kPa

1 : 8

1 401.95

418.17 32.34

2 402.52
3 440.45
4 441.23
5 452.78
6 452.42
7 373.57
8 380.45

1 : 9

1 450.11

444.18 27.67

2 450.23
3 406.44
4 408.11
5 439.56
6 439.63
7 478.68
8 480.66

1 : 10

1 448.61

506.96 35.34

2 451.83
3 530.65
4 531.62
5 526.90
6 526.82
7 516.93
8 522.34

1 : 12.5

1 610.27

532.69 59.25

2 613.02
3 487.58
4 493.39
5 471.76
6 472.19
7 557.68
8 555.60

1 : 15

1 505.11

569.10 67.44

2 506.09
3 600.78
4 600.04
5 513.49
6 512.98
7 651.29
8 663.00

1 : 17.5

1 561.19

583.75 17.42

2 612.73
3 587.50
4 587.78
5 576.36
6 560.27
7 592.86
8 591.33
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PDMS Mixing Ratio
(Base : Curing) Sample

Young’s
Modulus,

kPa

Mean
Young’s Modulus,

kPa

Standard deviation
of the Mean,

kPa

1 : 20

1 635.32

628.84 28.36

2 638.65
3 616.75
4 623.53
5 584.63
6 601.69
7 666.34
8 663.78
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APPENDIX E

TPD CNN MODELS SOFTWARE IMPLEMENTATION

Depth Classification Model

# -*- coding: utf-8 -*-

"""

Created on Mon Oct 22 11:17:26 2018

@author: tuc44192

## used linkes www.tensorflow.org/tutorials/keras/classification

"""

import tensorflow as tf

tf.keras.backend.clear_session()

tf.reset_default_graph()

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from keras.layers.normalization import BatchNormalization

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation,

Flatten, Reshape, Lambda

from tensorflow.keras.layers import Conv2D, MaxPooling2D

from matplotlib import pyplot as plt

import os

import numpy as np

from tensorflow.keras.callbacks import TensorBoard

import time

NAME = "TPD-CNN-Classification-2Classes_Depth1Added_Dissertation"

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.98)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

import pickle

##add train/validation datasets

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

X_train_1Depth_Added_Diss.tpd","rb")

X_train = pickle.load(pickle_in)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

y_train_1Depth_Added_Diss.tpd","rb")
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y_train = pickle.load(pickle_in)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

X_test_1Depth_Added_Diss.tpd","rb")

X_test = pickle.load(pickle_in)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

y_test_1Depth_Added_Diss.tpd","rb")

y_test = pickle.load(pickle_in)

#

class_names = ['1_shallow', '2_deep']

print('Data structure')

print('Training')

print(X_train.shape)

print(len(y_train))

print('Validation')

print(X_test.shape)

print(len(y_test))

## Data pre-processing

plt.figure()

plt.imshow(X_train[0].reshape(103,128))

plt.colorbar()

plt.grid(False)

plt.savefig('example_pic_Diss_Depth1Added_50_UPSAMPLE.png',dpi=1000)

plt.show()

## Normalization

####################################

X_train = X_train / 255.0

X_test = X_test / 255.0

#####################################

## using pip

#pip install -U imbalanced-learn

## using conda

# conda install -c conda-forge imbalanced-learn

# import the ADASYN object.

# pip install --upgrade scikit-learn

## import the Random Over Sampler object.

from imblearn.over_sampling import RandomOverSampler

# create the object to resample the majority class.

## create the object.
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over_sampler = RandomOverSampler()

# reshape from 4d to 2d

nsamples, nx, ny, nz = X_train.shape

d2_X_train = X_train.reshape((nsamples,nx*ny*nz))

print(d2_X_train.shape)

nsamples_, nx_, ny_, nz_ = X_test.shape

d2_X_test = X_test.reshape((nsamples_,nx_*ny_*nz_))

print(d2_X_test.shape)

## fit the object to the training data.

x_train_over,y_train_over=over_sampler.fit_sample(d2_X_train,y_train)

x_test_over,y_test_over=over_sampler.fit_sample(d2_X_test, y_test)

##reshape back to 4d

nsamples2, n = x_train_over.shape

X_train_over = x_train_over.reshape((nsamples2,nx,ny,nz))

print(X_train_over.shape)

nsamples2_, n_ = x_test_over.shape

X_test_over = x_test_over.reshape((nsamples2_,nx_,ny_,nz_))

print(X_test_over.shape)

# re-assignment

X_train = X_train_over

y_train = y_train_over

X_test = X_test_over

y_test = y_test_over

## Show examples of the dataset

plt.figure(figsize=(10,10))

for i in range(25):

plt.subplot(5,5,i+1)

plt.xticks([])

plt.yticks([])

plt.grid(False)

plt.imshow(X_train[i].reshape(103,128), cmap=plt.cm.binary)

plt.xlabel(class_names[y_train[i]])

plt.savefig('5by5_Diss_Depth1Added_50_UPSAMPLE.png',dpi = 300)

plt.show()

#################################################################

# Model Development
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model = Sequential()

# first layer

model.add(Conv2D(128, (11,11), input_shape=X_train.shape[1:]))

model.add(Activation('elu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

# second layer

model.add(Conv2D(128, (9, 9)))

model.add(Activation('softmax'))

#model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(256, (5,5)))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dropout(0.3))

model.add(Dense(128))

model.add(Activation('relu'))

#model.add(BatchNormalization())

model.add(Dropout(0.3))

model.add(Dense(128))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Dropout(0.2))

model.add(Dense(128))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Dropout(0.2))

model.add(Dense(2)) #amount of classes

model.add(Activation('softmax'))

#model.add(BatchNormalization())

model.compile(loss='sparse_categorical_crossentropy',

optimizer='adamax',

metrics=['accuracy'])
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model.summary()

######################

history = model.fit(X_train, y_train, batch_size=200, epochs=50,

validation_data = (X_test, y_test), verbose=1)

['accuracy', 'loss', 'val_accuracy', 'val_loss']

test_loss, test_acc = model.evaluate(X_test, y_test, verbose=1)

print('\nTest accuracy', test_acc)

print('Test loss \n', test_loss)

# list all data in history

print(history.history.keys())

# summarize history for accuracy

plt.plot(history.history['acc'])

plt.plot(history.history['val_acc'])

plt.title('Model accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epoch')

plt.legend(['Training set', 'Test set'], loc='lower right')

plt.savefig("Accuracy_plot_CNNModel_Depth1Added_Diss_

Model_02042021_50_UPSAMPLE.png",dpi = 300);

plt.show()

# summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Model loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Training set', 'Test set'], loc='upper right')

plt.savefig("Loss_plot_CNNModel_Depth1Added_Diss_

Model_02042021_50_UPSAMPLE.png",dpi = 300);

plt.show()

######################## SAVE

#save whole model

model.save('myCNN_Depth1Added_Diss_Model5_02072021_50_UPSAMPLE.h5')

##############################

### Make predictions

probability_model = tf.keras.Sequential([model,tf.keras.
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layers.Softmax()])

predictions = probability_model.predict(X_test)

#def plot_image(i, predictions_array, true_label):

def plot_image(i, predictions_array, true_label, img):

predictions_array, true_label, img = predictions_array, true_label[i],

img[i]

plt.grid(False)

plt.xticks([])

plt.yticks([])

plt.imshow(img.reshape(103,128), cmap=plt.cm.binary)

predicted_label = np.argmax(predictions_array)

if predicted_label == true_label:

color = 'blue'

else:

color = 'red'

plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],

100*np.max(predictions_array),

class_names[true_label]),

color=color)

def plot_value_array(i, predictions_array, true_label):

predictions_array, true_label = predictions_array, true_label[i]

plt.grid(False)

plt.xticks(range(2))

plt.yticks([])

thisplot = plt.bar(range(2), predictions_array, color="#777777")

plt.ylim([0, 1])

predicted_label = np.argmax(predictions_array)

thisplot[predicted_label].set_color('red')

thisplot[true_label].set_color('blue')

# show multiple images with predictions

num_rows = 5

num_cols = 3

num_images = num_rows*num_cols

plt.figure(figsize=(2*2*num_cols, 2*num_rows))

for i in range(num_images):

plt.subplot(num_rows, 2*num_cols, 2*i+1)

plot_image(i, predictions[i], y_test, X_train)

plt.imshow(X_train[i].reshape(103,128), cmap=plt.cm.binary)
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plt.subplot(num_rows, 2*num_cols, 2*i+2)

plot_value_array(i, predictions[i], y_test)

plt.tight_layout()

plt.savefig('Prediictions_gridDiss_

Depth1Added_Model5_50_UPSAMPLE.png',dpi = 250)

plt.show()

# Test on images from the set-aside dataset

## add test samples (paper set)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/Test_EMBCpaper.tpd","rb")

X_test_paper = pickle.load(pickle_in)

X_test_paper = X_test_paper / 255.0

### Make predictions

probability_model = tf.keras.Sequential([model,tf.keras.

layers.Softmax()])

predictions_paper = probability_model.predict(X_test_paper)

#

print(predictions_paper)

Size Classification Model

# -*- coding: utf-8 -*-

"""

Created on Mon Oct 22 11:17:26 2018

@author: tuc44192

## used linkes www.tensorflow.org/tutorials/keras/classification

"""

import tensorflow as tf

tf.keras.backend.clear_session()

tf.reset_default_graph()

#from tensorflow.keras.datasets import cifar10

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from keras.layers.normalization import BatchNormalization

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation,

Flatten, Reshape, Lambda

from tensorflow.keras.layers import Conv2D, MaxPooling2D

from matplotlib import pyplot as plt

import os

import numpy as np
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from tensorflow.keras.callbacks import TensorBoard

import time

NAME = "TPD-CNN-Classification-3Classes_Size_Added_Dissertation"

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.99)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

import pickle

##add train/validation samples

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

X_train_1Size_Added_Diss.tpd","rb")

X_train = pickle.load(pickle_in)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

y_train_1Size_Added_Diss.tpd","rb")

y_train = pickle.load(pickle_in)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

X_test_1Size_Added_Diss.tpd","rb")

X_test = pickle.load(pickle_in)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

y_test_1Size_Added_Diss.tpd","rb")

y_test = pickle.load(pickle_in)

class_names = ['1_small', '2_medium', '3_large']

print('Data structure')

print('Training')

print(X_train.shape)

print(len(y_train))

print('Validation')

print(X_test.shape)

print(len(y_test))

## Data pre-processing

plt.figure()

plt.imshow(X_train[0].reshape(103,128))

plt.colorbar()

plt.grid(False)

plt.savefig('example_pic_Diss_Size1_Added5_50_Upsample.png',dpi=1000)

plt.show()
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## Normalization

#####################################

X_train = X_train / 255.0

X_test = X_test / 255.0

#########################################

## using pip

#pip install -U imbalanced-learn

## using conda

# conda install -c conda-forge imbalanced-learn

# pip install --upgrade scikit-learn

## import the Random Over Sampler object.

from imblearn.over_sampling import RandomOverSampler

# create the object to resample the majority class.

over_sampler = RandomOverSampler()

# reshape from 4d to 2d

nsamples, nx, ny, nz = X_train.shape

d2_X_train = X_train.reshape((nsamples,nx*ny*nz))

print(d2_X_train.shape)

nsamples_, nx_, ny_, nz_ = X_test.shape

d2_X_test = X_test.reshape((nsamples_,nx_*ny_*nz_))

print(d2_X_test.shape)

## fit the object to the training data.

x_train_over,y_train_over=over_sampler.fit_sample(d2_X_train,y_train)

x_test_over y_test_over=over_sampler.fit_sample(d2_X_test,y_test)

#reshape back to 4d

nsamples2, n = x_train_over.shape

X_train_over = x_train_over.reshape((nsamples2,nx,ny,nz))

print(X_train_over.shape)

nsamples2_, n_ = x_test_over.shape

X_test_over = x_test_over.reshape((nsamples2_,nx_,ny_,nz_))

print(X_test_over.shape)

# re-assignment

X_train = X_train_over

y_train = y_train_over
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X_test = X_test_over

y_test = y_test_over

## Show examples of the dataset

plt.figure(figsize=(10,10))

for i in range(25):

plt.subplot(5,5,i+1)

plt.xticks([])

plt.yticks([])

plt.grid(False)

plt.imshow(X_train[i].reshape(103,128), cmap=plt.cm.binary)

plt.xlabel(class_names[y_train[i]])

plt.savefig('5by5_Diss_Size1_Added5_50_Upsample.png',dpi = 300)

plt.show()

# Model Development

model = Sequential()

# first layer

model.add(Conv2D(128, (11, 11), input_shape=X_train.shape[1:]))

model.add(Activation('elu'))

model.add(MaxPooling2D(pool_size=(3, 3)))

# second layer

model.add(Conv2D(128, (9, 9)))

model.add(Activation('softmax'))

#model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

# Third layer

model.add(Conv2D(256, (5, 5)))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dropout(0.3))

model.add(Dense(128))

model.add(Activation('relu'))

#model.add(BatchNormalization())

model.add(Dropout(0.3))

model.add(Dense(128))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Dropout(0.2))
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model.add(Dense(128))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Dropout(0.2))

model.add(Dense(3)) #amount of classes

model.add(Activation('softmax'))

#model.add(BatchNormalization())

model.compile(loss='sparse_categorical_crossentropy',

optimizer='adamax',

metrics=['accuracy'])

model.summary()

################

history = model.fit(X_train, y_train, batch_size=200, epochs=50,

validation_data = (X_test, y_test), verbose=1)

['accuracy', 'loss', 'val_accuracy', 'val_loss']

test_loss, test_acc = model.evaluate(X_test, y_test, verbose=1)

print('\nTest accuracy', test_acc)

print('Test loss \n', test_loss)

# list all data in history

print(history.history.keys())

# summarize history for accuracy

plt.plot(history.history['acc'])

plt.plot(history.history['val_acc'])

plt.title('Model accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epoch')

plt.legend(['Training set', 'Test set'], loc='lower right')

plt.savefig("Accuracy_plot_CNNModel_Size1_

Added_Diss5_50_Upsample.png",dpi = 300);

plt.show()

# summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Model loss')

plt.ylabel('Loss')
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plt.xlabel('Epoch')

plt.legend(['Training set', 'Test set'], loc='upper right')

plt.savefig("Loss_plot_CNNModel_Size1_

Added_Diss5_50_Upsample.png",dpi = 300);

plt.show()

## Make predictions

probability_model = tf.keras.Sequential([model,tf.keras.

layers.Softmax()])

predictions = probability_model.predict(X_test)

#######################save a whole model

model.save('myCNN_Size1Added_Diss_Modelv5__50_02072021_Upsample.h5')

###############################

# show predictionas and labels

# Plot the first X test images, their predicted labels,

and the true labels.

# Color correct predictions in blue and incorrect predictions in red.

#def plot_image(i, predictions_array, true_label):

def plot_image(i, predictions_array, true_label, img):

predictions_array, true_label, img = predictions_array,

true_label[i], img[i]

plt.grid(False)

plt.xticks([])

plt.yticks([])

plt.imshow(img.reshape(103,128), cmap=plt.cm.binary)

predicted_label = np.argmax(predictions_array)

if predicted_label == true_label:

color = 'blue'

else:

color = 'red'

plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],

100*np.max(predictions_array),

class_names[true_label]),

color=color)

def plot_value_array(i, predictions_array, true_label):

predictions_array, true_label = predictions_array, true_label[i]

plt.grid(False)

plt.xticks(range(3))
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plt.yticks([])

thisplot = plt.bar(range(3), predictions_array, color="#777777")

plt.ylim([0, 2])

predicted_label = np.argmax(predictions_array)

thisplot[predicted_label].set_color('red')

thisplot[true_label].set_color('blue')

#multiple images with predictions

num_rows = 5

num_cols = 3

num_images = num_rows*num_cols

plt.figure(figsize=(2*2*num_cols, 2*num_rows))

for i in range(num_images):

plt.subplot(num_rows, 2*num_cols, 2*i+1)

plot_image(i, predictions[i], y_test, X_train)

plt.imshow(X_train[i].reshape(103,128), cmap=plt.cm.binary)

plt.subplot(num_rows, 2*num_cols, 2*i+2)

plot_value_array(i, predictions[i], y_test)

plt.tight_layout()

plt.savefig('Prediictions_gridDiss_Size1Added_50_Upsample.png',dpi=250)

plt.show()

#test on images from other datasets

##add test samples (paper set)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/Test_EMBCpaper.tpd","rb")

X_test_paper = pickle.load(pickle_in)

X_test_paper =X_test_paper / 255.0

### Make predictions

probability_model = tf.keras.Sequential([model,tf.keras.

layers.Softmax()])

predictions_paper = probability_model.predict(X_test_paper)

#

print(predictions_paper)

Stiffness Classification Model

# -*- coding: utf-8 -*-

"""

Created on Mon Oct 22 11:17:26 2018

@author: tuc44192

## used linkes www.tensorflow.org/tutorials/keras/classification
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"""

import tensorflow as tf

tf.keras.backend.clear_session()

tf.reset_default_graph()

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from keras.layers.normalization import BatchNormalization

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation,

Flatten, Reshape, Lambda

from tensorflow.keras.layers import Conv2D, MaxPooling2D

from matplotlib import pyplot as plt

import os

import numpy as np

from tensorflow.keras.callbacks import TensorBoard

import time

NAME = "TPD-CNN-Classification-2Classes_Stiffness1Added_Dissertation"

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.99)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

import pickle

##add train/validation samples

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

X_train_1Stiffness_Added_Diss.tpd","rb")

X_train = pickle.load(pickle_in)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

y_train_1Stiffness_Added_Diss.tpd","rb")

y_train = pickle.load(pickle_in)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

X_test_1Stiffness_Added_Diss.tpd","rb")

X_test = pickle.load(pickle_in)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/

y_test_1Stiffness_Added_Diss.tpd","rb")

y_test = pickle.load(pickle_in)

#

class_names = ['1_soft', '2_stiff']

print('Data structure')

print('Training')

print(X_train.shape)
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print(len(y_train))

print('Validation')

print(X_test.shape)

print(len(y_test))

## Data pre-processing

plt.figure()

plt.imshow(X_train[0].reshape(103,128))

plt.colorbar()

plt.grid(False)

plt.savefig('example_pic_Diss_Stiffness1_

Added_UPRAND_v7_25.png',dpi = 1000)

plt.show()

## Normalization

#####################################

X_train = X_train / 255.0

X_test = X_test / 255.0

#########################################

*******Upsampling Random

## using pip

#pip install -U imbalanced-learn

## using conda

# conda install -c conda-forge imbalanced-learn

# pip install --upgrade scikit-learn

## import the Random Over Sampler object.

from imblearn.over_sampling import RandomOverSampler

# create the object to resample the majority class.

## create the object.

over_sampler = RandomOverSampler()

# reshape from 4d to 2d

nsamples, nx, ny, nz = X_train.shape

d2_X_train = X_train.reshape((nsamples,nx*ny*nz))

print(d2_X_train.shape)

nsamples_, nx_, ny_, nz_ = X_test.shape

d2_X_test = X_test.reshape((nsamples_,nx_*ny_*nz_))

print(d2_X_test.shape)

## fit the object to the training data.
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x_train_over,y_train_over=over_sampler.fit_sample(d2_X_train,y_train)

x_test_over,y_test_over=over_sampler.fit_sample(d2_X_test,y_test)

#reshape back to 4d

nsamples2, n = x_train_over.shape

X_train_over = x_train_over.reshape((nsamples2,nx,ny,nz))

print(X_train_over.shape)

nsamples2_, n_ = x_test_over.shape

X_test_over = x_test_over.reshape((nsamples2_,nx_,ny_,nz_))

print(X_test_over.shape)

# re-assignment

X_train = X_train_over

y_train = y_train_over

X_test = X_test_over

y_test = y_test_over

## Show examples of the dataset

plt.figure(figsize=(10,10))

for i in range(25):

plt.subplot(5,5,i+1)

plt.xticks([])

plt.yticks([])

plt.grid(False)

plt.imshow(X_train[i].reshape(103,128), cmap=plt.cm.binary)

plt.xlabel(class_names[y_train[i]])

plt.savefig('5by5_Diss_Stiffness3_Added_UPRAND_v7_25.png',dpi = 300)

plt.show()

# Model Development

model = Sequential()

# first layer

model.add(Conv2D(128, (11, 11), input_shape=X_train.shape[1:]))

model.add(Activation('elu'))

model.add(MaxPooling2D(pool_size=(3, 3)))

# second layer

model.add(Conv2D(128, (9, 9)))

model.add(Activation('softmax'))

#model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

# Third layer

model.add(Conv2D(256, (5, 5)))
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model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dropout(0.3))

model.add(Dense(128))

model.add(Activation('relu'))

#model.add(BatchNormalization())

model.add(Dropout(0.3))

model.add(Dense(128))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Dropout(0.2))

model.add(Dense(128))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Dropout(0.2))

model.add(Dense(2)) #amount of classes

model.add(Activation('softmax'))

#model.add(BatchNormalization())

model.compile(loss='sparse_categorical_crossentropy',

optimizer='adamax',

metrics=['accuracy'])

model.summary()

#################

history = model.fit(X_train, y_train, batch_size=200, epochs=25,

validation_data = (X_test, y_test), verbose=1)

['accuracy', 'loss', 'val_accuracy', 'val_loss']

test_loss, test_acc = model.evaluate(X_test, y_test, verbose=1)

print('\nTest accuracy', test_acc)

print('Test loss \n', test_loss)

# list all data in history

print(history.history.keys())
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# summarize history for accuracy

plt.plot(history.history['acc'])

plt.plot(history.history['val_acc'])

plt.title('Model accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epoch')

plt.legend(['Training set', 'Test set'], loc='lower right')

plt.savefig("Accuracy_plot_CNNModel_Stiffness1_

Added_UPRAND_v7_25.png",dpi = 300);

plt.show()

# summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Model loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Training set', 'Test set'], loc='upper right')

plt.savefig("Loss_plot_CNNModel_Stiffness1_

Added_UPRAND_v7_25.png",dpi = 300);

plt.show()

### Make predictions

probability_model = tf.keras.Sequential([model,tf.keras.

layers.Softmax()])

predictions = probability_model.predict(X_test)

######################## SAVE

#save a whole model

model.save('myCNN_Stiffness1Added__Added__UPRAND_25_Diss_

Modelv7_02052021.h5')

##############################

# show predictionas and labels

# Plot the first X test images, their predicted labels, and the true labels.

# Color correct predictions in blue and incorrect predictions in red.

#def plot_image(i, predictions_array, true_label):

def plot_image(i, predictions_array, true_label, img):

predictions_array, true_label, img = predictions_array, true_label[i],

img[i]

plt.grid(False)

plt.xticks([])

plt.yticks([])
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plt.imshow(img.reshape(103,128), cmap=plt.cm.binary)

predicted_label = np.argmax(predictions_array)

if predicted_label == true_label:

color = 'blue'

else:

color = 'red'

plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],

100*np.max(predictions_array),

class_names[true_label]),

color=color)

def plot_value_array(i, predictions_array, true_label):

predictions_array, true_label = predictions_array, true_label[i]

plt.grid(False)

plt.xticks(range(2))

plt.yticks([])

thisplot = plt.bar(range(2), predictions_array, color="#777777")

plt.ylim([0, 1])

predicted_label = np.argmax(predictions_array)

thisplot[predicted_label].set_color('red')

thisplot[true_label].set_color('blue')

#multiple images with predictions

num_rows = 5

num_cols = 3

num_images = num_rows*num_cols

plt.figure(figsize=(2*2*num_cols, 2*num_rows))

for i in range(num_images):

plt.subplot(num_rows, 2*num_cols, 2*i+1)

plot_image(i, predictions[i], y_test, X_train)

plt.imshow(X_train[i].reshape(103,128), cmap=plt.cm.binary)

plt.subplot(num_rows, 2*num_cols, 2*i+2)

plot_value_array(i, predictions[i], y_test)

plt.tight_layout()

plt.savefig('Prediictions_gridDiss_Stiffness1_

Added_APRAND_v7_25.png',dpi = 250)

plt.show()

##add test samples (paper set)

pickle_in = open("F:/Vira/PhantomTest for CNN/Dissertation Data Set/

Dissertation_Data/PICKLES with added data/Test_EMBCpaper.tpd","rb")

X_test_paper = pickle.load(pickle_in)
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X_test_paper =X_test_paper / 255.0

### Make predictions

probability_model = tf.keras.Sequential([model,tf.keras.

layers.Softmax()])

predictions_paper = probability_model.predict(X_test_paper)

#

print(predictions_paper)
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APPENDIX F

MPD CNN MODELS SOFTWARE IMPLEMENTATION

Asymmetry Classification Model

# -*- coding: utf-8 -*-

"""

Created on Mon Oct 22 11:17:26 2018

@author: tuc44192

"""

import tensorflow as tf

tf.keras.backend.clear_session()

tf.reset_default_graph()

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from keras.layers.normalization import BatchNormalization

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation,

Flatten, Reshape, Lambda

from tensorflow.keras.layers import Conv2D, MaxPooling2D

from matplotlib import pyplot as plt

import os

import numpy as np

from tensorflow.keras.callbacks import TensorBoard

import time

NAME = "MPD-CNN-Classification-2Classes_AsymmetryBalanced_Dissertation"

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.99)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

import pickle

##add train/valid/test samples

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/Python/

Multispectral Models/xMPDdiff_Asymmetry_Training.tpd","rb")

X_train = pickle.load(pickle_in)

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/Python/

Multispectral Models/yMPDdiff_Asymmetry_Training.tpd","rb")

y_train = pickle.load(pickle_in)

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/Python/

Multispectral Models/xMPDdiff_Asymmetry_Validation.tpd","rb")

X_val = pickle.load(pickle_in)
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pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/Python/

Multispectral Models/yMPDdiff_Asymmetry_Validation.tpd","rb")

y_val = pickle.load(pickle_in)

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/Python/

Multispectral Models/xMPDdiff_Asymmetry_Test.tpd","rb")

X_test = pickle.load(pickle_in)

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/Python/

Multispectral Models/yMPDdiff_Asymmetry_Test.tpd","rb")

y_test = pickle.load(pickle_in)

#

class_names = ['1_Symmetric', '2_Asymmetric']

print('Data structure')

print('Training')

print(X_train.shape)

print(len(y_train))

print('Validation')

print(X_val.shape)

print(len(y_val))

print('Test')

print(X_test.shape)

print(len(y_test))

nk = X_train.shape[0]

nl = X_test.shape[0]

## Data pre-processing

plt.figure()

plt.imshow(X_train[0].reshape(171,171))

plt.colorbar()

plt.grid(False)

plt.savefig('Example_pic_Diss_MPDAsymmetry.png',dpi = 1000)

plt.show()

## Normalization

#####################################

X_train = X_train / 255.0

X_val = X_val / 255.0

X_test = X_test / 255.0

#########################################

#******Upsampling Random
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## using pip

#pip install -U imbalanced-learn

## using conda

# conda install -c conda-forge imbalanced-learn

# pip install --upgrade scikit-learn

## - - - - - - - - - - - - - - - - - -- - - - - - - - - -

## import the Random Over Sampler object.

from imblearn.over_sampling import RandomOverSampler

# create the object to resample the majority class.

over_sampler = RandomOverSampler()

# reshape from 4d to 2d

nsamples, nx, ny, nz = X_train.shape

d2_X_train = X_train.reshape((nsamples,nx*ny*nz))

print(d2_X_train.shape)

## fit the object to the training data.

x_train_over,y_train_over=over_sampler.fit_sample(d2_X_train,y_train)

#reshape back to 4d

nsamples2, n = x_train_over.shape

X_train_over = x_train_over.reshape((nsamples2,nx,ny,nz))

print(X_train_over.shape)

#reassignment

X_train = X_train_over

y_train = y_train_over

## Show examples of the dataset

nk = X_train.shape[0]

#************Upsampling Random upsampling

## Show examples of the dataset

from numpy import random

#random.randint(153504, size=(25)): #

k= random.randint(nk, size=(25))

plt.figure(figsize=(10,10))

for i in range(25): # random.randint(153504, size=(25)): #

plt.subplot(5,5,i+1)

plt.xticks([])

plt.yticks([])

plt.grid(False)

plt.imshow(X_train[k[i]].reshape(171,171), cmap=plt.cm.binary)

plt.xlabel(class_names[y_train[k[i]]])

plt.savefig('5by5_Diss__MPDAsymmetry.png',dpi = 300)
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plt.show()

# Model Development

model = Sequential()

# first layer

model.add(Conv2D(32, (3, 3), input_shape=X_train.shape[1:]))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

# second layer

model.add(Conv2D(16, (5, 5)))

model.add(Activation('relu'))

#model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

# second layer

model.add(Conv2D(8, (9, 9)))

model.add(Activation('relu'))

#model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dropout(0.3))

model.add(Dense(8))

model.add(Activation('relu'))

#model.add(BatchNormalization())

model.add(Dropout(0.3))

model.add(Dense(16))

model.add(Activation('relu'))

#model.add(BatchNormalization())

model.add(Dropout(0.2))

model.add(Dense(32))

model.add(Activation('relu'))

#model.add(BatchNormalization())

model.add(Dropout(0.2))

model.add(Dense(2)) #amount of classes

model.add(Activation('softmax'))

#model.add(BatchNormalization())

model.compile(loss='sparse_categorical_crossentropy',

optimizer='adamax',
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metrics=['accuracy'])

model.summary()

# Implementing Callback

from tensorflow.keras.callbacks import ModelCheckpoint

filepath = "SavedAsymmetry-{epoch:02d}.h5"

checkpoint = ModelCheckpoint(filepath, monitor='accuracy', verbose=0,

save_best_only=False, mode='auto', save_weights_only=False,

save_freq = 1)

history = model.fit(X_train, y_train, batch_size=100, epochs=5, v

alidation_data = (X_val, y_val), verbose=1, callbacks=[checkpoint])

['accuracy', 'loss', 'val_accuracy', 'val_loss']

# Validate also on the separate test data

test_loss, test_acc = model.evaluate(X_test, y_test, verbose=1)

print('\nTest accuracy', test_acc)

print('Test loss \n', test_loss)

# list all data in history

print(history.history.keys())

# summarize history for accuracy

plt.plot(history.history['acc'])

plt.plot(history.history['val_acc'])

plt.title('Model accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epoch')

plt.legend(['Training set', 'Test set'], loc='lower right')

plt.savefig("Accuracy_plot_Diss_MPDAsymmetry.png",dpi = 300);

plt.show()

# summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Model loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Training set', 'Test set'], loc='upper right')

plt.savefig("Loss_plot_Diss_MPDAsymmetry.png",dpi = 300);

plt.show()

## Make predictions
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probability_model = tf.keras.Sequential([model,tf.keras.

layers.Softmax()])

predictions = probability_model.predict(X_test)

######################## SAVE

#save a whole model

model.save('Model_Diss_MPDAsymmetry_04092021.h5')

##############################

# show predictionas and labels

# Plot the first X test images, their predicted labels, and the true

labels.

# Color correct predictions in blue and incorrect predictions in red.

#def plot_image(i, predictions_array, true_label):

def plot_image(i, predictions_array, true_label, img):

predictions_array,true_label,img =predictions_array,

true_label[i], img[i]

plt.grid(False)

plt.xticks([])

plt.yticks([])

plt.imshow(img.reshape(171,171), cmap=plt.cm.binary)

predicted_label = np.argmax(predictions_array)

if predicted_label == true_label:

color = 'blue'

else:

color = 'red'

plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],

100*np.max(predictions_array),

class_names[true_label]),

color=color)

def plot_value_array(i, predictions_array, true_label):

predictions_array, true_label = predictions_array, true_label[i]

plt.grid(False)

plt.xticks(range(2))

plt.yticks([])

thisplot = plt.bar(range(2), predictions_array, color="#777777")

plt.ylim([0, 1])

predicted_label = np.argmax(predictions_array)

thisplot[predicted_label].set_color('red')

thisplot[true_label].set_color('blue')
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num_rows = 5

num_cols = 3

num_images = num_rows*num_cols

l = random.randint(nl, size=(num_images))

plt.figure(figsize=(2*2*num_cols, 2*num_rows))

for i in range(num_images):

plt.subplot(num_rows, 2*num_cols, 2*i+1)

plot_image(l[i], predictions[l[i]], y_test, X_test)

plt.imshow(X_test[l[i]].reshape(171,171), cmap=plt.cm.binary)

plt.subplot(num_rows, 2*num_cols, 2*i+2)

plot_value_array(l[i], predictions[l[i]], y_test)

plt.tight_layout()

plt.savefig('Prediictions_grid_Diss_MPDAsymmetry.png',dpi = 250)

plt.show()

Texture Classification Model

# -*- coding: utf-8 -*-

"""

Created in 2020

@author: tuc44192

"""

import tensorflow as tf

tf.keras.backend.clear_session()

tf.reset_default_graph()

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation,

Flatten,Reshape, Lambda, BatchNormalization

from tensorflow.keras.layers import Conv2D, MaxPooling2D

from matplotlib import pyplot as plt

import os

import numpy as np

from tensorflow.keras.callbacks import TensorBoard

import time

NAME = "MPD-CNN-Classification-2Classes_TextureModel_Dissertation"

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.99)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

import pickle
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##add train/val/test samples

# Training 0.7

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/xMPDdiff_Texture_Training.tpd","rb")

X_train = pickle.load(pickle_in)

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/yMPDdiff_Texture_Training.tpd","rb")

y_train = pickle.load(pickle_in)

# Validation 0.2

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/xMPDdiff_Texture_Validation.tpd","rb")

X_val = pickle.load(pickle_in)

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/yMPDdiff_Texture_Validation.tpd","rb")

y_val = pickle.load(pickle_in)

# Test 0.1

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/xMPDdiff_Texture_Test.tpd","rb")

X_test = pickle.load(pickle_in)

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/yMPDdiff_Texture_Test.tpd","rb")

y_test = pickle.load(pickle_in)

class_names = ["1_NotPitted", "2_Pitted"]

print('Data structure')

print('Training')

print(X_train.shape)

print(len(y_train))

print('Validation')

print(X_val.shape)

print(len(y_val))

print('Test')

print(X_test.shape)

print(len(y_test))

nk = X_train.shape[0]

nl = X_test.shape[0]
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## Data pre-processing

plt.figure()

plt.imshow(X_train[0].reshape(171,171))

plt.colorbar()

plt.grid(False)

plt.savefig('Example_pic_Diss_MPDTexture.png',dpi = 1000)

plt.show()

## Normalization

#####################################

X_train = X_train / 255.0

X_val = X_val / 255.0

X_test = X_test / 255.0

#########################################

#*****Upsampling Random

## using pip

#pip install -U imbalanced-learn

## using conda

# conda install -c conda-forge imbalanced-learn

# pip install --upgrade scikit-learn

## - - - - - - - - - - - - - - - - - -- - - - - - - -

## import the Random Over Sampler object.

from imblearn.over_sampling import RandomOverSampler

# create the object to resample the majority class.

over_sampler = RandomOverSampler()

# reshape from 4d to 2d

nsamples, nx, ny, nz = X_train.shape

d2_X_train = X_train.reshape((nsamples,nx*ny*nz))

print(d2_X_train.shape)

## fit the object to the training data.

x_train_over,y_train_over=over_sampler.fit_sample(d2_X_train,y_train)

#reshape back to 4d

nsamples2, n = x_train_over.shape

X_train_over = x_train_over.reshape((nsamples2,nx,ny,nz))

print(X_train_over.shape)

# re-assignment

X_train = X_train_over

y_train = y_train_over

## Show examples of the dataset
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from numpy import random

k= random.randint(nk, size=(25))

plt.figure(figsize=(10,10))

for i in range(25):

plt.subplot(5,5,i+1)

plt.xticks([])

plt.yticks([])

plt.grid(False)

plt.imshow(X_train[k[i]].reshape(171,171), cmap=plt.cm.binary)

plt.xlabel(class_names[y_train[k[i]]])

plt.savefig('5by5_Diss_MPDTexture.png',dpi = 300)

plt.show()

# Model Development

model = Sequential()

# first layer

model.add(Conv2D(8, (3, 3), input_shape=X_train.shape[1:]))

model.add(Activation('elu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

# second layer

model.add(Conv2D(8, (3, 3)))

model.add(Activation('elu'))

model.add(Conv2D(8, (3, 3)))

model.add(Activation('elu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(3, 3)))

# third layer

model.add(Conv2D(8, (5, 5)))

model.add(Activation('elu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(3, 3)))

model.add(Flatten())

model.add(Dropout(0.2))

model.add(Dense(256))

model.add(Activation('elu'))

model.add(BatchNormalization())

model.add(Dropout(0.4))

model.add(Dense(128))
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model.add(Activation('elu'))

model.add(BatchNormalization())

model.add(Dropout(0.4))

#

model.add(Dense(64))

model.add(Activation('elu'))

model.add(BatchNormalization())

model.add(Dropout(0.4))

model.add(Dense(2)) #amount of classes

model.add(Activation('softmax'))

model.compile(loss='sparse_categorical_crossentropy',

optimizer='adam',

metrics=['accuracy'])

model.summary()

# Implementing Callback

from tensorflow.keras.callbacks import ModelCheckpoint

filepath = "SavedModel_Texture-{epoch:02d}f3.h5"

checkpoint = ModelCheckpoint(filepath, monitor='accuracy', verbose=0,

save_best_only=False,mode='auto',save_weights_only=False,save_freq = 1)

##################

history = model.fit(X_train, y_train, batch_size=100, epochs=20,

shuffle=True,

validation_data = (X_val, y_val), verbose=1, callbacks=[checkpoint])

['accuracy', 'loss', 'val_accuracy', 'val_loss']

# Validate also on the separate test data

test_loss, test_acc = model.evaluate(X_test, y_test, verbose=1)

print('\nTest accuracy', test_acc)

print('Test loss \n', test_loss)

# list all data in history

print(history.history.keys())

# summarize history for accuracy

plt.plot(history.history['acc'])

plt.plot(history.history['val_acc'])

plt.title('Model accuracy')

plt.ylabel('Accuracy')
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plt.xlabel('Epoch')

plt.legend(['Training set', 'Validation set'], loc='lower right')

plt.savefig("Accuracy_plot_Diss_MPDTexturedf3.png",dpi = 300);

plt.show()

# summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Model loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Training set', 'Validation set'], loc='upper right')

plt.savefig("Loss_plot_Diss_MPDTexturedf3.png",dpi = 300);

plt.show()

## Make predictions

probability_model = tf.keras.Sequential([model,tf.keras.

layers.Softmax()])

predictions = probability_model.predict(X_test)

############## Save Model

model.save('Model_Diss_MPDTexturedf3_04092021.h5')

##############################

# show predictionas and labels

# Plot the first X test images, their predicted labels, and the true labels.

# Color correct predictions in blue and incorrect predictions in red.

#def plot_image(i, predictions_array, true_label):

def plot_image(i, predictions_array, true_label, img):

predictions_array, true_label, img = predictions_array,

true_label[i], img[i]

plt.grid(False)

plt.xticks([])

plt.yticks([])

plt.imshow(img.reshape(171,171), cmap=plt.cm.binary)

predicted_label = np.argmax(predictions_array)

if predicted_label == true_label:

color = 'blue'

else:

color = 'red'

plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],

100*np.max(predictions_array),
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class_names[true_label]),

color=color)

def plot_value_array(i, predictions_array, true_label):

predictions_array, true_label = predictions_array, true_label[i]

plt.grid(False)

plt.xticks(range(2))

plt.yticks([])

thisplot = plt.bar(range(2), predictions_array, color="#777777")

plt.ylim([0, 1])

predicted_label = np.argmax(predictions_array)

thisplot[predicted_label].set_color('red')

thisplot[true_label].set_color('blue')

num_rows = 5

num_cols = 3

num_images = num_rows*num_cols

l = random.randint(nl, size=(num_images))

plt.figure(figsize=(2*2*num_cols, 2*num_rows))

for i in range(num_images):

plt.subplot(num_rows, 2*num_cols, 2*i+1)

plot_image(l[i], predictions[l[i]], y_test, X_test)

plt.imshow(X_test[l[i]].reshape(171,171), cmap=plt.cm.binary)

plt.subplot(num_rows, 2*num_cols, 2*i+2)

plot_value_array(l[i], predictions[l[i]], y_test)

plt.tight_layout()

plt.savefig('Prediictions_grid_Diss_MPDTexturedf3.png',dpi = 250)

plt.show()

Inflammation Classification Model

# -*- coding: utf-8 -*-

"""

Created in 2021

@author: tuc44192

"""

import tensorflow as tf

tf.keras.backend.clear_session()

tf.reset_default_graph()

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation,

Flatten, Reshape, Lambda, BatchNormalization
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from tensorflow.keras.layers import Conv2D, MaxPooling2D,

ActivityRegularization

#Activity Regularizer: Tries to reduce the layer's output y,

thus will reduce the weights and adjust bias so Wx+b is smallest.

from matplotlib import pyplot as plt

import os

import numpy as np

from tensorflow.keras.callbacks import TensorBoard

import time

NAME = "MPD-CNN-

Classification-2Classes_50,75_Large_Inflammation_Dissertation"

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.99)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

import pickle

##add train/validation/test sets

# Training

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/xMPDdiff_Inflammation_Training.tpd","rb")

X_train = pickle.load(pickle_in)

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/yMPDdiff_Inflammation_Training.tpd","rb")

y_train = pickle.load(pickle_in)

# Validation 0.2

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/xMPDdiff_Inflammation_Validation.tpd","rb")

X_val = pickle.load(pickle_in)

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/yMPDdiff_Inflammation_Validation.tpd","rb")

y_val = pickle.load(pickle_in)

# Test

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/xMPDdiff_Inflammation_Test.tpd","rb")

X_test = pickle.load(pickle_in)

pickle_in = open("C:/Users/CSNAP/Documents/Vira/CNN Data Sets/Code/

Python/Multispectral Models/yMPDdiff_Inflammation_Test.tpd","rb")

y_test = pickle.load(pickle_in)

#

class_names = ['1_LessInflammation', '2_MoreInflammation']
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print('Data structure')

print('Training')

print(X_train.shape)

print(len(y_train))

print('Validation')

print(X_val.shape)

print(len(y_val))

print('Test')

print(X_test.shape)

print(len(y_test))

nk = X_train.shape[0]

nl = X_test.shape[0]

## Data pre-processing

plt.figure()

plt.imshow(X_train[0].reshape(171,171))

plt.colorbar()

plt.grid(False)

plt.savefig('Example_pic_Diss_MPDInflammation.png',dpi=1000)

plt.show()

## Normalization

X_train = X_train.astype('float32')

X_val = X_val.astype('float32')

X_test = X_test.astype('float32')

#####################################

X_train = X_train / 255.0

X_val = X_val / 255.0

X_test = X_test / 255.0

#########################################

#*****************Upsampling Random

## using pip

#pip install -U imbalanced-learn

## using conda

# conda install -c conda-forge imbalanced-learn

# pip install --upgrade scikit-learn

## import the Random Over Sampler object.

from imblearn.over_sampling import RandomOverSampler
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# create the object to resample the majority class.

## create the object.

over_sampler = RandomOverSampler()

# reshape from 4d to 2d

nsamples, nx, ny, nz = X_train.shape

d2_X_train = X_train.reshape((nsamples,nx*ny*nz))

print(d2_X_train.shape)

## fit the object to the training data.

x_train_over, y_train_over=over_sampler.fit_sample(d2_X_train,y_train)

#reshape back to 4d

nsamples2, n = x_train_over.shape

X_train_over = x_train_over.reshape((nsamples2,nx,ny,nz))

print(X_train_over.shape)

# reassignment

X_train = X_train_over

y_train = y_train_over

nk = X_train.shape[0]

#*****************Upsampling

## Show examples of the dataset

from numpy import random

k= random.randint(nk, size=(25))

plt.figure(figsize=(10,10))

for i in range(25):

plt.subplot(5,5,i+1)

plt.xticks([])

plt.yticks([])

plt.grid(False)

plt.imshow(X_train[k[i]].reshape(171,171), cmap=plt.cm.binary)

plt.xlabel(class_names[y_train[k[i]]])

plt.savefig('5by5_Diss__MPDInflammation.png',dpi = 300)

plt.show()

# Model Development

model = Sequential()

# First layer

model.add(Conv2D(8, (3, 3), input_shape=X_train.shape[1:]))

#model.add(ActivityRegularization(l1=0, l2=0.001))
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model.add(Activation('elu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(3, 3)))

# Second Layer

model.add(Conv2D(8, (3, 3)))

#model.add(ActivityRegularization(l1=0, l2=0.001))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Conv2D(8, (3, 3)))

#model.add(ActivityRegularization(l1=0, l2=0.001))

model.add(Activation('elu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

# Third Layer

model.add(Conv2D(8, (3, 3)))

#model.add(ActivityRegularization(l1=0, l2=0.001))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Conv2D(8, (3, 3)))

#model.add(ActivityRegularization(l1=0, l2=0.001))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Conv2D(8, (3, 3)))

#model.add(ActivityRegularization(l1=0, l2=0.001))

model.add(Activation('elu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

# Fourth Layer

model.add(Conv2D(16, (3, 3)))

#model.add(ActivityRegularization(l1=0, l2=0.001))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Conv2D(16, (3, 3)))

#model.add(ActivityRegularization(l1=0, l2=0.001))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Conv2D(16, (3, 3)))

#model.add(ActivityRegularization(l1=0, l2=0.001))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))
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# Flatten

model.add(Flatten())

model.add(Dropout(0.2))

## Dense 1

model.add(Dense(256))

#model.add(ActivityRegularization(l1=0, l2=0.001))

model.add(Activation('elu'))

#model.add(BatchNormalization())

model.add(Dropout(0.2))

# Dense 2

model.add(Dense(64))

#model.add(ActivityRegularization(l1=0, l2=0.001))

model.add(Activation('elu'))

model.add(BatchNormalization())

model.add(Dropout(0.2))

# Dense Classification

model.add(Dense(2)) #amount of classes

#model.add(ActivityRegularization(l1=0, l2=0.01))

model.add(Activation('softmax'))

#model.add(BatchNormalization())

model.compile(loss='sparse_categorical_crossentropy',

optimizer='adamax',

metrics=['accuracy'])

model.summary()

# Implementing Callback

from tensorflow.keras.callbacks import ModelCheckpoint

filepath = "Saved_MPDInflammation_Diss6-{epoch:02d}.h5"

checkpoint = ModelCheckpoint(filepath, monitor='accuracy', verbose=0,

save_best_only=False, mode='auto', save_weights_only=False,

save_freq = 1)

history = model.fit(X_train, y_train, batch_size=50, epochs=20,

shuffle=True,

validation_data = (X_val, y_val), verbose=1, callbacks=[checkpoint])

['accuracy', 'loss', 'val_accuracy', 'val_loss']

# Validate also on the separate test data

test_loss, test_acc = model.evaluate(X_test, y_test, verbose=1)

print('\nTest accuracy', test_acc)
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print('Test loss \n', test_loss)

# list all data in history

print(history.history.keys())

# summarize history for accuracy

plt.plot(history.history['acc'])

plt.plot(history.history['val_acc'])

plt.title('Model accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epoch')

plt.legend(['Training set', 'Validation set'], loc='lower right')

plt.savefig("Accuracy_plot_Diss_MPDInflammation6.png",dpi = 300);

plt.show()

# summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Model loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Training set', 'Validation set'], loc='upper right')

plt.savefig("Loss_plot_Diss_MPDInflammation6.png",dpi = 300);

plt.show()

## Make predictions

probability_model = tf.keras.Sequential([model,tf.keras.layers.Softmax()])

predictions = probability_model.predict(X_test)

######################## SAVE

#save a whole model

model.save('Model_Diss_MPDInflammation6_04122021.h5')

##############################

# show predictionas and labels

# Plot the first X test images, their predicted labels,

and the true labels.

# Color correct predictions in blue and incorrect predictions in red.

#def plot_image(i, predictions_array, true_label):

def plot_image(i, predictions_array, true_label, img):

predictions_array, true_label, img = predictions_array,

true_label[i], img[i]

plt.grid(False)

plt.xticks([])

plt.yticks([])
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plt.imshow(img.reshape(171,171), cmap=plt.cm.binary)

predicted_label = np.argmax(predictions_array)

if predicted_label == true_label:

color = 'blue'

else:

color = 'red'

plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],

100*np.max(predictions_array),

class_names[true_label]),

color=color)

def plot_value_array(i, predictions_array, true_label):

predictions_array, true_label = predictions_array, true_label[i]

plt.grid(False)

plt.xticks(range(2))

plt.yticks([])

thisplot = plt.bar(range(2), predictions_array, color="#777777")

plt.ylim([0, 1])

predicted_label = np.argmax(predictions_array)

thisplot[predicted_label].set_color('red')

thisplot[true_label].set_color('blue')

num_rows = 5

num_cols = 3

num_images = num_rows*num_cols

l = random.randint(nl, size=(num_images))

plt.figure(figsize=(2*2*num_cols, 2*num_rows))

for i in range(num_images):

plt.subplot(num_rows, 2*num_cols, 2*i+1)

plot_image(l[i], predictions[l[i]], y_test, X_test)

plt.imshow(X_test[l[i]].reshape(171,171), cmap=plt.cm.binary)

plt.subplot(num_rows, 2*num_cols, 2*i+2)

plot_value_array(l[i], predictions[l[i]], y_test)

plt.tight_layout()

plt.savefig('Prediictions_grid_Diss_MPDInflammation6.png',dpi = 250)

plt.show()
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