

Doctoral Dissertation Defense Presentation Department of Electrical and Computer Engineering

Monday, February 15, 2021 02:00 pm EST Zoom Video Conference

Strategies for Radar-Communication Spectrum Sharing

Ammar Ahmed

Electrical Engineering

Committee:

Dr. Yimin D. Zhang, Advisory Chair, Department of Electrical and Computer Engineering
Dr. Dennis Silage, Department of Electrical and Computer Engineering
Dr. Joseph Picone, Department of Electrical and Computer Engineering
Dr. Yu Wang, External Member, Department of Computer & Information Sciences

Abstract:

Spectrum sharing has become increasingly important since the past decade due to the ongoing congestion of spectral resources. Higher data rates in wireless communications require expansion of existing frequency allocations. Significant research efforts have been made in the direction of cognitive radio to effectively manage the existing frequency usage. Recently, coexistence of multiple platforms within same frequency bands is considered effective to mitigate spectral congestion. The coexistence of radar and communication platforms in the same frequency bands requires both systems to work collaboratively to mitigate their mutual interference. This challenge can be significantly simplified if both systems are controlled by a joint control entity. Joint radarcommunication (JRC) system is such an example where

Zoom Details
Topic: PhD Dissertation Defense:
Time: Feb 15, 2021 02:00 PM Eastern Time (US and Canada)

Join Zoom Meeting https://temple.zoom.us/j/91469507578

Meeting ID: 914 6950 7578 One tap mobile +19292056099,,91469507578# US (New York) +13017158592,,91469507578# US (Washington DC)

Dial by your location +1 929 205 6099 US (New York) +1 301 715 8592 US (Washington DC) +1 312 626 6799 US (Chicago) +1 669 900 6833 US (San Jose) +1 253 215 8782 US (Tacoma) +1 346 248 7799 US (Houston) Meeting ID: 914 6950 7578 Find your local number: https://temple.zoom.us/u/aPvWRmC6R radar and communication system objectives are achieved by the same physical platform.

In this dissertation, we discuss three different types of JRC systems and investigate novel signal processing techniques to optimize their performance. These JRC systems exploit either a single transmit antenna, an antenna array for beamforming, or a distributed JRC network. We present optimized resource allocation strategies for the three types of JRC systems. First, we consider a single transmit antenna-based JRC system and optimize the dual-purpose transmit orthogonal frequency division multiplexing (OFDM) waveforms based on the frequency-sensitive target response and characteristics of communication channels. Second, we perform resource optimization for multi-antenna beamforming-based JRC system, yielding minimized power usage and optimal selection of antennas for efficient utilization of hardware up-conversion chains. Finally, the problem of optimal power allocation in a distributed JRC system is addressed based on the target localization performance and the communication capacity.