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ABSTRACT 

NON-PARAMETRIC BAYESIAN APPROACHES FOR ACOUSTIC MODELING 

Amir Hossein Harati Nejad Torbati 

Doctor of Philosophy 

Temple University, July 2015 

Advisor: Dr. Joseph Picone 

The goal of Bayesian analysis is to reduce the uncertainty about unobserved variables by 

combining prior knowledge with observations. A fundamental limitation of a parametric 

statistical model, including a Bayesian approach, is the inability of the model to learn new 

structures. The goal of the learning process is to estimate the correct values for the parameters. 

The accuracy of these parameters improves with more data but the model’s structure remains 

fixed. Therefore new observations will not affect the overall complexity (e.g. number of 

parameters in the model). Recently, nonparametric Bayesian methods have become a popular 

alternative to Bayesian approaches because the model structure is learned simultaneously with the 

parameter distributions in a data-driven manner. 

The goal of this dissertation is to apply nonparametric Bayesian approaches to the acoustic 

modeling problem in continuous speech recognition. Three important problems are addressed: 

(1) statistical modeling of sub-word acoustic units; (2) semi-supervised training algorithms for 

nonparametric acoustic models; and (3) automatic discovery of sub-word acoustic units. 

We have developed a Doubly Hierarchical Dirichlet Process Hidden Markov Model 

(DHDPHMM) with a non-ergodic structure that can be applied to problems involving sequential 

modeling. DHDPHMM shares mixture components between states using two Hierarchical 

Dirichlet Processes (HDP). An inference algorithm for this model has been developed that 

enables DHDPHMM to outperform both its hidden Markov model (HMM) and HDP HMM 
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(HDPHMM) counterparts. This inference algorithm is shown to also be computationally less 

expensive than a comparable algorithm for HDPHMM.  

In addition to sharing data, the proposed model can learn non-ergodic structures and non-

emitting states, something that HDPHMM does not support. This extension to the model is used 

to model finite length sequences. We have also developed a generative model for semi-supervised 

training of DHDPHMMs. Semi-supervised learning is an important practical requirement for 

many machine learning applications including acoustic modeling in speech recognition. The 

relative improvement in error rates on classification and recognition tasks is shown to be 22% and 

7% respectively. Semi-supervised training results are slightly better than supervised training 

(29.02% vs. 29.71%). Context modeling was also investigated and results show a modest 

improvement of 1.5% relative over the baseline system. 

We also introduce a nonparametric Bayesian transducer based on an ergodic 

HDPHMM/DHDPHMM that automatically segments and clusters the speech signal using an 

unsupervised approach. This transducer was used in several applications including speech 

segmentation, acoustic unit discovery, spoken term detection and automatic generation of a 

pronunciation lexicon. For the segmentation problem, an F-score of 76.62% was achieved which 

represents a 9% relative improvement over the baseline system. On the spoken term detection 

tasks, an average precision of 64.91% was achieved, which represents a 20% improvement over 

the baseline system. Lexicon generation experiments also show automatically discovered units 

(ADU) generalize to new datasets. 

In this dissertation, we have established the foundation for applications of non-parametric 

Bayesian modeling to problems such as speech recognition that involve sequential modeling. 

These models allow a new generation of machine learning systems that adapt their overall 

complexity in a data-driven manner and yet preserve meaningful modalities in the data. As a 

result, these models improve generalization and offer higher performance at lower complexity.  



 v

DEDICATION 

To my parents, Fatemeh and Alireza, 

for having supported me throughout my education and life. 



 vi 

ACKNOWLEDGMENTS 

 

First and foremost, I would like to thank my advisor Dr. Joseph Picone. His commitment to 

his students and the quality of their research (and writing) is exemplary. I have learned a great 

deal during the past five years that I have been working in his lab. Most importantly I learned 

how to conduct research with a positive attitude and how to overcome obstacles. His insistence on 

systematic approaches helped me to learn how to isolate problems and solve them one at a time. I 

am also thankful that he trusted my abilities and gave me space to conduct my research freely. 

I am also thankful to all of my committee members: Dr. Obied, Dr. Sobel, Dr. Vucetic, Dr. 

Won and my external reader Dr. Buckley. I am especially thankful to Dr. Sobel because the talk 

he gave in our department’s seminar series helped me find this dissertation topic. He was also 

kind enough to spend time discussing some of the concepts presented in this dissertation.  

I am thankful to all the previous and current students at ISIP who provided a friendly, 

supportive and collaborative work environment. I am thankful to the College of Engineering and 

the Department of Electrical and Computer Engineering, both of which provided me with the 

financial support that helped me complete my PhD studies. I am thankful to the Graduate School 

at Temple University, which provided me with a PhD continuation grant that helped me to focus 

on finishing my dissertation. I am thankful to the University City Science Center and several 

external government funding agencies for their financial support of this dissertation. 

The experiments conducted in this dissertation used Temple University’s High Performance 

Computing (HPC) facilities that were provided by the National Science Foundation through a 

Major Research Instrumentation Grant (Grant Nos. CNS-09-58854 and CNS-1305190). I am also 

thankful to HPC technical staff that provided excellent support during my graduate studies.  

Finally, I am thankful to my parents and family for their support throughout my life and for 

providing me with a good education and unconditional love. 



 vii

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................. iii 

TABLE OF CONTENTS ............................................................................................................ vii 

LIST OF FIGURES ...................................................................................................................... ix 

LIST OF TABLES .......................................................................................................................... x 

 Introduction .............................................................................................................................. 1 

 Acoustic Modeling ................................................................................................................ 3 

 Nonparametric Bayesian Approaches in Speech Recognition ............................. 8 

 Dissertation Organization .............................................................................................. 10 

 Dissertation Contributions ............................................................................................ 12 

 Nonparametric Bayesian Basics ...................................................................................... 15 

 The Dirichlet Distribution.............................................................................................. 17 

 Dirichlet Process ............................................................................................................... 23 

 Hierarchical Dirichlet Process ..................................................................................... 25 

2.3.1 Stick-Breaking Construction ................................................................................................... 26 

 HDPHMM .............................................................................................................................. 29 

2.4.1 Block Sampler ............................................................................................................................... 32 

2.4.2 Learning Hyperparameters ..................................................................................................... 36 

 Conclusion............................................................................................................................ 40 

 Nonparametric Bayesian Approaches For Acoustic Modeling of Sub-Word 

Units ............................................................................................................................................ 42 

 Related Work ...................................................................................................................... 44 

 A Doubly Hierarchical Dirichlet Process Mixture Model .................................... 46 

 Inference Algorithm for DHDPHMM ........................................................................... 50 

 DHDPHMM with a Non-Ergodic Structure ................................................................ 53 

3.4.1 Left-to-Right DHDPHMM with Loop Transitions ........................................................... 54 

3.4.2 Left-To-Right DHDPHMM ........................................................................................................ 55 

3.4.3 Strictly Left-to-Right DHDPHMM .......................................................................................... 56 

 Initial and Final Non-Emitting States ......................................................................... 56 

3.5.1 Maximum Likelihood Estimation .......................................................................................... 57 

3.5.2 Bayesian Estimation ................................................................................................................... 58 

 An Integrated Model ......................................................................................................... 59 

 Experiments ........................................................................................................................ 62 

3.7.1 Evaluation Methods .................................................................................................................... 62 

3.7.2 A Computational Analysis of DHDPHMM .......................................................................... 62 

3.7.3  HMM-Generated Data ............................................................................................................... 64 

3.7.4 Phoneme Classification on the TIMIT Corpus ................................................................. 66 

 Conclusions ......................................................................................................................... 73 

 Semi-Supervised Training of DHDPHMM ..................................................................... 76 

 Semi-Supervised Training of DHDPHMM Models .................................................. 78 

4.1.1 Composite DHDPHMM Model ................................................................................................ 79 

4.1.2 Approximation of the Generative Model for Semi-Supervised Training .............. 82 



 viii

 Context Modeling............................................................................................................... 84 

 Experiments ........................................................................................................................ 87 

4.3.1 Evaluation Methods .................................................................................................................... 87 

4.3.2 Supervised Phoneme Recognition ........................................................................................ 88 

4.3.3 Semi-Supervised Phoneme Recognition ............................................................................ 89 

4.3.4 Context Dependent Phoneme Recognition ....................................................................... 90 

4.3.5 Comparisons to Other Popular Systems ............................................................................ 91 

 Conclusion............................................................................................................................ 94 

 Acoustic Unit And Lexicon Discovery ............................................................................. 97 

 Motivation ............................................................................................................................ 97 

 Related Work ...................................................................................................................... 99 

5.2.1 Speech Segmentation ................................................................................................................. 99 

5.2.2 Acoustic Unit Discovery ......................................................................................................... 100 

5.2.3 Lexicon Discovery .................................................................................................................... 102 

 An Unsupervised ADU Transducer ........................................................................... 103 

5.3.1 Learning the Transducer ....................................................................................................... 105 

5.3.2 Decoding Observations .......................................................................................................... 105 

 Discovering The Lexicon............................................................................................... 106 

5.4.1 Direct Supervised Learning .................................................................................................. 106 

5.4.2 Direct Semi-Supervised Learning ...................................................................................... 108 

5.4.3 Discovering the Lexicon Using G2P .................................................................................. 109 

 Experiments ...................................................................................................................... 110 

5.5.1 Evaluation Methods ................................................................................................................. 110 

5.5.2 Unsupervised Segmentation ................................................................................................ 113 

5.5.3 Investigating the Relationship Between ADUs and Phonemes ............................. 115 

5.5.4 Spoken Term Detection by Query ...................................................................................... 117 

5.5.5 Lexicon Discovery .................................................................................................................... 120 

 Conclusions ....................................................................................................................... 130 

 Conclusion ............................................................................................................................ 133 

 Future Work ...................................................................................................................... 134 

6.1.1 Nested DHDPHMM ................................................................................................................... 135 

6.1.2 A Speaker-Clustered ADU Transducer ............................................................................ 135 

6.1.3 Different Priors .......................................................................................................................... 136 

6.1.4 HDPHMM/DHDPHMM with HMM State ......................................................................... 136 

6.1.5 ADU Generalization to Other Languages ........................................................................ 136 

6.1.6 Experimentation Using Larger Corpora and More Difficult Tasks....................... 137 

6.1.7 Discriminative Training and DHDPHMM/DNN ........................................................... 137 

6.1.8 More Robust Lexicon Generation ...................................................................................... 138 

References ............................................................................................................................. 139 

 

  



 ix 

 

LIST OF FIGURES 

 
FIGURE 1-1. AN EXAMPLE THAT SHOWS THE GROWTH IN MODEL COMPLEXITY AS MORE DATA BECOMES 

AVAILABLE. ............................................................................................................................................................................... 2 

FIGURE 1-2. A MODULAR ARCHITECTURE FOR A SPEECH RECOGNITION SYSTEM IS SHOWN. ................................................. 4 

FIGURE 1-3. DPM-BASED CLUSTERING PRODUCED A 10% IMPROVEMENT OVER A STANDARD REGRESSION 

TREE APPROACH FOR AN MLLR SPEAKER ADAPTATION TASK. ....................................................................................... 9 

FIGURE 2-1. DIRICHLET DISTRIBUTIONS ARE SHOWN WITH DIFFERENT CONCENTRATION PARAMETERS. A 

HIGHER VALUE OF CONCENTRATION PARAMETER MEANS THE DISTRIBUTION HAS A HIGHER 

CONCENTRATION AROUND THE MEAN. ............................................................................................................................... 20 

FIGURE 2-2. A GRAPHICAL MODEL FOR DIRICHLET MIXTURE MODEL IS SHOWN. .................................................................. 25 

FIGURE 2-3. AN HDP REPRESENTATION OF (2.23) IS SHOWN IN (A). AN ALTERNATIVE INDICATOR 

VARIABLE REPRESENTATION FROM (2.24) IS SHOWN IN (B) (ADAPTED FROM TEH ET AL., 2004). ..................... 27 

FIGURE 2-4. A GRAPHICAL MODEL OF HDPHMM IS SHOWN (ADAPTED FROM FOX, ET AL., 2011). ............................... 31 

FIGURE 3-1. A COMPARISON OF HDPHMM AND DHDPHMM IS SHOWN. ........................................................................... 50 

FIGURE 3-2. DIFFERENT HMM STRUCTURES FOR DHDPHMM ARE SHOWN: (A) LEFT TO RIGHT WITH 

LOOPS, (B) LEFT TO RIGHT WITH ONLY SELF LOOPS, (C) LEFT TO RIGHT WITH A LOOP TO THE FIRST 

STATE, AND (D) STRICTLY LEFT TO RIGHT. ........................................................................................................................ 55 
FIGURE 3-3. OUTGOING PROBABILITIES FOR STATE ZI ARE SHOWN. ....................................................................................... 57 

FIGURE 3-4. GRAPHICAL REPRESENTATIONS ARE SHOWN FOR: (A) AN ERGODIC HDPHMM AND 

(B) A DHDPHMM. .............................................................................................................................................................. 60 
FIGURE 3-5. A DECOMPOSITION OF THE COMPUTATIONAL TIME REQUIRED BY THE BLOCK SAMPLER 

ALGORITHM IS SHOWN. THE LIKELIHOOD COMPUTATION IS THE MAJOR COMPUTATIONAL BOTTLENECK 

AND CONSUMES UP TO 95% OF THE CPU TIME. .............................................................................................................. 63 

FIGURE 3-6. DHDPHMM IMPROVES THE SCALABILITY RELATIVE TO HDPHMM. ............................................................. 64 

FIGURE 3-7. A COMPARISON OF THE LOG-LIKELIHOODS OF THE PROPOSED MODELS TO AN ERGODIC MODEL IS 

SHOWN IN (A), WHILE THE CORRESPONDING MODEL STRUCTURES ARE SHOWN IN (B). ........................................... 65 

FIGURE 3-8. AN AUTOMATICALLY DERIVED MODEL STRUCTURE IS SHOWN FOR A LR DHDPHMM MODEL 

(WITHOUT THE FIRST AND LAST NON-EMITTING STATES) FOR (A) /AA/ WITH 175 EXAMPLES (B) 

/AA/ WITH 2,256 EXAMPLES (C) /SH/ WITH 100 EXAMPLES AND (D) /SH/ WITH 1,317 EXAMPLES. ............... 69 

FIGURE 3-9. THE CONFUSION MATRIX FOR A PHONEME CLASSIFICATION EXPERIMENT IS SHOWN. ................................... 70 

FIGURE 3-10. THE ERROR RATE VS. THE AMOUNT OF TRAINING DATA IS SHOWN FOR LR DHDPHMM AND 

LR HMM. ............................................................................................................................................................................... 72 

FIGURE 3-11. THE NUMBER OF DISCOVERED GAUSSIANS IS SHOWN AS A FUNCTION OF THE AMOUNT OF 

TRAINING DATA. ..................................................................................................................................................................... 73 
FIGURE 4-1. A MARKOV CHAIN THAT REPRESENTS A COMPOSITE HMM IS SHOWN. ........................................................... 80 

FIGURE 4-2. A COMPARISON OF MODEL INITIALIZATION METHODS FOR DHDPHMM IS SHOWN. .................................... 90 

FIGURE 5-1. SEGMENTATION OF UTTERANCE SA1 FROM TIMIT USING AN ADU TRANSDUCER IS SHOWN. 

DISCOVERED UNITS ARE REPRESENTED BY THE HEIGHT OF THE RED RECTANGLE. ................................................. 114 

FIGURE 5-2. A CONFUSION MATRIX THAT SHOWS THE RELATIONSHIP BETWEEN THE DISCOVERED ADUS AND 

THE MANUALLY TRANSCRIBED PHONEMES IS SHOWN. FOR CLARITY ONLY UNITS THAT OCCURRED MORE 

THAN 200 TIMES ARE DISPLAYED. .................................................................................................................................. 115 

FIGURE 5-3. A HISTOGRAM OF THE NUMBER OF WORD TOKENS IN TIMIT IS SHOWN. ..................................................... 123 

FIGURE 5-4. A HISTOGRAM OF THE NUMBER OF WORD TOKENS IN RM IS SHOWN. ........................................................... 126 

 

 

 



 x

 

 

LIST OF TABLES 

TABLE 3-1. A MAPPING FROM 48 PHONEMES TO 39 CLASSES IS SHOWN. THIS IS A STANDARD APPROACH 

USED FOR THE TIMIT CORPUS. .......................................................................................................................................... 67 
TABLE 3-2 A COMPARISON OF ERROR RATES ON TIMIT FOR LR DHDPHMM AND HDPHMM IS SHOWN. 

LR DHDPHMM PRODUCES A 10% REDUCTION IN ERROR RATE AND A 15% REDUCTION IN 

COMPLEXITY. .......................................................................................................................................................................... 67 
TABLE 3-3. A MAPPING OF PHONEMES TO BROAD PHONETIC CLASSES IS SHOWN. ................................................................ 70 

TABLE 3-4. A COMPARISON OF PHONEME CLASSIFICATION ALGORITHMS IS SHOWN. ........................................................... 71 

TABLE 4-1. SUPERVISED TRAINING RESULTS COMPARING DHDPHMM AND HMM ARE SHOWN. ................................... 88 

TABLE 4-2. A COMPARISON OF INITIALIZATION METHODS FOR DHDPHMM AND HMM IS SHOWN. .............................. 90 

TABLE 4-3 A COMPARISON OF SYSTEMS FOR CONTEXT DEPENDENT MODELS IS SHOWN. .................................................... 91 

TABLE 4-4 A SUMMARY OF DHDPHHMM RESULTS IS SHOWN. ............................................................................................. 92 

TABLE 4-5. A COMPRISON OF DHDPHMM WITH OTHER COMMON SYSTEMS IS SHOWN. ................................................... 93 

TABLE 5-1. A COMPARISON OF SEGMENTATION ALGORITHMS IS SHOWN. ........................................................................... 114 

TABLE 5-2. A COMPARISON OF PHONEME CLASSIFICATION ERROR RATES USING ADUS IS SHOWN. ............................... 116 

TABLE 5-3. A COMPARISON OF PHONEME RECOGNITION ERROR RATES ON TIMIT USING ADU STREAMS IS 

SHOWN. ................................................................................................................................................................................ 117 

TABLE 5-4. A COMPARISON OF AN ADU-BASED PHONEME RECOGNIZER TO THE MANUAL PHONEME 

TRANSCRIPTIONS IS SHOWN. YELLOW SHADING INDICATES A RECOGNITION ERROR. ............................................. 117 
TABLE 5-5. A LIST OF QUERY TERMS USED FOR THE STD BY QUERY TASK IS SHOWN. ...................................................... 118 

TABLE 5-6. A COMPARISON OF UNSUPERVISED APPROACHES TO STD BY QUERY IS SHOWN. .......................................... 119 

TABLE 5-7 ERROR PAIRS FOR STD SYSTEM .............................................................................................................................. 120 

TABLE 5-8. THE RESULTS OF CLOSED LOOP TRAINING OF A LEXICON FOR TIMIT ARE SHOWN....................................... 122 

TABLE 5-9. THE RESULTS FOR SEMI-SUPERVISED TRAINING OF A LEXICON ON TIMIT ARE SHOWN. ............................. 123 

TABLE 5-10. RESULTS FOR OPEN-LOOP TRAINING ON TIMIT ARE SHOWN. ....................................................................... 124 

TABLE 5-11. EXAMPLES OF COMMON SUBSTITUTION ERRORS ARE SHOWN FOR OPEN-LOOP EXPERIMENTS ON 

TIMIT. ................................................................................................................................................................................. 125 

TABLE 5-12. RESULTS FOR THE OPEN-LOOPED TRAINED LEXICON ARE SHOWN FOR RM. ............................................... 127 

TABLE 5-13. EXAMPLES OF LEARNED ADU PRONUNCIATIONS ARE SHOWN. ..................................................................... 128 

TABLE 5-14. A COMPARISON OF SEVERAL AUTOMATIC LEXICON DISCOVERY ALGORITHMS IN TERMS OF WER 

IS SHOWN. ............................................................................................................................................................................ 129 
 

 

 

 

 

 

 

 

 

 



 xi 

 

 

 

 

 

 

 

 

 



 1

CHAPTER 1 

INTRODUCTION 

 
Over the past few decades, speech recognition research, much like other pattern recognition 

applications, has been focused on developing new statistical models and better machine learning 

algorithms to estimate the parameters of these models (Rabiner, 1989; Jelinek, 1997; Huang et al., 

2001; Hinton, et al., 2012). Some of the most successful statistical modeling approaches from this 

era include hidden Markov models (HMMs), neural networks and more recently deep learning 

based neural networks. Parameter estimation algorithms for HMMs are often based on the 

Expectation Maximization (EM) Theorem (Dempster et al., 1977) using the computationally 

efficient Baum-Welch (BW) algorithm (Baum & Petrie, 1966), or the extended Baum-Welch 

(EBW) algorithm (McLachlan & Thriyambakam, 2008). However, during the past few years, 

despite of the availability of vast computational power and large amounts of data, the 

improvement of the performance of the state of the art systems has been at best marginal, and the 

ability of these systems to process previously unseen data, such as data recorded from new 

acoustic channels, is limited. This latter problem is related to the generalization problem (Bishop, 

2007) and is a major long-term goal of this research. In this dissertation, we will explore 

nonparametric Bayesian solutions to address some of these limitations. 

Generally, determining model complexity, which is an important part of the generalization 

problem, is difficult. An oversimplified model cannot describe the data and a very complex model 

is prone to overfitting. Model selection techniques usually need a huge amount of data and are 

computationally expensive (Bishop, 2007). Any selection methodology needs a criterion for 
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selecting a preferred model. There is not a widely accepted universal selection criterion 

(Ghahramani, 2010). Hence, this process is application specific and involves searching through a 

discrete space (e.g., a combinational search over models). The final result is also sensitive to the 

criterion used to guide the search. 

Nonparametric Bayesian methods provide a mathematically elegant framework that allows 

inference of model structure and complexity without diluting the purity of modes or clusters 

(Sudderth, 2006). Figure 1-1 shows an example application of nonparametric Bayesian modeling 

to the problem of clustering. The complexity of the model in this case is proportional to the 

number of clusters. In a fully Bayesian framework, hyperparameters (i.e. parameters that control 

the complexity of the model) along with the model parameters can be learned automatically from 

the data. In other words, the data speaks for itself. Unlike in a model selection problem, the 

optimization of the model parameters is a continuous optimization problem and hence is more 

tractable. The number of clusters in this example varies with the amount of data and is optimized 

as part of the training process. A data-driven approach to infer the complexity of the model is 

extremely valuable in many pattern recognition applications.  

 
Figure 1-1. An example that shows the growth in model complexity as more data 

becomes available. 
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In speech recognition, selection of an appropriate model complexity and the optimal 

hyperparameters are among the most difficult and time-consuming parts of the training process. 

The selection process also has a direct impact on the performance of the system. A typical state of 

the art speech recognition system, which is composed of a collection of many simple HMMs, has 

a large number of degrees of freedom. Model complexity in this case is proportional to the 

complexity of the individual HMMs that compose the system. These HMMs consist of a 

topology, transition probability matrix, and an emission distribution model that typically uses a 

large number of Gaussian mixture models. Such systems have tens of thousands of these HMMs 

and often tens of millions of parameters must be estimated using a complicated bootstrapping 

process. It is difficult to guarantee good generalization with such complex systems. Therefore, a 

technology that optimizes model complexity as part of the training process is important.  

 In this chapter, we first review the problem of acoustic modeling in speech recognition and 

then review some known applications of nonparametric Bayesian modeling in speech recognition. 

Finally the outline of the dissertation will be presented and our contributions will be summarized. 

 Acoustic Modeling 

The ultimate goal of speech recognition is to map the acoustic observations into word 

sequences. This problem can be formulated as (Bahl et al., 1983): 

( | ) ( )
( | ) .

( )

P A W P W
P W A

P A
=   (1.1) 

In this formulation, P(W|A) is the probability of a particular word sequence given the acoustic 

observations. The goal is to find a sequence of words, W, that maximizes this probability. P(W) is 

referred to as the language model since it provides the prior probability of words. P(A) is the 

probability of the observed acoustic data and usually can be ignored. P(A|W) is referred to as the 

acoustic model. Therefore, we can divide the speech recognition problem into two separate sub-
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problems, namely language modeling and acoustic modeling, and solve each one independently. 

Our focus in this research is on the acoustic modeling problem. 

Figure 1-2 shows a modular architecture for a typical speech recognizer based on (1.1). Input 

speech, which is a sampled data signal, is first converted into a representation that consists of D-

dimensional vectors computed typically every 10 ms. This sequence of vectors is referred to as 

acoustic features. One of the most popular algorithms for performing this conversion uses Mel 

Frequency Cepstral Coefficients (MFCC) (Davis and Mermelstein, 1980). All experiments in this 

dissertation use the MFCC representation. The next step is to evaluate the likelihood that these 

feature vectors were generated by each acoustic model available in the system. This is a process 

we refer to as acoustic decoding. These acoustic models must be defined and trained before they 

can be used. The development of these acoustic models is the main topic of this dissertation. 

Finally we combine these likelihoods, referred to as the acoustic evidence, with an independently 

 

Figure 1-2. A modular architecture for a speech recognition system is shown. 
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trained language model to produce the most likely word sequence. This latter problem is referred 

to as the language modeling problem and is not addressed in this dissertation. 

In early speech recognition systems (Furui, 1986), each word was modeled separately using a 

template matching approach based on dynamic time warping (DTW). This approach worked well 

for small vocabulary and isolated word speech recognition tasks. However, it is not scalable to 

large vocabulary continuous speech recognition problems. Since the number of words in a typical 

language is very large (and increases over time), modeling all words independently is not 

feasible. An alternative approach is to decompose words into a finite set of units common to all 

possible words, referred to as acoustic units. Different types of acoustic units such as phonemes 

(Lee, 1989), syllables (Ganapathiraju et al., 2001) and acoustically inspired units (Paliwal, 1990) 

have been explored over the years. Phonemes are the most popular units since they achieve good 

performance and have a direct connection to the linguistic properties of a language. Most 

successful commercial systems are based on phonetic units. 

After selecting the type of the unit, a lexicon is needed that maps words into these units. The 

lexicon is a critical module of speech recognition system and is often one of the most costly 

resources to construct for a new language or application. Joint optimization of the lexicon and the 

acoustic units is one of several challenging problems in achieving high performance speech 

recognition. For example, if we want to introduce a new set of acoustic units, we must define or 

modify the lexicon to incorporate these units. In Chapter 5 of this dissertation we discuss the 

problem of automatically learning the acoustic units and lexicon from acoustic observations. 

We also need to select a statistical model to be used as a model for each acoustic unit. Given 

a set of trained models and some new observations, we test all the models against the 

observations and select the model with the highest score (e.g. likelihood). The most popular 

models used in state of the art systems are left-to-right HMMs (Levinson et al., 1983; Picone, 

1990) with mixtures of Gaussians emission distributions (Rabiner, 1989). An HMM is a 

generalization of a mixture model where latent variables are not independent of each other and 
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are related by a Markov chain. This makes them particularly attractive for modeling sequential 

observations. Most systems use a simple HMM with some predetermined number of states (e.g., 

3) for all units (Huang et al., 2001). Each state will use a predetermined number of mixture 

components, often ranging from 16 to 128 depending on the application. 

State of the art speech recognizers usually use some form of context-dependent units instead 

of simple context-independent units (Schwartz et al., 1985). For example, phoneme-based 

systems usually have between 39-60 context independent (CI) phonemes (Huang et al., 2001). In 

order to improve the quality of models, we can incorporate the left and right context and define 

context dependent (CD) units (e.g. triphones). However, the number of units grows exponentially 

with an increase in the depth of the context. For example, number of possible triphones for a 

system with 42 phonemes are 42x42x42 = 74,088. In any practical situation, many models will 

never have any observations associated with them and many will have just a few examples. This 

means the process of training CD models poses a serious data sparsity problem. The resulting 

system will perform worse than a CI system for a moderate or even a relatively large amount of 

training data. 

The estimated parameters will have large variances, and sophisticated parameter sharing 

techniques must be employed (Young & Woodland, 1994). The most successful approach to tie 

states is based on a phonetic decision tree that is implemented as a binary tree with phonetic 

questions attached to its nodes. The tying is performed between corresponding states of all 

triphones with the same central phoneme. 

Therefore a general algorithm to train acoustic models in a contemporary automatic speech 

recognition (ASR) system is as follow: 

1. Data Preparation: We begin with speech data that consists of the sampled data and the 

corresponding word transcriptions. We do not require time alignments of the words to the 

sampled data (e.g., the start and stop time of each word). We will refer to these as word-

level transcriptions. We convert the sampled data into an appropriate feature 
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representation (e.g., MFCC). We also need a lexicon that contains all possible words and 

their corresponding sub-word decompositions (e.g. phonemes). 

2. CI Training: We train CI phonetic models, often referred to as monophone models, 

using the transcribed data and the EM algorithm. This step is usually performed using the 

self-organizing property of an HMM. We let the HMM segment data into different 

models and states as part of the training process. 

3. CD Training: After training good monophone models, the next step is to clone 

monophones into CD models, referred to as triphones, by simply copying the emission 

distributions and transition matrix for all triphones with the same central phoneme. These 

cloned models are then trained using EM. 

4. State Tying: The next step is to tie states to account for models that are underutilized and 

train the resulting tied models using several more iterations of EM. 

5. Mixture Splitting: After training a model with one mixture component per state we 

increase the number of components per state by using an iterative splitting algorithm 

(Young et al., 2006). We retrain the models using several iterations of EM until we reach 

the desired trade-off between complexity and recognition accuracy.  

This training procedure can be viewed as a semi-supervised approach to training acoustic 

models. The term semi-supervised refers to the fact that we use word-level transcriptions of the 

data but no time alignments between the words and corresponding feature vectors. Note also that 

transcription of the data in terms of phonemes, which here represent the acoustic units, are NOT 

required. This is an important practical consideration when training on large amounts of data. It 

greatly reduces the cost of developing training data for these systems. 

In the following chapters, we will address three specific problems related to the processes 

above: 
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• Modeling sub-word units; 

• Semi-supervised training algorithms for sub-word units; 

• Data-driven discovery of the sub-word units and the lexicon. 

Our goals are to reduce complexity and ultimately the time required to create a high performance 

system for a new application or language through the use of data-driven techniques based on 

nonparametric Bayesian models. 

 Nonparametric Bayesian Approaches in Speech Recognition 

Nonparametric Bayesian models have been previously used in language modeling (Teh, 

2006; Wood & Teh, 2009). Language modeling involves estimation of discrete probability 

distributions that model conditional probabilities of word sequences. Teh (2006) showed that 

incorporating a hierarchical Pitman-Yor process as a prior performs better than the interpolated 

Kneser-Ney smoothing algorithm and can approach the performance of the state of the art 

modified Kneser-Ney algorithm (Kneser & Ney, 1995). More importantly, it has been shown that 

the Kneser-Ney smoothing algorithm can be derived from an approximation of the inference 

algorithm for this model (Teh, 2006). A Pitman-Yor process is a generalization of a Dirichlet 

process and can model power-law distributions. This is relevant to language modeling because it 

has been shown experimentally that word frequencies in human language follow a power-law 

distribution (Pitman & Yor, 1997). 

Nonparametric Bayesian approaches have been used previously in some acoustic modeling 

related applications as well. For example, Fox et al. (2011) have used a nonparametric Bayesian 

HMM in a speaker diarization problem where each meeting was modeled as a nonparametric 

Bayesian HMM. Each meeting was segmented into speaker homogenous regions. Results were 

competitive with the state of the art (Wooters & Huijbregts, 2007). This system was known as a 

hierarchical Dirichlet process hidden Markov model (HDPHMM). 
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Lee (2014) has proposed a nonparametric Bayesian model for acoustic unit discovery. This 

model was applied to a variety of problems in cognitive science (e.g., one-shot learning of spoken 

words and hierarchical linguistic structure discovery) and speech recognition (e.g., automatic 

learning of acoustic units and lexicon). We have compared some of our results in Chapter 5 to 

Lee’s work on speech recognition. 

In our preliminary research, we have studied the application of a Dirichlet Process Mixture 

(DPM) model to the speaker adaption problem (Harati et al., 2012). In that study, we showed that 

DPM can successfully replace the regression tree in a Maximum Likelihood Linear Regression 

(MLLR) model. Figure 1-3 compares the word error rate (WER) obtained for a speech recognizer 

with speaker adaption using monophone models for both DPM and a regression tree based MLLR 

algorithm. DPM improves performance over MLLR by 10%.  

More interestingly, clusters generated by DPM had acoustically and phonetically meaningful 

interpretations – the resulting clusters resemble broad phonetic classes. For example, distributions 

related to phonemes “w” and “r”, which both belong to a broad phonetic class known as liquids 

 
Figure 1-3. DPM-based clustering produced a 10% improvement over a standard 

regression tree approach for an MLLR speaker adaptation task. 
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(Ladefoged & Johnson, 1993), were assigned to the same cluster. Also, the DPM-based model 

finds seven clusters, which is on the order of the number of broad phonetic classes used to 

describe English (Ladefoged & Johnson, 1993). The MLLR approach based on regression trees 

found 20 clusters. The nonparametric Bayesian algorithm found a solution with lower complexity 

and better performance. 

This study was one of the motivations for this dissertation because it demonstrated that the 

nonparametric Bayesian framework could reduce complexity and yet preserve meaningful 

modalities in the data, making it a promising approach for acoustic modeling in speech 

recognition.  

 Dissertation Organization  

Chapter 2: Nonparametric Bayesian Basics 

In Chapter 2, a brief introduction to the nonparametric Bayesian framework will be presented. 

Nonparametric Bayesian modeling consists of a fairly vast family of models and distributions that 

parallels most of the well-known parametric models. However, in this chapter we limit our 

introduction to DPM, HDP and HDPHMM. 

Chapter 3: Nonparametric Bayesian Approaches For Acoustic Modeling of Sub-Word Units 

In this chapter, we discuss the limitations of HDPHMM for the problem of acoustic modeling 

of sub-word units. We introduce a new model that is the central contribution to this dissertation. 

This model, named a Doubly Hierarchical Dirichlet Process Hidden Markov Model 

(DHDPHMM), shares mixture components across all states. We will show this model works 

better than HDPHMM for problems similar to sub-word modeling and has the benefits of better 

accuracy and less computational complexity.  

In this chapter, we also introduce necessary extensions for learning non-ergodic structures 

(e.g. left to right) and learning non-emitting states. These structures are required for acoustic 
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modeling in speech recognition. HDPHMM is limited to only learning ergodic structure. Non-

emitting states are also usually needed when modeling finite sequences. We introduce two 

different generative DHDPHMMs that incorporate these additional properties. Finally, an 

inference algorithm based on a block-sampler algorithm introduced by Fox et al. (2011) is 

presented.  

Chapter 4: Semi-Supervised Training of DHDPHMM 

In Chapter 3, we introduced a DHDPHMM and its corresponding inference algorithm. 

However, DHDPHMM does not address the problem of semi-supervised learning which is 

critical to the way we train speech recognizers. In Chapter 4, we introduce another generative 

model and its approximation to solve this problem. Moreover, the context modeling problem is 

discussed and two approaches to address this problem are presented.  

Chapter5: Acoustic Unit And Lexicon Discovery 

Acoustic unit discovery is a critical issue in many speech recognition applications where 

there are limited linguistic resources or where limited training data is available for the target 

language. Further, one can argue that phonemes are artificial units and are not often ideal to 

model the complexity of what we observe in the acoustic data. In Chapter 5, we study the 

possibility of using HDPHMM/DHDPHMM based transducers for problems of speaker 

independent segmentation and acoustic unit learning. 

The segmentation problem is studied for a speaker diarization task (Fox et al., 2011) and for 

acoustic unit segmentation (Harati et al., 2013) previously. We explore the segmentation 

properties of HDPHMM and then investigate the validity of the discovered units through 

extensive experimentation. We show that the discovered units are related to English phonemes. 

We also investigate the validity of the discovered units through a completely unsupervised 

spoken term detection (STD) task. We provide an algorithm to automatically discover a lexicon 

given only acoustic data and word-level transcriptions. We compare a speech recognizer trained 
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using the discovered lexicon and acoustic units to a speech recognizer trained using traditional 

linguistic resources. 

Chapter 6: Conclusion 

In this final chapter we summarize the dissertation results and our contributions. We will also 

provide some comments on possible directions for future research on these topics. 

 Dissertation Contributions 

The contributions of this dissertation are: 

• Defined a new nonparametric HMM, DHDPHMM, that enables sharing of mixture 

components across states; 

• Derived an inference algorithm for DHDPHMM; 

• Developed a model to learn non-ergodic DHDPHMM/HDPHMM structures; 

• Extended DHDPHMM to include non-emitting states; 

• Defined a generative model for semi-supervised training; 

• Derived an approximate algorithm based on this model to train DHDPHMM models 

in semi-supervised settings; 

• Applied HDPHMM/DHDPHMM to automatic discovery of speaker independent 

acoustic units which we call automatically discovered units (ADU);  

• Developed an unsupervised approach for a spoken term detection (STD) task based 

on the ADU algorithm; 

• Developed a semi-supervised automatic algorithm to learn a lexicon based on an 

ADU transducer. 

The broader impact of these contributions is to introduce the nonparametric Bayesian 

methods to the acoustic modeling problem. We have shown that our proposed model, 

DHDPHMM, and its semi-supervised counterpart can compete with the state of the art 
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algorithms. For example, DHDPHMM works better than discriminatively trained models on 

certain tasks while trained only using maximum likelihood (ML). We have also shown some of 

the most difficult problems in speech recognition, such as discovering acoustic units and lexicons, 

can be approached based on models introduced in this dissertation. 

It should be noted that the improvements we demonstrate in this initial research exceeded 

what was demonstrated initially for the applications of neural networks (Bourlard and Morgan, 

1993) in acoustic modeling and is comparable to the initial performance of deep learning-based 

neural networks (Mohamed et al., 2009; Yu & Deng, 2010). Yet, this approach is much simpler 

than deep learning and results in less complex models. Therefore, we hope this research motivates 

others to continue investigating applications of nonparametric Bayesian methods in acoustic 

modeling and other pattern recognition applications. 
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CHAPTER 2 

NONPARAMETRIC BAYESIAN BASICS 

Parametric approaches have been used in machine learning and pattern recognition 

applications since the mid-1900’s. The phrase “parametric” was coined by statistician Jacob 

Wolfowitz (1942):  

Most of these developments have this feature in common, that the distribution 

functions of the various stochastic variables which enter into their problems are 

assumed to be of known functional form, and the theories of estimation and of 

testing hypotheses are theories of estimation of and of testing hypotheses about, 

one or more parameters ..., the knowledge of which would completely determine 

the various distribution functions involved. We shall refer to this situation ... as 

the parametric case, and denote the opposite case, where the functional forms of 

the distributions are unknown, as the non-parametric case (Wolfowitz, 1942). 

These approaches provide reasonable performance with a fixed amount of complexity 

(Gelman et al., 2004). For some time, it was generally believed that such models could be 

arbitrarily improved through the use of larger datasets (Bacchiani et al., 2008; Ma & Schwartz, 

2008). However, performance gains have leveled off for a variety of reasons, including the 

complex recording conditions embodied in these massive datasets. Using more data to train 

models improves the estimation of individual parameters but it usually does not translate to 

overall better performance since the model itself is fixed. Nonparametric non-Bayesian 

approaches have been also used (e.g. decision trees) but it has been shown (Breiman et al., 1984; 

Bramer, 2007) that they are prone to overfitting of the training data. It is difficult to control the 

complexity of these models in a rigorous manner. A number of ad hoc algorithms (e.g. pruning in 

decision trees) have been used instead (Bramer, 2007).  
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Nonparametric Bayesian approaches make it possible to learn the model structure (and the 

degree of the complexity) from the data without the risk of overfitting the model to the 

observations by biasing the model toward simpler structures. Like all Bayesian approaches, 

nonparametric Bayesian approaches use Bayes rule to combine the prior distributions with the 

observations (e.g. likelihoods) to estimate the posterior distribution for the models. This posterior 

implicitly contains the structure we have learned from the data. Depending on how we define the 

prior distribution we can define an unlimited number of nonparametric Bayesian models. In this 

dissertation we are interested in a very specific type of prior based on the Dirichlet process, and 

therefore we restrict our discussion to this form of prior. 

Mixture models are a very popular basic building block in many machine learning 

applications and provide a framework for generating arbitrarily complex models with good 

convergence properties. For example, mixture models are used extensively in HMMs. A Dirichlet 

distribution is a parametric prior used frequently in Bayesian approaches involving mixture 

models. In this chapter we will review the Dirichlet distribution and its application in Bayesian 

modeling, including the use of mixture distributions. We then will introduce a nonparametric 

counterpart in which we replace the Dirichlet distribution with a Dirichlet Process (DP). Dirichlet 

processes were among the first priors used in nonparametric Bayesian modeling (Teh, 2010). 

Beside their applications in mixture modeling problems they also have been used as a building 

block for many other nonparametric models including the Hierarchical Dirichlet Process (HDP) 

(Teh & Jordan, 2006) and the infinite HMM (iHMM) (Beal, 2002). The latter is also known as an 

HDPHMM (Teh et al., 2006; Fox et al., 2011). These DP-based models form the basis for the 

work presented in this dissertation. 
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 The Dirichlet Distribution  

Consider a random variable x over a finite K-dimensional space X={1,2,…,K}. The 

probability mass function in this space can be represented by a K-dimensional vector 

( )1 2, ,..., Kπ π π π=  where 0 1
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multinomial distribution that is defined as: 
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Equation (2.1) can be used to calculate the probability of selecting a category or class among K 

possible classes. In this definition mk is the number of observations of category k. Given N 

observations, π can be estimated using a maximum likelihood (ML) approach (Sudderth, 2006). 

ML is a point estimate which means it does not estimate the posterior distribution, but rather it 

estimates an important point (e.g. mean) of this distribution. 

In the case of a multinomial distribution, the results are empirical frequencies of discrete 

categories. For example, for a specific observation, the probability of each category can be 

calculated by dividing the number of samples in that category by the total number of samples:  
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However, if the number of data points is not large enough, ML estimation of π will have a high 

variance (e.g. the estimated value varies around the real value by a large amount) and some 

categories may even have a zero probability. Estimating zero probability for an event means we 

believe that event will never happen. In practice many events of interests are rare but have a 

nonzero probability of occurrence. Estimating a zero probability for the event is generally a bad 

idea. Over the years, particularly with language modeling, smoothing of these distributions has 

proven to be a better alternative (Zhai & Lafferty, 2004; Jelinek & Mercer, 1980). 
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An example of this problem is N-gram modeling of phonemes. For instance, consider the 

problem of finding the probability of 3-grams of phonemes occurring in English. Given a finite 

amount of text, many 3-grams will never be observed. If we model the problem using a 

multinomial distribution and use an ML approach to estimate the occurrence probabilities, the 

result will contain many zeroes or unrealistically small numbers. The estimated value for the 

probability of each 3-gram will be a point estimate, in this case the mean, of the underlying 

distribution for these parameters.  

An alternative approach is to infer π using a Bayesian approach (Gelman et al., 2004). We 

should define a prior on π in such a way that a posterior inferred by multiplying the prior and 

likelihoods remain in the same family of distributions. In Bayesian statistics, this particular 

property is named conjugacy (Gelman et al., 2004) and the prior is called a conjugate prior for the 

likelihood. 

 For example, the conjugate prior for the Gaussian distribution with known covariance is 

itself a Gaussian distribution. Consider N Gaussian observations x1,x2,…,xN. Suppose the 

covariance matrix Σ is known. We can place a normal prior over the mean with mean µ0
 
and 

covariance Σ0. This prior is indicated with Norm(µ0,Σ0). After observing N data points the 

posterior over the mean is found using Bayes Rule and given by: 
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In the case of a multinomial distribution, the conjugate distribution is a Dirichlet distribution 

(Teh, 2010):  
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In this definition Γ is the gamma function and defined by: 
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A Gamma function is an extension of a factorial function to real and complex numbers (Milton 

et al., 1974). The concentration parameter, α, in (2.4) is proportional to the inverse of the 

variance (Teh, 2010). 

Figure 2-1 shows a Dirichlet distribution for several values of α. The distribution depicted in 

this figure has three dimensions but since the sum of three probabilities is constrained to be one, 

we can visualize the distribution using only two dimensions. As Figure 2-1 shows, a larger value 

for α means the distribution has a higher concentration around the mean. In this particular 

example, α = (1,1,1) is equivalent to a uniform distribution. We can also see (2.4) places a 

probability distribution over π which itself is a probability distribution. 

A Dirichlet distribution, like all other discrete distributions, can be represented by two sets of 

parameters: locations of the impulse functions and their corresponding weights. The impulse 

functions are often referred to as “atoms”. For example, in a binomial distribution, there are 

exactly 2 atoms, x = 0 and x = 1, and two corresponding weights, P(x=0) and P(x=1). We can 

have an infinite number of atoms for a Dirichlet distribution. 

The mean of Dirichlet distribution is given by:  
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If the parameter α is set symmetrically (e.g. set to equal values for all K dimensions): 
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and the variance of the distribution is given by (Gelman et al., 2004): 
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Equation (2.8) clearly shows that the variance of the Dirichlet distribution is inversely 

proportional to the concentration parameter α. This is demonstrated in Figure 2-1. Therefore, a 

Dirichlet distribution with a small concentration parameter (but greater than one) means a weak 

prior belief while large values of α means high confidence. Values less than one means we 

believe in extremes of the distribution (e.g. the distribution peaks around the corners). 

Given some data we can obtain a posterior distribution for π using Bayes rule (by multiplying 

the prior and likelihood): 
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By substituting from (2.1) and (2.4) we can write: 
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Equation (2.10) unlike (2.2) gives a distribution over π. The parameters of this distribution are 

learned from the observed data. However the learning process is influenced by the prior 

 
Figure 2-1. Dirichlet distributions are shown with different concentration parameters. A 

higher value of concentration parameter means the distribution has a higher 

concentration around the mean. 



 21

assumptions and the amount of data. When the amount of training data is small, we rely on the 

priors. As the amount of training data increases, the influence of the prior diminishes. 

From (2.10) we can see αk acts as a pseudo observation. A pseudo observation is a term used 

to weight our belief in the prior knowledge. It should be noted that when placing a symmetric 

concentration parameter on the prior we are in fact expressing belief in the equal probability of all 

outcomes. Mathematically pseudo observations act as actual observations though they are not 

really observed. Hence, we refer to them as a pseudo observations. The total number of pseudo 

observations, α0, is equal to the sum of αk: 

0  .kk
α α=∑   (2.11) 

By considering this fact and (2.8) we can see the variance of the estimate decreases by 

increasing the number of pseudo observations. This reduction in variance comes with the cost of 

increasing the bias. In statistical modeling, we usually must trade off variance and bias. 

Obviously, we prefer an estimator with zero bias and variance (Bishop, 2007), but it is often 

impossible to achieve this in practice. In the case of the Bayesian estimator in (2.10) the bias of 

the estimator asymptotically decreases as more data becomes available, thereby making the 

estimator asymptotically unbiased, or as it is often described, consistent. 

 The predictive distribution for a new observation, which is the distribution of unseen data 

given observed data and priors, can be written using (2.1) and (2.10): 
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An example of the above discussion can be seen in language modeling for document 

retrieval. A language model assigns a probability to a document. One simple unigram language 

model is a multinomial language model (e.g. bag of words). If we define the language model for a 

document (D) as πD, then for a sequence of independent terms we can write: 
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In this equation each ( )|
i D

p T π
 
is a multinomial distribution. 

Now consider a search engine application where we have some number of documents and a 

goal of finding the most relevant documents given a query. For each document D, we have to 

compute (2.13). To compute this probability, we have to compute πD
 
for all terms in the query. If 

we use the maximum likelihood solution in (2.2), we might get a zero probability for a document 

if one of the terms does not exist in the document. Obviously, it is not an acceptable solution for a 

search engine application. On the other hand, estimating πD using a Dirichlet distribution as 

shown in (2.10) will solve this problem since it always gives a nonzero probability even if some 

of the terms are not presented in a document. 

One of the main applications of Dirichlet distribution is in mixture modeling. Any convex 

combination of distribution functions that follow 
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can be considered a mixture distribution. In a Bayesian setting, π is a draw from a Dirichlet 

distribution:  

1| ~ ( ,..., ) .kK Dirπ α α   (2.15) 

Then a generative mixture model can be defined as: 
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In this definition zi is an indicator variable that shows the mixture component. G0 is a continuous 

function from which the parameters of density function are sampled. For example, if density 

functions are assumed to be Gaussian and we restrict ourselves to conjugate priors, G0 would be a 

Normal-Inverse-Wishart (NIW) distribution.  
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 Dirichlet Process  

A Dirichlet process (DP) is the generalization of Dirichlet distribution to an infinite number 

of atoms. DP is a distribution over distributions, or more precisely over discrete distributions. 

Formally, a Dirichlet process, DP(α,G0), is “defined to be the distribution of a random probability 

measure G over Θ such that for any finite measurable partition (A1,A2,…,Ar) of Θ the random 

distribution [G(A1),…,G(Ar)] is distributed as finite dimensional Dirichlet distribution” (Teh et al., 

2006): 

( ) ( ) ( ) ( )( )1 0 1 0,..., ~ ,...,  .r rG A G A Dir G A G Aα α    (2.17) 

In this definition α is the concentration parameter and is proportional to the inverse of the 

variance. G0 is the base distribution and is equal to the mean of the DP 

(e.g. ( )( ) ( )0
E G A G A= ). 

A constructive definition for a Dirichlet process, given by Sethuraman (1994), is known as 

the Griffiths, Engen and McCloskey (GEM) construction, or the stick-breaking construction. This 

construction explicitly shows that samples from a DP are discrete with probability one: 
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Starting with a stick of length one, we break it at ʋ1 and assign the length to β1. Then we 

recursively break the remaining part of the stick and assign the corresponding lengths to βk. In 

this representation β can be interpreted as a random probability measure over positive integers 

and is denoted by β ~ GEM(α).  

Another representation of a DP is the Polya urn process (Teh et al., 2006). In this approach, 

we consider i.i.d. samples from a DP and consider the predictive distribution over these draws: 
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In the urn interpretation of (2.19), we have an urn containing several balls of different colors. We 

draw a ball and put it back in the urn and add another ball of the same color to the urn. With 

probability proportional to α we draw a ball with a new color. 

To make the clustering property more clear, we should introduce a new set of variables that 

represent distinct values of the atoms (e.g. observed balls). Let 
* *

1
,...,

K
θ θ  be the distinct values and 

mk 
be the number of l

θ associated with
*

k
θ . We now have:  
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Another useful interpretation of (2.20) is the Chinese restaurant process (CRP). In a CRP we 

have a Chinese restaurant with infinite number of tables. A new customer comes into the 

restaurant and can either sit at one of the occupied tables with probability proportional to the 

number of people already sitting there (mk) or initiate a new table with probability proportional to 

α. In this analogy, each customer is a data point and each table is a cluster. Let zi indicate the 

cluster associated with ith observation. A CRP is the interpretation of the predictive distribution: 
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New customers, represented by zN+1, tend to sit around crowded tables and eat the food served 

on that table with probabilities proportional to the number of people at that table, represented by 

mk. The model tends to discover large clusters. However, sometimes with probability proportional 

to α, a customer sits at a new table (shown with k ). The model allows this new modality, or 

cluster, to be formed without readjusting the other existing clusters that presumably reflect valid 

modalities in the data. The CRP analogy demonstrates how data can be generated in a Dirichlet 

Process Mixture (DPM) model.  

As an illustrative example, consider the problem of automatic acoustic unit discovery. Given 

a set of segments, the goal is to cluster the segments into a set of units that are collections of these 
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segments. However, the number of units is not known a priori. If we think of each “segment” as a 

customer then we see CRP acts as a prior distribution over the units. 

A Dirichlet Process Mixture is defined as: 
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In this model, observations, xi, are sampled from an indexed family of distributions denoted by F. 

If F is assumed to be Gaussian then the result is an infinite Gaussian mixture model. 

Figure 2-2 show a graphical model for DPM. It should be noted that a CRP induces priors 

that prefer simpler models (e.g. a small number of tables with a large number of customers per 

table) which means number of discovered units would be much smaller than the number of 

observed segments.  

 Hierarchical Dirichlet Process 

A Hierarchical Dirichlet Process (HDP) is the natural extension of a Dirichlet process to 

problems with multiple groups of data. Usually, data is split into J groups a priori. For example, 

consider a collection of documents. If words are considered as data points, each document would 

be a group. We want to model data inside a group using a mixture model. However, we are also 

 
Figure 2-2. A graphical model for Dirichlet mixture model is shown. 
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interested in tying these mixtures together, i.e. to share clusters across all groups. Let’s assume 

that we have an indexed collection of DPs with a common base distribution {Gj}~DP(α,G0). 

Unfortunately this simple model cannot solve the problem since for continuous G0 different Gj 

have no atoms in common. Samples from a continuous function are distinct with probability one. 

The solution is to use a discrete G0 with infinite (broad) support. One such choice is to draw 

G0 from a Dirichlet process. An HDP is defined by (Teh & Jordan, 2006):  

( )

0

0 0

| , ~ ( , )

| , ~ ( , )

| ~

| ~ for .

j

ji j j

ji ji ji

G H DP H

G G DP G

G G

x F j J

γ γ

α α

θ

θ θ ∈

  (2.23) 

In this definition H represents a prior distribution for the factor θji. The parameter γ governs the 

variability of G0 around H and α controls the variability of Gj around G0. H, γ and α are 

hyperparameters of the HDP. Equation (2.23) is just one of several possible representations of an 

HDP (Teh & Jordan, 2006). 

Another representation can be obtained by introducing an indicator variable, β: 

{ } ( )1

| ~ ( )

| , ~ ( , )

| , ~ ( )

| ~

| , ~ .

j

k

ji j j

ji k ji jik

GEM

DP

H H

z

x z F

β γ γ

π α β α β

θ λ λ

π π

θ θ
∞

=

  (2.24) 

Both of these representations are depicted in Figure 2-3. Similar to DP, HDP also has a stick-

breaking construction that can be used to obtain an inference algorithm. This is discussed next.  

2.3.1 Stick-Breaking Construction 

Because G0 is a Dirichlet distribution, it has a stick-breaking representation: 

**0

1

,
k

k

k

G
θ

β δ
∞

=

=∑   (2.25) 
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where 
**

~k Hθ  and ( ) ( )
1

~k k
GEMβ β γ

∞

=
= . Since support of Gj is contained within the support 

of G0, we can write a similar equation to (2.25) for Gj: 

**

1

.
k

j jk

k

G
θ

π δ
∞

=

=∑   (2.26) 

Then we have: 

( )~ ,j DPπ α β   (2.27) 

( )

1

1

1

~ , 1

1 , for 1,..., .

k

jk k l

l

k

jk jk jl

l

v Beta

v v k

αβ α β

π

=

−

=

  
−   

  

= − = ∞

∑

∏

  (2.28) 

The Chinese restaurant franchise (CRF) is the natural extension of Chinese restaurant process 

for HDPs. In a CRF, we have a franchise with several restaurants and a franchise-wide menu. The 

first customer in restaurant j sits at one of the tables and orders an item from the menu. Other 

customers either sit at one of the occupied tables and eat the food served at that table or sit at a 

 
Figure 2-3. An HDP representation of (2.23) is shown in (a). An alternative indicator 

variable representation from (2.24) is shown in (b) (adapted from Teh et al., 2004). 
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new table and order their own food from the menu. Moreover, the probability of sitting at a table 

is proportional to the number of customers already seated at that table. In this analogy, restaurants 

correspond to groups. Customer i in restaurant j corresponds to θjt (customers are distributed 

according to Gj). Tables are i.i.d. variables 
*
jtθ  distributed according to G0. Finally, foods are i.i.d. 

variables represented by 
**
kθ , and distributed according to H. If customer i at restaurant j sits at 

table tji, and that table serves dish kji, we have 
* **

ji t ji
ji jt kθ θ θ= = . Each restaurant represents a 

simple DP and therefore a cluster over data points. At the franchise level we have another DP, but 

this time clustering is over tables. 

Next, we can introduce several variables that will be used throughout this thesis: njkt is the 

number of customers in restaurant j, seated around table t, and who eat dish k; mjk is the number 

of tables in restaurant j serving dish k and K is the number of unique dishes served in the entire 

franchise. Marginal counts are denoted with dots. 

A CRF can be characterized by its state, which consists of dish labels { }** **

1,...,
k

k K
θ

=
=θθθθ , tables 

{ } 1,...,
1,...,

j Jji
i n

t =
= iii

 and dishes { } 1,....,
1,...,

jijt j J
i n

k
=
= iii

. As a function of the state of the CRF, we also have the 

number of customers, { }jtkn=n , the number of tables, { }jkm=m , customer labels { }jiθ=θ
 
and 

table labels { }*
jtθ=∗∗∗∗θθθθ  (Teh & Jordan, 2010). The posterior distribution of G0 is given by: 

**
1

0 | , , ~ ,  ,k

K

kk
H m

G H DP m
m

θ
γ δ

γ γ
γ

=

 +
 +
 + 
 

∑∗∗∗∗θθθθ
i

ii

ii

 (2.29) 

where mii  is the total number of tables in the franchise and kmi  is the total number of tables 

serving dish k. We can define the posterior for Gj: 

**0 1

0| , , ~ , ,k

K

j kk

j j

j

G n
G G DP n

n

θ
α δ

α α
α

=

 +
 +
 + 
 

∑
jθ

i

ii

ii

 (2.30) 
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where jn ii  is the total number of customers in restaurant j and j kn i  is the total number of 

customers in restaurant j eating dish k. 

 Conditional distributions can be obtained by integrating out Gj and G0 respectively. By 

integrating out Gj from (2.30) we obtain: 

.

*1 , 1 0 0

1

| ,..., , , ~ ,
j

jt

m

jt

ji j j i

j jt

n
G G

n nθ

α
θ θ θ α δ

α α−

=

+
+ +

∑ i

ii ii

 (2.31) 

and by integrating out G0 from (2.29) we obtain: 

**

* * *
1 , 1

1

| ,..., , , ~  .
k

K
k

jt j j t

kk

m
H H

m mθ

γ
θ θ θ γ δ

γ γ
−

=

+
+ +

∑ i

i ii

 (2.32) 

 A draw from (2.29) can be obtained using:  

( )

( )

**

0 1 0 1

0

0 0 0

1

, ,..., | , , ~ , ,...,

| , ~ ,

,
k

K K
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k
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G G
θ

β β β γ γ

γ γ

β β δ
=

′

′= +∑

*
θ i i

  (2.33) 

and a draw from (2.30) can be obtained using: 

**

0 1 0 1 1

0 0 0

0

1

, ,..., | , ~ ( , ,..., ) ,

| , ~ ( , ) ,

.
k

j j jK j K j K

j

K

j j j jk

k

Dir n n

G G DP G

G G
θ

π π π α αβ αβ αβ

α αβ

π π δ
=

+ +

′ ′

′= +∑

jθ i i

 (2.34) 

From (2.33) and (2.34) we see that the posterior of G0 is a mixture of atoms corresponding to 

dishes, and is an independent draw from DP(γ,H). Similarly, Gj is a mixture of atoms at 
**

k
θ  and 

an independent draw from 
0 0( , )DP Gαβ ′  (Teh & Jordan, 2010).  

 HDPHMM 

Hidden Markov models (HMMs) are a class of doubly stochastic processes in which discrete 

state sequences are modeled as a Markov chain (Rabiner, 1989). In the following discussion we 



 30

will denote the state of the Markov chain at time t with zt and the state-specific transition 

distribution for state j by πj. The Markovian structure is represented by 
1

1
| ~

t
t t z

z z π
−− . 

Observations are conditionally independent given the state of an HMM and are denoted by

( )| ~
t

t t z
x z F θ . In a typical fully ergodic HMM, the number of states is fixed and a matrix of 

dimension N states by N transitions per state is used to represent the transition probabilities.  

An HDPHMM is an extension of an HMM in which the number of states can be infinite. At 

each state zt we should be able to transition to an infinite number of states so the transition 

distribution should be a draw from a DP. On the other hand, we want reachable states from one 

state to be shared among all states so these DPs should be linked together. The result is an HDP. 

In an HDPHMM each state corresponds to a group (restaurant) and therefore, unlike HDP in 

which an association of data to groups is assumed to be known a priori, we are interested in 

inferring this association. 

A major problem with original formulation of an HDPHMM is state persistence. HDPHMM 

has a tendency to make many redundant states and switch rapidly among them (Teh et al., 2006). 

This problem has been solved by introducing a sticky parameter, κ, to the definition of an 

HDPHMM (Fox et al., 2011):   
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π π
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θ θ

−

∞

− =

∞

=

∞

=

+
+

+

  (2.35) 

The state, mixture component and observations are represented by zt, st and xt respectively. The 

indices j and k are indices of the state and mixture components respectively. The base distribution 
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that links all DPs together is represented by β and can be interpreted as the expected value of state 

transition distributions. The transition distribution for state j is a DP denoted by πj with a 

concentration parameter α. Another DP, ψj, with a concentration parameter ϭ, is used to model an 

infinite mixture model for each state zj. 

The distribution H is the prior for the parameters θkj. If we want the posterior distribution over 

the parameters to remain in the same family as the prior, then H should be chosen to be a 

conjugate prior to the observation likelihood. Since the likelihood has a multivariate normal 

distribution, H should have normal inverse Wishart (NIW) distribution. Figure 2-4 shows a 

graphical representation of model in (2.35).  

The generative definition in (2.35) does not clarify how to estimate the actual model given a 

finite amount of data. Several algorithms have been proposed (Beal et al., 2002; Teh et al., 2006). 

We will use a block sampler proposed by Fox et al. (2011) as the basis for our inference 

algorithm for models presented in subsequent chapters.  

 
Figure 2-4. A graphical model of HDPHMM is shown (adapted from Fox, et al., 2011). 
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2.4.1 Block Sampler  

A block sampler is based on using the Markovian structure of the model to improve the 

performance of the inference algorithm. A variant of Forward-Backward (FB) procedure 

(Ferguson, 1980) is incorporated in the sampling algorithm that enables us to sample the state 

sequence 
1 Tz :

 at once. This is an important computational issue since sampling each data point 

separately using Gibbs sampling significantly increases the computation time required by the 

inference algorithm. To achieve this goal, a fixed truncation level L should be used which in a 

sense reduces the model to a parametric model (Fox et al., 2011). However, it should be noted 

that the result is different from a classical parametric Bayesian HMM since the truncated HDP 

priors induce a shared sparse subset of the L possible states. In short, we obtain an approximation 

to the nonparametric Bayesian HDPHMM with the maximum number of possible states set to L. 

For most applications this does not cause a problem as long as we set L reasonably high. It is easy 

to determine experimentally what is a sufficiently large value of L.  

The approximation used in this algorithm is the degree L weak limit approximation to the DP 

(Ishwaran & Zarepour, 2002), which is defined as: 

( ) ( )/ ,..., /  .LGEM Dir L Lα α α�   (2.36) 

Using (2.36) β is approximated as (Fox et al., 2010): 

( )| ~ / ,..., /  .Dir L Lβ γ γ γ   (2.37) 

We can write: 

( )1| , , ~ ,..., ,...  .j j LDirπ α κ β αβ αβ κ αβ+   (2.38) 

The posteriors are given by: 

( )

( )
1

1: 1 1

| , ~ / ,..., /

| , , ~ ,..., ,...,  .

L

j T j j jj L jL

Dir L m L m

z Dir n n n

β γ γ γ

π α β αβ αβ κ αβ

+ +

+ + + +

m i i

 (2.39) 
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The number of data that transitions from state j to state k is represented by njk where j and k both 

range from 1 to L. The data that is associated with a transition from state j to state k are clustered 

into mjk groups. The back-off variable, jkm , which is a modified estimate of the number of 

clusters in the jth state that transition to the kth state, is defined as: 

,

.

jk

jk
j j j

m j k
m

m j kω

≠
= 

− = i

  (2.40) 

This back-off variable is necessary because the addition of κ, the sticky parameter, introduces a 

bias. 

We can explain this via the CRF metaphor. Without the sticky parameter, κ, the number of 

tables in restaurant j that order dish k are mjk. However, κ introduces a preference for the 

restaurant specialty dish. It should be noted that each restaurant has one special dish that is also 

indexed with the same index as the restaurant (e.g. for restaurant j the special dish is indexed with 

j). A table, which is constrained to have the same dish served to all customers, considers a 

particular dish. Its initial decision might be overridden by the restaurant specialty dish, such as 

the feature of the day. This override procedure is simulated by a Bernoulli variable that decides 

whether to override the decision by tossing a coin with probability 
κ

ρ
κ α

=
+

, where κ is the 

sticky parameter and α is the concentration parameter. The total number of overrides in restaurant 

j is represented by jω i . Therefore to obtain the total number of tables in restaurant j that 

considers dish k, before overriding happens, we need to reduce mjj  by jω i . 

 Finally an order L′  weak limit approximation is used for the DP prior on the emission 

parameters:  

( )1: 1: 1| , , ~ / ,..., /  .k T T k kLz s Dir L n L nψ σ σ σ ′′ ′ ′ ′+ +  (2.41) 

The FB algorithm for the joint sample z1:T and s1:T given x1:T can be obtained by: 
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( ) ( ) ( ) ( )
( )

1: 1 1: ,
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, | , , | , , , | |

| , ,  .
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t T t

p z s x p z z x p s p x

p x z
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+

∝ ×z π,ψ,θ π θ

π θ,ψ
 (2.42) 

The right side of (2.42) has two parts: forward and backward probabilities (Rabiner, 1989). The 

forward probability includes ( ) ( ) ( )1 1: ,| , , , | |
t t tt t T t z t z sp z z x p s f xψ θ− π θ  and the backward 

probability includes ( )1: | , ,t T tp x z+ π θ,ψ . Therefore, for the backward probabilities we have: 

( ) ( )

( ) ( ) ( ) ( )

1: , 1 1

1 , 1,

| , ,

| | |

1 1

t t t t
t t

t T t t t t

t z t z t z s t t tz s

p x z A z
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− +
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∝ 
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π θ,ψ

 (2.43) 

( )

( ) ( )
, 1 1

, 1,

1 1

| , 1,... ,

1 1.
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i l

A z
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= +
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The variable At,t-1 is referred to as the backward message (Bishop, 2007). As a result we have 

(Fox et al., 2011): 

( ) ( ) ( )
11: , 1,, | , , | .

t t tt t T z k kj t z s t t tp z k s j x f x A zπ ψ θ
− += = ∝z π,ψ,θ  (2.45) 

For Gaussian emission distributions, the components are given by ( ) ( ),| ; ,
t tt z s t kj kjf x xθ µ= Ν Σ . 

The complete block-sampler algorithm for estimation of HDPHMM is as follow (Fox et al., 

2010): 

1. Initialize with the previous of 
( 1) ( 1) ( 1)

, ,
n n n− − −

π ψ β  and ( 1)n −θ . 

2. Initialize ( )1,T T
kA + : 

( )1,
1, for 1,2,..., .

T T
k k LA + = =  (2.46) 

3. For { }1,...,1t T∈ −  and { }1,...,k L∈  compute: 

( ) ( ) ( ), 1 1 1,

1 1

; ,  .
L L

t t ki il t il il t t

i l

A k N x A iπ ψ µ− + +

= =

= Σ∑∑  (2.47) 
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4. Sample the augmented state (zt,st) sequentially and start from t=1: 

a) For ( ) { } { }, 1,..., 1,...,i k L L∈ ×  and ( ) { } { }, 1,..., 1,...,k j L L′∈ ×  set: 

.0, 0 andik kj kjn n ϒ = ∅′=  =  (2.48) 

b) For all ( ) { } { }, 1,..., 1,...,k j L L′∈ ×  compute: 

( ) ( ) ( )
1, , , , , 1,; ,  .

tk j t z k k j t k j k j t tf x N x A kπ ψ µ
− += Σ  (2.49) 

c) Sample the augmented state (zt,st): 

( ) ( ) ( ) ( )
L L

t t k,j t t t
k=1 j=1

z ,s ~ f x δ z ,k δ s ,j .
′

∑ ∑
 (2.50) 

d) Increase 
1t tz zn

−
and 

t tz sn′ ; add  xt  to the cached statistics:  

, ,  .k j k j txϒ ← ϒ ⊕  (2.51) 

5. Sample auxiliary variables by simulating a CRF: 

a)  For each ( ) { }
2

, 1,...,j k K∈  set mjk=0 and n=0: 

1.  For each customer in restaurant j eating dish k ( 1,..., jki n= ), sample: 

( , )
~  .

( , )

k

k

j k
x Ber

n j k

αβ κδ

αβ κδ

 +
 

+ + 
 (2.52) 

2.  Increase n and if x=1 increase mjk. 

b)  For each { }1, ...,j K∈ , sample the override variables in restaurant j: 

( )
~ , ,  .

1
j jj

j

Binomial m
ρ κ

ω ρ
ρ β ρ α κ

 
=  + − + 

i  (2.53) 

6. Update β using: 

( )1| , ~ / ,..., / .LDir L m L mβ γ γ γ+ +m i i  (2.54) 

7. For { }1,...,k L∈ : 

a) Sample πk and ψk: 
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( )

( )
1 1

1

~ ,..., ,..., ,

~ / ,..., / .

k k k kk L kL

k k kL

Dir n n n

Dir L n L n

π αβ αβ κ αβ

ψ σ σ ′

+ + + +

′ ′ ′ ′+ +

 (2.55) 

b) For { }1,...,j L′∈  sample: 

( ), ,~ | ,  .k j k jpθ θ λ ϒ  (2.56) 

8. Set 
( ) ( ) ( )

, ,
n n nβ β=  =  =π π ψ ψ  and ( )n =θ θ . 

9. Optionally sample hyperparameters ϭ, γ, α and κ. Note that hyperparameters influence the 

complexity but are not part of the model themselves so sampling them is optional.  

The above algorithm represents a single iteration of the inference algorithm. In order to obtain, 

samples from the posterior distributions of the parameters we have to iterate for several times and 

discard the values from the first few iterations. 

Fox et al. (2011) have shown that for the block sampler the number of iterations is 

significantly lower than a direct sampler. Also if we set the initial values for hyperparameters 

carefully (e.g. tune the values by running some pilot experiments) we can reduce this number 

even further because the algorithm will find the stable values more quickly. In our experiments 

with modified block samplers, described in Chapters 3-5, we have discarded the first 200 samples 

and used the next 200 samples to estimate the value of the parameters. 

2.4.2 Learning Hyperparameters  

The hyperparameters ϭ, γ, α and κ can also be estimated like other parameters of the model 

(Fox et al., 2010): 

Posterior for (α + κ ):  

Consider the predictive distribution for a CRF: 

( ) { }1 ,..., , 
| , , ,

.

ji
jt jji ji

ji jt

new

n t t m
p t t n

t t
α κ

α κ

−
− −

 ∈
= ∝ 

+ =
t

i i

i  (2.57) 



 37

This equation can be written using (2.31) and (2.35). A customer table assignment follows a 

DP with concentration parameter α + κ. Antoniak (1974) has shown that if ( )~ GEMβ γ  and 

~
i

z β , then the distribution of the number of unique values of zi resulting from N draws from β 

has the following form: 

( ) ( )
( )

| , , ,
( )

Kp K N s N K
N

γ
γ γ

γ

Γ
=

Γ +
  (2.58) 

where s(N,K) is the Stirling number of the first kind. Using these two equations the distribution of 

the number of tables in the restaurant j is as follows: 
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| , , .jm

j j j j
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p m n s n m
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α κ α κ
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i i ii i

i

 (2.59) 

The posterior over α + κ is given by: 
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 (2.60) 

The reason for the last line is that ( )
1

,

J

j j

j

s n m

=

∏ i i
 is not a function of α + κ and therefore can 

be ignored. By substituting ( )
( ) ( )
( )

( )
1

11

0

, 1
yxx y

x y t t dt
x y

β
−−Γ Γ

= = −
Γ + ∫  and by considering that 

( ) ( )1x x xΓ + = Γ , we obtain: 
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(2.61) 

Noting that we have placed a Gamma(a,b) prior on α + κ we can write: 
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( ) ( ) ( ) ( )
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where sj can be either one or zero. For marginal probabilities we obtain: 
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( ) ( ) ( )
1

\ 1 1| , , , ,..., , ,..., 1 1,  ,
jn

j j J J j j jp r r s m m n n r r Beta nα κα κ α κ
−++ ∝ − = + +
i
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where in the above equations, the notation “\” in the subscript means the entire sequence with the 

exception of the jth point. For example, s\j means the sequence 1 2 1 1{ , ,..., , ,..., }j j Ts s s s s− + . 

Posterior of γ: 

Similar to (2.58), the distribution of the unique number of dishes served in the whole 

franchise is given by ( ) ( )
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. Therefore for the posterior distribution of 

γ we can write: 
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By considering the fact that prior over γ is Gamma(a,b), we can write: 
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For the marginal distributions we have: 

( ) ( ) ( )log1| , , , , log ,
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Posterior of ϭ: 

The posterior for ϭ is obtained in a similar way to the derivation of the posterior for α+κ. We 

use two auxiliary variables r ′  and s′ . The final marginalized distributions are: 
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It should be noted that in cases where we use auxiliary variables we prefer to iterate several times 

before moving to the next iteration of the main algorithm.  

Posterior of ρ: 

Let us define without loss of generality: 
κ

ρ
α κ

=
+

. By considering the fact that the prior on 

ρ is Beta(c,d) and ( )~
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The hyperparameters control the complexity of the model. As these equations show, we can 

sample their posterior distributions like any other parameters of the model. If we iterate a few 

thousand times it will converge to the true distribution even when starting from non-informative 

priors. However, for speech applications we often deal with large amounts of data. Even the 
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relatively small datasets used in this dissertation are computationally challenging with each 

iteration requiring a few minutes of computation time when running on medium-sized cluster 

computer. Therefore in order to reduce the required number of iterations we have to carefully 

initialize these variables to values that are in the neighborhood of the desired values. These values 

can be found by running several tuning experiments with smaller subsets of data using different 

initial values, and then evaluating the final trained distributions for accuracy.  

 Conclusion 

In this chapter, we have introduced the background necessary to understand the following 

chapters of this dissertation. We have covered introductory materials related to a Dirichlet 

distribution, a Dirichlet Process, a Hierarchical Dirichlet Process and HDPHMMs. Most of the 

material in this chapter was presented from a speech recognition/machine learning perspective. 

Therefore they lack the formal treatment usually preferred by researchers in mathematics or 

statistics. We encourage, interested reader to review some of the excellent references introduced 

in this chapter for a deeper understating of these concepts. 
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CHAPTER 3 

NONPARAMETRIC BAYESIAN APPROACHES FOR 

ACOUSTIC MODELING OF SUB-WORD UNITS 

The most important element of acoustic modeling is the statistical approach used to model the 

sub-word units. Most state of the art systems use left-to-right Hidden Markov Models (HMMs) 

with Gaussian mixtures to model phonetic units (Rabiner, 1989). HMMs, often referred to as 

doubly stochastic models, are parameterized both in their structure (e.g. number of states) and 

emission distributions (e.g. Gaussian mixtures).  

Model selection methods such as the Bayesian Information Criterion (BIC) (Kadane & Lazar, 

2004) are traditionally used to optimize the number of states and mixture components. However, 

these methods are computationally expensive and there is no consensus on an optimum criterion 

for selection (Kadane & Lazar, 2004).  

In speech recognition applications, usually the number of states is assumed to be fixed for all 

models (e.g., 3). Mixtures are trained progressively by starting from one mixture component per 

state and increasing the number of mixtures until a further increment does not improve the 

likelihood of the training data (or sometimes error rate on a development set). The number of 

mixtures per state is also a fixed parameter for all states and models (with exception of a silence 

model that usually has a different structure and complexity). 

Beal et al. (2002) proposed a nonparametric Bayesian HMM with a countably infinite number 

of states. This model is known as an infinite HMM (iHMM) because it has an infinite number of 

hidden states. Teh et al. (2006) and Fox et al. (2011) proposed a different formulation, 
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HDPHMM, based on a hierarchical Dirichlet process (HDP) prior. HDPHMM is an ergodic 

model – a transition from an emitting state to all other states is allowed. However, in many 

pattern recognition applications involving temporal structure, such as speech processing, a left-to-

right topology is required (Fink, 2008). 

For example, in continuous speech recognition applications we model speech units (e.g. 

phonemes), which evolve in a sequential manner, using HMMs. Since we are dealing with an 

ordered sequence (e.g. a word is an ordered sequence of phonemes), a left-to-right model is 

preferred (Juang & Rabiner, 1991). The segmentation of speech data into these units is not known 

in advance and therefore the training process must be able to connect these smaller models 

together into a larger HMM that models the entire utterance. This task can easily be achieved 

using left-to-right HMMs (LR-HMM). If the data has finite length, the beginning and end of a 

sequence is typically modeled as two additional discrete events – non-emitting initial and final 

states (Fink, 2008). In the HDPHMM formulation, these problems are not addressed.  

An HDPHMM, as well as a parametric HMM, models each emission distribution by data 

points mapped to that state. For example, it is common to use a Gaussian mixture model (GMM) 

to model the emission distributions. However, in an HDPHMM, the mixture components of these 

GMMs are not shared or reused. Sharing of such parameters is a critical part of most state of the 

art pattern recognition systems. 

 In this chapter, we introduce a model with two parallel hierarchies that enable sharing of data 

among different states. We refer to this model as a Doubly Hierarchical Dirichlet Process Hidden 

Markov Model (DHDPHMM) (Harati et al., 2014). We also introduce a general method to add 

non-emitting states to both HDPHMMs and DHDPHMMs. We develop a framework to learn 

non-ergodic structures from the data and present comprehensive experimental results for a 

standard phoneme classification task in speech processing.  
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 Related Work  

HMMs are parameterized both in their topology (e.g. number of states) and emission 

distributions. Most attempts to relax these parameterizations were focused on the second aspect. 

Bourlard (1993) and others proposed to replace Gaussian mixture models (GMMs) with a neural 

network based on a multilayer perceptron (MLP). It was shown that MLPs generate reasonable 

estimates of a posterior distribution of an output class conditioned on the input patterns 

(Bourlard & Morgan, 1993). This hybrid HMM-MLP system works slightly better than 

traditional HMM-GMMs, but the gain was not significant enough to justify adopting this new 

technology. Most of the gain can be recovered by using more sophisticated processing steps such 

as speaker adaptation.  

 More recently, renewed interest in using neural networks (NN) has emerged due to the 

introduction of deep learning approaches (Bengio, 2009; Bengio et al., 2013). Deep learning 

models solve some of the major problems associated with neural networks by allowing training of 

deep neural networks (DNN) through a procedure called pre-training and fine tuning. These 

networks are constructed using simpler building blocks like restricted Boltzmann machine (RBM) 

and utilize properties of these simple structures (e.g. lack of connections between hidden units in 

RBMs) to make inference algorithm practical. The result is a hybrid HMM-DNN that currently 

delivers state of the art performance on some speech recognitions tasks (Hinton et al., 2012; Rath 

et al., 2013; Sainath et al., 2012; Seide et al., 2011). 

Besides these HMM-NN hybrid systems, several other approaches based on combinations of 

Markov based models and deep learning have been proposed recently. Conditional Random 

Fields (CRF), which are discriminative in nature, have been used (Morris & Fosler-Lussier, 2008; 

Gunawardana et al., 2005). Yu and Deng (2010) have proposed a deep structured CRF (DHCRF) 

for a phoneme recognition task that has been shown to produce better results compared 

discriminatively-trained HMMs. However, it should be noted some of the results reported for 
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models based on deep learning are not among the state of the art results. For example, Palaz et al. 

(2013) reported results of a hybrid CRF convolutional network that is close to an ML-trained 

HMM baseline in performance. Nonparametric non-Bayesian modeling of emission distributions 

(Lefèvre, 2003; Shang, 2009) have been used to replace GMMs, but improvements were marginal 

at best. These nonparametric non-Bayesian methods are especially prone to overfitting or over-

smoothing (Wang et al., 2010).  

Henter et al. (2012) introduced a new model named Gaussian process dynamical model 

(GPDM) to completely replace HMMs in acoustic modeling. This model is a nonparametric 

Bayesian model based on a Gaussian process (comparing to HDPHMM which is based on 

Dirichlet process) and supposedly solves some of the problems traditionally associated with 

HMMs such as duration modeling and stepwise constant evolution (Henter et al., 2012). 

However, this model is used only in speech synthesis and no results have been reported for 

speech recognition tasks. Another related (but independently developed) model also named 

GPDM has been reported by (Park & Yoo, 2011) for a phoneme classification task, but again the 

results for this model were actually worse than the baseline HMM system.  

Petrov et al. (2007) introduced a data driven HMM that learns the structure of HMMs by 

utilizing a split-merge EM procedure. The model starts from a single state with only one Gaussian 

and is iteratively refined into more complicated structures. It has been shown that this model can 

compete with state of the art systems. The sprit behind this model is similar to HDPHMM but the 

approach is different. Fox et al. (2011) have applied an ergodic HDPHMM model to the problem 

of speaker diarization. Speaker diarization is the process of segmenting an audio stream into 

speaker-based segments. Classic speaker diarization algorithms usually consist of two stages: 

segmentation and clustering. Clustering segments into speaker labels is usually implemented with 

some form of hierarchical agglomerative clustering and is very sensitive to the specific threshold 

for cluster merging. It has been shown that HDPHMM can compete with state of the art systems 

for speaker diarization (Wooters & Huijbregts, 2007). HDPHMM has not been used for acoustic 
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modeling problem since it only provides an ergodic structure and does not address some of the 

issues (e.g. left to right structure, non-emitting states and computational cost) that are important 

in problems like sub-word modeling. 

Steinberg et al. (2012, 2013) have proposed to use DPM to model sub-word units for two 

different English and Chinese phoneme classification tasks. They have shown that models 

discovered by the DPM approach have much fewer parameters compared to the baseline 

parametric GMM models while delivering comparable performance. The model used in their 

work is much simpler than models we have proposed in this chapter but some of the conclusions 

(such as learning optimal complexity) are similar.  

Harati et al. (2012) has used a DPM-based algorithm in speaker adaption application to grow 

a tree using a bottom-up Euclidean distance based approach. Several inference algorithms were 

evaluated and it was shown that the proposed system can produce better results (e.g. 10% 

improvement) comparing to a regression tree based approach as discussed in Chapter 1. 

Nonparametric Bayesian approaches were also used in speech segmentation and acoustic unit 

discovery problems (Harati el al., 2013; Lee & Glass, 2012), and this is discussed in Chapter 5. 

Another trend is the application of parametric Bayesian methods in modeling of acoustic 

units. The most famous of these are variational HMMs where HMMs are treated in Bayesian 

framework using a Dirichlet distribution as a prior for transitions. Inference is done using 

variational method instead of Gibbs sampling. The results are promising especially for smaller 

sized datasets (Watanabe et al., 2003). 

 A Doubly Hierarchical Dirichlet Process Mixture Model  

HDPHMM defined in (2.35) introduces a model with unbounded number of states that learns 

the model complexity (e.g. number of states, transition distribution and number of mixture 

components) from data. However, one problem with having an unbounded number of states is 
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that there are fewer data points to estimate the parameters (e.g. mean and covariance) for each 

state. Fox et al. (2011) introduced the sticky parameter κ that to some extent biases the model 

toward models with fewer states since consecutive data points would tend to stay within one state. 

However, each state’s parameters are estimated independently of the other states. Sharing data, if 

performed carefully, can potentially improve the accuracy of the estimated parameters (Young et 

al., 1994). In this section we introduce a new model to address this problem. Instead of sharing 

data points directly we share mixture components between different states.  

We can extend the model in (2.35) to address the problem of sharable mixture components. 

Equation (2.35) defines a model with a multimodal distribution at each state. In an HDPHMM 

formulation these distributions are modeled using a DPM model:  
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where xt and st are data and mixture component indicators respectively. The variable zt is the state 

indicator and is assumed to be known. ψj is a DP distribution with a concentration parameter ϭ 

that models the infinite mixture model for state j. θkj is an emission distribution parameter that is 

sampled from H. 

Equation (3.1) demonstrates that when the state assignment, zt, for data point xt is known, the 

mixture components can be sampled from a multinomial distribution with DP priors. Equation 

(2.35) also shows that each emission distribution is modeled independently of the other 

distributions. We first assign the state indicator variable zt for each data point and then model all 

data points with the same zt using a DPM. 

As we have discussed in Section 2.3, HDP is an extension of a DPM to mixture modeling of 

grouped data. If the state assignment, zt, is assumed to be known (or estimated) then an 
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HDPHMM divides the data points into multiple groups (e.g. each state forms one group). 

Therefore we should be able to model the emission distributions with another HDP.  

In other words, we want all emission distributions to be linked together and to share mixture 

components. The resulting model will have two parallel hierarchies, one to model an infinite 

number of states and another one to allow sharing mixture components across states. Hence, it is 

referred to as a Doubly Hierarchical Dirichlet Process Hidden Markov Model (DHDPHMM).  

Applying (2.23) we can write: 
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where ζ  
is the DP used as the base distribution for HDP and τ and ϭ are hyperparameters. It 

should be noted that ψj is a DP with a base distribution ζ . By substituting (3.2) in (2.35) we can 

obtain a generative model for DHDPHMM:  
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The state, mixture components and observations are represented by zt, st and xt respectively. 

Similar to HDPHMM, j and k are indices of the state and mixture components respectively. The 

base distribution, β, can be interpreted as the expected value of state transition distributions. The 
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transition distribution for state j is a DP denoted by πj with a concentration parameter α and sticky 

parameter κ.  

Another DP distribution, ζ with concentration parameter τ, is used as the base distribution for 

the second HDP that models emission distributions. Each mixture is modeled with a DP, ψj, with 

a concentration parameter ϭ and base distribution ζ (forming the second HDP). Each DP models 

an infinite mixture model for a corresponding state zj. However, as discussed above, the 

components of these mixture models are shared across different states because we link all mixture 

distributions using a second HDP.  

If emission distributions are mixtures of Gaussians then θkj includes mean and covariance 

parameters. The distribution H is the prior for the parameters θkj. Similarly, the conjugate prior, 

H, is a Normal-Inverse-Wishart (NIW) distribution (Suderth, 2006). If we relax this conjugacy 

requirement we can have Gaussian priors on the mean and an independent inverse-Wishart 

distribution on the covariance for each Gaussian component.  

Intuitively, DHDPHMM pools the data points while HDPHMM divides data points between 

different states. If we don’t have enough data points in a particular state or a mixture component 

then the distribution parameters will be estimated poorly (e.g., mean and covariance). For 

example, in speech recognition systems we usually use features with a dimensionality of 39 

which translates to 39+(39x40)/2+1=820 free parameters per Gaussian mixture component 

(assuming a full covariance). In an HDPHMM, with no sharing of parameters, we can easily end 

up with an intractable number of parameters. 

As an illustrative example, consider Figure 3-1 that depicts the sharing process using a simple 

scenario. Let’s assume data point x1 is drawn from an underlying Gaussian distribution, while x4 

and x5 are drawn from a second Gaussian with similar parameters. Since we are dealing with 

sequential data points, an HMM would segment the data based on the order of occurrence. In this 

case x1 is assigned to state 1 while x4 and x5 are assigned to state 2. If the HMM is modeled using 

an HDPHMM, the Gaussian component associated with x1 would be different from Gaussian 
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component associated with x4 and x5 (shown on the left side of Figure 3-1). However, 

DHDPHMM will automatically assign all three to only one Gaussian component (based on 

similarity of x1, x4 and x5) and then reuse that component in both state 1 and state 2 (shown on the 

right side of Figure 3-1). 

Note that this does not mean that DHDPHMM always assigns data from different states to a 

single component and then shares that component across states. Sharing of data points only 

happens when there is an underlying statistical similarity. For example, data points x2 and x3 form 

a component for state 1 while x6 forms another component for state 2, but these components are 

not shared across states. Each component is modeled using its own data points. 

 Inference Algorithm for DHDPHMM 

An inference algorithm is required to learn the model parameters (e.g. number of observed 

states and emission parameters) from the data. One solution to this problem is the block sampler 

(Fox et al., 2011) discussed in the previous section. Here we present modifications of this block 

sampler for the inference of our DHDPHMM.  

Using the “degree L weak limit” (Ishwaran and Zarepour, 2002) approximation to Dirichlet 

 
Figure 3-1. A comparison of HDPHMM and DHDPHMM is shown. 
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process in (2.36) for HDP emissions of (3.3), we can write the following equations (replacing L' 

with L): 

,| ~ ,...,Dir
L L

σ σ
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  (3.4) 

( )1,..., .| , ~ Lj Dir τξ τξψ ξ τ ′   (3.5) 

In writing (3.4) and (3.5) we have assumed that the base distribution, ζ, and the emission 

distributions, ψj, are approximated with same upper bound, L'. We can alternately use a different 

upper bound, L L′′ ′≤ , to approximate ψj. 

Following a similar approach to that in Fox et al. (2011), we write the posterior distributions 

for these equations as: 
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where M'jk is the number of clusters in state j with mixture component k, and kM ′
i  is the total 

number of clusters that contain mixture component k. The number of observations in state j that 

are assigned to component k is denoted by jkn′ . The posterior distribution for τ, the 

hyperparameter in (3.6), can be written as: 
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where r and s are auxiliary variables used to facilitate the inference for τ (Fox et al., 2011), and a 

and b are hyperparameters over a Gamma distribution.  
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We can summarize the modifications to the block sampler as follows: 

1. Given the previous 
( 1) ( 1) ( 1)

, ,
n n n− − −

π ψ β and ( 1)n −θ . 

2. Compute backward messages ( )1,T T
kA +  using (2.46) and (2.47). 

3. Sample the augmented state (zt,st) sequentially and start from t=0 using (2.48), (2.49) and 

(2.50). 

4. Accumulate the sufficient statistics using (2.51). 

5. Sample auxiliary variables (m, w, m ) similar to the block sampler algorithm using 

(2.52) and (2.53). 

6. Sample a new auxiliary variable M' (to model the second HDP) by simulating a CRF: 

 

For each { } { }1,2,..., , 1,2,..., ,j L k L′∈ ∈  set M'jk = 0 and n = 0.  

a)  For each customer in restaurant j eating dish k, for 1,..., jki n= , sample: 
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x Ber
n

τξ

τξ
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+   (3.11)
 

b) Increase n and if x = 1 increase M'jk. 

 

7. Update β using (2.54). 

8. Update the base distribution for the second HDP, ζ, using (3.6). 

9. Sample πk from (2.55) and ψk from (3.7). 

10. Sample θkj from (2.56). 

11. Set 
( ) ( ) ( )

, ,
n n nβ β=  =  =π π ψ ψ  and ( )n =θ θ . 

12. Optionally sample hyperparameters ϭ, γ, α and κ similar to the block-sampler algorithm 

and τ from (3.8).  
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By comparing the block sampler and the modified block sampler, we see the basic procedure is 

similar. However, the modified block sampler also samples an extra HDP (and related variables) 

that models the emission distributions.  

One of the major computational parts of both algorithms is to calculate the likelihood of each 

data point for every Gaussian component. For example, computing backward messages, At,t-1, 

which are required in the FB algorithm, involves computing: 
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where in this equation ( ); ,i k kN x µ Σ
 
is the likelihood  of data point xi for component k. We have 

LxL' Gaussians for HDPHMM while for DHDPHMM we have only L' Gaussians since we reuse 

Gaussians across states. The number of likelihood computations for DHDPHMM is less than 

HDPHMM by a factor proportional to L. In Section 3.7.2 we will further investigate this 

important practical issue and demonstrate its effect on inference time. 

Furthermore, as stated above, for DHDPHMM we approximate both ζ and ψj with L'. 

However, we can approximate ψj with L'' ( L L′′ ′≤ ). This allows us to constrain the states to only 

learn the specific number of mixture components during the training procedure and therefore 

gives us greater control during training. For example, in traditional acoustic model training, we 

use an iterative mixture splitting process described in Section 1.1. In DHDPHMM, we might first 

require that each model only has one Gaussian mixture model initially and after several iterations 

relax this restriction, allowing states to have mixtures with up to L’ Gaussian components. For the 

remainder of this chapter we will assume L L′ ′′= . 

 DHDPHMM with a Non-Ergodic Structure 

A non-ergodic structure for the DHDPHMM can be achieved by modifying the transition 

distributions in (3.3). These modifications can also be applied to HDPHMM using a similar 
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approach (Harati et al., 2014).  

3.4.1  Left-to-Right DHDPHMM with Loop Transitions 

The transition probability from state j is modeled using a DP that has infinite support. It can 

be written as: 
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+
  (3.13) 

where α and κ are the concentration and sticky parameters respectively, and β is the global 

transition distribution that acts as the base distribution for this DP. 

From (3.13) we can see the transition distribution has no topological restrictions and therefore 

(2.35) and (3.3) define ergodic HMMs. In order to obtain a left-to-right (LR) topology we need to 

force the base distribution of the Dirichlet distribution in (3.13) to only contain atoms to the right 

of the current state. This means β should be modified so that the probability of transiting to states 

left of the current state (i.e. states previously visited) becomes zero. For state j we define Vj={Vji}: 
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where i is the index for all following states. We can then modify β by multiplying it with Vj: 
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In the block sampler algorithm, we have: 

( )1 1 ,..., ,..., , 1,..., ,j j j jj L jLDir n n n j Lπ αβ αβ κ αβ′ ′ ′+ + + + =∼  (3.16) 

where njk are the number of transitions from state j to k. From (3.16) we can see that multiplying β 

with Vj biases πj toward a left-to-right structure but there is still a positive probability to transit to 

the states left of j. If we leave πj as in (3.16) the resulting model would be an LR model with 

possible loops. The model would be biased toward an LR structure but with the possibility of 
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forming loops. Models with an LR structure and possible loops will be denoted as LR-L. An 

example of this structure is shown in Figure 3-2(a). 

3.4.2 Left-To-Right DHDPHMM 

In order to obtain an LR model with no loops, we have to make sure all terms in (3.16) which 

are left of state j have a value of zero. This can be done by multiplying njk with Vj : 

( )1 1 1 ,..., ,..., ,    1,..., .j j j j jj jj L jL jLDir V n V n V n j Lπ αβ αβ κ αβ′ ′ ′+ + + + =∼  (3.17) 

Vj and β' are calculated from (3.14) and (3.15) respectively. This model always finds transitions to 

the right of state j and is referred to as an LR model. 

Sometimes it is useful to have LR models that allow restricted loops to the first state. For 

 

Figure 3-2. Different HMM structures for DHDPHMM are shown: (a) left to right with 

loops, (b) left to right with only self loops, (c) left to right with a loop to the first state, and 

(d) strictly left to right. 
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example, when dealing with long sequences, a sequence might have a local left to right structure 

but needs a reset at some point in time. To modify β to obtain an LR model with a loop to the first 

state (LR-LF) we can write: 

.
0, 0 ,

1, , 0.
ji

i j
V

i j i

< <
= 

≥ =
  (3.18)

 

β' can be calculated from (3.15) and πj should be sampled from (3.17). Figure 3-2(b) and 

Figure 3-2(c) demonstrate the LR and LR-LF models respectively. 

3.4.3 Strictly Left-to-Right DHDPHMM  

The LR models described above allow for skip transitions that allow the model to learn 

parallel paths corresponding to different modalities. Sometimes more restrictions on the structure 

might be required. One such example is a strictly left to right structure (LR-S): 

0, 1,

1, 1.

i j
Vji

i j

≠ +
= 

= +
  (3.19) 

An example of these models is shown in Figure 3-2(d). By comparing LR-S to other structures 

we can see that LR-S is restricted to only one path while other structures have multiple paths. 

These extra paths allow modeling of sequences that have varying lengths in addition to 

supporting modeling of multiple modalities in the data. 

 Initial and Final Non-Emitting States 

In many applications, such as speech recognition, an LR-HMM begins from and ends with 

non-emitting states. These states are required to model the beginning and end of finite duration 

sequences. In practical systems, we use these non-emitting states to connect different HMMs. For 

example, the final emitting state of each HMM has a self-loop and is associated with 

observations. Similarly, a non-emitting final state has no such loops and is not associated with 
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observations. Entering the non-emitting state of model j therefore means we enter model j+1, 

without consuming an additional data point.  Adding a non-emitting initial state is 

straightforward: the probability of transition into the initial state is 1. The probability of a 

transition from this state is equal to πinit which is the initial probability distribution for an HMM 

without non-emitting states. However, adding a final non-emitting state is more complicated. In 

the following sections we will discuss two approaches that solve this problem. 

3.5.1 Maximum Likelihood Estimation 

Consider state zi depicted in Figure 3-3. The outgoing probabilities for any state can be 

classified into three categories: (1) a self-transition (P1), (2) a transition to all other states (P2), 

and (3) a transition to a final non-emitting state (P3). These probabilities must sum to 1: 

P1 + P2 + P3 = 1. Suppose that we obtain P2 from the inference algorithm. We will need to 

reestimate P1 and P3 from the data. This problem is, in fact, equivalent to the problem of tossing a 

coin until we obtain the first tails. Each head is equal to a self-transition and the first tails triggers 

a transition to the final state. This can be modeled using a geometric distribution (Pitman, 1993): 

( )
1

( ) 1 .
k

P x k ρ ρ
−

= = −    (3.20) 

Equation (3.20) shows the probability of K – 1 heads before the first tail. In this equation 1 – ρ is 

 
 

Figure 3-3. Outgoing probabilities for state zi are shown. 
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the probability of heads (success).  

We also have: 

31

2 2

1 , .
1 1

PP

P P
ρ ρ= − =  

− −
  (3.21) 

Suppose we have a total of N examples but for a subset of these, Mi, the state zi is the last state of 

the model (SM). It can be shown (Pitman, 1993) that the maximum likelihood estimation is 

obtained by: 
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where ki are the number of self-transitions for state i. Notice that if zi is never the last state, then 

Mi = 0, P3 = 0 and ρ = 0. In other words, we only need to reestimate the transition probabilities if 

and only if we have some examples in the training data for which the state i is the last observed 

state.  

3.5.2  Bayesian Estimation 

Another approach to estimate transitions to a final non-emitting state, ρi , is to use a Bayesian 

framework. Since a Beta distribution is the conjugate distribution for a Geometric distribution, we 

can use a Beta distribution with hyperparameters (a,b) as the prior and obtain a posterior as 

(Gelman et al., 2004; Diaconis et al., 2010): 

( )~ , 1 ,
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j S

Beta a M b kρ
∈

 
+ + − 

 
 

∑   (3.23) 

where Mi and SM are the number of times which state zi was the last state and set of all examples 

where state i is the last state respectively. Hyperparameters (a,b) can also be estimated using a 

Gibbs sampler if required (Quintana & Tam, 1996).  

If we use (3.23) to estimate ρi we need to modify (3.16) to impose the constraint that the sum 

of the transition probabilities adds to one. This is a relatively simple modification based on the 
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stick-breaking interpretation of a Dirichlet process in (2.18). This modification is equal to 

assigning ρi to the first break of the stick and treating the remaining 1 – ρi portion as having a unit 

length. We can then use the standard stick-breaking algorithm iteratively. 

 An Integrated Model 

By incorporating the framework for learning non-ergodic structures into (3.3) we can write 

the definition for DHDPHMM for non-ergodic structures as:  
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where in this definition xt, st and zt have similar interpretations as in (3.3), β is the global 

transition distribution and β' is the modified β (possibly the same as β if Vj is one). πj, ψj, θkj and ξ 

also have similar interpretations to that in (3.3). 

In this definition, Vi should be replaced with the appropriate definition from Section 3.4 based 

on the desired type of structure. For example if we want an LR model then Vi should be sampled 

from (3.14). Also note that by setting Vi to 1 we obtain the ergodic DHDPHMM in (3.3). A 

graphical representation of DHDPHMM is shown in Figure 3-4(b). An HDPHMM (Fox et al., 

2011) is also displayed in Figure 3-4(a) for comparison. 

We have not incorporated modeling of non-emitting states discussed above in (3.24). If we 
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choose to use a maximum likelihood approach for estimating the non-emitting states then no 

change to this model is required (e.g. we can estimate these non-emitting states after estimating 

other parameters). However, if we choose to use the Bayesian approach then we have to replace 

the sampling of πj in (3.24) with: 
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,
kj k
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w MSB
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j

w χ

χ

π χ

α β κ

δ∑   (3.25) 

where MSB() is a modified stick-breaking process. Equation (2.18) shows the basic stick-breaking 

algorithm – start with a stick of length one and then break the stick consecutively to obtain the 

 

 
Figure 3-4. Graphical representations are shown for: (a) an ergodic HDPHMM and 

(b) a DHDPHMM. 
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weights in (2.18). The locations of atoms, represented by δ in (2.18), are sampled independently 

from another distribution – G0 in (2.18). In MSB(), we start from a stick of length (1-ρj) and 

sample the atoms from a discrete distribution that represents the transition probabilities: 

( )
1

1

{1,2,....}:

| , ~ (1, )

| , (1 ) (1 ), , ,

| , , ~ ,

i

k

i i j i j l

l

k kj

i k

k

for i

v Beta

w v v vMSB j

α κ α κ

ρ ρα β κ

αβ κδ
χ α β κ δ

α κ

−

=

=
 +


′ = − −= 

 ′ +
 ′

+

∏

∑

 (3.26) 

where vi are sequences of independent variables drawn from a Beta distribution and wi are stick 

weights. χi is the location of the atom that represents a transition to another state. χi determines 

which state we will transit to while wi determines what is the probability to transit to this state.  

By replacing (3.25) in (3.24) we can write: 
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where we have replaced DP with the modified stick-breaking process described above. Most of 

the results discussed above, including the inference algorithm, hold for this model as well. 
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 Experiments 

In this section we provide some experimental results which compare DHDPHMM with 

HDPHMM, HMM and several other models. First we investigate the scalability of DHDPHMM 

and compare it with HDPHMM. The experiments continue with artificial data and then proceed 

to a standard phoneme classification task. 

3.7.1 Evaluation Methods 

For the artificial data we compare the log-likelihood for a held-out subset of the data as 

defined by: 

( )( )| log | ,iLL m P x m=∑   (3.28) 

where LL is the log-likelihood and m is the model under consideration. This equation determines 

the probability of generating data under a particular model. We also compare the resulting learned 

structure (topology and parameters) to the reference generative model. 

For the phoneme classification task we compare the classification error rate on the evaluation 

and development subsets of the TIMIT (Garofolo et al., 1993) dataset. The classification error is 

defined as: 

% 100 1 ,
C

Err
C I

 
= × − 

+ 
  (3.29) 

where C is the number of correct and I is the number of incorrect decisions. We also compare 

complexity for HMM and DHDPHMM, and study how they behave as a function of the amount 

of training data.  

3.7.2 A Computational Analysis of DHDPHMM  

The main motivation behind DHDPHMM is the ability to share mixture components and 

therefore data points between different states. As discussed earlier when using the modified block 
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sampler algorithm we only deal with L' Gaussian distributions. The HDPHMM model has LxL' 

Gaussians to estimate.  

Figure 3-5 shows a simplified analysis of the computational time spent for each of the major 

modules of the C++ inference algorithm implementation. Though the total time is somewhat data 

(or sound) dependent, the distribution of that time across tasks is relatively stable. This diagram 

was generated for /sh/ for L = L' = 10. We can see the likelihood calculations of Gaussian 

components are the most computationally expensive portion of the inference algorithm and 

typically consume between 50% and 95% of the total inference time. Therefore a reduction from 

LxL' to L' reduces the computation time considerably. Fortunately the computationally expensive 

portions of the code are easily parallelized using openMP (OpenMP Architecture Review Board, 

2008), making the algorithms feasible for small and moderate size data sets. 

 Figure 3-6 provides a comparison of both algorithms for different values of L and L'. 

DHDPHMM’s computational complexity is flat as the maximum bound on the number of states 

 
Figure 3-5. A decomposition of the computational time required by the block sampler 

algorithm is shown. The likelihood computation is the major computational bottleneck 

and consumes up to 95% of the CPU time. 
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increases while the inference cost for HDPHMM grows linearly. 

3.7.3  HMM-Generated Data 

To demonstrate the basic efficacy of the model, we generated data from a 4-state left to right 

HMM. The emission distribution for each state is a GMM with a maximum of three components, 

each consisting of a two-dimensional normal distribution. Three synthetic data sequences totaling 

1900 observations were generated for training.  

Three configurations have been studied: (1) an ergodic HDPHMM, (2) an LR HDPHMM and 

(3) an LR DHDPHMM. A Normal-inverse-Wishart distribution (NIW) prior is used for the mean 

and covariance. The truncation levels are set to 10 for both the number of states and the number 

of mixture components.  

Figure 3-7 compares the average likelihood for different models for held-out data by 

averaging five independent chains. In Figure 3-7(a), the log-likelihoods are shown as a function 

of the number of iterations. In Figure 3-7(b) the topologies for the trained model are compared to 

the reference structure. The LR DHDPHMM discovers the correct structure while the ergodic 

HDPHMM finds a simpler HMM. LR DHDPHMM constrains the search space to left to right 

 
Figure 3-6. DHDPHMM improves the scalability relative to HDPHMM. 
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topologies while HDPHMM has a less constrained search space. Further, we can see that 

DHDPHMM has a higher overall likelihood. 

While LR HDPHMM can find the structure that closely resembles the reference (this 

structure is not shown in this figure), its likelihood is slightly lower than the ergodic HDPHMM 

due to these constraints. However, LR DHDPHMM produces a 15% (relative) improvement in 

likelihoods compared to the ergodic model. It is also interesting to note that the likelihoods of 

models discovered by all the nonparametric Bayesian algorithms are superior to the likelihood of 

the reference model itself.  

This experiment proves that our model can discover the underlying structure of data. 

Moreover, we can see that DHDPHMM produces better likelihoods relative to HDPHMM. This 

is attributed to DHDPHMM’s ability to share components. Each component is estimated using 

more data points because data is not forced to be associated with only one state. This feature, 

 
Figure 3-7. A comparison of the log-likelihoods of the proposed models to an ergodic 

model is shown in (a), while the corresponding model structures are shown in (b). 
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tying sub-state parameters, has been used  successfully in HMMs (Gu & Rose,2000). Here we are 

introducing this capability into nonparametric HMMs. 

3.7.4  Phoneme Classification on the TIMIT Corpus 

The TIMIT Corpus (Garofolo et al., 1993) is one of the most cited evaluation datasets used to 

compare new speech recognition algorithms. The data was phonetically transcribed by expert 

linguists and therefore is a natural choice to evaluate phoneme classification tasks. TIMIT 

contains 630 speakers (438 male and 192 female) from eight main dialects of American English. 

Each speaker read 10 sentences that can be classified into three categories: (1) a set of sentences 

read by all speakers (referred to as the SA sentences), (2) a set of phonetically compact sentences 

that were designed to provide a good coverage of pairs of phones, with extra occurrences of 

phonetic contexts (referred to as the SX sentences), and (3) a set of phonetically diverse sentences 

that were selected to add diversity in sentence types and phonetic contexts (referred to as the SI 

sentences).  

There are a total of 6,300 utterances where 3,990 are used in the training set and 192 

utterances are used for the “core” evaluation subset (another 400 are used as a development set). 

We have also removed the SA sentences from both the training and evaluation sets, which leaves 

us with 3,637 training utterances. We followed the standard practice of building models for 48 

phonemes and then map them into 39 phonemes (Gunawardana et al., 2005). Table 3-1 shows the 

39 phoneme set and how we mapped 48 phonemes to 39 phonemes. 

A standard Mel-frequency Cepstral Coefficients (MFCC) front-end has been used for feature 

extraction (Young et al., 2006). We have used a 25 msec hamming window with frame shift of 

10 msec. Spectral analysis has been performed using a 40-channel filter bank (filters are spaced 

based on Mel scale) with cut-off frequencies at 64 Hz and 8,000 Hz. A pre-emphasis coefficient 

of 0.97 has been used. We have used the first twelve Cepstral coefficients plus energy and their 

first and second derivatives to obtain a 39-dimensional feature vector.  
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To minimize the effect of acoustic channel (e.g. microphones, environment) Cepstral Mean 

Subtraction (CMS) (Young et al., 2006) was applied to the MFCC features. The mean of the 

MFCCs was calculated for each utterance and subtracted from each MFCC vector for every 

frame. We have used an HTK front-end to compute MFCC features, apply CMS and computer 

the derivatives of the features (Young et al., 2006). 

 A Comparison to HDPHMM 

In Table 3-2 we compare the performance of DHDPHMM to HDPHMM. We provide error 

rates for both the development and core subsets. In this table we have compared an LR model 

with two other models: a strictly LR topology and an ergodic model. DHDPHMM is consistently 

Table 3-2 A comparison of error rates on TIMIT for LR DHDPHMM and HDPHMM is 

shown. LR DHDPHMM produces a 10% reduction in error rate and a 15% reduction in 

complexity. 

Model 
Dev Set 

(% Error) 

Core Set 

(% Error) 

No. 

Gauss. 

LR HDPHMM 1 23.52% 24.40% 4628 

LR HDPHMM 2 23.86% 25.14% 7281 

Ergodic DHDPHMM 24.01% 25.42% 2704 

Strictly LR DHDPHMM 39.03% 38.43% 2550 

LR DHDPHMM 20.51% 21.42% 3888 

 

Table 3-1. A mapping from 48 phonemes to 39 classes is shown. This is a standard 

approach used for the TIMIT Corpus. 

1 iy 2 ih ix 3 eh 4 ae 

5 ah ax ax-h 6 uw ux 7 uh 8 aa ao 

9 ey 10 ay 11 oy 12 aw 

13 ow 14 er axr 15 l el 16 r 

17 w 18 y 19 m em 20 n en nx 

21 ng eng 22 dx 23 jh 24 ch 

25 z 26 s 27 sh zh 28 hh hv 

29 v 30 f 31 dh 32 th 

33 b 34 p 35 d 36 t 

37 g 38 k     

39 bcl pcl dcl tcl gcl kcl epi pau h# cl 
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better than its HDPHMM counterparts. Further, it can be seen that LR models perform better than 

ergodic models (as expected) while the LR-S models perform more poorly. This is due to the fact 

that the LR-S model constrains the best path to one path while the other LR models learn many 

parallel paths.  

From the last column of this table we can see LR DHDPHMM finds 3,888 Gaussians for all 

48 phonemes while two different LR HDPHMM models find 4,628 and 7,281 Gaussians for all 

phonemes respectively. These numbers show DHDPHMM can learn a less complex model that 

can explain the data better than a more complex model learned by HDPHMM. This is an 

important result that validates the basic philosophy of the nonparametric Bayesian approaches 

and also follows Occam's Razor (Rasmussen & Ghahramani, 2001). 

It should also be noted after learning the structure and parameters using the block sampler, 

we refined all the models (reestimating only the means and transition probabilities) using a few 

more EM iterations. After this EM step, the 3,888 Gaussians are distinct distributions. If we do 

not apply the EM reestimation step the actual number of distinct Gaussians for DHDPHMM is 

less than 3,888 Gaussians (for this case, it would be about 1,050 Gaussians).  For HDPHMM, the 

EM reestimation step does not change the number of Gaussians. 

 Figure 3-8 shows the structures for phonemes /aa/ and /sh/ discovered by DHDPHMM. It is 

clear that the model structure evolves with amount of data points, validating another characteristic 

of this type of nonparametric model. It is also important to note that the structure learned for each 

phoneme is unique and reflects the underlying differences between phonemes. Finally, note that 

the proposed model learns multiple parallel left-to-right paths. This is shown in Figure 3-8(b) 

where S1-S2, S1-S3 and S1-S4 depict three parallel models. These parallel paths model different 

clusters of speakers and to some extent the context. This is another example that shows sharing 

parameters enables the model to learn more complicated underlying structures while still 

estimating model parameters with sufficient accuracy. 
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Figure 3-9 shows the confusion matrix among different phonemes. From this confusion 

matrix we can see that most errors occur, as expected, between acoustically similar phonemes. In 

fact, if we use 5 broad phonetic classes, as displayed in Table 3-3, instead of using 39 phoneme 

classes, the classification error rate drops to 4.8%. 

A Comparison to Other Representative Systems 

Table 3-4 shows a full comparison between DHDPHMM and both baseline and state of the 

art systems. The first three rows of this table show three-state LR HMMs trained using maximum 

likelihood (ML) estimation. HMM with 40 Gaussians per state performs better than other two and 

 
Figure 3-8. An automatically derived model structure is shown for a LR DHDPHMM 

model (without the first and last non-emitting states) for (a) /aa/ with 175 examples (b) /aa/ 

with 2,256 examples (c) /sh/ with 100 examples and (d) /sh/ with 1,317 examples. 
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has an error rate of 26.17% on the core subset. Our LR DHDPHMM model has error rate of 

21.42% on the same subset of data (a 20% relative improvement). It should be noted that the 

number of Gaussians used by this HMM system is 5,760 (set a priori) while our LR DHDPHMM 

uses only 3,888 Gaussians. 

It should be noted that most of the differences between state of the art results in Table 3-4 can 

be attributed to various data preparation steps. For example, we have trained another model (not 

in this table) with same parameters as the one reported in this table with slightly different 

Table 3-3. A mapping of phonemes to broad phonetic classes is shown. 

Class Phonemes 

Vowels aa, ae, ah, ao, ax, ay, aw, eh, el, er, ey, 

ih, ix, iy, l, ow, oy, r, uh, uw, w, y 

Stops p, t, k, b, d, g, jh, ch 

Fricatives s, sh, z, zh, f, th, v, dh, hh 

Nasals m, n, ng, en 

Silence sil, vcl, cl, epi, dx 

 

 

Figure 3-9. The confusion matrix for a phoneme classification experiment is shown. 
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alignment between transcription and frames and the error changed to 21.81% (from 21.42%). 

Therefore, we can conclude all state of the art results in this table show similar underlying 

modeling capabilities. A simple statistical significance analysis (Gillick & Cox, 1989) also shows 

these differences are not statistically significant.  

The fourth row of Table 3-4 shows the error rate for an HMM trained using a discriminative 

objective function (e.g. MMI). We can see discriminative training reduces the error rate. 

However, the model still produces a larger error rate relative to our ML trained DHDPHMM. 

This suggests that we can further improve DHDPHMM if we use discriminative training 

techniques. Several other state of the art systems are shown that have error rates comparable to 

our model. Data-driven HMMs (Petrov et al., 2007) unlike DHDPHMM, models the context, 

which seems to be one of the main reasons that it performs so well. We expect to obtain better 

results if we also use CD models instead of CI models. 

Table 3-4. A comparison of phoneme classification algorithms is shown. 

Model 
Discriminative 

Training 

Dev Set 

(% Error) 

Core Set 

(% Error) 

HMM (10 Gauss.) No 28.44% 28.71% 

HMM (20 Gauss.) No 26.16% 27.33% 

HMM (40 Gauss.) No 25.01% 26.17% 

HMM/MMI (20 Gauss.) 

(Gunawardana et al., 2005) 
Yes 23.20% 24.60% 

HCRF/SGD 

(Gunawardana et al., 2005) 
Yes 20.30% 21.70% 

Large Margin GMMs 

(Sha and Saul, 2006) 
Yes – 21.10% 

GMMs/Full Cov. 

(Sha and Saul, 2006) 
No – 26.00% 

SVM 

(Clarkson and Moreno, 1999) 
Yes – 22.40% 

Data-driven HMM 

(Petrov et al., 2007) 
No – 21.40% 

Direct Segment Model 

(Zweig, 2012) 
Yes – 21.70% 

LR DHDPHMM No 20.51% 21.42% 
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Figure 3-10 shows the error rate vs. the amount of training data for both HMM and 

DHDPHMM systems. As we can see DHDPHMM is always better than the HMM model. For 

example, when trained only using 40% of data, DHDPHMM performs better than an HMM using 

the entire data set. Also it is evident that HMM performance does not improve significantly when 

we train it with more than 60% of the data (error rates for 60% and 100% are very close) while 

DHDPHMM improves with more data.  

Figure 3-11 shows the number of Gaussians discovered by DHDPHMM versus the amount of 

data. The model evolves into a more complex model as it is exposed to more data. This growth in 

complexity is not linear – the number of Gaussians grows 33% when the amount of data increases 

5 times. This is expected due to the use of the DP prior constraints. If we want to change this 

behavior we would have to use other type of priors. 

Figure 3-10. The error rate vs. the amount of training data is shown for LR DHDPHMM 

and LR HMM. 
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 Conclusions 

In this chapter we introduced an extension of HDPHMM, referred to as DHDPHMM that 

incorporates a parallel hierarchy to share data between states. We have also introduced methods 

to model non-ergodic structures. We demonstrated through experimentation that LR DHDPHMM 

outperforms both HDPHMM and its parametric HMM counterparts. We have also shown that 

despite the fact that we have only used ML training for DHDPHMM, its performance is better 

than a discriminatively trained HMM and is comparable to other state of the art discriminatively 

trained models.  

This chapter describes the core contribution of this dissertation and establishes the underlying 

theory. Chapter 4 will focus on incorporating semi-supervised training and context modeling. In 

Chapter 5 we will investigate use of nonparametric Bayesian models for automatic discovery of 

acoustic units.  

Extensions to this work not addressed in this dissertation are the effect of using priors other 

than a Dirichlet process. We have shown that complexity grows very slowly with the data size 

 

Figure 3-11. The number of discovered Gaussians is shown as a function of the amount 

of training data. 
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because of the DP properties (only 33% more Gaussians were used after increasing the size of the 

data five times). Therefore it makes sense to explore other types of prior distributions to 

investigate how it can affect the estimated complexity and overall performance.  

Another possible direction is to replace HDP emissions with more general hierarchical 

structures such as a Dependent Dirichlet Process (MacEachern , 1999) or an Analysis of Density 

(AnDe) model (Tomlinson and Escobar, 1999). It has been shown that the AnDe model is the 

appropriate model for problems involving sharing among multiple sets of density estimators 

(Tomlinson & Escobar, 1999; Teh et al., 2006). 
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CHAPTER 4 

SEMI-SUPERVISED TRAINING OF DHDPHMM 

We have introduced a DHDPHMM in Chapter 3. We have shown these models can 

outperform HMMs (including discriminatively trained HMMs) and some other state of the art 

models in a completely supervised task such as classification. In a supervised task, labels and 

observations are given and the goal is to learn a mapping between them.  

In an unsupervised task, on the other hand, we only have the observations and the goal is to 

infer certain structures or patterns in the data. An example of this type of task is clustering. Well-

known solutions to this problem include the popular K-MEANS (Anderberg, 1973) and GMM 

(Bishop, 2007) algorithms. In statistical modeling this goal is usually stated as learning the 

distribution of the observations and their properties (Hastie et al., 2009). A middle ground 

between the supervised and unsupervised tasks is semi-supervised training. In semi-supervised 

problems we have partial information about the observations. 

In most practical hierarchical pattern recognition applications, there are several hidden levels 

between the observations and the labels. For example, in speech recognition, the labels are words, 

the observations are feature vectors, and we hypothesize a hidden layer consisting of phonemes. 

Labeled training data is always labeled at the word level without time alignment, and we must 

somehow automatically infer the phoneme labels. The alternative, to label phonemes, is time-

consuming, costly and prone to error. Lee et al (1989) demonstrated that statistical systems could 

actually achieve higher levels of performance by using word labels instead of phoneme labels, 

and treating the phoneme labels as a hidden unit. The training process in such situations is 
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referred to as semi-supervised training since only word labels are specified and the system must 

determine the time alignments of these labels as part of the training process. 

The challenge in the training task then becomes to segment observations into consecutive 

blocks each aligned with one of the labels in the label sequence. Once this alignment is 

performed, we can infer a mapping between labels and observations. This procedure is usually an 

iterative algorithm; starting from an initial segmentation (e.g. uniform), we learn the mapping and 

then re-segment the data until convergence is achieved. The great success of HMM-based speech 

recognizers can be attributed to the relative ease of implementing such a semi-supervised training 

procedure by exploiting three things: (1) an HMM’s sequential properties, (2) the EM algorithm’s 

convergence properties and (3) the Viterbi algorithm’s ability to time-align data. As we will show 

in the following section, this is not the case for DHDPHMM (or HDPHMM) and we need a new 

semi-supervised algorithm in order to be able to use these models for semi-supervised training. 

A related problem is modeling of context. Modeling context is one of the major advances 

made in speech recognition in the 1990’s (Lee, 1990). In CI systems, we use only one acoustic 

model for each phoneme. However, as explained in Section 1.1, it is well known that due to the 

physics and cognitive aspects of speech production, adjacent sounds influence one another. This 

is known as coarticulation (Ladefoged, 1993). Sounds can assimilate to the following sound 

(referred to as anticipatory assimilation) or a proceeding sound (progressive assimilation) (Jun, 

1995). This suggests modeling context can improve the speech recognition task significantly 

(Schwartz et al., 1985). We will investigate effect of context modeling for DHDPHMM models in 

Section 4.2. 

This chapter is divided into four sections. In Section 4.1 we introduce a model for semi-

supervised training of DHDPHMM and derive its approximations. In Section 4.2 the context 

modeling problem will be investigated. In Section 4.3 experimental results are presented on the 
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TIMIT Corpus. In Section 4.4 we summarize the results of this chapter and propose some 

additional approaches to the context modeling problem.  

 Semi-Supervised Training of DHDPHMM Models 

Let us begin by reviewing semi-supervised training of HMMs and then discuss why this 

procedure can’t be used directly for DHDPHMM and HDPHMM. Next, we will introduce a 

generative model for semi-supervised training of DHDPHMM and a corresponding 

approximation algorithm that allows us to use DHDPHMMs in semi-supervised task similar to 

acoustic modeling. 

HMM acoustic models are usually trained using a special extension of the EM algorithm also 

known as embedded training (Young et al., 2006). The procedure takes advantage of non-emitting 

states of individual HMMs to generate a composite HMM for each utterance. This is one reason 

why the treatment of non-emitting states presented in Section 3.5 was important. Typically we 

have several utterances and their corresponding transcriptions and a lexicon. A lexicon is used to 

map transcripts into a sequence of phonemes. However, as discussed before, the time alignment 

between the acoustic units (e.g., phonemes) and acoustic observations (e.g., feature vectors) is not 

known. 

 One solution to this problem is to build a composite HMM for each utterance. A composite 

HMM is nothing more than a concatenation of the individual HMMs into one large HMM. Since 

one of the most useful properties of any HMM is to segment the observations into states, the 

composite HMM will implicitly segment the utterance into individual phoneme HMMs and 

update the corresponding parameters for each HMM. This process is reminiscent of dynamic time 

warping (Furui, 1986) and is an integral part of any speech recognition training process. This 

procedure is executed for all utterances to complete a single iteration of the algorithm. Model 
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parameters are then updated once after all training utterances have been aligned and processed 

(Young et al., 2006). This is often referred to as batch mode training. 

The above simple procedure is all that is required to train HMMs without having time 

alignments for each phoneme in the utterance. We must pay special attention to how silence (or 

non-speech) is inserted into this process so that we can account for arbitrary amounts of silence 

between words (Alphonso, 2003). However, the details of this process are beyond the scope of 

this dissertation. 

4.1.1 Composite DHDPHMM Model 

We cannot directly adapt the composite HMM approach to DHDPHMM because a 

DHDPHMM learns its structure (e.g. number of states and how they are connected) from the 

corresponding observations. Therefore, there are no initial models available to generate a 

composite model. However, we can introduce a generative model that enables us to build a 

composite DHDPHMM for semi-supervised training. 

Let’s assume we have a list of all models denoted by m: 

[ , , ..., , ..., ,..., ,..., ] ,a b hh ie s zm m m m m m=m   (4.1) 

where in this definition ma is the model corresponding to the phoneme /a/. Let us also define an 

array of utterances, U. Each utterance is indexed by an integer number u. For example, consider 

the 27th utterance in our list, and let’s assume for u = 27, we have: U[27] = /hh ie s hh/. 

Therefore it is clear that each utterance is a sequence of models defined in (4.1), and the model 

assignments for entire corpus are enumerated in U.  

For each utterance we have an array, or list, of models. We can define a data structure, Q, that 

contains all models for all utterances, indexed by the position of the model in the list. For 

example, Q[27] = {1:mhh, 2:mie, 3:ms, 4:mhh}. Let Lu denote the total number of models used for 

utterance u. We have: 
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[ ] { }1 21: ,2 : ,..., : .n n u nLu
Q u m m L m=   (4.2) 

We also need a function to return the model given the index of the model in the utterance, which 

we will define as ϕ(i, u, Q): 

( ) ( ){ }, , Return the model indexed by i from .i u Q Q uϕ =  (4.3) 

In order to obtain a generative model for a composite DHDPHMM we need to develop a 

generative model for an utterance given the labels. Continuing our example of the 27th utterance 

that consists of the models /hh ie s hh/, we can represent these models with a Markov chain as 

shown in Figure 4-1. Consider an observation sequence Oj and utterance membership function, Φ, 

with length T: 

1 2 3... ,j TO o o o o=   (4.4) 

1 2( ) ... ,i TO I I Iφ =   (4.5) 

where Ik is the model index for the kth observation ok.  

In order to generate Oj we first have to sample the Markov chain shown in Figure 4-1 to 

determine which model produced the observation ok. We can write the boundary conditions as: 
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The Markov relationship can be written as: 

1 1

1 ( , , )1

1 ( , , )1

| ~ ( , , )

with probability

,      
1 with probability 1

i i i

i I u Qi

i I u Qi

I I I u Q

I

I

ϕ

ϕ

ε

ρ

ρ

− −

−
−

−
−




= 
+ −

 (4.7) 

 

Figure 4-1. A Markov chain that represents a composite HMM is shown.  
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where 1 i uI L< <  and 
( , , )I u Qiϕ

ρ  is the self-transition probability for the model indexed by Ii in 

utterance u. Starting from i = 1 we select the first model in the list and generate an observation 

using this model, and then we use (4.6) and (4.7) to select the next model. This is either the same 

model (a self-transition) or the next model in the Markov chain.  

A formal definition based on (3.24) can be written as: 
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 (4.8) 

where in this equation each DHDPHMM is indexed by ψ(It,u,Q). Equation (4.8) defines a 

composite DHDPHMM for the utterance indexed by u. A composite DHDPHMM is defined for 

every utterance in the dataset. Therefore, to generate the entire dataset we have to first select an 

utterance index and then use this generative model to generate observations for that utterance. 

The definition in (4.8) makes it clear how to generate observations for an utterance given a 

sequence of labels and a set of DHDPHMMs. We can also define an inference algorithm similar 

to a block sampler for HDPHMM (or modified block sampler for DHDPHMM) but the result 

would be extremely inefficient and from a computation point of view impractical because:  

1. Convergence of the algorithm would be too slow because we have to sample It. 
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2. For sampling It we also need to sample the self-transition probability, ρ in (4.7), for every 

model. This sampling of ρ involves computing the likelihood that xt belongs to the 

current or the next model. This is a time-consuming operation because we have to 

compute this for all observations for each and every utterance. 

3. All models are updated sequentially and hence we cannot use coarse parallelization. This 

is a serious problem because we have at least 48 models and running them in parallel 

makes using DHDPHMM feasible but running them sequentially makes the algorithm 

impractical.  

As a result we need to use some sort of approximation that preserves the basic properties of (4.8) 

while maintaining efficiency. In the next section we see how this can be done by leveraging the 

Viterbi algorithm. 

4.1.2 Approximation of the Generative Model for Semi-Supervised Training 

Exact inference of a composite DHDPHMM in (4.8) is computationally difficult because all 

models are linked together through It and xt. However, if It was known, the composite 

DHDPHMM reduces to a collection of independent DHDPHMMs (xt can be segmented based on 

It). We can divide this problem into two sub-problems: (1) segmentation of the observations into 

aligned blocks with labels, and (2) DHDPHMM training. The first problem is a well-known 

problem in speech recognition and can be solved using a forced alignment process that is based 

on the Viterbi algorithm (Alphonso, 2003). The second problem has already been addressed in 

Chapter 3. 

Assuming that we have a set of phoneme DHDPHMM models, we can generate a regular 

composite HMM by connecting these HMMs together based on a given sequence of labels and 

utilizing non-emitting states. We can use the Viterbi algorithm to find a time alignment between 

observations and states for the composite HMM. However, since these states can also be assigned 

to phoneme DHDPHMMs we can also find the alignment between the labels and observations.  



 83

Suppose the initial probabilities, transition probabilities and output probabilities are given by 

πinit, π, and b, respectively. The Viterbi algorithm can be described as follows (Viterbi, 1967; 

Alphonso, 2003; Huang et al., 2001): 

1. Initialization:  

( ) ( )1

1

( )
1 .

( ) 0

init i iV i i b o
i N

B i

π=
≤ ≤

=
 (4.9) 

2. Induction : 
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≤ ≤

 = ≤ ≤ ≤ ≤ 
 (4.11) 

3. Termination and back-tracking: 

*
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s Arg B i
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=  (4.12) 

* *
1 1( ), 1, 2,...,1 ,t t ts B s t T T+ += = − −  (4.13) 

( )* * * *
1 2, ,..., .TS s s s=  (4.14) 

where S* is the optimum path through the composite HMM and as stated above can be used 

directly to find the time alignment between the observations and the sequence of labels. 

The Viterbi algorithm can find a time alignment if we already have the HMM models. But, 

we don’t have the HMM models yet. Therefore we need to use a two-step iterative approach in 

which we estimate the model structure and parameters in the first step and align the observations 

in second step. The resulting algorithm is as follow: 

1. Initialize the alignment using a heuristic method. 

2. Use the alignment to generate a list of examples for each DHDPHMM. 

3. Use examples generated in Step 2 to train each DHDPHMM using the modified block 

sampler of Chapter 3. 
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4. Use models obtained in Step 3 to time align the labels to observations using the Viterbi 

algorithm (by first generating a composite HMM for each utterance). 

5. If the maximum number of iterations is reached or a convergence criterion is met, exit. 

Otherwise, return to Step 2. 

In this algorithm convergence can be checked by calculating the average log-likelihood of the 

models for training or a separate development data set can be used. Initialization can be done 

using one of several heuristic methods that are discussed in Section 4.3. 

 Context Modeling 

Context modeling has been previously discussed in Section 1.1. One of most popular methods 

for context modeling takes into account the left and right context of a sound (Lee, 1990). This 

type of acoustic model is referred to as a triphone. For example, “k-ae+t” represents /ae/ 

proceeded by /k/ and followed by /t/. The center context, /ae/, defines the monophone class with 

which this triphone is associated for clustering or tying. The number of potential triphones in a 

typical speech recognizer is very large (e.g. 42x42x42= 74088). Many triphones occur 

infrequently and have little or no data associated with them in a typical training corpus. 

Therefore, we have to share parameters among triphones to achieve good performance. 

Sharing parameters can be achieved in many different ways (e.g. tie the models or tie the 

states) but the most common approach is to use a phonetic decision tree to cluster triphone states 

(Young & Woodland, 1994). A decision tree is a binary tree that classifies data by asking binary 

(e.g. yes/no) questions. The questions are based on the linguistic properties of the sound, such as 

“is the left phoneme a stop?” The tree is built by successively splitting the data by selecting the 

question that causes more entropy reduction. We usually set a threshold on the minimum number 

of data points in a single node and stop growing the tree once the number of data points reaches 
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this threshold. We typically assume each state is modeled by a single Gaussian and use the 

parameters of this model for all likelihood calculations required by the tying algorithm.  

Though it is possible to model context in a nonparametric Bayesian framework by using an 

additional level in our hierarchy that models relationships between models and states, due to time 

and resource constraints, we did not develop this approach in this dissertation. We have instead 

used two approaches to explore context modeling in a DHDPHMM: (1) tie triphones using a 

decision tree framework, or (2) direct context modeling based on broad phonetic classes.  

Decision Tree Based Tying  

In this approach we first train CI models using the semi-supervised training algorithm 

discussed in Section 4.1. After training CI models we follow the standard procedure to obtain a 

decision tree and further train the resulting CD models using the EM algorithm (Young & 

Woodland, 1994). However, since the algorithms for generating the decision tree only use a 

single Gaussian distribution to represent each state, we have to perform some model preparation 

before we can apply this technique. The algorithm is as follows: 

1. Train CI models using a semi-supervised algorithm. 

2. Clone CI models into the appropriate CD models. 

3. Generate a copy of the CI models where all the mixtures are collapsed into a single 

Gaussian. This can be done by using a weighted average approach: the single mixture 

approximation is generated by computing a weighted average of all the mixture 

components.  

4. Use the models generated in Step 3 to generate sufficient statistics (mean, covariance and 

counts for each Gaussian) by training the data using several iterations of the EM 

algorithm. 

5. Use the generated sufficient statistics in Step 4 to grow a phonetic decision tree. 
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6. Discard the models generated in Step 3 and instead use the original CI models trained in 

step 1 along with the tree generated in Step 5 to train the final triphone models (using 

EM). 

In this approach it should be noted that we first fix the structure for all triphones that share the 

same phoneme as the center context, then use a phonetic decision tree to cluster states for all 

triphones with the same center context, and finally reestimate the tied triphone models using EM.  

Using Broad Phonetic Class Context 

An alternative approach is to use context based on the broad phonetic class (BPCC). Since we 

have five different broad phonetic classes (see Table 3-3), the number of models would be 

5x5x48 = 1,200 models. Even for this modest number of models we have models that are not 

observed in the training data or are represented with only few examples. For these models we can 

back off to the corresponding CI model. The procedure for broad phonetic context modeling is as 

follows: 

1. Train CI models using a semi-supervised algorithm. 

2. Clone CI models into BPCC models. Each BPCC is initialized based on its central 

phoneme (e.g. all BPCC with central phoneme /hh/ will be initialized with CI /hh/ 

model). 

3. Scan the training transcription and identify BPCCs with a small number of examples. 

4. For models with a sufficient number of examples (e.g. 100) train the BPCC models using 

EM. Other models are automatically backed off to their CI counterparts. 

Again we fix the structure for all BPCC models with the same central phoneme and only use 

EM to further adjust CI parameters to the specific context. Note that state tying is not used. 
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 Experiments  

In this section we provide some experimental results that compare supervised training versus 

semi-supervised training algorithms for DHDPHMM. We use two different methods to initialize 

the semi-supervised training algorithm. Both semi-supervised and supervised results will be 

compared with the baseline and other state of the art systems. Furthermore, we also compare CD 

trained DHDPHMMs with a comparable HMM system.  

4.3.1 Evaluation Methods 

In the phoneme recognition problem, unlike phoneme classification, the boundaries between 

subsequent phonemes are not known (during the recognition phase) and should be estimated 

along with phoneme labels. During the recognition process we have to decide if a given frame 

belongs to the current group of phonemes under consideration or we have to initiate a new 

phoneme hypothesis. This decision is made by considering both the likelihood measurements and 

the language model probabilities. All systems compared in this section use a bigram language 

model. However, the training procedure and optimization of each language model is different and 

has some effect on the reported error rates. 

In the following we define % Correct and % Error as follows (Young et al., 2006):  

% ,
N S D

Correct
N

− −
=   (4.15) 

% ,
S D I

Error
N

+ +
=   (4.16) 

where N is the total number of labels in the reference transcriptions, S is the number of 

substitution errors, D is the number of deletion errors and I is the number of insertion errors.  

Similar to the phoneme classification experiments in Chapter 3 we have used the TIMIT 

Corpus for all phoneme recognition experiments in this section. TIMIT is a natural choice to 
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compare supervised and semi-supervised training algorithms since it was manually segmented 

into phonemes. The front-end configuration is exactly the same as the experiments in Chapter 3.  

4.3.2 Supervised Phoneme Recognition 

In the first experiment we use a completely supervised method to evaluate DHDPHMMs. 

This allows us to compare supervised and semi-supervised methods for DHDPHMM and to 

determine if our semi-supervised algorithm based on approximation of the generative model 

works correctly. In this section, DHDPHMMs were trained only using maximum likelihood and 

did not use context information.  

The process for training supervised models for a recognition task is exactly the same as the 

process we used to train DHDPHMM for the classification task in Section 3.7.4. We first extract 

the data for each phoneme based on the manual transcription and then we train each DHDPHMM 

using the corresponding time-aligned data. The recognition stage differs from the decoding stage 

for the classification task and involves searching through the space of all possible hypothesis 

guided by the language model and the acoustic evidence.  

Table 4-1 shows the detailed results for both the LR DHDPHMM and HMM baseline 

systems. As this tables shows, the error rate decreases from 32.64% to 29.23 % (11% relative) for 

the full evaluation set while correct recognition rate increases from 70.72% to 74.09%. This is a 

major improvement relative to the baseline HMM and is consistent with classification results 

reported in Table 3-4. 

Table 4-1. Supervised training results comparing DHDPHMM and HMM are shown. 

Model Subset % Correct % Sub.  % Del.  % Ins. % Error 

HMM Core 70.72 19.98 9.30 3.36 32.64 

HMM Dev. 71.94 19.27 8.78 3.51 31.57 

HMM All 71.62 19.56 8.82 3.70 32.08 

LR DHDPHMM Core 74.09 17.95 7.96 3.79 29.71 

LR DHDPHMM Dev. 75.10 17.45 7.45 3.72 28.62 

LR DHDPHMM All 74.70 17.72 7.57 3.94 29.23 
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4.3.3 Semi-Supervised Phoneme Recognition 

In Section 4.1.2 we introduced a semi-supervised training algorithm that approximates a 

generative model for semi-supervised training of DHDPHMM. We also mentioned that the 

algorithm needs to be initialized using a heuristic method. In this section, we investigate the 

performance of that algorithm and compare two different approaches for initialization: 

1. Uniform segmentation (Uniform): In this approach we simply spilt observations 

equally between different consecutive models (essentially dividing the number of 

frames by the number of models). 

2. Forced Alignment (CDHMM): This approach is based on using the forced alignments 

between HMM acoustic models trained using another speech recognizer and the 

utterance. These acoustic models are CD triphones and used to segment the data to 

initialize the algorithm. Note that it is not uncommon to use hybrid systems like this. 

For example deep-learning based approaches usually initialized used CDHMMs 

(Hinton et al., 2012). 

Figure 4-2 shows the error rate on the development set for the two approaches to 

initialization. It can be seen that the forced alignment approach produced better results, though 

the differences diminish as more iterations of reestimation are used. Table 4-2 shows a 

comparison of the initialization methods to the HMM baseline (which uses CDHMM). We can 

see that initialization using CDHMM outperforms uniform initialization. Uniform initialization of 

DHDPHMM performs worse than the HMM baseline while CDHMM initialization of 

DHDPHMM reduced the error rate by 7% relative. It is also interesting to note that DHDPHMM 

always gave a lower substitution error rate relative to HMM. This can be attributed to better 

modeling capabilities of DHDPHMM. By comparing to the supervised trained model of 

Table 4-1 we can see, as expected, semi-supervised models outperform the supervised models. 



 90

It should be emphasized that we have used an approximation algorithm which always 

performs worse than the exact algorithm and is sensitive to initialization. Therefore further 

research should be conducted to find better initialization methods or other approximations that 

match the generative composite DHDPHMM more closely.  

4.3.4 Context Dependent Phoneme Recognition 

In this section we provide experiments to compare the performance of context dependent 

DHDPHMM models with HMM baselines. We present both triphone DHDPHMM models and 

broad phonetic context (BPCC) models. 

 
Figure 4-2. A comparison of model initialization methods for DHDPHMM is shown.  

Table 4-2. A comparison of initialization methods for DHDPHMM and HMM is shown. 

Model Initial. Subset % Corr. % Sub. % Del. % Ins. % Err. 

HMM - Core 72.92% 19.22% 7.86% 3.96% 31.05% 

HMM - Dev. 74.07% 18.55% 7.39% 3.93% 29.86% 

HMM - All 73.84% 18.73% 7.42% 4.03% 30.17% 

LR DHDPHMM Uniform Core 71.53% 18.77% 9.70% 3.88% 32.35% 

LR DHDPHMM Uniform Dev. 73.37% 16.78% 9.86% 3.85% 30.48% 

LR DHDPHMM Uniform All 72.92% 17.31% 9.77% 4.08% 31.16% 

LR DHDPHMM CDHMM Core 74.40% 17.73% 7.87% 3.42% 29.02% 

LR DHDPHMM CDHMM Dev. 76.32% 16.91% 6.77% 3.88% 27.56% 

LR DHDPHMM CDHMM All 75.60% 17.43% 6.97% 3.96% 28.36% 
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Table 4-3 compares a CD HMM baseline with both CD DHDPHMM and BPCC 

DHDPHMM. Both models were trained using EM after fixing the CI model structure. In other 

words, we have not implemented any nonparametric Bayesian model to learn context dependent 

models directly and CD modeling was only used to further refine the nonparametric CI models. 

We observe that the advantages of using DHDPHMM diminish when using CD models. The error 

rate decreases only 1.5% relative to the triphone HMM baseline (27.93% vs. 27.51%) while for 

semi-supervised CI model the error rate reduced by 7% relative to the semi-supervised CI 

baseline (31.05% vs. 29.02%). However, the CD systems are significantly more complex than the 

CI systems, containing two orders of magnitude more models. It remains a computational and 

algorithmic challenge to train CD models directly using DHDPHMM and nonparametric 

Bayesian approaches. 

4.3.5 Comparisons to Other Popular Systems 

Table 4-4 summarizes the results of DHDPHMM models. Table 4-5 presents a comparison of 

DHDPHMM to several state of the art systems. As we can see, systems can be divided into two 

Table 4-3 A comparison of systems for context dependent models is shown. 

Model Subset % Corr. % Sub. % Del. % Ins. % Error 

Triphone HMM Core 76.29% 17.87% 5.85% 4.21% 27.93% 

Triphone HMM Dev. 77.82% 16.68% 5.49% 4.22% 26.40% 

Triphone HMM All 77.67% 16.92% 5.41% 4.68% 27.01% 

BPCC LR 

DHDPHMM 
Core 73.07% 18.23% 8.70% 3.10% 30.03% 

BPCC LR 

DHDPHMM 
Dev. 75.11% 17.08% 7.81% 4.20% 29.10% 

BPCC LR 

DHDPHMM 
All 74.44% 17.56% 8.00% 4.36% 29.92% 

Triphone LR 

DHDPHMM 
Core 75.76% 17.16% 7.08% 3.27% 27.51% 

Triphone LR 

DHDPHMM 
Dev. 76.75% 16.50% 6.75% 3.49% 26.74% 

Triphone LR 

DHDPHMM 
All 76.71% 16.71% 7.01% 3.40% 26.80% 

 



 92

groups based on their training method (discriminative or not) and context modeling. The first two 

rows of Table 4-5 are HMM baselines. We can see that DHDPHMM works much better than a 

comparable CI HMM model – the error rate drops from 31.05% for HMM to 29.02% for 

DHDPHMM.  

The third and fourth rows show two context-dependent HMM models. We can see that CI 

DHDPHMM performs slightly better than the CD model in row three (CD HMM 2) but slightly 

worse than CD model of row four (CD HMM 3). However, CD DHDPHMM works better than 

all CD HMM systems presented in this table. The fact that CI DHDPHMM works better than 

some of the CD models is a very important result. As noted before, CI systems are much simpler 

than CD systems (48 models vs. more than 4,000 models). Also, our CI models are completely 

nonparametric Bayesian models while our CD DHDPHMMs are EM trained models based on CI 

DHDPHMM models. This is one of the reasons that the gain for CD models vanishes relative to 

the gain for CI models. We expect if we can model CD models directly using nonparametric 

approaches we can restore some of this lost gain. 

Our CI model also performs better than a discriminatively trained CI HMM (MMI 1 and 

MMI 2). However, we can see that a discriminatively trained CD HMM (row seven) gives 

slightly better results relative to the CD DHDPHMM model trained only using maximum 

likelihood. Note this system has been trained using a different discriminative framework and uses 

Table 4-4 A summary of DHDPHHMM results is shown. 

Model Supervised 
Context 

Modeling 
% Error % Correct Subset 

CI LR DHDPHMM Yes No 29.71 % 74.09 % Core 

CI LR DHDPHMM Yes No 28.62 % 75.10 % Dev. 

CI LR DHDPHMM Yes No 29.23 % 74.70 % All 

CI LR DHDPHMM No No 29.02% 74.40% Core 

CI LR DHDPHMM No No 27.56% 76.32% Dev. 

CI LR DHDPHMM No No 28.36% 75.60% All 

CD LR DHDPHMM No Yes 27.51% 75.76% Core 

CD LR DHDPHMM No Yes 26.74% 76.75% Dev. 

CD LR DHDPHMM No Yes 26.80% 76.71% All 
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a Finite State Machine (FSM) decoder (Mohri et al., 2008). Therefore, it is not a completely fair 

comparison.  Also statistical significance test shows the difference between this system and ours 

is not statistically significant.    

It is also important to note that two of the models that show state of art results for phoneme 

classification task (Table 3-4), Large Margin GMM (Sha & Saul, 2006) and Direct Segmental 

Model (Zweig, 2012), show much worse performance than our CI model on this recognition task. 

Table 4-5. A comparison of DHDPHMM with other common systems is shown. 

Model 
Discrim. 

Training 

Context 

Modeling 

% 

Error 

% 

Correct 
Subset 

Baseline CI-HMM No No 31.05% 72.92% Core 

Baseline CD-HMM No No 27.93% 76.26%  

CD HMM 2 

(Lee and Hon, 1989) 
No Yes 30.90% – Core 

CD HMM 3 

(Young and Woodland, 1994) 
No Yes 27.70% – Core 

HMM MMI 1 

(Kapadia et al. ,1993) 
Yes No 32.50% 73.5% Random 

HMM MMI 2 / Full Cov. 

(Kapadia et al. ,1993) 
Yes No 30.30% 74.4% Random 

CD HMM /DM 

(Watanabe et al., 2010) 
Yes Yes 26.70% – – 

Heterogeneous Class. 

(Halberstadt and Glass, 1998) 
Yes Yes 24.40% – Core 

Data-driven HMM 

(Petrov et al., 2007) 
No Yes 26.40% – Core 

Large Margin GMM 

(Sha and Saul, 2006) 
Yes No 30.10% – Core 

CRF 

(Morris and Fosler-Lussier, 2008) 
Yes No 29.90% 73.2% All 

Tandem HMM 

(Morris and Fosler-Lussier, 2008) 
Yes Yes 30.60% 75.6% All 

CNN/CRF 

(Palaz et al., 2013) 
Yes Yes 29.90% – Core 

Direct Segmental Model 

(Zweig, 2012) 
Yes No 33.10% - Core 

CI HCRF – MPE initialized 

(Sung & Jurafsky, 2009) 
Yes No 28.30% - Core 

CI HCRF – ML initialized 

(Sung & Jurafsky, 2009)  
Yes No 29.00% - Core 

Deep Belief Network  

(Hinton et al., 2012) 
Yes Yes 20.00% – Core 
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Phoneme recognition is much more difficult than phoneme classification task and new algorithms 

usually perform poorly on recognition tasks initially until more elaborate training techniques are 

developed. In case of DHDPHMM we can see our CI models are already among the best CI 

models (better than discriminately trained HMMs and comparable to discriminatively trained CI 

HCRF). However, as discussed before, our current CD models still need further work to reach to 

their full potential.  

From Table 4-5, we can see models based on deep learning give the state of the art results 

that are much better than any HMM/GMM based system. However, it should be noted that these 

impressive improvements are not directly a result of better modeling capabilities of HMM/DNN 

models but are a result of long context windows used in these systems (Pan et al., 2012). It has 

been shown that if we use a short window (e.g. one frame) this gain disappears. However, since 

HMM/GMM based models (including DHDPHMM) can’t handle highly correlated observations, 

a comparison between HMM/DNN and HMM/GMM (including DHDPHMM) is unfair. 

Nevertheless, further research on the DHDPHMM/DNN system seems to be one of the next 

logical steps for our research. 

 Conclusion 

In this chapter we have introduced a generative composite DHDPHMM and an 

approximation algorithm that allows us to train DHDPHMM (and also HDPHMM) in a semi-

supervised fashion. It has been shown the resulting models perform better than both supervised 

DHDPHMMs and HMMs. Our results indicates our CI DHDPHMM models are among the best 

CI models and their performance can even be compared with some of the published CD systems. 

We have also studied the improvement that can be gained by further refining our CI 

DHDPHMM models using traditional tied-triphone CD modeling. As expected we have found the 

improvements over the baseline are modest. It is expected that further improvements can be 
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obtained by training CD models using a nonparametric Bayesian framework. However, due to the 

complexity of the resulting CD system and our computational constraints, we did not pursue this 

approach.  

We have also noted that HMM/DNN systems currently produce the state of art results for 

many speech recognition tasks because they combine sequence modeling capabilities of HMMs 

with classification capabilities of DNNs. DNNs can use highly correlated data, unlike GMMs and 

their nonparametric counterparts. Therefore, another promising direction is to study the 

performance of a hybrid DHDPHMM/DNN system. Integration of deep learning algorithms and 

nonparametric Bayesian modeling is an emerging area of machine learning. Two examples of 

such systems are the hybrid system based on DHDPHMM/DNN proposed here and hierarchical 

deep learning (Salakhutdinoy et al., 2013). 
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CHAPTER 5 

ACOUSTIC UNIT AND LEXICON DISCOVERY 

Recently more attention has been given to speech recognition in languages for which few 

resources exist. We often refer to these as less common or low resourced languages. For example, 

IARPA’s Babel program (Harper, 2011) sponsored a competition to create a speech to text 

system in a mystery language in one week of time using very limited resources. Though 

traditional complex CD-based systems perform well when there are ample resources, it is hard to 

develop such systems when minimal resources exist. The high level goal of the work presented in 

this dissertation is to address this problem by reducing the complexity of the system.  

This chapter is organized as follows. In Section 5.1, we review the motivation for this work. 

In Section 5.2 we review related work on lexicon discovery. In Sections 5.3 and 5.4, we introduce 

our approach for discovering the transducer and the lexicon respectively. Finally, in Section 5.5 

experimental results are presented on segmentation, the relationship of ADUs to phonemes, 

lexicon discovery and the STD task. 

 Motivation 

Modern speech recognition technology is based on decoding new acoustic observations by 

searching through a space defined by all possible combinations of these units. The relationship of 

these units to words, which is defined by a lexicon, plays an important role in this process. 

Accounting for the relationship between words, which is the function of a language model, is also 

important. To train a speech recognizer, we need speech signal data which is converted to a 

sequence of acoustic observations through the feature extraction process. Usually we are given a 

parallel word transcription (e.g. word level transcription without time alignment) with these 
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acoustic features. However, in the low resourced language scenario, the only available data are 

the acoustic observations.  

The existence of a lexicon is not always guaranteed. For example, many languages do not 

have a suitable lexicon or even a writing system (e.g. African click languages). Even for widely 

used languages such as English, lexicons often have to be frequently updated because new words 

are constantly being added to the language. As a result, lexical resources often are a bottleneck in 

the process of building a speech recognizer for new languages, and construction of a lexicon is a 

very expensive and time-consuming process that requires a significant amount of linguistic 

expertise. To make matters worse, such expertise might not be readily available.  

A lexicon essentially determines what sub-word units will be used in the speech recognizer. 

Most if not all languages can be represented in terms of a universal set of phonemes such as the 

International Phonetic Alphabet (Ladefoged, 1990) or Worldbet (Hieronymus, 1993). Most state 

of the art systems use phoneme units following what has been done in common languages such as 

English. However, though in theory all languages can be represented by some finite set of 

fundamental units, phoneme units might not be optimal for all other languages, or the specifics of 

these units can be an engineering problem in itself. When adding new words to the lexicon, we 

have to map these words into phonemes either automatically or manually. The former requires 

sophisticated software; the latter requires linguistic expertise. Therefore if we can derive the 

lexicon and these underlying units automatically from the data, we can circumvent these 

problems.  

In this chapter, we study the problem of unsupervised discovery of acoustic units and a 

related problem – automatic segmentation of speech. Most approaches to automatic discovery of 

acoustic units (Bacchiani & Ostendorf, 1999) do this in two steps: (1) segmentation and (2) 

clustering. Segmentation is accomplished using a heuristic method that detects changes in energy 

and/or spectrum. Similar segments are then clustered using an agglomerative method such as a 

decision tree. Our approach is based on training a transducer that can combine both stages into 
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one and directly maps the observations into ADUs. Learning the transducer is completely 

unsupervised and we only use the acoustic data with no language knowledge or transcription.  

 Related Work 

We first study the segmentation properties of the transducer and will show its performance is 

superior to other unsupervised algorithms. Next we study the relationship between ADUs and 

phonemes in English. In these experiments, we use the existing phoneme alignments for TIMIT 

to determine the relationship between manually defined phonemes and automatically discovered 

units. We will use two different approaches to study this relationship: (1) a confusion matrix and 

(2) a mapping of ADUs to phonemes. We will show there is a close relationship between ADUs 

and phonemes that demonstrates the discovered units are linguistically meaningful.  

Next we investigate the usability of the ADUs in an STD by query task (Hazen et al., 2009). 

The goal of STD by query is to retrieve utterances containing the words included in the query. 

We will show that we can obtain state of the art results for unsupervised algorithms. Finally we 

propose an algorithm to discover the lexicon given a parallel word transcription. We investigate 

two scenarios: (1) the word alignment is given and we only need to find the best mapping 

between word examples and ADUs (supervised lexicon discovery), and (2) the word alignment is 

not given and we want to learn the mapping along with the alignment (semi-supervised lexicon 

discovery). We will show our proposed algorithm can give similar results to other state of the art 

systems reported in the literature despite the fact that our system is much simpler and discovers 

the lexicon independently of the acoustic units. Other systems discover acoustic units and the 

lexicon jointly.  

5.2.1 Speech Segmentation 

Speech segmentation, defined as the process of finding boundaries between various acoustic 
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units such as words or phonemes, is one of the fundamental processes that almost all speech 

recognition algorithms perform implicitly or explicitly. Semi-supervised training of acoustic 

models using word transcriptions and a lexicon generates speech segmentation as a byproduct. 

However, in this chapter we are interested in unsupervised segmentation.  

Most unsupervised algorithms for speech segmentation rely on changes in the acoustic data or 

spectrum (Ma et al., 2005; Bacchiani and Ostendorf, 1999; Paliwal, 1990; Wang et al., 2015). In 

these approaches, each segment is assumed to be somewhat different from adjacent segments but 

different segments are not related to each other. Lee and Glass (2012) proposed a nonparametric 

Bayesian approach for unsupervised segmentation of speech. A Dirichlet Process Mixture (DPM) 

model was used. In order to obtain phoneme-like segments, a 3-state HMM was used to model 

each segment. A Gibbs sampler was employed to estimate the segment’s boundaries.  

The goal of their research is similar to ours but instead of modeling each segment using an 

HMM we model the segments using mixtures of Gaussians (though often only one Gaussian is 

needed). We also implicitly learn a bigram language model from the data that allows us to learn 

relationships between segments (e.g. if the previous frame belongs to the segment with label Sn-1, 

what is the probability that current frame belongs to the segment with label Sn). Our approach is 

similar to a speaker diarization algorithm proposed by Fox et al. (2011) where an HDPHMM was 

used to segment a meeting into speaker-homogenous segments. We are also using HDPHMM and 

DHDPHMM, but instead of segmenting only one utterance we train the HDPHMM/DHDPHMM 

using different utterances from different speakers. We then train a speaker independent transducer 

that can map the new observations into a sequence of states. The end result is that the speech is 

segmented into acoustically-homogenous segments defined by HDPHMM/DHDPHMM states.  

5.2.2 Acoustic Unit Discovery  

Classical methods for acoustic unit discovery involve segmentation and clustering. The 

segmentation is typically implemented using a dynamic programming method that incorporates a 
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heuristic stopping criterion, while clustering is implemented using a heuristic agglomerative 

method (Bacchiani & Ostendorf, 1999; Wang et al., 2015).  

Bacchiani & Ostendorf (1999) introduced a supervised approach that assumed word 

alignments are given. They segmented all examples of each word subject to a length constraint. 

All segments of each word were then grouped together to impose a pronunciation consistency 

constraint. A variant of the K-MEANS algorithm was used to cluster these segments into K 

groups. The number of groups, K, was set a priori. The algorithm then iterates through the above 

steps until convergence. Our approach is completely unsupervised and does not use transcriptions 

or any other form of data other than the speech signal data. We learn the number of units directly 

from the data using a nonparametric Bayesian model and therefore do not need to use expensive 

model comparison techniques.  

Paliwal (1990) used a similar approach of segmentation followed by clustering to discover 

sub-word units. The segmentation criterion was based on locating segments of data that exhibited 

temporal stationarity. In our approach, we also segment the utterance into stationary parts since 

each segment is modeled with a GMM, but our algorithm performs the segmentation implicitly as 

a part of acoustic unit discovery. In Paliwal (1990), clustering is performed with a variant of the 

K-MEANS algorithm in which the number of units should be known or pre-determined. 

Singh et al. (2002) proposed a probabilistic framework to jointly estimate the acoustic units 

and the lexicon. However, their model requires the existence of a transcription and therefore can 

be regarded as a semi-supervised approach. In contrast, our model can find the acoustic units in 

an unsupervised manner. The algorithm needs to initialize the lexicon first and then uses the 

lexicon to estimate the models. The lexicon and models are iteratively reestimated. The number 

of units in Singh’s method must be specified a priori.  

Varadarajan et al. (2008) adopted an HMM state splitting algorithm to learn a transducer that 

maps acoustic observations into acoustic units. Though the main goals of their work are similar to 

ours, the algorithms are completely different. They developed a speaker dependent transducer 
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while our model is speaker independent. They evaluated the performance of their system by 

measuring the relationship between automatically discovered units and phonemes. We also report 

a similar metric, however, instead of learning acceptors (Mohri et al., 2008) we trained a discrete 

HMM to map a stream of units to stream of phonemes. 

Lee and Glass (2012) proposed a nonparametric Bayesian model based on DPM that jointly 

segments the data and discovers the acoustical units. Our approach, however, discovers more 

homogenous units. We model each unit with a mixture of Gaussians while they model each unit 

with a 3-state HMM. Our ADU transducer also learns the relationship between different units in 

the form of the probability transition between different units while they do not model these 

relationships. Though our overall goals are similar, these goals are achieved with different 

strategies. We will directly compare our system to theirs in the discussion that follows. 

5.2.3 Lexicon Discovery 

Most of the popular approaches to discovering a lexicon assume the existence of a word 

transcription (Bacchiani & Ostendorf, 1999; Singh et al., 2002; Lee, 2014). Some approaches also 

require additional information such as time alignments of word transcriptions. In this dissertation, 

we have explored both scenarios. 

Bacchiani and Ostendorf (1999) proposed an algorithm to jointly discover the acoustic units 

and the lexicon. In their algorithm, they have assumed the alignment for words are given and they 

learn one pronunciation for all examples of a single word. In contrast to their approach, we don’t 

need to know the time alignment between words and acoustic observations. However we study 

both cases to investigate how much performance will be lost due to not knowing the alignment.  

Moreover, we don’t restrict the number of pronunciation variants and let the data speak for 

itself. We also discover the lexicon and acoustic units in two successive steps. One could argue 

that discovering the lexicon and acoustic units in separate steps results in a suboptimal algorithm. 
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However, we show that despite this disadvantage our model can produce similar results as other 

algorithms discussed in this section that discover these jointly. 

Paliwal (1990) also proposed several methods to discover the lexicon for isolated words. 

These methods learn multiple pronunciations per word but in their current form can’t be used for 

continuous speech. Fukadai et al. (1996) proposed a similar model that also needs word 

alignments. Singh et al. (2002) proposed an approach to estimate the lexicon along with the 

acoustic units in a probabilistic framework. Their approach involves initializing the lexicon with a 

heuristic method and then iteratively discovering the lexicon and acoustic units. Our semi-

supervised method also needs to be initialized with some approximate word alignments and then 

iteratively reestimates the lexicon and word alignments. 

Finally, Lee (2014) proposed a model that discovers the lexicon by first learning a mapping 

between letters in a word and acoustic units and then generating pronunciations by connecting 

these mappings for each word. In our approach, we also use letters to initialize our semi-

supervised algorithm. However, unlike (Lee, 2014), our algorithm learns the pronunciation 

directly from examples and is not strongly dependent on using letters. In other words, letters have 

been used only to initialize the algorithm and can be replaced with other appropriate heuristic 

approaches if the language was not alphabetic (e.g. logograms could be used for Chinese). We 

also investigate the effect of adding a G2P transducer to discover a new lexicon based on lexicons 

discovered directly from the data.  

 An Unsupervised ADU Transducer 

The goal of speech segmentation is to map each acoustic observation into a segment and 

optionally label these segments. Let’s assume we have N segments already labeled with L 

symbols. Our goal can be expressed as mapping a string of acoustic observations to a string of 

labels. In speech recognition problems, observations are vectors of real numbers (instead of 
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symbols in text processing) and segment labels can be replaced with a vector representation that 

is called a posteriorgram (Zhang & Glass, 2009). A posteriorgram is a probability vector 

representing the posterior probability of a set of predefined symbols. Instead of using a hard 

decision for mapping the input string to the output string, we can provide a probability vector 

which can be represented by a matrix of dimension LxM where L and M are the number of 

distinct segment labels and input string length respectively. 

A transducer specifies a binary relationship for a pair of strings (Mohri et al., 2008). Two 

strings are related if there is a path in the transducer that maps one string to the other. A weighted 

transducer also assigns a weight for each pair of strings (Mohri et al., 2008). Based on this 

definition our problem is to find a transducer that maps a string of acoustic features onto a string 

of units. It should be noted that based on this definition any HMM can be considered to be a 

transducer. We chose the term transducer here to emphasize the operation of converting acoustic 

observations into acoustic units. The problem can further divided into two sub-problems: learning 

a transducer and decoding string of observations into string of units (or their equivalent 

posteriorgram representation).  

Let’s assume we already knew the acoustic units (e.g. phonemes) and have trained some 

models for each unit (e.g. HMMs). One way to build a transducer is to connect all these HMMs 

together to build an ergodic network (we can also use language model information to connect 

phoneme HMMs together). Therefore the final transducer can be some form of ergodic HMM. 

However, we don’t have the units and we even don’t know how many units there are in the data.  

In Chapters 2 and 3, we introduced two nonparametric Bayesian HMM models. HDPHMM, 

described in Chapter 2, is an ergodic model that can learn the number of states from the 

observations. DHDPHMM, described in Chapter 3, can learn different structures including 

ergodic structures and also can share mixture components among different states. Both of these 

models are good candidates to train a transducer. Since in our implementation of both models we 
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have used a similar interface we can easily use both and compare their performance. Next we 

discuss how learning and decoding problems have been solved for our transducer. 

5.3.1 Learning the Transducer  

We use an HDPHMM or DHDPHMM to train the transducer. The difference from the 

supervised phoneme training experiments discussed in Chapter 3 and the semi-supervised 

phoneme training experiments discussed in Chapter 4 is that we train only one HMM for all 

utterances in a completely unsupervised fashion. Unlike Lee (2014), we don’t utilize a 

speech/non-speech classifier and model everything including silence with one transducer. For 

read speech, this does not present any problems. However, for other domains such as 

conversational speech, it might be a problem, and in that case we can employ a speech/non-

speech classifier as well. Training is executed by sequentially presenting utterances to the 

HDPHMM/DHDPHMM inference algorithm and iterating using Gibbs sampling. 

For our transducer, state labels (or their posteriorgrams) are the output string. Since each state 

is modeled by a Gaussian mixture, the segments defined by this transducer are stationary and the 

discovered units are sub-phonetic. However, it should be noted that this limitation can be 

overcome by replacing each state (e.g. mixture model) with an HMM which transforms the model 

into a hierarchical HMM (Fine et al., 1998). The resulting model can model dynamic segments.  

5.3.2 Decoding Observations 

Given a transducer and a string of observations the goal of the decoder is to find the most 

likely path through states of the transducer that implicitly maps the input string to the output 

string. This objective can be written as: 

1 2

1 2 1 2
...

arg max ( ... | ... ) ,
M

M N
s s s

P s s s o o o   (5.1) 
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where s1, s2, ..., sM represent state labels and o1, o2, ..., oN represent observations. Alternatively we 

can also estimate the posteriorgram of the state sequence. If the goal is only to estimate the best 

sequence then the Viterbi algorithm (Viterbi, 1967) can be employed. If estimating the posterior 

is desired, the FB algorithm is preferred. Alternatively we can use other techniques such as Gibbs 

sampling, but these will be more computationally expensive.  

The resulting transducer is the engine used to convert new acoustic observations into acoustic 

units. We will explore the properties of this transducer in Section 5.5 for several applications. The 

transducer is also the main component of lexicon learning algorithms that are discussed next. 

 Discovering The Lexicon 

In this section, we present two algorithms to learn the lexicon from the output of our ADU 

transducer discussed in the previous section. It should be noted that acoustic units are discovered 

in a completely unsupervised manner while to discover the lexicon we need a word-level 

transcription of the acoustic data. We investigate three algorithms to discover the lexicon: (1) a 

supervised algorithm that needs alignments of words and acoustic units, (2) a semi-supervised 

algorithm that does not need the word alignments, and (3) a G2P algorithm (Novak et al., 2012) 

based on a weighted finite state transducer (Mohri et al., 2008). This latter approach is not the 

focus of this dissertation. The basic idea is to use the lexicon obtained by one of the direct 

algorithms and find a mapping between the sequence of letters and ADUs. Details of this 

algorithm can be found in (Novak et al., 2012). One of its advantages is that is can handle words 

that have not been previously seen in the training data. 

5.4.1 Direct Supervised Learning 

If the word alignment exists or is estimated reliably (e.g. from forced alignments generated 

by a high quality CDHMM system), we can extract the alignment between each word and the 
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stream of acoustic units produced by the ADU transducer. However, there might be many 

examples for each word and we need to select a handful that represents each word more 

accurately. There are many ways to find these representative examples. For example, we can 

cluster the examples and then select the centroids. In this section, we propose an algorithm that 

selects at most M examples among all instances of a given word that have the average minimum 

edit distance (Navarro, 2001) from other examples. The edit distance is computed using DTW. 

Posteriorgrams of the states are used to represent each example.  

The algorithm is as follows: 

1. Generate the posteriorgram representation for all utterances in the dataset using an ADU 

transducer. 

2. Use the aligned transcription to extract all examples of each word.  

3. Compute the DTW alignment between each two examples X and Y (Müller, 2007): 

{ }
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where X and Y are the two examples, p is the warping path that aligns X and Y and 

Cp(X,Y) is defined as: 
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4. For all k, accumulate the distance between the kth example and all other examples in the 

data set. 

5. Select the M examples with a minimum average distance as representatives for that word. 

6. Convert the posteriorgram of M examples into state labels, remove repetitions and retain 

the remaining M examples (e.g. the number of final examples for each word is less than 

or equal to M).  
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Note that in this formulation c(xnl,,yml) is an element of the cost matrix between X and Y (row n 

and column m). For our problem, we define the cost between two posteriorgram vectors as a dot 

product between them (Zhang & Glass, 2009): 

 ( , ) log( ).c x y x y= − i   (5.4) 

At the end, this algorithm will find at most M pronunciations for each word. This algorithm 

selects instances with the least average edit distance from the other training examples.  

5.4.2 Direct Semi-Supervised Learning 

In this section, we propose an algorithm similar to the supervised algorithm discussed in the 

previous section that iteratively realigns the transcriptions with the output stream of the ADU 

transducer. The algorithm needs to be initialized using a heuristic approach, but, as will be shown 

in Section 5.5.5, this initialization does not need to be accurate and can be easily generated with 

available resources (e.g. word transcriptions and acoustic data).  

The algorithm is as follows:  

1. Generate the posteriorgram representation for all utterances in the dataset using the ADU 

transducer. 

2. Generate an approximate alignment between the words and the output stream of the ADU 

transducer. 

3. Use the aligned transcription to extract all examples of each word.  

4. Use DTW to compute the edit distance between every pair of examples using (5.2). 

5. For all k, accumulate the distance between the kth example and all other examples in the 

data set. 

6. Select the M examples with minimum average distance as representatives for that word. 

7. Convert the posteriorgram of the M examples into state labels, remove repetitions and 

retain the remaining of M examples (e.g. the number of final examples for each word is 

less than or equal to M). 
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8. Use the lexicon and associated acoustic units generated in Step 7 to build a speech 

recognizer. 

9.  Use the speech recognizer built in Step 8 to force align the transcriptions with the 

acoustic units. 

10. Use the aligned transcriptions to extract all examples of each word. 

11. If convergence is not achieved and the number of iterations is less than a specified 

threshold, go back to Step 4. The convergence criterion can be the WER computed on a 

small development set. 

In Section 5.5.5, we show this simple semi-supervised algorithm will converge to the supervised 

algorithm in two to three iterations. 

5.4.3 Discovering the Lexicon Using G2P 

After discovering a lexicon using the direct supervised or semi-supervised approaches, we 

can use any G2P (Novak et al., 2012) algorithm to learn a mapping between the sequence of 

letters and the ADUs. In this work, we only used a G2P algorithm based on a weighted finite state 

transducer (Mohri et al., 2008). The input to the algorithm is a lexicon. G2P algorithm learns a 

transducer that can map any sequence of letters into sequence of ADUs. We have not optimized 

this algorithm and our goal was only to be able to conduct some of experiments on the TIMIT 

Corpus. Such an approach was required because many words in test set in TIMIT do not appear in 

the training data. Also, it is expected that using G2P reduces the performance. However, for 

TIMIT we will show that it actually improves the overall performance of the system on the open 

test set. In Section 5.5.5 we will discuss the characteristics of the TIMIT Corpus that enable this 

counterintuitive result.  
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 Experiments 

In Chapters 2 through 4, we have introduced HDPHMM and DHDPHMM and their 

applications in sub-word modeling. In this section, we provide some experiments that give us 

more insight into the segmentation properties of HDPHMM and DHDPHMM. By comparing 

discovered units to manually transcribed phonemes, we show that units discovered by the ADU 

transducer are linguistically meaningful. More specifically we show that we can predict the 

stream of the phonemes by only observing the stream of ADUs. Further we show that most 

prediction errors occur between similar phonemes (e.g. /r/ vs. /er/) that might actually expose an 

underlying acoustic or pronunciation mismatch. 

Next, we use the ADU transducer in unsupervised spoken term detection (STD) by query 

task. For this task we will show that our automatically learned units can achieve state of the art 

performance among unsupervised algorithms on TIMIT. We also present several experiments in 

which we generate the lexicon from acoustic data and parallel transcriptions using an ADU 

transducer. We use both TIMIT and the DARPA Resource Management Corpus (RM) (Price et 

al., 1988) for these experiments. We show that an ADU transducer trained on TIMIT can be used 

to map acoustic observations from RM into ADUs and learn a lexicon that produces a WER 

comparable to other automatic lexicon/unit learning algorithms. 

5.5.1 Evaluation Methods 

Unsupervised Segmentation 

To obtain a quantitative measure of segmentation quality we compare the boundaries of 

discovered segments to the boundaries of manually segmented phonemes. The number of co-

occurrences of segments boundaries and phoneme boundaries is called recall. The percent of 

declared boundaries that coincide with phoneme boundaries is called precision. A single numeric 

score is referred to as the F-score and defined as (Rijsbergen, 2004): 
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Recall Precision
F-score 2  .

Recall + Precision

×
= ×   (5.5) 

We also define a similarity score (Harati et al., 2013), S, that measures the consistency of the 

segments: 
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This similarity score has two main components: (1) s1 is the in-class similarity score and is 

defined as the average of the correlation between different instances of segments with identical 

labels (e.g. two segments are similar if they are correlated); (2) s2 is the out-of-class dissimilarity 

score. For example, for class i, the number of in-class instances is M. To compute s1, we need to 

average over all instances of class i and therefore N is equal to M-1. To calculate s2 we correlate 

examples in class i to all other data points (with classes not equal to i) and therefore N is equal to 

the total number of instances minus M. The quality of segmentation is higher when both numbers 

are closer to one. It should be noted that the similarity score functions much like a likelihood 

score; e.g. it increases monotonically with an increase in the number of classes. Therefore, for a 

meaningful comparison, the number of classes being compared for two algorithms must be the 

same (defined as the number of segments with same identity) or equivalently the average length 

of segments produced by the two algorithms should be comparable. 

Relationship of ADUs to Phonemes  

To compare the learned ADUs with manually labeled phonemes, we follow two approaches. 

First, we use a confusion matrix to visualize the relationship between phonemes from the 

reference transcriptions and the discovered ADUs. Second, we train discrete HMMs that map the 

ADUs into phonemes. We run both recognition and classification tasks on these discrete HMMs. 
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The definitions for classification and recognition errors are the same as the ones discussed in 

Chapters 3 and 4. 

Spoken Term Detection by Query  

TIMIT has been used to evaluate the performance of an ADU transducer based system for 

spoken term detection by query task. The queries have been extracted from training subset of the 

data and have been executed on the test section of the data. Two performance metrics have been 

employed to measure the performance of the system: (1) average precision of the top N hits, 

referred to as P@N (Hazen et al., 2009), and (2) average equal error rate (Hazen et al., 2009).  

For each keyword we first set N to the number of its occurrences in the evaluation data (e.g. 

for example if word “age” occurs 8 times in the evaluation set then N=8) and then compute a list 

of scores for each utterance. To make the results compatible with other reported results we also 

assume at most one hit per utterance. We sort the scores and select the top N. For keyword i, 

P@N is computed as: 

@ ,i

i

H
p N

N
=   (5.7) 

where Hi is the number of hits for top Ni scores. The final P@N is reported as the average for all 

keywords. 

The average equal error rate (EER) is the point on detection error tradeoff (DET) curve where 

the false acceptance error rate is equal to false rejection error rate. The reported EER is the 

average of EER for all keywords. 

Lexicon Discovery  

To compare the quality of the lexicon discovered using ADUs and to evaluate the algorithms 

presented in this chapter, we use speech recognition experiments. We compute the word error rate 

(WER) for both the baseline system that is trained based on a standard lexicon and systems 

trained using an automatically discovered lexicon. We use TIMIT and RM for experimentation. It 

is important to emphasis, however, that the ADU transducer used for both datasets is only trained 
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on the training subset of TIMIT (3,637 utterances) in a completely unsupervised manner. We 

conduct several experiments for closed and open-loop systems and investigate the properties of 

the discovered units. 

The RM Corpus (Price et al., 1988) is a 1,000-word task that can be used for speaker 

independent, speaker adaption and speaker dependent experiments. The speaker independent 

subset of RM includes 3,990 training utterances and 1,200 evaluation utterances. The corpus 

includes a word-pair grammar with a perplexity of 60 (Murveit, 1991) that is used for all of the 

experiments in this dissertation. The front-end used for feature extraction is the same as the one 

used for TIMIT and was briefly discussed in Chapter 3.  

5.5.2 Unsupervised Segmentation  

To evaluate the nonparametric transducer, we used TIMIT because of the existence of highly 

accurate manual segmentations. A typical segmentation is shown in Figure 5-1 along with time-

aligned phoneme labels. Segments are shown with a rectangle. The height of each rectangle, 

which is unique for each label, shows the corresponding label. The edges of the ADU-derived 

segments are seen to roughly coincide with phoneme boundaries. However, a single phoneme is 

often divided into one to three ADU units because ADUs are stationary while phonemes are not. 

 A comparison of our proposed method to other state of the art systems is shown in Table 5-1. 

The first row represents a system that performs unsupervised segmentation with no prior 

information about the number of segments for each utterance. The second row represents a 

system that implements a semi-supervised approach. The third row represents results of an 

alternate nonparametric Bayesian algorithm developed by Lee and Glass (2012). The fourth row 

represents the results from the ADU transducer. 
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Our model performs particularly well on recall, which implies that it is finding boundaries 

that better match the reference phoneme boundaries. The improvement in recall is over 11% even 

though our approach, unlike (Qiao et al., 2008) is completely unsupervised. Our precision is 

lower, however, which means there are slightly more false alarms. This is not unexpected since 

we are discovering sub-phonetic units. Using the similarity score in (5.6), we obtain a similarity 

score of (0.44, 0.72) for the manual segmentations while an ADU transducer that is constrained to 

produce a similar number of unique segments obtained a score of (0.83,0.72) (via setting the 

maximum number of states in HDPHMM and varying the associated hyperparameters). This 

similarity score is much better than the similarity score for the manual phoneme segmentations. 

This can be attributed to the fact that ADU segments are presenting more stationary segments 

versus phonemes and therefore are more consistent. Many phonemes represent sounds that have 

Table 5-1. A comparison of segmentation algorithms is shown. 

Algorithm Recall Prec. F-score 

Dusan & Rabiner (2006)  75.20 66.80 70.80 

Qiao et al. (2008)  77.50 76.30 76.90 

Lee & Glass (2012)  76.20 76.40 76.30 

ADU Transducer 86.51 68.50 76.62 

 

 
Figure 5-1. Segmentation of utterance SA1 from TIMIT using an ADU transducer is 

shown. Discovered units are represented by the height of the red rectangle.  



 115

dynamic spectral properties therefore self-similarity for such phonemes is not as great as that for 

the ADUs that are inherently stationary. 

5.5.3 Investigating the Relationship Between ADUs and Phonemes 

It is important to explore the relationship between the ADUs and phonemes because we need 

to determine if the ADUs are linguistically meaningful. The first experiment involves aligning 

manually transcribed phonemes with ADUs. First, each utterance is passed through the transducer 

to generate the sequence of ADUs. Then these ADUs are aligned with manual transcriptions 

using timing information contained in the transcription. Finally a confusion matrix is calculated.  

This confusion matrix between 48 English phonemes and 251 ADU units is shown in 

Figure 5-2. A general correlation between ADUs and phonemes can be observed because the 

diagonal region of the matrix is heavily populated. However the mapping is not consistently one 

to one. Some of the ADUs align with multiple phonemes. However, these phonemes are generally 

similar phonemes. For example, we can see ADUs that are aligned with “sil” (silence) can also 

 
Figure 5-2. A confusion matrix that shows the relationship between the discovered ADUs 

and the manually transcribed phonemes is shown. For clarity only units that occurred 

more than 200 times are displayed.  
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be aligned with “vcl” and “cl” models (both “vcl” and “cl” are special types of silence). ADUs 

aligned with “z” can also be aligned with “s”. This is not surprising because “z” and “s” are 

similar acoustically and therefore confusable.  

Next we train discrete HMMs that map streams of ADUs into streams of phonemes. The idea 

is to learn inter-ADU relationships that might also be related to their identity. Training discrete 

HMMs is similar to training continuous HMMs. The primary differences are (1) we use discrete 

emission probability models instead of Gaussian mixtures, and (2) we replace the acoustic 

observations (e.g. MFCC features) with ADU units (discrete symbols). In this section we conduct 

experiments on classification and recognition using these discrete HMMs. Our baseline here is a 

continuous HMM system with a single Gaussian per state trained using acoustic observations. 

Classification Experiments 

 Table 5-2 shows the results of classification experiments for three systems: the baseline 

continuous HMM, HDPHMM ADUs using discrete HMMs and DHDPHMM ADUs using 

discrete HMMs. We can see that the HDPHMM ADU system performs slightly better than the 

baseline HMM system. It should be noted we used a simple continuous HMM as the baseline. 

This system has a complexity that is comparable to the simple discrete HMM used to learn the 

relationship between ADUs and phonemes. In this experiment, the goal is to show that a 

relationship exists between ADUs and phonemes and therefore we don’t need to use a complex 

system such as a CD HMM. It can also be seen that HDPHMM generated ADUs are slightly 

better than DHDPHMM generated ADUs. 

Recognition Experiments  

Table 5-3 shows the result of a phoneme recognition experiment using the same discrete 

Table 5-2. A comparison of phoneme classification error rates using ADUs is shown. 

System % Error 

Baseline Continuous HMM 37.41 

HDPHMM ADUs 35.85 

DHDPHMM ADUs 37.52 
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HMMs. We start from a stream of ADUs and find the corresponding stream of phonemes. In the 

recognition task we also estimate the boundaries between different phonemes. The result of this 

table is also consistent with Table 5-2 that represented a classification task and shows discrete 

HMMs trained on ADUs can match a similar HMM trained on acoustic observations. These 

results are fairly unique. The closest reported results were (Varadarajan et al., 2008) in which 

speaker dependent relationships between discovered acoustic units and phonemes are investigated 

on a Japanese language task. The authors used an acceptor transducer (Mohri et al., 2008) instead 

of a discrete HMM. In our work, we have focused on a speaker independent application instead of 

a speaker dependent application. 

Table 5-4 shows a comparison between reference and recognized sequence of phonemes 

using ADU streams. Note that most of the confusions occur between similar phonemes. For 

example, phoneme pairs like /aw/-/ah/, /ng/-/en/, /d/-/t/ are among the most confused pairs.  

5.5.4 Spoken Term Detection by Query 

In this section we study the result of a simple unsupervised STD by query system based on 

Table 5-3. A comparison of phoneme recognition error rates on TIMIT using ADU 

streams is shown. 

System % Correct % Error 

Baseline Continuous HMM 59.71% 42.43% 

HDPHMM ADUs 61.42% 43.70% 

DHDPHMM ADUs 59.75% 45.53% 

 

Table 5-4. A comparison of an ADU-based phoneme recognizer to the manual phoneme 

transcriptions is shown. Yellow shading indicates a recognition error. 

1 
REF sil hh aw sil g uh sil D ix sh er ix en sil 

HYP sil hh ah sil g uh sil D ey sh er ix ng sil 

2 
REF sil b r aw en ay z ay sil b r aw m ax 

HYP sil p r ow en ay z ay sil b r aa m ax 

3 
REF sil en eh v er hh ae sil p ix er ix en m 

HYP sil ix z ix er hh ae sil d ix r ix en – 

4 
REF sil ax f ix sh el z sil m iy sil t aa en 

HYP sil aa f ix sh el – sil m ey sil d ah ng 
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our ADU transducer discussed earlier. An STD system can be built based on a complex state of 

the art speech recognizer and work either by acoustic or text queries. However, building such a 

system requires all the resources needed to build a state of the art speech recognizer including a 

lexicon, a language model and plenty of transcribed data. For low resourced languages, this is not 

feasible. Our unsupervised STD by query algorithm is as follows:  

1. Convert the target audio data using the ADU transducer into posteriorgrams. 

2. For each query generate its posteriorgram representation using the transducer. 

3. Use a subsequence DTW algorithm (Müller, 2007) to obtain a score for each utterance. 

To improve the robustness generate one score per utterance by averaging the scores for 

all examples of the given query in the training subset. 

4. Compare the final score for each utterance with a threshold and return it if the score is 

greater than the threshold.  

Table 5-5 shows the queries used in this section to assess the quality of our ADU transducer. 

Since some words are similar (year vs. years), we do not count confusions between two words 

that share the same stem. A comparison of the average P@N and EER is reported in Table 5-6 for 

TIMIT. The first row shows a system that utilizes a GMM to directly decode the posteriorgrams 

of the feature frames (Zhang and Glass, 2009). The second row shows the result of an algorithm 

based on a Deep Boltzmann Machine (DBM) (Zhang et al., 2012). The third row contains the 

Table 5-5. A list of query terms used for the STD by query task is shown. 

Query 
No. Training 

Examples 

No. Test 

Examples 

age 3 8 

warm 10 5 

year 11 5 

problem 22 13 

artists 7 6 

money 19 9 

organizations 7 6 

development 9 8 

surface 3 8 

children 18 10 
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results for nonparametric Bayesian approaches by Lee and Glass (2014). The fourth row shows 

the result of a tied state triphone system (as mentioned above this system is trained using 

transcriptions and a lexicon). Rows five through seven contain the results of our ADU-based 

unsupervised systems. 

As we can see, the combined system (row 7) performs better than every other unsupervised 

system in this table. Even if we ignore results of combined system, the HDPHMM ADU system 

in row 6 delivers the best overall EER for the unsupervised algorithms and the second best P@N. 

In fact, the EER of our combined system is getting very close to the performance of a much more 

complex triphone-based system that utilizes significantly more resources than the other 

algorithms in this table. 

It is also evident that the HDPHMM transducer works better than the DHDPHMM 

transducer. This is consistent with the results shown in Section 5.5.3. One reason for this 

superiority is the fact that for HDPHMM each state is modeled with a single Gaussian and this 

distribution is unique to that state, while for DHDPHMM all states share a pool of Gaussians. 

Each state can have more than one Gaussian associated with it, and this can make some states 

more confusable. Table 5-7 shows some of the typical error pairs. It can be seen that for most of 

the cases we have partial acoustic similarity between the search query and the retrieved word (e.g. 

message and age).  

Table 5-6. A comparison of unsupervised approaches to STD by query is shown.  

System P@N EER 

GMM (Zhang & Glass, 2009) 52.50% 16.40% 

DBM (Zhang et al., 2012) 51.10% 14.70% 

Nonparametric Bayesian (Lee & Glass, 2012) 63.00% 16.90% 

Semi-Supervised English Triphones (Lee & Glass, 2012) 75.90% 11.70% 

DHDPHMM ADU 56.21% 14.33% 

HDPHMM ADU 61.20% 13.95% 

Combined HDPHMM/DHDPHMM ADU 64.91% 11.83% 
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5.5.5 Lexicon Discovery 

In this section, we present the results of both supervised and semi-supervised lexicon 

discovery algorithms. We refer to both of these approaches as direct algorithms since we learn the 

pronunciation directly from ADU transducer output. We also provide the results for a G2P-based 

approach that is trained from the lexicons discovered using the direct algorithms. The advantage 

of this approach is that it produces pronunciations for words that do not exist in the training data. 

We have provided results for two datasets: TIMIT and RM. The ADU transducer used in this 

section is only trained on the training subset of TIMIT and then used to discover the lexicon from 

TIMIT and RM. This allows us to evaluate the generalization capabilities of the ADU transducer.  

For TIMIT there is not a widely used baseline system for a word recognition task. It is also a 

challenging dataset for our task since many words occur only once in the data. This makes it 

particularly difficult for our direct lexicon discovery approach since our estimation method 

depends on multiple instances of a word. When there are only a few examples estimation can be 

unreliable. For TIMIT, we have conducted two types of experiments:  

• Closed Loop: For these experiments, we discovered the lexicon from both training and test 

subsets. This is a sanity check experiment and is used to prove that ADUs are meaningful 

units.  

• Open Loop: For these experiments, we have only used the training set for discovery. Since 

the direct lexicon algorithm only learns the pronunciations for words it has seen during 

Table 5-7 Error pairs for STD system. 

Query  Discovered 

age message 

development fulfillment 

year deer 

year here 

year behavior  

surface severe 
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training, we evaluate on a subset of test section named test-94 – 94 utterances selected such 

that every word in each utterance exists in the training set. 

Note that for the G2P-based lexicon algorithm, we will also provide results for the full test set 

since that approach is designed to deal with unseen words. 

RM is more popular for word recognition experiments. The corpus has a standard language 

model that makes it easier to compare to other reported results. There are approximately 1,000 

unique words in RM, compared to 5,850 for TIMIT. Moreover, most words in the test set also 

exist in the training set which makes it a good choice for direct lexicon discovery algorithms. For 

RM we only have conducted open-loop experiments.  

Closed-Loop Experiments on TIMIT 

The first set of experiments is designed to prove that ADUs can consistently represent words. 

It is also designed as a sanity check for the algorithms. This set of experiments is named “closed-

loop” because the lexicon is discovered from both training and testing subsets of TIMIT. 

However, it should be noted that other learning procedures are performed only on the training 

subset. The full set of utterances from TIMIT that we used in this study contains 5,850 words but 

only 1,353 of them occur more than 3 times in the training subset. This makes it rather a 

challenging dataset for discovering pronunciations since the lexicon can easily become over-

trained.  

Supervised Lexicon Discovery 

Table 5-8 shows the results of supervised training of the lexicon for TIMIT for the closed-

loop condition with a different maximum number of lexicon entries per word. The second column 

shows the total number pronunciations in the lexicon, which depends on M for the last seven 

entries in the table. The algorithm’s performance improves when the number of pronunciations in 

the lexicon increases. This is the expected effect when training under closed-loop conditions 

because during recognition the correct pronunciation exists in the lexicon. We can see the 
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performance of the best system (row 8 in Table 5-8) is much better than a comparable CI 

phoneme-based system (row 1 in Table 5-8).  

This experiment demonstrates that ADUs are consistent. If we can learn a proper lexicon then 

ADUs can potentially even outperform the phoneme-based system. It is also interesting to note 

that the difference in the performance fades as we use a language model with lower perplexity. 

This is an important detail that must be considered when comparing lexicon discovery 

algorithms – a fair comparison requires comparing language models with similar perplexities 

because it has been shown that log(WER) is linearly correlated to log(perplexity) 

(Klakow & Peters, 2002).  

Semi-supervised Lexicon Discovery 

For semi-supervised lexicon discovery, we have first trained a system using letters and then 

used the trained model to obtain the initial segmentations. We have used both letters and letters in 

context (tri-letters). The latter (e.g. “d-o+g”) are the counterparts of triphones. Table 5-9 presents 

the results for a series of experiments using various combinations of these parameters. Our semi-

supervised algorithm gives results comparable to the supervised results (Table 5-8) with only a 

few iterations. We can see that tri-letter initialization works reasonably well and its results are 

very close to the supervised training algorithm. This experiment proves that we can learn the 

lexicon without knowing the word alignment by using a simple initialization strategy and 

Table 5-8. The results of closed loop training of a lexicon for TIMIT are shown. 

System 
Lexicon 

Size 
Perplexity WER (%) 

Reference Lexicon 5,850 80 24.79 

Reference Lexicon 5,850 16 5.66 

Supervised ADU, M=1 5,850 80 32.75 

Supervised ADU, M=3 12,933 80 22.20 

Supervised ADU, M=5 16,474 80 20.19 

Supervised ADU, M=10 18,879 80 19.15 

Supervised ADU, M=10 18,879 16 5.20 

Supervised ADU, M=30 25,187 80 15.03 

Supervised ADU, M=30 25,187 16 4.41 

 



 123

iterating through the discovery process. The last entry in this table represents performance very 

close to the performance of supervised training (row 8 in Table 5-8). 

Open-loop Experiments on TIMIT 

Closed-loop experiments proved that ADU units could be used to discover a lexicon, but we 

used all available instances of a word in both the training and testing subsets. As stated before, 

TIMIT is particularly challenging because many words only occur a few times in the corpus. 

Figure 5-3 shows a histogram of the number of times each word occurs in TIMIT. The median 

number of times a word occurs is 1. We have limited the graph to frequencies less than 100 since 

there are only few words that occur more than 100 times.  

 
Figure 5-3. A histogram of the number of word tokens in TIMIT is shown.  

Table 5-9. The results for semi-supervised training of a lexicon on TIMIT are shown. 

Experiment Lexicon Size Iteration WER (%) 

Letter Initialized 12,933 1 25.79 

Letter Initialized 12,933 2 23.86 

Letter Initialized 12,933 3 24.68 

Tri-letter Initialized 25,187 1 16.12 

Tri-letter Initialized 25,187 2 15.44 
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As a result of this sparsity, the estimation of word pronunciations from the data is not 

reliable. Similarly, a closed-loop experiment can produce surprisingly good results because the 

discovered lexicon would be over-fit. Table 5-10 shows the result of open-loop learning of the 

lexicon for TIMIT dataset. For direct discovery algorithms we need to see one example of each 

word to learn the pronunciation. Therefore we have used the test-94 subset. 

Last two rows of this table show the results for a lexicon discovered using the G2P algorithm 

(Novak et al., 2012) based on the directly discovered lexicon. It is apparent that the WER 

decreases when using the G2P algorithm. This is another example of the sparsity problem that we 

have seen in Figure 5-3. By learning a mapping between a sequence of letters and ADUs using 

the G2P algorithm, the estimated variance for each word reduces, and as a result, the WER 

decreases. In the next section, we use another corpus with a significantly different word 

frequency profile to show the problems we have encountered with TIMIT are simply a result of 

the sparse nature of the data.  

Table 5-11 provides some examples of the errors between the reference and recognized 

utterances. Many of the errors occur between acoustically similar words, which is not unexpected 

given the sparse nature of the data.  

Open-loop Experiments on RM 

The RM Corpus, as opposed to TIMIT, has been used more widely in word recognition 

experiments (Young & Woodland, 1994) and is a better benchmark for the lexicon discovery 

task. Good comparative benchmarks exist (Bacchiani & Ostendorf, 1999; Singh et al., 2002). 

Table 5-10. Results for open-loop training on TIMIT are shown. 

Experiment Test Subset WER (%) 

Baseline full 24.79 

Baseline test-94 24.04 

Direct Learning test-94 42.77 

G2P test-94 37.46 

G2P full 37.03 
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Unlike TIMIT, in RM most words have several examples in the training set and as a result 

discovery of the lexicon is more feasible. Figure 5-4 shows a histogram of the number of times 

each word occurs in RM. Only words with counts less than 100 are shown. The median word 

frequency is 11 (compared to 1 for TIMIT) and the mean word frequency is 35 (compared to 20 

for TIMIT). Therefore we expect this corpus to be a better dataset for evaluating our ability to 

automatically discover lexicons. 

For the RM experiments we have used the same ADU transducer that was trained on the 

training subset of TIMIT. All utterances were first passed through the ADU transducer to obtain 

their posteriorgram representation. Then the lexicon was generated using the direct lexicon 

discovery algorithm discussed in Section 5.4. We have also generated a lexicon using G2P 

algorithm. 

Table 5-12 shows the results obtained for RM. We can see that a CI system trained using an 

automatically discovered lexicon and 1 mixture component per state works better than a similar 

system using the reference lexicon (relatively 21%). However, the performance is slightly worse 

when using more mixture components (9.17% vs. 11.61%). This observation can be explained by 

considering the fact that ADUs are stationary units (corresponding to single Gaussian 

distributions). Once we increase the complexity of the system the improvement in their 

performance would be less than the improvement for more dynamic units such as phonemes (e.g. 

phonemes are less homogenous). Further, there are more ADUs than phonemes (in this case we 

Table 5-11. Examples of common substitution errors are shown for open-loop 

experiments on TIMIT. 

Reference Recognized 

proceeding too slowly proceeding curiously 

be illuminating be illuminated 

my ears my years 

either a magnetic a paramagnetic 

buy these shoes than by if you can 

farm is flow rose 

the poor the floor 
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have 251 ADUs while 39 phonemes) which means we would have less data per ADU to train 

models. The number of parameters to be estimated increases significantly when the number of 

mixture components per state increases from 1 to 16, so we expect these models to be more 

poorly estimated since the amount of data is fixed.  

We can also see that the G2P-based system is much worse than a directly discovered lexicon. 

This is in contrast to the results reported for TIMIT and is a consequence of the different 

characteristics of the two corpora. The lexicon discovered for RM is estimated more reliably and 

adding a G2P reduces the performance while in the case of TIMIT the lexicon was estimated 

unreliably and G2P reduces the variance of the estimate.  

We have also presented the results for CD-trained systems. For the baseline system we have 

used a phonetic decision tree (e.g. based on linguistic knowledge) to generate tied states. For the 

ADU-based systems we don’t have linguistic knowledge (e.g. similar ADU units can be 

grouped). In principle it is possible to use a data-driven approach to obtain an approximation of 

such knowledge (e.g. clustering ADUs) but in this research we chose a simple approach based on 

 
Figure 5-4. A histogram of the number of word tokens in RM is shown.  
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singleton questions for the decision tree. Instead of having questions that are categorical in nature 

(e.g. is the left phoneme/unit a stop?) we used each ADU as one single group with only one 

member and have questions such as “is the left unit u1?” 

The result is less powerful than a tree trained by all possible questions. We can see from 

Table 5-12 that the gain for the CD ADU system (compare the last two rows to rows 3 and 4) is 

less than a CD system based on the reference lexicon and phonemes. Part of this is due to the 

singleton questions and part is a result of the increased number of ADUs compared to phonemes. 

Nevertheless, the results in Table 5-12 shows unsupervised ADUs and a semi-supervised lexicon 

trained based on these ADUs provides results comparable to the reference lexicon. In the next 

section we will compare these results with some other published results for the lexicon discovery 

problem. 

Table 5-13 shows several examples from the lexicon discovered from the ADU transducer 

output. We can see the discovered pronunciations are generally consistent. For example, words 

“Between”, “Bring” and “Been” start with “u69 u13 u126 u6”, “u69 u13 u126 u6” and “u66 u69 

u13 u126 u6” respectively. As we can see the first part of these words, which represent the 

phoneme /b/, are almost identical with the exception of “u66”. We can also see the same words 

end in a similar sequence of ADUs. This makes sense since the phonemes at the ends of the 

Table 5-12. Results for the open-looped trained lexicon are shown for RM. 

Experiment 
Context 

Modeling 

Mixture 

No. 
WER (%) 

CI Baseline  CI 1 24.66 

CI Baseline CI 16 9.17 

CD Baseline  CD 1 10.64 

CD Baseline  CD 16 4.84 

Direct algorithm  CI 1 20.34 

Direct algorithm  CI 16 11.61 

direct + G2P  CI 16 20.33 

CD direct algorithm  CD 1 15.81 

CD direct algorithm  CD 16 9.81 
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words are similar. Also observe that /n/ and /ng/ are confused by the ADUs. This phenomenon 

was also observed when comparing ADUs with phonemes in the previous section.  

Comparisons with Other Systems 

Table 5-14 shows the results of several competitive algorithms. Bacchiani and Ostendorf 

(1999), Singh et al. (2002) and Lee (2014) are representative work in this area. The first two 

approaches can be compared directly on RM. Lee (2014) evaluated their approach on the Jupiter 

Corpus (Zue et al., 2000) which consisted of spoken queries for weather information. We cannot 

compare directly to results by Lee (2014) because two datasets are different. Nevertheless, their 

results are presented in Table 5-14 and show a similar trend to ours. For example, their CI system 

is 19% worse than their CI baseline while our CI system is 21% worse than our baseline.  

From this table we can see the low-complexity systems of Bacchiani and Ostendorf (1999) 

(rows 1 and 3) have similar performance to the ADU-based system with 1 mixture component per 

state (rows 5 and 8). However, their algorithm is much more complex than the ADU-based 

system and involves joint discovery of the lexicon and acoustic units in a supervised manner 

(words alignments are required). The high-complexity system (rows 2 and 4) of Bacchiani and 

Ostendorf (1999) performs better than other systems that use 1 mixture component per state. 

However, this system is based on another sophisticated algorithm – progressive refinement of a 

Table 5-13. Examples of learned ADU pronunciations are shown. 

Word 
Phoneme 

Pronunciation 
ADU Pronunciation 

Between b ax t w iy n 
u69 u13 u126 u6 u44 u191 u49 u14 u182 u42 u68 u200 u202 

u224 u130 u225 u242 u208 u34 u66 u138 u107 u210 

Bring b eh r ih ng u69 u13 u126 u6 u213 u197 u22 u34 u138 u107 u210 

Been b ih n u66 u69 u13 u223 u123 u79 u46 u45 u138 u107 u210 

Carry k eh r iy u235 u78 u42 u68 u200 u202 u48 u75 u89 u133 u22 u193 u58 

We w iy u26 u142 u208 u193 u58 

March m aa r td ch 
u184 u131 u160 u26 u120 u222 u201 u70 u152 u57 u42 u204 

u188 u54 u16 u65 

Mars m aa r z 
u131 u160 u26 u157 u120 u197 u222 u103 u177 u4 u54 u194 

u65 
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low-complexity system with additional iterations using the K-MEANS and Viterbi algorithms. 

This high-complexity system implicitly models the context (word context in this case) and 

therefore should be compared with context dependent systems.  

Singh et al. (2002) used a slightly different baseline (e.g. semi-continuous HMMs) and a 

different language model with a higher perplexity. Their result is 25% worse than their baseline 

while our result for 1 mixture system is 21% better than our baseline. Their degradation in 

performance, however, might be a result of the fact that they have used a system with a high-

perplexity language model. 

Finally, the nonparametric Bayesian approach of Lee (2014) produces similar trends 

compared to our system. For example, their result is 19% worse than their baseline while our 

result (16 mixture) is 21% worse than our baseline. We must emphasize that all of these systems 

Table 5-14. A comparison of several automatic lexicon discovery algorithms in terms of 

WER is shown. 

System 
Context Modeling 

Corpus 
WER 

(%) 

CI low-complexity (1 mix) 

(Bacchiani and Ostendorf, 1999) 
No RM 19.70 

High complexity system 

implicit context modeling (1 mix)  

(Bacchiani and Ostendorf, 1999) 

Word Context RM 11.40 

CD low-complexity (1mix) 

(Bacchiani and Ostendorf, 1999) 

Phoneme 

Context 
RM 13.70 

high-complexity system 

explicit context modeling (1 mix) 

(Bacchiani and Ostendorf, 1999) 

Phoneme +  

Word  Context 
RM 9.90 

CI probabilistic framework 

(Singh et al., 2002) 
No RM 20.00 

CI phoneme baseline for 

(Singh et al., 2002) 
No RM 15.00 

CI Nonparametric Bayesian 

(Lee, 2014) 
No Jupiter 17.00 

CD Nonparametric Bayesian 

(Lee, 2014) 
Phoneme Context Jupiter 13.40 

CI phoneme baseline Jupiter 

(Lee, 2014) 
No Jupiter 13.80 

CD phoneme baseline Jupiter 

(Lee, 2014) 
Phoneme Context Jupiter 10.00 
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learned their corresponding acoustic units jointly with the lexicon on the same corpus while we 

intentionally introduced a mismatch to investigate the generalization performance of the ADU 

transducer. We also trained the lexicon separately from the ADU units. We expect we would 

obtain better results if we trained our ADU transducer using the same corpus.  

 Conclusions 

In this chapter, we have investigated the segmentation properties of HDPHMM and 

DHDPHMM models. We have shown these nonparametric Bayesian HMMs can be used as an 

ADU transducer to map acoustic features into acoustic units. We have trained speaker 

independent transducers and shown through experimentation that ADUs discovered using TIMIT 

have a close relationship with phonemes in English.  

We have also used the same ADU transducer for an STD by query task and obtained state of 

the art results for unsupervised algorithms on TIMIT. Finally we have investigated two 

algorithms to discover the lexicon from the output of an ADU transducer and parallel word-level 

transcriptions. We have shown both supervised and semi-supervised algorithms work reasonably 

well and the results are comparable with other reported algorithms. 

One of the goals of these experiments is to demonstrate the capabilities of the discovered 

ADUs to generalize to completely new datasets and tasks. This is an important practical and 

theoretical consideration and is generally one of the goals of any useful machine learning 

algorithm. If ADUs discovered on TIMIT cannot be used on other English datasets with similar 

recording conditions (e.g. read speech) then the utility of these units would be questionable. We 

have shown through experimentation that an ADU transducer trained on TIMIT (which is a small 

dataset) generalize to RM.  

Our goal in this chapter was to investigate some of the major properties of nonparametric 

Bayesian models discussed in previous chapters. Therefore examples provided in this chapter 
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(e.g. STD by query) have been approached in a relatively simple and straightforward manner. 

However, our results demonstrate good performance even for the relatively simple algorithms 

used in this dissertation. This suggests that our ADU-based units have significant untapped 

potential for the applications discussed in this chapter. We expect that we can improve both STD 

by query and lexicon discovery by incorporating more sophisticated techniques into our model. 

We have also used relatively small corpora (e.g. TIMIT and RM) due to our computational 

limitations. Another important direction is to use more challenging corpora involving 

conversational speech and large vocabularies. 

Finally, there are other potential applications for ADU units that we have not explored in this 

chapter. For example, automatic topic discovery, music retrieval and new word discovery are 

among the possible applications in speech and audio processing. 
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CHAPTER 6 

CONCLUSION 

In this dissertation we have investigated applications of nonparametric Bayesian approaches 

for some of the major problems encountered in acoustic modeling in speech recognition. Our 

techniques are applicable to almost any signal that has temporal structure that can be exploited. In 

Chapter 3 we introduced a DHDPHMM that allows sharing of mixture components. We have also 

derived an inference algorithm for this model and introduced several necessary extensions to 

model non-ergodic structures and non-emitting states. We have shown through experimentation 

that the proposed model outperforms HDPHMM by 14% (21.42% vs. 24.40% error rate) in 

problems similar to sub-word modeling. We have shown that the performance of this model is 

better than a discriminatively trained HMM and is similar to other state of the art algorithms for a 

phoneme classification task (21.42% vs. 24.60%). 

In Chapter 4 we have introduced a generative model for semi-supervised training of 

DHDPHMM. We introduced an approximation algorithm that simulates this generative model 

through an iterative procedure. Through experimentation we have shown that this model 

outperforms the supervised training algorithm (29.02% vs. 29.71%). We have also introduced two 

approaches for context modeling. Through experimentation we have shown that CI semi-

supervised DHDPHMM outperforms a baseline HMM trained using maximum likelihood or 

MMI (28.36% vs. 30.30%). However, the gain for the CD model is not as significant. The reason 

is the fact that we have not approached the context modeling problem in a nonparametric 

Bayesian framework and have used traditional state tying approaches. In the next section we 

propose a model that can potentially solve this problem. 
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In Chapter 5 we have investigated the problems of speech segmentation and acoustic unit 

discovery using HDPHMM and DHDPHMM. Our approach is to train a transducer which we 

called ADU transducer. Through experimentation we have shown that the resulting transducer is 

speaker independent and can generalize to new datasets. We have also investigated the 

relationship between ADUs and phonemes and have shown that the discovered units are 

correlated with phonemes in English. We have shown that the segmentation performance of an 

ADU transducer is better than an unsupervised baseline (76.62% vs. 70.80% F-score) and can be 

compared with state of art semi-supervised algorithms. 

Further, we proposed a simple unsupervised STD by query algorithm based on an ADU 

transducer and have shown that it performs better than other unsupervised algorithms. Its EER 

performance can approach the performance of a complex tied-triphone system (13.95% for a 

system based on HDPHMM and system and 11.83% for a system that combines HDPHMM and 

DHDPHMM systems vs. 11.70% for triphone system).  

Finally, we have proposed a semi-supervised algorithm to learn a lexicon from acoustic 

observations and a parallel word-level transcription. We have shown that an ADU transducer 

trained on TIMIT can generalize to a new dataset (e.g. RM) and a system trained using this 

lexicon can match or outperform other results reported in the literature (20.33% vs. 19.70% for a 

system with 1 mixture component). 

 Future Work 

As with any dissertation, there are many extensions or refinements of this work that can be 

pursued. Some of these are discussed below. 
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6.1.1 Nested DHDPHMM 

DHDPHMM provides a framework to share mixture components within a model. Our 

experiments show this sharing, in addition to reducing the computational cost, improves the 

performance by 14% relative to an HDPHMM. Therefore we should be able to extend this idea 

by defining a set of DHDPHMMs linked together using a third hierarchical structure (e.g. HDP). 

We can refer to such a model as a Nested DHDPHMM (NDHDPHMM). We can imagine a 

shared pool of mixture components for all the models in the set. We can also impose additional 

restrictions to force all models in the set have a similar structure. We expect this model can be 

useful for some of the problems mentioned in this dissertation. 

It should also be noted that this nested structure could be extended to as many nested levels as 

necessary for a specific application. For example, this model can be used to obtain a 

nonparametric Bayesian context modeling algorithm if the set represents triphones with a similar 

central phoneme. Toward this end we can first train a CI DHDPHMM using the algorithms 

discussed in this dissertation and initialize the NDHDPHMM. Examples for each context will be 

used to train the corresponding DHDPHMM that share its components with other DHDPHMMs 

in NDHDPHMM. Therefore, all DHDPHMMs will be able to utilize a new observation if it is 

relevant to them (implicit tying).  

6.1.2 A Speaker-Clustered ADU Transducer 

 Another application of NDHDPHMM is related to the ADU transducers introduced in 

Chapter 5. It is a known fact (Naito et al., 1998) that speaker-clustered systems work better than a 

speaker independent one if we have enough training data. A NDHDPHMM can potentially be 

used as collection of speaker-clustered ADU transducers where all transducers are linked together 

and share their mixture components. When decoding a new utterance, the system first assigns the 

speaker cluster and then processes the utterance using the appropriate transducer in the set. We 
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expect the results presented in Chapter 5 will improve moderately by using a speaker-clustered 

ADU transducer. 

6.1.3 Different Priors  

HDPHMM and DHDPHMM are both based on Dirichlet Process and hierarchical Dirichlet 

process priori distributions. These distributions not surprisingly impose certain constraints. For 

example in Chapter 3 we have shown that complexity grows slowly with the amount of data. In 

language modeling, other priors like Pittman-Yor (Teh, 2006) have been used instead of a 

Dirichlet process. Therefore it is import to examine other type of priors for models studied in this 

dissertation and for acoustic modeling problems. 

6.1.4 HDPHMM/DHDPHMM with HMM State 

In Chapter 5 we have discussed that using HDPHMM to train an ADU transducer imposes a 

restriction on the nature of learned ADUs by enforcing stationary units (e.g. generally phonemes 

are not stationary). One solution to overcome this problem is to use hierarchical HMMs 

(HHMMs) (Fine et al., 1998) instead of HMMs in the definition of HDPHMM. In this case each 

state of the HDPHMM will be replaced by a parametric HMM instead of a nonparametric 

Gaussian mixture and therefore each state can model non-stationary segments of the data. 

6.1.5 ADU Generalization to Other Languages 

We have investigated the ADU transducer for English. Specifically we have trained the 

transducer on TIMIT and evaluated it on both TIMIT and RM. We observed that a speaker 

independent transducer trained on TIMIT can generalize to a new corpus. However, it is also 

interesting to study the generalization to different styles of speech (e.g. conversational speech), 

environments (e.g. different type/level of noise) and languages. For example, can ADU units 
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trained on English data (possibly a much larger dataset than TIMIT) be used in Chinese spoken 

term detection by query task?  

6.1.6 Experimentation Using Larger Corpora and More Difficult Tasks 

All of the experiments in this dissertation have been conducted using relatively small corpora. 

TIMIT has less than 3 hours of training and RM is also on the same scale. Currently we only have 

used TIMIT for training our nonparametric Bayesian models. However, training 

DHDPHMM/HDPHMM models even using this small corpus takes between several hours to 

days on a medium size cluster computer where we have used both coarse and fine grain 

parallelism. Therefore scaling to large datasets is still an open problem and we need to explore 

more efficient inference algorithm based on variational methods (Blei and Jordan, 2005) instead 

of the current approaches based on Gibbs sampling (Gelman et al., 2004).  

6.1.7 Discriminative Training and DHDPHMM/DNN 

DHDPHMM already has better or comparable performance to discriminatively trained 

HMMs. For example error rate in phoneme classification task for DHDPHMM is 21.42% while 

error rate for discriminatively trained HMMs is 24.60%. Similarly error rate for CI DHDPHMM 

in a recognition task is 28.36% while for CI HMM trained using MMI is 30.30%. Therefore we 

expect to obtain moderately better results using discriminatively trained DHDPHMMs. 

HMM/DNN is based on predicting the state posterior probabilities for each frame (e.g. which 

HMM/state has generated this frame?). It is not guaranteed that a DHDPHMM/DNN works better 

than HMM/DNN. However, since DHDPHMM finds an optimum structure for each phoneme, it 

might provide DNN with further clues to classify the frame and therefore improve the overall 

performance. 
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6.1.8 More Robust Lexicon Generation  

We have explored a relatively simple lexicon generation approach. Our results on well-

behaved datasets like RM were comparable to other existing methods. However, we found that 

our performance degrades severely on datasets where the average number of examples for each 

word in the training set is very small. In many practical situations, we need to estimate 

pronunciations for many rare or even unseen words. Therefore we need a more sophisticated 

algorithm to train a G2P transducer from the output of an ADU transducer and parallel word 

transcriptions. Learning G2P transducers is an active research topic and it seems we have to 

leverage this ongoing research to improve our lexicon discovery algorithm. For example research 

on joint multigram models (Bisani and Ney, 2008) seems like a good starting point for a better 

lexicon discovery algorithm. 
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