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1. Introduction: 

What beauty is shown in the preparations obtained by the precipitation of silver 

dichromate deposited exclusively onto the nervous elements! But, on the other 

hand, what dense forests are revealed, in which it is difficult to discover the 

terminal endings of its intricate branching… Given that the adult jungle is 

impenetrable and indefinable, why not study the young forest, as we would say in 

its nursery stage. 

                                                                             Santiago Ramón y Cajal (1852-1934) 

 

It is commonly accepted that the information processing in the brain is carried out by large 

groups of interconnected neurons. Neurons are the cells responsible for encoding, transmitting, 

and integrating signals originating inside or outside the nervous system. The transmission of 

information within and between neurons involves changes in the resting membrane potential, 

when compared to the extracellular space. The inputs one neuron receives at the synapses from 

other neurons cause transient changes in its resting membrane potential, called postsynaptic 

potentials. These changes in potential are mediated by the flux of ions between the intracellular 

and extracellular space. The flux of ions is made possible through ion channels present in the 

membrane. The ion channels open or close depending on the membrane potential and on 

substances released by the neurons, namely neurotransmitters, which bind to receptors on the 

cell’s membrane and hyperpolarize or depolarize the cell. When the postsynaptic potential 

reaches a threshold, the neuron produces an impulse. The impulses or spikes, called action 

potentials, are characterized by a certain amplitude and duration and are the units of information 

transmission at the interneuronal level [1]. The discovery of the neuron was a milestone in brain 

research and paved the way for modern neuroscience, but the brain is yet to yield the vast 

majority of its secrets.  

 



The current neuroscience research operates at two disconnected levels: The macro- and 

microscopic levels. The macroscopic level uses imaging techniques like functional Magnetic 

Resonance Imaging (fMRI) and Magnetoencephalography (MEG) to measure regional changes 

in metabolism and blood flow associated with changes in brain activity. It captures whole brain 

activity patterns that allow the mapping of brain regions associated with a particular behavior or 

task. These techniques lack single-cell details and the requisite temporal resolution to permit 

detection of neuronal firing patterns. The microscopic level is concerned with investigating how 

individual nerve cells work, studying their response to stimulation and monitoring the firing rates 

associated with a certain behavioral output, mental state or motor activity. This can be done 

using implanted electrodes to record the rates and timing of action potentials. The sparse 

sampling of neuronal activity monitoring tens to few hundreds of neurons does not give the 

global view of signaling  in neural circuits that can involve millions of neurons. 

There is a gap between the two levels, that is believed to entail an answer to the question of how 

neuron cells collaborate to process information. To fill in the gap, we need the static anatomical 

map of the brain circuitry describing the synaptic connections within any given brain area, as 

well as the dynamic map revealing the patterns and sequences of neuronal firing by all neurons 

over time scales on which behavioral outputs or mental states occur. Hence the aspiration is not 

only to map the "impenetrable jungle" that Cajal referred to but also to map the dynamical traffic 

within the jungle and analyze it. Research efforts are conducted to approach that ultimate goal, 

and along the hard path to achieve it, technological breakthroughs evolved and more are bound 

to arise. New technologies may include new optical techniques to image in 3D, new capabilities 

for storage and manipulation of massive data sets, new clinically viable Brain Machine Interfaces 

to help paralyzed patients and development of biologically inspired computational devices.[2] 



Focusing on the Microscopic level, the following are two of the research fields concerned with 

recordings of the spiking activity of neurons using microelectrode arrays. 

(a) Brain-Machine Interface: 

Extracting motor control signals from the firing patterns of populations of neurons and using 

these control signals to reproduce motor behaviors in artificial actuators are the key operations of 

Brain-Machine Interface (BMI) [3]. The typical neural signal processing pathway as shown in 

fig.1  is designed to measure the instantaneous frequency of neural action potentials, or spikes. 

Since any given electrode may sense spikes from multiple neurons, it is typically necessary to 

sort all detected spikes by wave shape (i.e. by neuron). Firing rates of sorted spikes are typically 

measured by moving average; these rates can then be used by “decoding” algorithms which use 

statistical models to correlate spiking activity with behavioral or motor activity in the subject.  

  

Fig.1.1  Block diagram of the typical pathway of brain machine interface 

Hence invasive BMIs rely on the physiological property of individual cortical neurons to 

modulate their spiking activity in association with movements [3]. These modulations are found 



to be highly variable from neuron to neuron and from trial to trial. Yet averaging across many 

trials reveals fairly consistent firing patterns. Based on the hypothesis that the function of neural 

circuits is an emergent property that arises from the coordinated activity of large numbers of 

neurons, this phenomenon can be explained. Individual neurons generally form synaptic 

connections with thousands of other neurons. In distributed circuits, the larger the connectivity 

matrix the greater the redundancy within the network. Given their distributed connections and 

their plasticity, neurons are likely to be subject to continuous dynamic rearrangement, 

participating at different times in different active ensembles [2]. Accordingly both accuracy and 

reliability of predictions of motor activity improve considerably with increasing the number of 

simultaneously recorded neurons and decreasing the errors due to individual neuron firing 

variability. Pursuing this motivation, the number of simultaneously recorded neurons has been 

approximately doubling every 7 years since 1950’s [4]. Standard recording techniques using 704 

implantable micro wire arrays have been reported in literature [5]. Recently Nicolelis lab at Duke 

University announced their success to simultaneously record the electrical activity produced by a 

population of 1,874 interconnected single neurons at work in a primate.  

(b) Brain in a Dish: 

At present, the prime methodology for studying neuronal extracellular activity under in vitro 

conditions is by using substrate-integrated microelectrode arrays (MEAs). This methodology 

permits simultaneous, long-term recordings (i.e. of up to several weeks) of extracellular field 

potentials. Correlating MEA recordings with microscopic imaging and stimulations is widely 

used to study the circuit-connectivity, dynamics and propagation effects in neuron assemblies.  It 

is also used to investigate population coding, activity patterns, plasticity and pharmacological 



testing on either dissociated neuronal cultures or brain slices of embryonic rats, i.e. the young 

forests as Cajal described them.  

Commercially available MEA systems integrate typically 60–120 microelectrodes of 10–30 μm 

in diameter with pitches on the order of hundreds of micrometers.  Typical neuron soma 

dimension in vertebrates is few micrometers long and the typical neuronal networks have 10000–

50000 neurons, the limited number of electrodes and their rather large pitch results in a 

substantial spatial undersampling of the overall network activity [6] as shown in fig2.  

Fig. 2: Substrate-integrated MEA dish. The microscopic image of the electrode (black) and neurons 

 

The development of higher spatial and temporal resolution at low noise levels are prerequisites 

for opening the perspective to access the network electrical activity at the global and cell levels. 

Recently, CMOS-based high-density MEAs were developed featuring switching techniques to 

manage a large number of electrode channels interconnections, multiplexing, amplification, and 

filtering. Active Pixel Sensor based MEA platform providing 4096 microelectrodes at 21µm 

inter-electrode separation and 7.7KHz sampling rate has been documented [6].  

Considering the ultimate goal of Brain Activity Map [2], the current neuroscience in vivo and 

in vitro research states and the advancement of high density microelectrode arrays, the migration 

to monitoring thousands of recording channels at high temporal resolution is achievable.  

 



1.1 Increasing the number of Recording Channels: 

More is Different - The behavior of large and complex aggregates of 

elementary particles, it turns out, is not to be understood in terms of a simple 

extrapolation of the properties of a few particles. Instead at each level of 

complexity entirely new properties appear. 

                                                                                               Philip Warren Anderson  

 

The augmentation of the number of recording channels carries different challenges to the neural 

signal processing system. The primary challenge is the massive increase in recorded data that 

needs proactive strategies for data transfer, reduction, management and analysis. The 

implementation of real-time signal processing becomes essential to alleviate huge data storage 

requirements. The access to a more detailed view of neuronal networks might reveal new 

properties and challenges pushing for the development of new analyzing tools. 

With the continuous advancement of data acquisition systems featuring high-count recording 

channels, there exists a clear need for a test bed to develop and investigate a more suitable new 

generation of Neural Signal Processing (NSP) algorithms and computational tools. The platform 

has to offer programmable flexibility to allow the trial of different new strategies and novel 

computational techniques as well as rigorous testing for evaluation. 

 A plausible NSP platform that can handle thousands of recording channels has to provide means 

of high data transfer. As a numerical example, a NSP platform handling 2560 channels sampled 

at 31.25 KH at a sample precision of 16-bits must be capable of managing an input data stream 

of 1.28Gbps. The data transfer interface has to be compatible with high-density neural data 

acquisition systems [7]. 

Data reduction based on the sparse nature of the neural signal with respect to time and the 

redundancy perceived across multiple electrode recordings becomes essential. Spike detection is 



the essential first step building block that allows the system to deliver only the action potential 

waveforms, their respective occurrence times and channel ID instead of the entire raw signal. 

The AP waveforms are then used by an autonomous spike sorter to first distinguish true spikes 

from false detections, then, to associate each spike to its generating neuron in case of multi-unit 

recordings. Depending on the performance and inter-electrode spacing, the AP waveforms might 

be necessary to identify redundancy over multiple recording channels.  

The spike detection settings for each channel is independent from the settings of other channels, 

and hence spike detection over different sites can run in parallel. Applying parallel processing 

whenever possible limits the overall latency and assists in achieving real time implementation. 

The NSP platform has to be fully autonomous and functional under expected Signal-to-Noise 

Ratios delivered by the data acquisition system. The system must be adaptive to varying noise 

levels over different channels and over time.  

The main objective of the proposed project is to design an experimental test bed that can 

facilitate dealing with a large number of recorded neurons in real time. It also presents an 

architecture that performs spike-based data reduction. 

 

 1.2. Why consider FPGA? 

Ross Freeman (1944-1989) established  the leading FPGA developer Xilinx in 1984 and  

invented a year later the first Field Programmable Gate Array (FPGA). FPGAs are 

programmable semiconductor devices that are based around a matrix of Configurable Logic 

Blocks (CLBs) connected through programmable interconnects. FPGAs can be configured to 

implement custom hardware applications and functionalities. Since their invention, FPGAs have 

evolved far beyond the basic capabilities present in their predecessors, and incorporate hard 



Application Specific Integrated Blocks of commonly used functionality such as RAM, clock 

management, and DSP.  

FPGAs are parallel in nature, so different processing operations do not have to compete for the 

same resources. Each independent processing task is assigned to a dedicated section of the chip 

and can function autonomously without any influence from other logic blocks. 

As integrated circuits grew smaller and maximum toggle rates increased the need for 

input/output bandwidth exploded. With more hardware resources and faster clock speeds, 

conventional I/O resources became the bottleneck to FPGA performance. In 2002, Xilinx 

embedded high-speed serial Multi-gigabit transceivers (MGTs) on their FPGAs and introduced 

them commercially under the name Rocket I/O. MGTs are Serializers/Deserilizers (SERDES) 

that allow serial data transmission over differential pairs at speeds of up to 28.05Gbps per lane 

(see Fig. 1.3). Alternatively, multiple MGTs can be bonded together to form a higher bandwidth 

interface. Multiple MGTs are integrated above and below the Block RAM columns providing 

close availability for ingress and egress FIFOs. Rocket IO serial transceivers (see Fig 1.4) are 

compliant with standard gigabit communication protocols. 

 

Fig. 1.3. Bar graph presenting the available serial Multi-Gigabit Transceiver line rates. 
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FPGAs offer massive parallel processing performance, reconfigurable flexibility and superior 

capabilty of streaming data, and therefore present an appealing hardware implementation 

solution for a NSP testbed that can handle a large number of similarly strutured parallel channels 

in real time.  

 

Fig. 1.4: Functional Block diagram of Xilinx® GTP MGT. 

 



2. Background: 

Monitoring the interplay of neuronal ensembles in the brain is important for understanding 

mechanisms underlying memory, learning and behavior. Recently a group of neuroscientists 

have proposed launching a large-scale, international public effort called "Brain Activity Map" 

(BAM) Project, aimed at reconstructing the full record of neural activity across complete neural 

circuits [2]. They describe the neural circuit function as being emergent, meaning that it arises 

from complex interactions among millions of neurons and that the circuit state is not predictable 

from responses of individual sparsely sampled cells. They propose the dynamical mapping of the 

"functional connectome", the patterns and sequences of neuronal firing by all neurons. 

Correlating this firing activity with both the connectivity of the circuit and its functional or 

behavioral output could enable  the understanding of neuronal codes and the regulation of 

behavior and mental states. Some of the mental illnesses that could not be understood using 

single-level analysis, such as autism and schizophrenia, may be possible to explain on an 

emergent level analysis. Clearly, the benefits of getting the full dynamical picture of the brain 

will be invaluable to address many questions in neuroscience, but to achieve this vision there is a 

clear need to develop novel technologies and significant innovations in systems engineering. 

At present,  population coding is studied either by monitoring the spiking activity of a few 

hundreds of individual neurons working with intact, living animals or by studying the basics of 

distributed information processing using cultured neuronal networks. Cultured neuronal 

networks lack many features of real brain, but they retain others such as developing synaptic 

connections and exhibiting different patterns of electrical activity [8].  The neural activity cannot 

be correlated to a behavioral or mental output as in vivo, but it can be correlated to a structural 

connectome and to stimulation patterns. Advancement in micro-electrode array technology and 



multi-photon microscopy, has made it possible that every cell in a cultured monolayer network 

of dissociated neurons can be observed , monitored, stimulated and manipulated with temporal 

resolution in the submillisecond range, and spatial resolution in the submicron range, in a non-

destructive manner [8]. Currently, such detailed analysis is not feasible in living animals, or even 

brain slices, but it remains an open question however, whether any of the processing done by 

cultured neurons is relevant to that carried out by intact brain.  

This chapter serves to present efforts from a number of research groups to upgrade the 

recording capabilities of neuronal activity to higher spatial and temporal resolution across a 

large-scale neuronal ensemble to approach the model of in vivo brain.  It will review some of 

these efforts reported on the data acquisition level. With the increasing number of recording 

sites, the chapter also discusses architecture design considerations at the spike detection  level. 

2.1. Multi-electrode Arrays: 

Multielectrode arrays or microelectrode arrays are data acquisition devices that contain 

multiple plates or shanks through which neural signals are acquired, basically serving as neural 

interfaces that connect neurons to electronic circuitry. The signal then passes through 

amplification and filtering to remove some of the background noise. MEAs can be classified into 

two groups: implantable MEAs, used in vivo, and non-implantable MEAs, used in vitro.  Using 

advances in multisite microelectrode array fabrication techniques varying shape and recording 

capacity of the electrodes, it is possible to record the activity of tens to hundreds of neurons in 

parallel [9]. Integrated microelectronic circuits were applied to enable the transition to even 

higher recording capacities [10]. Development of  in vivo and in vitro multi-electrode probes 

share many of the same hardware and data analysis problems and mutually contribute to the 

advancement of the state of the art. 

http://en.wikipedia.org/wiki/Signal_(electronics)
http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Electric_circuit
http://en.wikipedia.org/wiki/In_vivo
http://en.wikipedia.org/wiki/In_vitro


2.1.1 In Vitro Micro-Electrode Arrays: 

Multi-electrode array culture dishes allow simultaneous recoding from and stimulation of 

neurons. These wired Petri dishes are also called planar electrode arrays [2]. Early 

microelectrode developments by Gross [11], Wise, Meister and others paved the way for 

enabling chronic multi-single-cell recording. They were able to record neural spike potentials 

with good fidelity from a few tens of neurons. 

 MEA's have become commercially available just within the last decade.  MEA systems 

capable of recording at least 60 electrodes are produced by MultiChannel Systems of Germany, 

and Panasonic of Japan. Guenter Gross supplies MEAs that can be used with multi-electrode 

processing hardware and software made by Plexon Inc [8].  MEAs typically consist of less than 

100 planar metal electrodes on an insulating glass substrate with a diameter > 30µm and a pitch 

>100µm. For commercially available MEAs, amplification and filtering are realized by discrete 

off-chip components [6].  

Considering the dimensions of neurons, which range from below 10µm for vertebrates up to 

100µm for invertebrates, the development of high-density arrays was needed to acquire more 

details from cell-based biological experiments on brain slices and to elucidate the contribution of 

individual cells to collective network. An advanced multi-electrode array system has been 

developed to study how the retina processes and encodes visual images. This system can 

simultaneously record the extracellular electrical activity from hundreds of retinal output neurons 

and consists of 512 planar microelectrodes with a sensitive area of 1.7 mm² and a noise level of a 

few µV [13].  However, some brain structures, such as hippocampus or cerebral cortex, extend 

over distances of many millimeters [14]. To record from these larger structures, an increased 



density of electrodes and a larger array would be required in order to fully analyze all the 

neurons of interest.  

 CMOS-based devices presents several advantages for managing a large number of electrode 

channels' interconnections, multiplexing, amplification and filtering. They have been initially 

implemented for in vivo neural probe recordings  [15]. Later they have been used for in vitro 

devices at a larger scale to overcome the connectivity limitation by making use of on-chip signal 

multiplexing [12]. A number of voltage recording microelectrode array devices have been 

developed with significantly higher electrode densities and larger areas. Due to hardware 

bandwidth limitations, these devices all make some compromise between speed, electrode count, 

multiplexed sampling, and noise [14].  

A high-density 128x128  biosensor array CMOS chip was designed featuring a frame rate of 

2K frames per second, and a pitch of 7.8µmx7.8µm over 1mm² extent [12]. The device has a 

very high spatial resolution recording of small areas of tissue, but was reported to have noise 

levels in the range of 250µVrms, which could make recording smaller extracellular spike signals 

(20-100µV) a challenge [14]. The simultaneous recording from all electrodes required the front-

end amplifiers being placed in each recording site, which, due to area constraints, entailed the 

high noise levels.  

A switch-matrix-based high-density microelectrode array [16] was developed as a hybrid 

between low electrode count and high resolution arrays. The device has only 126 output channels 

but these could be digitally selected from among 11,000 electrodes, separated by a pitch of 

18µm,  using a reconfigurable electrode/readout-channel routing.  The device has very low noise 

levels of 7-9µV, since the front-end circuitry were placed outside the array, where sufficient area 

for low-noise circuit implementation is available.  



 Imfeld and coworkers developed an electrode multiplexing , 4096 pixel recording array with 

a 42 µm pitch and a 2.7mmx2.7mm extent that can record the full frame at a rate of 8KHz. The 

device has high spatial resolution, a relatively good temporal resolution and a wide extent of 

~7mm². The data recording  has a hardware implementation inspired by image/video processing 

concepts. It implements an Active Pixel Sensor (APS) concept CMOS design, acquiring the data 

as a time sequence of images [17]. Basic amplification was performed underneath each 

electrode, and a tradeoff between spatial resolution and noise dictated the inter-electrode spacing. 

The noise level is in the range of ~26µV rms. The complete architecture of the acquisition 

system is shown in Fig. 2.1. Control and timing of the APS-MEA as well as the bank of the 

Analog to Digital Converters (ADC) is performed by an FPGA. Filtering the 4096 channels in 

real time is also carried out on the same FPGA.  

 

 

Recently a high-electrode count Pico-current Imaging Array (PIA), based on an 81,920 pixel 

readout integrated circuit camera chip was developed. While originally designed for interfacing 

to infrared photo-detector arrays, it was adapted for neuron recording by bonding it to microwire 

glass. The full frame of an area of 9.6mm by 7.7mm can be recorded at 100Hz. [14]    

Fig 2.1 Block diagram of the acquisition platform. [17] 



2.1.2 In Vivo Micro-Electrode Arrays: 

Implantable MEA research considers more requirements and restrictions for acute and 

chronic implantation. Some research areas focus on the fabrication process, insertion techniques, 

chronic response of tissue on the implant, wireless implant design and power issues. In this 

section the main focus will be only on presenting a few of the  research efforts on increasing the 

number of recording sites of neural signals. Some Labs are mainly interested in monitoring more 

neurons in different cortical areas of the brain [18], while others are interested in changing the 

microstructure  of the neural probes to increase the spatial resolution [19-21].  

Researchers at the Duke University lab published a paradigm for recording the activity of 

single cortical neurons from awake, behaving monkeys [5]. They implanted high-density 

microwire arrays, developed at Duke University, totaling up to 704 microwires per subject in 

five cortical areas. Early this year the lab announced that they were able to simultaneously record 

the firing patterns of close to 2000 neurons. Four multielectrode arrays with 448 electrodes were 

inserted in rhesus monkey motor and sensory cortices of both hemispheres. There are no 

publications yet explaining the detailed instrumentation used.  

The microwire and similarly structured silicon-based arrays feature one recording site per 

wire, which limits the capability of the array to capture dense neuronal activity in 3-dimensional 

setting. Alternatively in 1985 the planar microelectrode array was introduced, using multiple 

electrodes arranged on implantable silicon shafts [20]. The planar microelectrodes increased the 

recording spatial precision. It was later modified by proposing double-sided electrodes [22]. 

These devices contain electrodes on two parallel planes separated by the thickness of the 

implantable shaft, presenting a building block for a 3-dimensional recording geometry. 



Du and coworkers at the California Institute of Technology have fabricated   a dual-side 

electrode array by patterning recording sites at the front and back of an implantable 

microstructure. They  proposed stacking several two-dimensional multishank arrays into three 

dimensional  probe arrays, to access 3-D neuronal structures as shown in Fig. 2.2.  

Fig. 2.2. Dual-side and double-layer 

microelectrode arrays were built on thin 

silicon shafts. A: front view of the device. 

The shaft dimensions are 4 mm x70 µm 

x50 µm (l x w x t). B: expanded view of 

the front and back sides of the dual-side 

array. The recording sites have a 

geometric area of 100µm². C: layers 

involved in connecting dual-side arrays to 

flexible printed circuit boards (PCBs, 

green), one board for each side. Electrical 

connections were made via low-profile 

flip-chip bonds. D: view of the tip of a 2 x 

2 shaft, double-layer array. E: a modular 

assembly scheme used to make the 

multilayer structure. Note that the PCB 

contained conducting leads on both sides 

and thus the same board connected to the 

upper recording sites on the bottom layer 

and the lower sites on the top layer. [21] 

The nano-probe design presents a 

potential for hundreds or thousands 

of recording sites, but it holds a high risk of brain tissue damage. To minimize the disruptive 

interface between the silicon electrodes and the brain, the nano-probes will pass through more 

testing and evaluation to determine the optimal shaft size and shaft spacing.                                                                                                      

It is evident that there are several efforts aiming to increase the number of recording channels in 

vivo as well as in vitro and in situ, which leads us to the next section of presenting the available 

signal processing tools and their capability of handling the resulting high  amount of recorded 

data. 

 



2.2. Neural Signal Processing systems: 

Recordings of extracellular neural activity are used in many research studies and clinical 

applications. Usually, these signals are analyzed as a point process, and  spike detection is used 

to estimate the times at which action potentials from one or more neurons occurred. Recordings 

from high-density MEAs and low-impedance microelectrodes often have a low signal-to-noise 

ratio (SNR < 10) and contain action potentials from more than one neuron. Hence, spike 

detection is often followed by spike sorting, that involves clustering, to assign each event to 

separate neurons based on AP waveforms. 

2.2.1 Spike Detection Algorithms: 

The main challenge in detecting spikes is the interference due to background noise. Various 

spike detection algorithms with different levels of complexity and performance have been 

presented [23]. The absolute threshold method is widely used as it requires the least 

computations, but it is highly sensitive to background noise. Various techniques have been 

proposed for autonomously selecting the threshold based on the statistical characteristics of the 

recorded signal, while others set the  threshold based on a visual inspection of the detected 

spikes. A different type of algorithms is based on template matching. These algorithms scan the 

recorded signal for instances, where segments of the signal are similar to templates of spike 

waveforms. In this case a priori knowledge of the spike waveforms is required and the user 

should supply a threshold for similarity measures. A different approach suggests using a 

preprocessors, such as the Nonlinear Energy Operator NEO to give emphasis to the spikes 

relative to the noise before applying the absolute threshold, consequently improving the spike 

detection performance.  

 



2.2.2 Neural Signal Processing Systems: 

Existing commercial recording systems are limited to a few hundred channels and rely on 

multiple sequential logic processors connected in parallel. While functional, such systems are 

difficult to manage, and do not scale well to larger channel counts. The paradigm described by 

researchers at Duke University [5] for acquiring neural signals from monkeys incorporated the 

multichannel acquisition processor MAP by Plexon. The MAP recorded all the events that 

crossed the voltage threshold, set by the user, for subsequent offline spike sorting analysis. Each 

MAP processor can handle up to 128 channels. For their experiments,  they used a custom made 

MAP cluster, formed by three 128-channel MAPs connected in parallel and synchronized by a 

common 2MHz clock signal.  The initial step in all recording sessions required the experimenter 

to manually set the voltage threshold for each of the MAP channels connected to an implanted 

microwire [5]. The threshold was set based on visual inspection of the original analog signals 

displayed in an oscilloscope as well as the digital signal displayed on the screen of the computer 

controlling the MAP. With the increasing number of recording channels, it becomes impractical 

to require the user to tune the spike detection algorithm to the signal properties visualized on 

each channel. Currently, Plexon is offering  an upgraded version of the MAP called OmniPlex
®
 

D Neural Data Acquisition System. The system can handle up to 256 channels sampled at 

40KHz with a sample precision of 16 bits. 

With the rising demand to process a large number of similarly structured parallel channels in 

real time, there has been an emerging interest in hardware implementation over sequential 

processors. FPGAs offer massive parallel processing performance and reconfigurable flexibility, 

which makes them an attractive alternative for real-time signal processing. 



The data acquisition systems integrated with the  high-density MEAs presented in section 

2.1. perform signal conditioning in terms of amplification and filtering, and then send the 

complete signal to a host PC for storage, off-line spike detection and  clustering. [17]. As high-

density MEA platform produce data streams in the range of hundreds or thousands of Megabits, 

the amount of data storage required increases drastically with longer recording times. Real-time 

spike detection and data compression become vital to limit the amount of data storage. 

2.3. Spike-based data reduction: 

The idea of data reduction has been addressed mainly in wireless implantable devices for 

Brain-Machine-Interfaces. Several efforts have been proposed to implement on-line hardware 

spike detection and send only the spike waveforms while disregarding the interspike samples. 

The spike waveforms are the only information needed for successive spike sorting. With a 

limited telemetry bandwidth, it was essential to consider spike-based data compression 

algorithms to reduce the amount of sent data. With power restrictions of implantable devices, 

there was also a need to avoid high power consumption associated with the continuous 

transmission of raw data. The proposed schemes aimed at providing an efficient use of the 

available transmission bandwidth and an increase of  the device throughput. Based on the sparse 

nature of the neural signal with respect to time, and the average neuron firing rates, the amount 

of sent data can be reduced to approximately ~2.25% of the total amount of  raw data [24]. 

With a focus on telemetry transmission, Bossetti et al [24] raised an important design 

consideration for spike-based data reduction in real-time.  They demonstrated that although the 

spike-based compression might be very appealing from the point of view of average bandwidth, 

it is subject to telemetry bottlenecks during periods of multichannel neuron bursting causing 



queuing-based transmission delays at the output buffer. They drew the attention to the relation 

between the ratio of the output to average input bandwidth and transmission latency, the number 

of samples per spike waveform, the mean firing rate MFR, and the needed queue depth of the 

output buffer memory. Bottlenecks and latencies are mainly a consequence of accumulating the 

input data samples over short periods of time before their transmission at the output, waiting for 

the AP waveform to complete at the output queue. The basic common building block of a spike-

based data reduction is shown in fig.2.3. The research paper has concentrated mainly on the 

transmission delay. The hardware implementation delay is the time between the arrival of the 

spike waveform at the input buffer and its appearance on the output buffer. The method of spike 

detection employed will dictate the size and temporal pattern of spike data arriving at the output 

buffer. These patterns could impact the timing significantly.     

 

 

 

 

 

Aside from the delay depending on the scheme control and data handling between the input 

and output buffers, there are other delays related to the computational overhead and  memory 

read/write times, that depend on the system clock.  The performance of the spike detector will 

also affect the required output bandwidth. A high false detection rate will increase the overall 

MFR and change the design consideration of the system [24]. 
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Fig. 2.3 Fundamental Block diagram of a spike detection based compression scheme. 
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2.4. Spike Detector Design Schemes: 

The design of the data flow in the spike detection hardware-implementation defines the 

system latency and memory requirements. With the increasing demand to monitor thousands of 

recording channels, the efficient use of hardware resources, especially memory blocks on the 

FPGA becomes vital. Only a few literature have presented detailed patterns and sequences of the 

data flow on their spike-based compression architectures. This section presents two examples of 

spike detection architectures  with different data flow sequences, and discusses their possible 

application on high channel-counts. The first example is a spike detection scheme designed for 

an implantable data acquisition system for BMI application [25]. The second example is is an 

architecture of a Neural Spike Detection platform NSP [26]. 

2.4.1. Spike Detection architecture for Implantable Application: [25]  

The spike detection based data reduction scheme shown in fig. 2.4. handles the time division 

multiplexed data recorded from 16 channels. In this design the 64 most recent samples from each 

channel are stored in the input data storage buffer memory. Once a spike has been detected on a 

channel, the hardware waits until an additional 34 samples, representing the spike waveform 

refractory period, from the same channel have been acquired. After the 45 samples of AP 

waveform is completed in the buffer memory, it waits for its turn in the queue for detected spikes 

to be written out to the FIFO buffer, where it is held until the embedded PC and wireless card 

transmit them to the host station. 

 (a) Queuing based delay: The AP waveform passes through queuing-based transmission twice. 

Once to be copied from the input buffer to the output FIFO, and again for transmission to the 

host. The delay increases in case of neuron bursting across the channels. 



(b) Memory consumption: In this design, each channel was assigned 64 sample words on the 

input buffer, as in case of spike detection, the system waited for the full 45 sample AP waveform 

to be completed in the input buffer before it was copied to the output FIFO. With the increase of 

the number of recording channels handled by the system we might consider a different design 

sequence to lower the memory usage on the hardware. For example, copying the AP waveform 

in single samples, as they arrive at the input buffer, or small groups of samples to the output 

buffer, can decrease the memory space assigned for each channel in the input buffer. 

 

 

 

Fig. 2.4:  Block diagram describing the spike detector's functionality. [25] 



2.4.2. Spike Detection architecture on NSP platform: [26] 

 The NSP processor incorporates a spike detection processor core (p-core) and a spike sorting 

p-core controlled by two Microblaze processors as shown in fig 2.5.  

 

Fig. 2.5. Schematic of the embedded system architecture representation of the NSP platform. The central 

processors are connected to the firmware layer via the LMBs. Communication between the processors 

and other subsequent layers are channelized through the PLBs. Two PLBs are interconnected using a 

PLB-bridge. Each processor behaves as masters in their respective PLBs, while all the other peripherals 

and p-cores are connected as slaves. [26] 

 

Focusing on the scope of the proposed research, only the spike detection p-core design is 

investigated. The PLB interface connects the Microblaze processor to the p-core. The central 

processor manages two tasks: DETI The transfer of input data to the p-core as well as DETO 

monitoring the spike detection process. 

 



 

                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6:  

A. Flow chart of the real-time 

firmware implemented in the 

MicroBlaze processor-1. This 

processor manages two tasks, 

DETI (transfer of data between 

the acquisition and the detector 

module) and DETO (spike 

detection monitoring task) 

B. The timing diagram shows 

the sequencing of the threads 

DETI and DETO by 

the Processor-1. Each thread 

operates for a pre-determined 

time and the control transfer is 

exchanged repeatedly till the 

processor is reset or turned off. 

The threads are added with 

processor overhead time 

determined by the compiler to 

enable proper scheduling.  

(A) 

(B) 



(a) MicroBlaze Interrrupt Latency: 

The processor operates at 100 MHz. Each instance of the data sampling process occupies 68 

clock cycles of the spike detector and another 68 clock cycles were allocated to monitor the spike 

detection. The scheduler issues interrupts at the end of each task and based on testing results, an 

average interrupt latency of 5.2 μsec was needed by the real-time firmware. The interrupt latency 

occupies a significant share of the processor cycles limiting the maximum operational frequency 

of the p-core. Hence the p-core was set to work at 10MHz, a ten times lower speed than its 

maximum possible operating frequency defined by the routing critical path. Assuming that the 

neural signal data is pipelined through the spike detector, the maximum number of channels that 

can be handled by the platform is limited to ~300 channels. [26] 
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KHz 3.125

MHz 10
  

Frequency Sampling Data Neural
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The hardware implementation advantages were restrained by the dependency on the MicroBlaze 

processor to control the operation sequence. If the p-core was to be implemented as standalone 

module, it can operate at around its maximum operating frequency, defined by the critical 

routing path. The proposed alternative design solution features a standalone implementation of a 

spike detector using Finite State Machines (FSMs) to control the interface between the data 

acquisition and the spike detection core as well as the interface between the spike detector and 

the output.  

The use of a higher processor speed of ~1 GHz will allow the p-cores to run at 100MHz speed. 

In that case, it is quite possible that the interrupt latency can be reduced by an order of the 

magnitude (~0.52 μsec) and that p-core could perform at 100 MHz.  [26] 



(b) Input Data format: 

The data processing architecture was based on receiving the neural data as a stream of frames of 

32 successive samples recorded from one channel and preceded by their channel ID. Fig.2.7  

Simultaneous MEA data acquisition systems incorporate a Time Division Multiplexer (TDM). 

The rearrangement of the data in the flow scheme required adds control and storage burdens as 

well as latency to the interface between the data acquisition and the platform. As the system is 

required to extract valid spike waveforms, the platform has to deal with action potentials split 

between two data frames, again imposing avoidable complexity to the design.   

 

 

 

Figure 2.7: Data flow through 

the input buffer is shown (top 

diagram). Each set of 32 samples 

are preceded by a channel ID 

data. Of the 14 bits, the 13th bit is 

used to differentiate between 

channel ID data and neural data 

(bottom). The 14th bit is used as 

a validity bit used by the output 

section of the module 

 

 

 

 

 

 

 

 

(c) The Threshold comparator 

and Threshold selection: 

 



Fig 2.8 shows the block diagram of the spike detector core. The threshold comparator compares 

the neural data from the preprocessor, based on the nonlinear energy operator, to a user-defined 

threshold to detect spikes. The threshold here was the same fixed threshold for all the channels. 

The signals recorded by different electrodes may vary markedly in their SNR, and on the same 

channel SNR may fluctuate over time. With different SNRs the threshold has to be set adequetly 

for each channel. Dealing with massive number of recording channels threshold selection has to 

run autonomously without user interference, as manual channel settings become impractical. 

 
Figure 2.7: Schematic of the spike detector p-core. The PLB interface connects the p-core to the processor. 

Neural data is input to the input buffer and valid spike waveforms are read out of the output buffer[26]. 

 

 



3. Proposed Design Architecture: 

3.1. System Overview:  

        The Neural Spike Detection platform receives time division multiplexed serial samples 

from a high number of neural recording channels at the multi gigabit receiver port of the FPGA. 

The receiver performs deserialization of the data and ensures correct sample-word alignment. 

The system affiliates each sample to its source channel and performs spike detection. If a spike is 

detected the spike waveform along with its time stamp and channel ID are passed to an output 

buffer for further spike sorting or data analysis. Fig. 3.1 presents the integration of the spike 

detection platform in a typical neural signal processing system.  

 

 

 

 

 

 

 

 

 

 

Fig 3.1: A block diagram of the proposed Neural Spike Detection platform and its integration in a 

Neural Signal Processing system. The center block (dark blue) presents the Neural Spike Detection  

(NSD) platform performing spike-based data reduction. The blocks (light blue) connected to the NSD 

platform on the left and right sides present the interface required  to embed the platform into a NSP 

system. The upper left and bottom right (green) building blocks present typical neural data acquisition 

and spiking analysis on a host PC, respectively. These are not part of the design.  
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The spike detection platform performs spike-based data reduction. The average reduction ratio: 

frequency Sampling Signal Neural

 waveformAPper  samples ofNumber   odeMFR/electr 
  RatioReduction  Average


   

where MFR = Mean Firing Rate. For a MFR of 18 spikes/s/electrode, 50 samples per AP 

waveform, and a sampling frequency of 40KHz, [24] The reduction ratio = 0.025.  

The typical neural signal processing pathway starts with a data acquisition system that records 

extracellular potentials from an MEA. The data acquisition provides amplification, filtering, time 

division multiplexing and A/D conversion of data read from the different electrodes. Then the 

signal passes through spike detection followed by spike sorting, spike binning and analysis. The 

work proposed focuses on the spike-based data reduction module and is thus concerned with the 

interface between the ADC of the data acquisition system and the interface with the spike sorting 

on FPGA or sending the data to a host PC for further analysis.  

As the system is designed to handle thousands of recording channels, it has to offer enough 

bandwidth to receive the massive amount of neural data from the data acquisition system in real 

time. For example for a 2560 channels sampled at 31.25 KSps, and a precision of 16-bits per 

sample, the data rate has to be 1.28 Gbps. Consequently, the platform architecture integrates the 

application of high-speed serial transceivers to allow for the required input data transmissions.   

Although, the amount of data is significantly reduced, the system needs to integrate a high-speed 

communication link to transfer the AP waveforms to the host PC, accounting for transmission 

bottlenecks during periods of multi-channel neuron bursting [24]. A PCI express link is 

integrated to minimize queuing-based transmission latencies and performance degradation when 

the output data overwhelms the transmission bandwidth of the device.  



3.2  Spike-based Data Reduction Unit: 

The main building block of the proposed architecture is a spike-based data reduction unit that 

handles 128 channels. This unit can be replicated to process a higher number of recording sites. A 

block diagram of the spike detection module is shown in Fig.3.2. The spike detection unit receives 

time division multiplexed 16-bit sample data from 128 channels; it tests the samples for possible 

spikes, and then sends the complete Action Potential (AP) waveform of a detected spike preceded 

by the time stamp and the channel ID to the output buffer memory. This section presents the main 

building blocks of the unit and indicates how the design parameters were selected based on the 

spike detection algorithm to be applied on the platform.                                        

3.2.1 Spike Detector: 

The Spike detector block holds the hardware implementation of the spike detection algorithm. 

Various spike detection algorithms with different levels of complexity and performance have 

been presented [23, 27] and can be applied on the proposed platform with proper modifications 

of the system design parameters. As an example, the design model applies spike detection based 

on the absolute threshold after passing the signal through a Nonlinear Energy Operator (NEO) 

preprocessor eq.3.1 in order to give emphasis to the spikes relative to the noise and consequently, 

improve the spike detection performance.  

 1.3                            41][   ][ ][][  2   wherenxnxnxnNEO   

where x[n] is the neural data sample at any instance n . 

The threshold for a given channel is set to a multiple of an estimate of the noise level on that 

channel. The detailed Threshold selection method and block diagram is presented in 3.2.3. 



Figure 3.2: A block diagram describing the spike detection process. The spike detection unit is designed 

to detect neural spikes over 128 channels. 
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3.2.2 Output Buffer 

A neural AP has duration of ~ 1.5ms on the average. Considering sampling rates in the range of 

30 KHz and based on the wave-shape, a full AP waveform was assumed to have 10 pre-spike 

samples, 1 spike sample and 35 samples representing the spike refractory period. This assumption 

was optimum for organizing the FIFO memory and address assignment. The output FIFO 

memory 3x36K can hold up to 128 spike waveforms at a time, counting for the worst case 



scenario if firing neurons are detected on all channels at the same time.  When the unit receives a 

sample from one of the channels it is written in the input memory. 
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3.2.3 Input BRAM: 

For spike detection consecutive samples are needed to identify a spike. Each channel is 

assigned a memory space on the input BRAM to hold the most recent 16 samples.  The depth of 

the memory space assigned to each channel was chosen to hold enough sample history to acquire 

the ten pre-spike samples, the spike sample x[n] and five post-spike samples. Four of the post-

spike samples are the "future" samples held to reach x[n+4] needed for the NEO computation, 

FIFO Base address 0 

FIFO Base address 1 

48 words: 2 word 

header holding Time 

Stamp and Channel ID 

followed by 46 samples 

AP waveform 

FIFO Base address 127 

2 Prefix Bits that 

differentiate between 

spike waveform,             

Time Stamp and 

Channel ID 

 

16 bits holding an AP 

sample, Time Stamp or 

Channel ID 

Spike Counter 

Spike_detected 

Base Address 

Look-up ROM 

128x9 

7 

9 

FIFO Base HI 0 0 0 0 

First available FIFO Base address 

Fig 3.3: (a) Organization of the output FIFO, (b) Spike counter and Base address look-up ROM used to 

determine the first available memory space in the output buffer to store a detected spike AP. 



and x[n+5] is added for timing control, as would be explained in the operation management 

section. The design does not copy the AP waveform as a bulk to the output buffer, instead it 

copies the first 16 samples, and then sends the refractory period sample by sample as they arrive 

at the input BRAM. This scheme has minimized the memory space depth needed for each 

channel, saving on total memory usage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.4 Channel Status: 

Switching between multiple time multiplexed channels with different statuses requires holding 

the status of each channel to determine the operation to be applied on the respective incoming 

input sample. The channel_status memory holds 128 words describing the status of each channel 

handled by the spike detection unit.  

(a) BRAM memory space assigned to 

a channel k at instance (n+4), at which 

the spike is detected 

(b) BRAM memory space assigned to 

a channel k at instance (n+5), at which 

the first 16-channels of AP are copied 

to output buffer  

x[n]             
spike 

sample 

x[n+4] 
needed 
for NEO 

10 pre-spike 
samples x[n]             

spike 
sample 

x[n+5]  

10 pre-spike 
samples x[n-11]  

First 16 samples in the AP waveform 

of the detected spike. They are copied 

in bulk to the output buffer  

Fig 3.4. : An example of the arrangement of samples on the input BRAM space assigned to a 

channel k, when a spike is detected and when the initial part of corresponding AP waveform is 

copied to the output buffer. 



Each word has fifteen bits. Two bits describe the state of the channel, and 13 bits hold the 

FIFO address needed to copy the AP samples at the right location and space assigned for it on the 

output buffer in case a spike was detected.  

 

Channel-status 
Channel-status description 

00 The channel has no detected spikes 

01 

The channel has a detected spike, time-stamp and channel 

ID were saved on output buffer. The first 16 samples need 

to be copied as a complete portion to the output buffer 

10 AP samples 17 to 30 are being read sample by sample upon 

their arrival at the input BRAM 

11 AP samples 31 to 46 are being read sample by sample upon 

their arrival at the input BRAM 
 

Table 3.1: Channel-status-bits and the corresponding status description 

 

3.2.5. BRAM Read Control: 

When the unit receives a sample from one of the channels it is written in the input memory. 

The BRAM read control checks the status of the channel being updated and plans the reading 

procedure accordingly. The channel_status word can indicate 3 possible cases:   

(1) The channel has currently no detected spikes: (channel-status = 00) 

 In this case the incoming sample is sent to the NEO module and threshold comparator for testing. 

If a spike is detected, a memory block space of 48 words is saved in the FIFO to hold the 

corresponding AP waveform. The spike detector unit has a spike counter that is used along with a 

look up ROM to determine the first FIFO output memory space available for AP waveform 

storage as shown in Fig. 3.3. If a spike is detected, the counter is incremented, and the time 

stamp and channel ID of the detected spike are copied in the lower first available FIFO address 



indicated by the look up ROM. The channel_status word is updated to save block base address 

that saves a space on the output buffer to hold the AP waveform. 

(2) The channel has a detected spike and saved memory space in the FIFO:  (Channel-status = 01) 

In this case the reading control copies the first 16 samples of the AP waveform available in the 

input BRAM to the output FIFO memory. (10 pre-spike samples, 1 spike sample, 4 post-spike 

samples required for the NEO and the incoming sample) This is the longest cycle of the AP 

waveform transfer to the output FIFO.  

(3) The refractory period of the AP waveform is being completed: (Channel-status = 10 or 11) 

The incoming sample is copied directly to the output FIFO. The 35 samples of the refractory 

period are each copied upon arrival at the input BRAM to the output FIFO.  This step is repeated 

35 times to complete the refractory period.   At each cycle the channel_status is updated with the 

FIFO address that will hold the next incoming sample in the refractory period. Once a spike 

waveform is completely copied to the output FIFO, the BRAM reading control updates the 

upper-limit for the FIFO emptying process. The two states (10 and 11) were split into two states 

to apply an address counter for the lower 4 bits of the FIFO address only, instead of applying an 

address counter for the whole 13 address bits. The 9 most significant address bits are updated the 

when the channel moves from state 10 to state 11. 

The AP refractory period arrives in single samples at the output buffer. Once the last sample 

arrives at the input buffer, it is directly transmitted to the FIFO and the complete waveform 

becomes available for further processing or transmission to a host PC. The design avoids 

queuing-based transmission that arise from copying the AP waveforms as a whole to the output 

buffer. The memory space assigned for each channel on the input buffer memory is also reduced. 

The spike detection module and output FIFO have access to read data samples from input BRAM. 



3.2.6 Operation Management :  

To control the sequence and timing of operations, a controller employing a finite state machine 

is used. Figure 5.4 presents an overview of the BRAM read control state diagram. The channel 

status word has two bits describing the spike copying stage. They are used to decide whether input 

stream should be passed through the NEO detection module or copied directly to the output FIFO. 
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Figure 3.5: Overview of the state diagram describing the controller operation  



   3.2.7  Autonomous Threshold selection: 

With the high channel count automatic threshold selection for each channel is vital. After 

reset, the system starts computing the threshold for each channel as a multiple of the Mean 

Deviation MD of a window of its incoming data. The channels are disabled until their thresholds 

are calculated, and saved on a threshold RAM. Fig.3.6 describes the details of the NEO 

preprocessing, threshold comparator operation and threshold computation. 

 

In the normal operation, the samples are passed through the NEO module, the computed output 

is compared to the threshold of the corresponding channel.  In the case of threshold computation, 

the output of the NEO is passed to a MD computation (3.2), 

3.2)(                                               ][
1


N

nNEO
N

MD  

where N is the window size of the data being used to measure the background noise.  
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N is chosen to be a power of 2, so that the division by N can be performed by right shifting of the 

dividend. Based on the threshold selection guidance provided in literature [Rizk] the multiplier is 

chosen to be 16.  

3.3. Integration of Several Spike Detection Units: 

The total number of channels to be processed is reconfigurable. According to the neural signal 

processing algorithms used, the longest procedure applied after sample reading was to copy the 

first 16 samples of an AP in case of spike detection. This procedure required 19 clock cycles. To 

have an optimum hardware usage, 20 spike-based reduction units were integrated, so that 

channels on other units can be updated with their respective sample inputs while this longest 

procedure is being completed, and before that same unit receives a new incoming sample.  

Fig.3.7 presents the integration of 20 spike detection units to handle a total of 2560 channels.  
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3.4. Addressing and Timing: 

The BRAM assignment has been chosen so that the BRAM_address  can  provide direct 

information  on  the channel order on the input BRAM and the sample number as shown in 

Fig.3.8 The write address generator constructs the BRAM write address to rearrange the sample 

data in preparation for a structured processing. It concatenates the output of three counters to 

write each sample data in the corresponding channel location.  

 

The BRAM address generator operates at a frequency f, where 

MHz 80     

channels 2560  lKHz/channe 31.25     

channels ofNumber   channelper frequency  Sampling





f

  

The BRAM address concatenates the output of three counters:  

(a) a 5-bit counter presenting the Input BRAM ID  (20 input BRAMs) 

(b) a 7-bit counter presenting the channel order on the BRAM (128 channels per BRAM) 

(c) a 4-bit counter presenting the sample number. (16-sample space per channel)  

Counter (a) is the fastest changing at every clock cycle. Counter (b) is incremented after (a) 

reaches a full count cycle of 20 and then is reset. Counter (c) is the slowest counter, that only 

increments at the full count of counter (b). 

 

 

Fig.5.7     BRAM write address structure generated by the Write Address 

             Generator. 

BRAM data address 

Channel ID 

Sample number Channel order on BRAM Input BRAM ID 
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3.5 Transmitting the APs from the Output Buffers to host PC : 

The design can be extended to integrate spike sorting blocks. In this case the spike sorter will 

be reading the AP waveforms from the output buffer in their complete format. The proposed 

design does not include a spike sorter, instead the AP waveforms will be sent to a host PC for 

system evaluation. The data will be transmitted using the PCI express (Peripheral Component 

Interconnect express) protocol. The transmission will rely on using the MGTs again for fast 

performance and low latency. Using Bus Mastering Direct Memory Access (BMD) the output 

data will be written into the host PC kernel memory for further evaluation or processing. 

This section is part of the ongoing work towards completing the proposed project.  

 

Fig 3.8: Bus master 

validation design 

architecture  [28] 



So far the example design provided by Xilinx was applied successfully in hardware. The 

design reads one double word repeatedly and sends it to fill the required memory space. The 

design is being modified in order to send the data on the output buffer instead.  

3.6. Data Acquisition High Speed Serial Interface: 

The Multi-Gigabit transceiver offers useful features to support a wide variety of interface 

applications. It has built in Physical Code Sub-layer (PCS) features, such as 8B/10B encoding, 

comma alignment and clock correction. The comma detection and alignment circuit was 

activated to properly align the 16-bit input data during the initialization process.  

It is worth mentioning that some of the recently developed ADCs have integrated SerDes high 

speed serial differential that can interface with the FPGA receivers. They offer sampling speeds 

that include the operating frequency used  in the proposed design, i.e. 80MSps. (AD9644 by 

Analog Devices ®).   

   

Fig. 3.9 Functional Block diagram of Analog Devices AD9644 [Data Sheet] 



3.7.  Preliminary Results: 

The spike detection processing modules were designed using Verilog HDL code. They were 

simulated using Xilinx® ISim and tested for functional verification. The Xilinx® Core generator 

was used to create a Verilog wrapper in order to configure the high speed Rocket IO transceiver. 

The modules were synthesized and implemented using ISE Design Suite 13.1. For design 

verification in hardware and as a proof of concept and functionality the proposed design 

architecture was implemented on a Xilinx® Virtex-5 LX110T FPGA evaluation board. The 

design model  was tested using ISE Chipscope.  

3.7.1  Hardware Implementation Setting: 

In lieu of interfacing the FPGA to a high speed multichannel analog to digital acquisition 

system, sample data used as test vectors have been stored on BRAMs on the FPGA as shown in 

Fig.5. The channel samples are Time Division Multiplexed (TDM). Based on the sampling 

frequency of the neural signal on the recording channels and the number of channels monitored, 

the operating frequency of the TDM can be determined. Assuming that each channel was 

sampled at 31.25 KHz and 2560 channels are monitored, the TDM   operates at 80MHz. The 16-

bit wide TDM output is serialized by MGT transmitter connected to an SMA connector on the 

Xilinx platform board, then sent via differential copper cables to the MGT transceiver. The 

Rocket IO is offers useful features to support a wide variety of interface applications. It has built 

in Physical Code Sublayer (PCS) features such as 8B/10B encoding, comma alignment and clock 

correction. The comma detection and alignment circuit was activated to properly align the 16-bit 

input data during the initialization process. 

  



 

 

 

 

 

 

 

 

 

Fig. 3.10: Hardware implementation setting  

3.7.2. Testing the spike-based data reduction procedure:  

Different testing methods have been conducted to evaluate the performance of the presented 

design architecture.  The aim of this test was to make sure that the spikes have been detected and 

that their AP waveforms are copied to the output FIFO with the correct alignment required, 

correct time-stamp and channel ID.  

For this test short windows of neural signals containing only one spike were stored on 

distributed ROMs and read in a cyclic mode. Based on the width of the window, it is possible to 

control the firing rate of the simulated signal and to determine the exact time stamps. Different 

Firing Rates (FR) have been tested. For example, for a FR = 125 Hz and sampling frequency of 

20 KHz, the total number of samples saved on the ROM was N = 160 sample.   

TDM for 2560 channels 

MGT  

 

Differential copper 
wires providing an 

external link 
between the MGT 

 

MGT  
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Fig. 3.11: Screenshot from the results obtained on chipscope. 

 

3.7.3  Hardware Usage: 

Table I has a design summary describing the hardware usage on the FPGA of the full design 

integrating 20 spike detection units. The maximum frequency is ~89 MHz. The utilization is 

based on the Virtex-5 XUP LX110T evaluation board. Virtex-7 FPGAs are expected to have 

lower utilization percentages, giving more room for design expansion to add spike sorting 

modules and faster speed.                                                                                                               

 

 

 

 

 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 6062 69,120 8% 

Number of Slice LUTs 8880 69,120 12% 

Number of occupied Slices 2377 12,565 18% 

Number of BlockRAM/ FIFO 80 148 54% 

Number of BUFG/BUFGCTRLs 1 32 3% 

Number of DSP48Es 40 64 62% 
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