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ABSTRACT

Diagnosing early formation of tumors or lumps, particularly those caused by cancer, has been a

challenging problem. To help physicians detect tumors more efficiently, various imaging tech-

niques with different imaging modalities such as computer tomography, ultrasonic imaging,

nuclear magnetic resonance imaging, and mammography, have been developed. However, each

of these techniques has limitations, including exposure to radiation, excessive costs, and com-

plexity of machinery. Tissue elasticity is an important indicator of tissue health, with increased

stiffness pointing to an increased risk of cancer. In addition to increased tissue elasticity, ge-

ometric parameters such as size of a tissue inclusion are also important factors in assessing

the tumor. The combined knowledge of tissue elasticity and its geometry would aid in tumor

identification. In this research, we present a tactile sensation imaging system (TSIS) and algo-

rithms which can be used for practical medical diagnostic experiments for measuring stiffness

and geometry of tissue inclusion. The TSIS incorporates an optical waveguide sensing probe

unit, a light source unit, a camera unit, and a computer unit. The optical method of total inter-

nal reflection phenomenon in an optical waveguide is adapted for the tactile sensation imaging

principle. The light sources are attached along the edges of the waveguide and illuminates at a

critical angle to totally reflect the light within the waveguide. Once the waveguide is deformed

due to the stiff object, it causes the trapped light to change the critical angle and diffuse outside

the waveguide. The scattered light is captured by a camera. To estimate various target param-

eters, we develop the tactile data processing algorithm for the target elasticity measurement

via direct contact. This algorithm is accomplished by adopting a new non-rigid point match-

ing algorithm called “topology preserving relaxation labeling (TPRL).” Using this algorithm, a

series of tactile data is registered and strain information is calculated. The stress information
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is measured through the summation of pixel values of the tactile data. The stress and strain

measurements are used to estimate the elasticity of the touched object. This method is validated

by commercial soft polymer samples with a known Young’s modulus. The experimental results

show that using the TSIS and its algorithm, the elasticity of the touched object is estimated

within 5.38% relative estimation error. We also develop a tissue inclusion parameter estimation

method via indirect contact for the characterization of tissue inclusion. This method includes

developing a forward algorithm and an inversion algorithm. The finite element modeling (FEM)

based forward algorithm is designed to comprehensively predict the tactile data based on the

parameters of an inclusion in the soft tissue. This algorithm is then used to develop an artificial

neural network (ANN) based inversion algorithm for extracting various characteristics of tissue

inclusions, such as size, depth, and Young’s modulus. The estimation method is then validated

by using realistic tissue phantoms with stiff inclusions. The experimental results show that the

minimum relative estimation errors for the tissue inclusion size, depth, and hardness are 0.75%,

6.25%, and 17.03%, respectively. The work presented in this dissertation is the initial step

towards early detection of malignant breast tumors.
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CHAPTER 1

INTRODUCTION

Tactile sensation, or touch sensation, is the information produced by mechanoreceptors in the

skin. When a fingertip presses onto an object, pressure information is induced at the interface by

mechanoreceptors. Sensing and processing this pressure information provides humans with a

rich source of information about the physical environment. This information can be used for ob-

ject detection and characterization through the determination of object size, shape, temperature,

and hardness (Lee, 2000), (Fearing, 1990).

Much as they are for humans, the measurement and processing of tactile information have

been shown to be of great importance in many applications, such as robotic systems or medical

devices. A number of articles provide reviews of the tactile sensors in the robotic field (Hosoda

et al., 2006), (Beebe et al., 1995), (Engel et al., 2003), (Futai et al., 2004). Several articles

also cover the topic of tactile sensors in minimally invasive surgery and medical diagnostics

tools (Howe et al., 1995), (Howe and Matsuoka, 1999), (Dario and Rossi, 1985). The tasks

accomplished with tactile data processing may be grouped into two broad categories: object

detection and object characterization.

In the first category, many researchers have shown artificial tactile sensing to be useful in

executing many tasks of object detection by measuring contact pressure (Lamotte and Srini-

vasan, 1987). For instance, tactile sensors have been used to detect surface texture (Kim et al.,

2005), (Saxena et al., 2008). Object shape and curvature have also been detected with tactile

elements array (Fearing and Binford, 1988), (Gupta et al., 2006). Tactile elements have been

used as the sensing mechanism for feature recognition algorithms capable of identifying edges,

corners, and holes (Zhang and Chen, 2000).

Compared to object detection, object characterization using tactile information has been in-
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vestigated relatively infrequently. This is because most tactile sensors have a form of pressure

sensor array, which makes it difficult to obtain three-dimensional (3-D) tactile data of the con-

tacted object. In addition, high-resolution tactile data are necessary for the precise contact pres-

sure measurement, but the current array type tactile sensor has limitations in tactile resolution.

Recently, some tactile sensors that use microelectromechanical systems (MEMS) technology

have provided good spatial resolution (Hwang et al., 2007), (Lee et al., 2006). However, in

comparison to the human fingertip with its millions of mechanoreceptors per square inch of

skin, most tactile sensors have limited resolution. Moreover, the small measurable force range

due to the brittle sensing elements, such as piezoresistors, has not proven to be effective in real

applications.

It is widely agreed that artificial tactile sensors will play an important role in the future

realization of diagnostic devices (Lee et al., 2010b). For instance, artificial tactile sensors can

be applicable to early breast tumor warning. This application can be realized based on the

observation that breast nodule stiffness is an indicator of breast health, and increased tissue

stiffness of nodules points to an increased risk of breast cancer. In fact, palpation of the breast

to identify a stiff tumor is an established screening method. This is referred to as breast self

examination (BSE) or clinical breast examination (CBE). BSE is still recommended for the early

detection of tumors, whereas CBE is performed by a medical specialist and has a sensitivity

of over 57% and specificity of 97% (Ratanachaikanont, 2005a). Another study shows that a

sensitivity of CBE is approximately 59% and a specificity of CBE is approximately 93% (Bobo

et al., 2000). The major drawbacks of BSE and CBE are that the examinations are subjective

and the performance is highly dependent upon the healthcare provider. The efficacy of CBE is

also limited by the experience of the physician.

To help physicians detect tumors more efficiently, various imaging techniques utilizing dif-

ferent modalities such as computer tomography (CT), ultrasonic imaging (US), magnetic res-

onance imaging (MRI), and mammography (MG) have been developed (Shojaku et al., 2008),

(Fenster and Downey, 1996), (Degani et al., 1997), (Gentle, 1988). However, each of these

techniques has disadvantages, such as harmful radiation to the body (CT, MG), low specificity
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(MRI), complicated systems (US, MRI), etc. Moreover, these techniques can provide only spa-

tial information on the tumor. They do not directly measure the mechanical characteristics (e.g.

stiffness), which are very important in detecting the severity of the tumor (Regini et al., 2010).

The use of tissue stiffness helps in differentiating between benign and malignant tumors (Thi-

taikumar et al., 2008). In addition to increased tissue stiffness, geometric properties such as

size and depth of an inclusion are also important factors in assessing the tumor. The combined

knowledge of tissue stiffness and its geometry would aid breast tumor identification. Thus, a

non-invasive and real-time method using artificial tactile sensors for estimating and recording

tissue inclusion properties such as size, depth, and hardness would offer great clinical utility.

The scope of this dissertation is focused on estimating and recording the mechanical proper-

ties of biological tissue and tissue inclusion. The primary goal of the research is the development

of a new tactile sensor named “tactile sensation imaging system (TSIS),” which can be used for

practical medical diagnostic experiments for measuring stiffness and geometry of tissue inclu-

sion. The TSIS incorporates an optical waveguide unit, a light source unit, a camera unit, and

a computer unit. The optical waveguide is the main sensing probe of TSIS. The multi-layered

polydimethylsiloxane (PDMS) is fabricated for the sensing probe. The mechanical properties

of each sensing probe layer have been designed to emulate the biological human tissue layers

in order to maximize the touch sensation. The optical method of total internal reflection (TIR)

phenomenon in a multi-layered sensing probe has been adapted for the tactile sensation imag-

ing principle. A complementary metal oxide semiconductor (CMOS) camera is used to measure

contact pressure resulting from scattered light due to the sensing probe deformation. Since the

scattered light is directly captured by a CMOS camera, the tactile resolution is based on the

resolution of the camera.

The second goal, which is to develop the tactile data processing algorithm for the target hard-

ness estimation, is accomplished by adopting a new non-rigid point matching algorithm called

“topology preserving relaxation labeling (TPRL).” Using this algorithm, a series of tactile data

is registered and strain information is calculated. The stress information is measured throughout

the integration of pixel values of the tactile data. The stress and strain measurements are taken
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for unique identification of the elasticity of the touched object. The measurement method is

validated by commercial polymer samples with a known hardness.

The third goal is to develop a tissue inclusion parameter estimation method for the charac-

terization of tissue inclusion. This includes the developing a forward algorithm and an inversion

algorithm. The finite element modeling (FEM) based forward algorithm is designed to compre-

hensively predict the tactile data based on the parameters of an inclusion in the soft tissue. This

algorithm is then used to develop an artificial neural network (ANN) based inversion algorithm

for extracting various characteristics of tissue inclusions, such as size, depth, and hardness. The

estimation method is then validated by using realistic tissue phantoms with stiff inclusions.

1.1 Contributions

The major contributions of this dissertation are as follows.

• A new tactile sensation imaging apparatus for detecting the touched object via TIR imaging

principle is presented.

• A new approach to estimating the elasticity of the touched object based on registering the

series of tactile data is developed and tested.

• A new approach to estimating tissue inclusion parameters such as size, depth, and hardness

by the forward and inversion algorithms is developed and validated.

• Evaluation of tactile sensation imaging method for tissue inclusion detection and charac-

terization tasks in a realistic tissue phantom is conducted.

1.2 Dissertation Scope and Outline

The primary goal of this dissertation is the development of a tactile sensation imaging ap-

paratus together with its algorithms for tumor detection. The graphical overview of this disser-

tation scope is given in Fig. 1.1

The document is composed of seven chapters, this being the first. In Chapter 2, a review of

relevant tactile sensing mechanisms is presented, followed by a discussion of current artificial

tactile sensors and elasticity determination systems developed thus far. Modern breast cancer
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Figure 1.1: The graphical overview of the dissertation scope.

detection methods are also discussed in this chapter. Chapter 3 describes the tactile sensation

imaging principle, which utilizes the TIR in the optical sensing probe. The analytic formulation,

numerical simulation, and geometric optics approximation of the imaging principle are also

provided.

Chapter 4 presents the hardware and software design descriptions of the TSIS. The descrip-

tion of each component for the TSIS hardware design is presented first, followed by the optical

waveguide fabrication method and software design description.

In Chapter 5, the target stiffness estimation method via direct contact is outlined. To estimate

the strain information of the contacted object, the non-rigid point matching algorithm called

TPRL is developed and presented. Soft polymer experiments are presented, which validate the

ability of the algorithm to measure the absolute elasticity.

If the object is embedded into the bulk medium such as tissue, the direct stiffness measure-

ment method described in Chapter 5 is not accurate. Chapter 6 concerns the general case of

estimating hardness as well as geometric properties, such as size and depth, of tissue inclu-

sions. We provide relative and absolute inclusion parameter estimation methods. To estimate

the absolute inclusion mechanical properties, the finite element modeling (FEM) based forward
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algorithm and artificial neural network (ANN) based inversion algorithm are provided. The

results of those studies using realistic tissue phantoms are then presented and compared.

Chapter 7 provides a conclusion with a summary of the major results and a discussion of

the future work.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter, we present a background and literature review of artificial tactile sensors. A

review of the human tactile sensing mechanism is presented, followed by a review of various

artificial tactile sensor designs, and elasticity determination systems. The application of modern

breast tumor detection methods is also discussed.

2.1 Human Tactile Sensing Mechanism

The tactile sensation, also called touch sensation, is where external objects or forces are

perceived through physical contact, mainly with the skin (Johnson and Hsiao, 1992). Whereas

the other four senses - smell, taste, sight, and hearing - are located in specific areas of the body,

human tactile sensors are located throughout the body (Uttal, 1973), (Jayawant, 1989). It is

known that human tactile perception is largely dependent upon the properties of mechanorecep-

tors in the skin (Johannson and Vallbo, 1979). When a mechanoreceptor is stimulated, potential

impulses are generated and transmitted along myelinated axons to the central nervous system

(Kandel et al., 2000), (Pirznieks et al., 2001). There are several types of mechanoreceptors, and

each generates a different type of stimulus. The existence of a variety of mechanoreceptor types

provides additional evidence for the peripheral processing that occurs in human tactile sensing

mechanism.

2.1.1 Tissue Structure

In terms of the human skin anatomy, the layers of human skin, epidermis, dermis, and sub-

cutanea, have different mechanical properties and distinct physical properties. The outermost

layer, the epidermis, is the stiffest layer (1.4 × 105 Pa) and is approximately 1 to 2 mm thick.

The middle layer, the dermis, is softer than the epidermis (8.0 × 104 Pa) and is approximately
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1 to 3 mm thick. The bottom layer, the subcutanea, is the softest layer (3.4 × 104 Pa) and is

composed of fat. The thickness of the subcutanea layer is over 3 mm (Kandel et al., 2000).

Due to the difference in hardness of each layer, when the pressure is applied to the tissue, the

inner layers (dermis and subcutanea) deform more than the outermost layer (epidermis). Fig.

2.1 shows the structure of the skin and the locations of mechanoreceptors.

Epidermis

Dermis

Subcutaneous fat Merkel disk

Meissner corpuscle

Pacinian corpuscle

Ruffini ending

Figure 2.1: The structure of the skin and location of its primary mechanoreceptors.

2.1.2 Mechanoreceptor Functionality

The human mechanoreceptors are correlated with the four response characteristics. Thus

mechanoreceptors can also be classified into four types based on functionality: Meissener’s

corpuscles, Merkel’s disks, Pacinian corpuscles, and Ruffini endings (Uttal, 1973), (Kandel

et al., 2000).

Meissener corpuscles are located in the boundary of the epidermis and dermis layers, and

they are effective in detecting the surface roughness. They detect vibration of the skin and

respond in a range of approximately 20 to 100 Hz. Merkel disks are composed of a group

of spherical tactile cells, each in close association with a nerve terminal that is attached to a

single myelinated axon. Among the four main types of mechanoreceptors, Merkel disks are the

most sensitive to vibrations at low frequencies. The firing frequency of Merkel disks is 0 to

200 Hz. Pacinian corpuscles are located in the subcutaneous fat. They respond to deep-pressure
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touch, for which they have a wide receptive field. The response to vibrations occurs at relatively

high frequencies of 100 to 300 Hz. Finally, Ruffini endings have a wide receptive field and are

believed to detect pressure and elongation. It is also believed that they are useful for monitoring

the slippage or the grip of objects.

2.2 Artificial Tactile Sensors

Many artificial tactile sensors have been developed over the past decade or so to mimic the

tactile spatial resolution of the human finger (Schmidt et al., 2006). Artificial tactile sensors can

be categorized using different sensing principles. Sensing mechanism, defined as the conversion

of one form of energy into another, occurs when human mechanoreceptors receive stimuli and

transduce physical energy into a nervous signal. Several types of artificial tactile sensors exist

according to the different sensing mechanism available. In this section, some examples of

artificial tactile sensors are presented.

2.2.1 Capacitive Sensors

The capacitive type of tactile sensor transforms the applied force into capacitance variation

(Chu et al., 1996), (Leineweber et al., 2000), (Morimura et al., 2000). A single tactile sensor

consists of three layers, while parallel-plate capacitors and dielectric materials fill the gaps

between the plates. The dielectric layer is usually made up of air or silicone. If force is applied

to one plate, the distance between the two plates decreases, resulting in increased capacitance

(Webster, 1988), (Kolesar and Dyson, 1995). By measuring the increased capacitance, the

tactile data can be perceived. The basic principle behind capacitive sensors is that they monitor

changes in capacitance resulting from contact. The diagram of the capacitive sensor is shown

in Fig. 2.2. Let A be the area of the plates and d be the distance between the top and bottom

plates, and it is much smaller than the plate dimensions. Then the capacitance of the cell can be

expressed by

C = ε0εr(A/d), (2.1)
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where ε0 = 8.85 × 10−12F · m−1 is the permittivity and εr is the dielectric constant of the

dielectric layer (Najarian et al., 2009).

d Electrodes

Area of the plates is A

Figure 2.2: The schematic of capacitive sensor (Najarian et al., 2009).

The main advantage of capacitive sensors is their high density due to the small size of the

sensor (Dargahi et al., 2000), (Lee and Nicholls, 1999). Some researchers have reported 8

× 8 capacitive sensor arrays within a 1 mm spatial resolution; this shows compatible spatial

resolution of human mechanoreceptors (Kandel et al., 2000). The disadvantages of this type of

sensor include significant hysteresis and temperature sensitivity (Dargahi et al., 2000).

2.2.2 Piezoresistive Sensors

The tactile sensing method for piezoresistive sensors is to monitor the resistance change

in a conductive material under the applied force (Samaun et al., 1973). The resistance value is

maximum when there is no force, and it decreases as the applied force increases. Fig. 2.3 shows

the schematic of the cylinder-shaped piezoresistive sensor (Najarian et al., 2009). In Fig. 2.3,

the silicone-rubber electrode is used for the piezo material. The advantages of these types of

sensors are their high sensitivity, low cost, and wide dynamic range (Kolesar and Dyson, 1995).

However, they can measure only a single touch, not a multi-touch at the same time. Also, they

consume a great deal of power. Their limited tactile spatial resolution is another disadvantage

(Schaffner et al., 1991).
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Figure 2.3: The schematic of piezoresistive sensor (Najarian et al., 2009).

2.2.3 Piezoelectric Sensors

The piezoelectric sensors use the piezoelectric effect, which is the voltage generation across

a piezoelectric material when the force is applied (Rossi and Domenici, 1986). Fig. 2.4(a) and

Fig. 2.4(b) show the general concept of the piezoelectric mechanism (Najarian et al., 2009). In

a piezoelectric material, the dipoles are randomly spread without voltage. Once the electricity

is applied, the dipoles are aligned along the direction of the applied electric field. Under this

condition, when the sensors are pressed by an external force, the dipoles shift from the axis,

causing the charges to become unbalanced and the voltage to be induced (Krishna and Rajanna,

2004). The applied force is measured by the generated voltage due to the imbalance in charge.

Many tactile sensors have been developed based on the piezoelectric mechanism (Dargahi et al.,

2000), (Najarian et al., 2006). These types of sensors have a wide dynamic range and durability.

They are also simple, inexpensive, and easy to fabricate; however they are sensitive to temper-

ature (Balsky et al., 1989). Furthermore, as with the piezoresistive tactile sensor, limited tactile

spatial resolution and hysteresis are disadvantages (Krishna and Rajanna, 2004).

2.2.4 Magnetic-Based Sensors

Magnetic-based sensors measure the movement of a small magnet by an applied force gener-

ating flux density. This phenomenon is known as the Villari effect (Ong et al., 2009). The sensor

uses magnetoelastic material, which deforms under force, causing changes in its magnetic char-

acteristics (Hackwood et al., 1983). A micro-machined, magnetic-based sensor is introduced in

(DiLella et al., 2000), demonstrating that the sensor is very small, sensitive, and requires little
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Figure 2.4: The schematic of piezoelectric sensor. (a) Randomly directed dipoles in ceramic struc-
ture (Najarian et al., 2009). (b) Alignment of dipoles in the direction of applied electric field (Na-
jarian et al., 2009).

power consumption. The general advantages of the magnetic-based sensor include its good dy-

namic range, lack of mechanical hysteresis, high sensitivity, and linear response. However, this

type of sensor can be used only in non-magnetic objects, which is a major drawback.

2.2.5 Optical Sensors

The optical sensor is also commonly used in artificial tactile sensors. This type of sen-

sor uses the optical tactile sensing mechanism called “phenomenon of photoelasticity” (Katz,

2002). If pressure is applied to the photoelastic sensing probe of optical sensors while light

is injected into it, light intensity changes, which can be measured. Various research groups

have explored optical sensors for tactile sensing, primarily because these sensors are immune

to elastomagnetic noise, and have the ability to process tactile data using a charged-coupled

device (CCD) without complex wiring (Kamiyama et al., 2003). In (Ohka et al., 2004), opti-

cal sensors are developed using an elastic sheet and a transparent board parallel to the sheet.

The applied force makes the protrusion contact of the sheet, and the amount of force is mea-

sured by the contact area. The optical sensor that uses markers inside an elastic body and a

fiber scope is introduced in (Ferrier and Brockett, 2000). The sensor is formed as a minia-

turized fingertip shape, which measures a relatively small amount of force. An optical-based

three axial tactile sensor capable of measuring the normal and shear forces is also reported in

(Heo et al., 2006), (Ohmura et al., 2006), (Cheung and Lumelsky, 1992), (Koh et al., 2006).

The general advantages of this type of sensor include its high resolution, flexibility, sensitivity,

and electromagnetic interference immunity, whereas common disadvantages are loss of light
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by chirping and bending, difficulty in calibration, as well as bulkiness (Cheung and Lumelsky,

1992), (Begej, 1988).

2.3 Elasticity Determination System

Tissue stiffness or elasticity is an indicator of tissue health, with increased tissue stiffness

pointing to an increased risk of cancer. Over the past two decades, various methods have been

devised for measuring or estimating soft tissue stiffness (Gao et al., 1996), (Garra et al., 1997).

Generally, this is called “elasticity determination system.” In this section, we review the current

elasticity determination system.

2.3.1 Elastography

Elastography is a non-invasive method in which tissue elasticity is used to detect or clas-

sify tumors (Ophir et al., 1991). When a compression or vibration is applied to the tissue,

the included tumor deforms less than the surrounding tissue. Under this observation, elastog-

raphy records the distribution of tissue elasticity (Rogowska et al., 2004). Elastography has

been successfully applied to tumor characterization to improve diagnostic accuracy and surgi-

cal guidance. It is currently performed using ultrasonic, magnetic resonance (MR), and atomic

force microscopy (AFM).

Ultrasonic elastography is the most intensely investigated area of elastography (Vinckier and

Semenza, 1998). There are three types of ultrasonic elastography: compressive elastography,

transient elastography, and sonoelastography. In compressive elastography, controlled compres-

sion of the transducer probe is loaded to the tissue, and signals of pre- and post-compression are

compared to calculate the tissue stiffness distribution map (Rivaz et al., 2008). The compression

is applied by the operator or the external compressor attached in the transducer probe. Transient

elastography uses a transient vibration, produced by the transient probe, that generates under

low frequency to create tissue deformation. The transient probe consists of a transducer probe

which is located at the end of a vibrating piston. The piston produces a vibration of low ampli-

tude and frequency, which generates a shear wave that passes through the tissue. The quantity
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of tissue deformation is then detected by pulse-echo ultrasound. Sonoelastography uses a real-

time ultrasound Doppler technique to record the propagation pattern through the tissue with

low-frequency shear waves. The linear array broad-band transducer probe with a frequency

range of 6 to 14 MHz is used to produce the low-frequency shear waves.

Ultrasonic elastography in three different groups is carried out with the same equipment

except the transducer probe. The embedded software module with an algorithm is also different

to process different techniques. Ultrasonic elastography is relatively well-developed method

that is being used in a wide range of medical applications (Stravros et al., 2011), (Bhatia et al.,

2010). However, compared to the TSIS that we propose in this dissertation, ultrasonic elastogra-

phy is computationally expensive, making it challenging to display data in real time (Hoyt et al.,

2006). Other disadvantage is that the ultrasonic elastography is very expensive (over $150K for

eSie Touch Elasticity Imaging System, ACUSON S2000). The size of ACUSON S2000 system

is approximately 51.2 inch (height), 24.5 inch (width), and 43.4 inch (depth). The weight of the

system is 365 pounds. The ultrasonic elastography has 86.5% sensitivity, 89.8% specificity, and

88.3% accuracy (Itoh et al., 2006). Fig. 2.5(a) shows the conventional ultrasonic elastography

modality and Fig. 2.5(b) shows the breast elastogram.

(a) (b)

Figure 2.5: The ultrasonic elastography system and its image sample. (a) The conventional ultra-
sonic elastography modality (Siemens, 2011), (b) The breast elastogram (Siemens, 2011).

MR elastography is another elastography technique capable of measuring tissue stiffness. It

provides a tissue stiffness map using propagating cyclic waves in the tissue. External vibrations

are applied into the tissue in order to generate propagating waves within the tissue. The external

vibrations are matched with motion encoding gradients (MEG) in the image sequence, which
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extracts the motion in the phase of MR images. These images are then processed to generate

the final tissue stiffness map. Although MR elastography is successfully tested to static organs

such as breast, brain, and liver, the modality is still expensive and it is cumbersome to use in the

small size of clinic room (Insana et al., 2004).

AFM is a very high resolution scanning probe microscopy, with the order of fractions of a

nanometer resolution (Giessibi, 2003). AFM elastography combines indentation and imaging

modalities to map the spatial distribution of cell mechanical properties such as stiffness, non-

linearity, anisotropy, and heterogeneity. Despite its high-resolution imaging capability, AFM

elastography is suitable only for local area measurements and is not suitable to the large tissue

area such as breast (Giessibi, 2003).

2.3.2 Elasticity Imaging Using Tactile Sensors

Recently, a new technological method entitled “elasticity imaging using tactile sensor” has

been explored (Dargahi and Najarian, 2004), (Eltaib and Hewit, 2003). This type of technology

calculates and visualizes tissue elasticity by sensing mechanical stresses on the surface of tissues

using tactile sensors. Elasticity imaging using tactile sensors is also called mechanical imaging,

tactile imaging, elastic modulus imaging, or biomechanical imaging (Dargahi and Najarian,

2004), (Eltaib and Hewit, 2003), (Wang et al., 2009), (Yates et al., 2005).

The medical device named “SureTouch Visual Mapping System” produced by Medical Tac-

tile Inc. is an elasticity imaging system using capacitive tactile sensors (Egorov and Savazyan,

2008). The device consists of a probe with capacitive pressure sensor arrays and electronic

units to transmit tactile data to the computer. Using a 32 × 32 capacitive tactile sensor array,

the device obtains the stress distribution on the tissue surface (Wellman et al., 2001a), (Weber,

2000), (Galea, 2004). The device is capable of computing and visualizing the pressure pattern

of the tissue. One of its advantages is that it is small and portable, thus it is easy to use. Also

it utilizes no ionizing radiation and magnetic fields, unlike CT or MRI. A disadvantages is that

the tactile spatial resolution of the device is not as good as the optically based tactile sensing

method. Thus, obtaining precise tissue stiffness map through this device is difficult. It also re-
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quirs extensive calibration. In addition, the device is expensive because it requires extra sensors

to detect the applied force.

To estimate tissue inclusion parameters using tactile data obtained from capacitive tactile

sensors, different approaches have been explored. In (Wellman et al., 2001a), the FEM based

forward algorithm and Gaussian fitting model-based inversion algorithm are devised. This work

was extended in (Weber, 2000) to attempt to find a more complete set of tissue inclusions. They

showed that the estimation results are more accurate in determining the size of a tissue inclusion

than manual palpation. Nevertheless, the results are limited to tissue inclusions at least 100

times stiffer than the surrounding tissues. In addition, other tissue inclusion parameters such

as depth and hardness are not available. In (Galea, 2004), the FEM based forward algorithm

and transformation matrix based inversion algorithm are proposed to estimate size, depth, and

hardness of the tissue inclusion. However, the relative error in estimating the tissue inclusion

modulus was still large (over 90%). Fig. 2.6 shows the SureTouch Visual Mapping System

using capacitive tactile sensors (MedicalTactile, 2011).

Figure 2.6: The SureTouch Visual Mapping System of Medical Tactile Inc (MedicalTactile, 2011).

Another type of elasticity imaging system using tactile sensors is the “piezoelectric finger

(PEF)” (Yegingil et al., 2007). In this work, the micro-machined artificial finger using a piezo-

electric tactile sensing mechanism is introduced. The PEF is a type of cantilever system. For

driving, a top layer consists of piezoelectric zirconate titanate (PZT); for sensing, a bottom layer

consists of PZT (Yegingil et al., 2010). In the initial condition, an electric field is induced to

the top layer for driving, causing the PEF to bend. Under this condition, if an external force is

applied to the sensing layer, the sensing layer bends more and the voltage is induced across it.
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By measuring this voltage, the PEF measures the elasticity of the target. The PEF has several

advantages, such as low cost, small form factor, and large dynamic range. However, it is sen-

sitive to temperature variation and, thus requires somewhat extensive calibration. Furthermore,

limited spatial resolution and hysteresis are disadvantages. Fig. 2.7 shows the PEF using PZT.

Figure 2.7: The piezoelectric finger using piezoelectric zirconate titanate (PZT) (Yegingil et al.,
2010).

The elasticity imaging system using a piezoelectric polyvinylidene fluoride (PVDF) tactile

sensor is also investigated in (Dargahi et al., 2007). The PVDF sensor structure consists of

three layers. The top layer is a tooth-like protrusion using a silicon wafer. The middle layer is

a patterned PVDF film and works as a transducer. These two layers are sustained by a plexiglas

bottom layer. Although PVDF is capable of measuring tissue property such as hardness, the

calculation of other important parameters such as size, depth, and shape is still unavailable.

To estimate tissue inclusion parameters using PVDF, the FEM based forward algorithm and

ANN based inversion algorithm are investigated in (Dargahi et al., 2007). For the ANN training

algorithm, they used the resilient back-propagation algorithm. In their work, a small number of

forward algorithm data used to train an inversion algorithm also makes the parameter estimation

results less accurate. Also, the calculation of inclusion parameters such as size, depth, and shape

is still not available. In addition, the performance of the proposed method was validated using

only simulated data without phantom experimental data or clinical data.

The piezoresistive tactile sensor for tissue elasticity measurement is also investigated in

(Heever et al., 2009). In their work, an array of force sensing resistors (FSRs) is integrated

into the polymer sheet to get a tactile distribution of a target. The obtained low resolution
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tactile image is improved by the super-resolution image processing algorithm. The study shows

that the elasticity imaging system using FSRs has the capability to distinguish between a hard

and soft object. However, the absolute tissue inclusion parameter estimation is still impossible

through this device and algorithms.

2.4 Application of Breast Tumor Detection

The TSIS, proposed in this dissertation, will be applicable to various areas. The one ap-

plicable area is early breast tumor monitoring and warning. In this dissertation, we focus our

attention on the human breast; however, the technology can be applicable to other soft tissues

throughout the body.

According to the American Cancer Society, more than 178,000 women and 2,000 men in

the U.S. are found to be afflicted with breast cancer every year; international statistics report

an estimated 1,152,161 new cases annually (Jemal et al., 2009), (Kamangar et al., 2006). In

2009, approximately 40,610 people were dying of breast cancer in the United States (Jemal

et al., 2009). This form of the disease is the leading killer of females aged between 40 and 55

years and is statistically the second cause of death overall in women. The current approach to

this disease involves early detection and treatment. This approach yields a 98% survival rate

of those women who are diagnosed at the early stages of the disease (stages 0 - I); whereas

for those where the cancer has progressed to stage III, the survival rate for 10 years is 65%

(Ratanachaikanont, 2005b).

Clearly, early detection and diagnosis is the key to surviving this fatal illness (Karahaliou

et al., 2008). There are many methods used today to detect various forms of breast tumor. The

criteria for breast tumor detection modalities include high sensitivity, acceptable specificity,

accuracy, ease of use, acceptability in terms of levels of discomfort and time taken to perform the

test, and cost effectiveness. This section reviews the modern breast tumor detection techniques.
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Breast Self-Examination

The breast self-examination (BSE) is still recommended for the early detection of tumors,

and a clinical breast examination (CBE) performed by a medical specialist has a sensitivity

of over 57.14% and a specificity of 97.11% (Ratanachaikanont, 2005b). Another study shows

that a sensitivity of CBE is approximately 59% and a specificity of CBE is approximately 93%

(Bobo et al., 2000). Figs. 2.8(a) and 2.8(b) shows how we palpate the breast manually. In the

pattern of search, a vertical strip pattern is used to search the full extent of breast tissue. In

the palpation, the middle three fingers are used to palpate a breast at a time to detect stiffness

beneath the breast surface.

(a) (b)

Figure 2.8: The example of the breast self-examination. (a) The pattern of search, (b) The palpation
method.

Although these methods cannot determine the degree of malignancy, they do detect lesions

that require further testing. In comparison with patients who have not been screened, patients

who are screened with CBE and BSE received twice as many biopsies (Ratanachaikanont,

2005b). However, there are several drawbacks to these methods. The main drawbacks of CBE

and BSE are that the physicians record the verbal description of their palpable finding along

with a hand drawing of target mass. Thus the examination is subjective and the performance is

highly dependent upon the healthcare provider.

Mammography

One breast tumor imaging technique that has been in use for the past 30 years and is still

widely used today is the mammography (Olsen and Gotzsche, 2001), (Gotzsche and Olsen,
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2000). This method of breast tumor detection is widely acclaimed as the best available at present

(Mushlin et al., 1998). It uses X-rays to photograph the breast while it is compressed, giving

83% to 95% true-positive results and 0.9% to 6.5% false-positive results. The main disadvantage

of mammography is that it uses harmful radiation. Also, the results are skewed at times by the

density of the breast tissue, body mass index, age, and even genetic issues. Mammography has

to be performed by a specially trained mammography technician on a dedicated machine, using

radiographic film that requires chemicals to develop the picture; after this point, a radiologist is

required to diagnose the results. Fig. 2.9(a) shows the conventional mammogram modality and

Fig. 2.9(b) shows the example of the breast mammography.

(a) (b)

Figure 2.9: The mammography modality and its image sample. (a) The conventional mammogram
modality (Mommography, 2011), (b) The breast mammography (Mommography, 2011).

Ultrasound Imaging

Ultrasound, also known as sonomammography, is a method used to create an image of

palpable breast masses using sound waves (Sehgal et al., 2006), (Rahbar et al., 1999). This

method is non-invasive and is performed by a technician who rotates a handheld transducer on

the breast surface to form an image of what is directly below the transducer (Huber et al., 2002).

Ultrasound is most commonly used on pregnant women who cannot be subjected to X-rays, as

X-rays may harm the fetus. The downside of this method is that each individual image has to

be labeled by the technician performing the test to create a map of each breast. Interference,

such as specks, often shows up to blur the image, and the lateral margins of lesions are not easy

to detect. Furthermore, in general, ultrasound suffers from low contrast. Fig. 2.10(a) shows the
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conventional ultrasound modality and Fig. 2.10(b) shows the example of the breast ultrasound

image.

(a) (b)

Figure 2.10: The ultrasound imaging modality and its image sample. (a) The conventional ultra-
sound modality (Ultrasound, 2011), (b) The breast ultrasound image (Ultrasound, 2011).

Magnetic Resonance Imaging

Another non-invasive breast tumor detection method is magnetic resonance imaging (MRI),

which generates either 2-D or 3-D images of the breast, and has been in use since 1977 (Orel and

Schnall, 2001). The advantages of MRI over other methods of early breast cancer detection are:

1) it does not use radiation; 2) it forms images from multiple angles and is able to capture the

difference between soft and hard tissues; and 3) the image has high resolution and contrast (Orel

and Schnall, 2001). MRI uses radio waves and a magnetic field in order to change the alignment

of hydrogen nuclei which, in turn, create the image. The process of capturing an MRI image is

complicated because fat in the breast has to be suppressed. In order to get around this problem,

contrasting dyes or agents, which are usually gadolinium-based, are used to distinguish the

different tissues in the image. The major drawback of the MRI is that it is expensive due to

the combination of the cost of the actual machine, the cost of running it, and the expenses

incurred in having a trained professional to operate it and a specialist radiologist to interpret the

images. In addition, MRI has relatively low specificity. Fig. 2.11(a) shows the conventional

MRI modality and Fig. 2.11(b) shows the example of the breast MRI image.
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(a) (b)

Figure 2.11: The magnetic resonance imaging modality and its image sample. (a) The conven-
tional magnetic resonance imaging modality (MRI, 2011), (b) The breast magnetic resonance im-
age (MRI, 2011).

Thermography Imaging

The thermography imaging method measures the temperature potential across breasts through

an infrared scan (Gautherie and Gros, 1980). Because malignant tumors are fed through neoan-

giogenesis as well as existing blood vessels, blood circulation is higher and so is the temperature

of the suspicious region. The thermograph performs best when the patient’s body temperature

is most stable. Dense breast tissue increases specificity in thermography, and larger tumors are

easier to detect as well. The disadvantage of the thermograph is that it is highly affected by pro-

cedural effects, such as how cool the breast is and how the breast is positioned. Large breasts

and surrounding areas receive poor imaging, and uneven body temperature distribution usually

results in false-positives or false-negatives. Fig. 2.12(a) shows the conventional thermography

imaging modality and Fig. 2.11(b) shows the example of the breast thermography image.

(a) (b)

Figure 2.12: The thermography imaging modality and its image sample. (a) The conventional ther-
mography imaging modality (Thermography, 2011), (b) The breast thermography image (Ther-
mography, 2011).
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Sensitivity and Specificity

Sensitivity and specificity are good measures for the performance evaluation of each breast

tumor detection modality. In statistics, sensitivity means the performance measures of the actual

positives which are correctly identified, and specificity means the performance measures of the

actual negatives (Altman and Bland, 1994). Imagine a scenario where people are tested for a

tumor. The test outcome can be positive (tumor) or negative (healthy), whereas the actual health

status of the people may be different. The true-positive, Tp, false-positive, Fp, true-negative, Tn,

and false-negative, Fn, can be defined as below (Rangayan, 2005).

1) True-positive, Tp: Tumor patient correctly diagnosed as tumor.

2) False-positive, Fp: Healthy people incorrectly identified as tumor.

3) True-negative, Tn: Healthy people correctly identified as healthy.

4) False-negative, Fn: Tumor patient incorrectly identified as healthy.

Then the sensitivity and the specificity can be calculated as follows.

Sensitivity =
Number of true positive, Tp

Number of subjects with the tumor
, (2.2)

Specificity =
Number of true negative, Tn

Number of subjects without the tumor
. (2.3)

Table 2.1 shows the literature survey of sensitivity and specificity of various breast tumor

detection modalities.

Table 2.1: The sensitivity and specificity of breast tumor detection modality.

Sensitivity Specificity

Clinical breast examination (Ratanachaikanont, 2005b) 57.14% 97.11%

Mammography (Carney et al., 2003) 68.6% 91.4%

Doppler ultrasound (Raza and Baum, 1997) 68.1% 95.1%

Magnetic resonance imaging (Bluemke et al., 2004) 88.2% 67.7%

Positron emission tomography (Lind et al., 2004) 96.4% 77.3%

Thermography imaging (Parisky et al., 2003) 97.3% 14.1%
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CHAPTER 3

TACTILE SENSATION IMAGING PRINCIPLE AND NUMERICAL SIMULATIONS

During the past decades, many artificial tactile sensors have been proposed. Some have provided

good tactile spatial resolution using MEMS technology. However, in comparison to human

fingertips, with millions of mechanoreceptors per square inch of skin, most artificial tactile

sensors still lack tactile spatial resolution. In this chapter, we present a new artificial tactile

traction mechanism using the TIR principle to achieve the high spatial resolution.

3.1 Total Internal Reflection

The proposed tactile sensation imaging is based on the TIR principle. According to Snell’s

law, if two mediums have different refraction indices, and the light is shone throughout those

two mediums, then a fraction of light is transmitted and the rest is reflected (Keiser, 1999). This

is TIR. The angle above which the light is completely reflected is the critical angle. Figs. 3.1(a)

to 3.1(c) explain the TIR phenomenon. In Fig. 3.1(a), the incidence angle is smaller than the

critical angle. Thus, the light is transmitted to the other medium. In Fig. 3.1(b), the angle of

incidence is equal to the critical angle. The critical angle is the minimum angle for the TIR. In

Fig. 3.1(c), the incidence angle is larger than the critical angle, and TIR occurs.

In the TSIS design, the optical waveguide sensing probe is surrounded by air, having a

lower refractive index than any of the layers in the waveguide, and the incident light directed

into the waveguide can be trapped inside the waveguide. The basic principle of TSIS lies in

the monitoring of the reflected light caused by changing of the critical angle by the contacted

object. Figs. 3.2(a) and 3.2(b) illustrate the conceptual diagram of the imaging principle.

In the next section, we analyze the light propagation pattern in the optical waveguide using

the wave optics analysis method. From this analysis, we show that TIR can be achieved in
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Figure 3.1: The Snell’s law description. (a) The incidence angle is smaller than the critical angle.
(b) The angle of incidence is equal to the critical angle. (c) The angle of incidence is bigger than
the critical angle.

the multi-layered optical waveguide and the light is scattered out the waveguide if the force is

applied to the waveguide. Second, we consider the geometric optics approximation to calculate

the acceptance angle of light for the TIR in the waveguide. The obtained acceptance angle is

finally used for the position of the light source in the TSIS design.

3.2 Analytical Solution: Wave Optics

In this section, we investigate the TSIS principle using the wave optics analysis method.

The optical analysis for the one-layer waveguide case is done by the optical communications

area (Katz, 2002). In this section, we extend the one-layer waveguide case into the four-layer

waveguide case. Fig. 3.3 represents an optical waveguide consisting of three PDMS layers with

one glass plate layer on top.

The refractive indices n0 and n5 are the refractive indices of the medium surrounding the

waveguide; in this case it is the air. The refractive index of air is n0 = n5 = 1. The waveguide

layers are positioned in the order of increasing refractive index, n1 > n2 > n3 > n4 > n0 = n5.

Light propagates in z-direction, and the layers are positioned in x-direction. We assume an

infinite length in planar y-direction.
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(a) (b)

Figure 3.2: The schematic diagram of the tactile sensation imaging principle. (a) The light is
injected into the waveguide to totally reflect. (b) The light scatters as the waveguide deforms due
to the external force presented by a stiff object.
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Figure 3.3: The schematic diagram of the multi-layered optical waveguide. The waveguide consists
of three different densities of polydimethylsiloxane (PDMS) layers and one glass plate layer. The
waveguide is surrounded by air.

1) Layer 1: PDMS, refractive index n1 and height h1,

2) Layer 2: PDMS, refractive index n2 and height h2,

3) Layer 3: PDMS, refractive index n3 and height h3,

4) Layer 4: Borosilicate glass plate, refractive index n4 and height h4.

Let us begin with the Maxwell wave equation describing light propagation in an optical

waveguide (Saleh and Teich, 1991).

∇2E(x, y, z, t)− [n2/c2]∂2E(x, y, z, t)/∂t2 = 0. (3.1)

Here E(x, y, z, t) is the electric field, n is the refractive index, and c is the speed of light in
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vacuum. A similar equation is valid for the magnetic field H(x, y, z, t):

∇2H(x, y, z, t)− [n2/c2]∂2H(x, y, z, t)/∂t2 = 0. (3.2)

Since the components of electric and magnetic fields can be generally determined from one

another, we will only focus on the electric field. For monochromatic waves with frequency ω,

the solution of Eq. (3.1) has the following form.

E(x, y, z, t) = E(x, y, z) exp(iωt). (3.3)

Using form given in Eq. (3.3) into Eq. (3.1), the spatial distribution of electric field E(x, y, z)

follows below form (Boyd, 2008).

∂2E(x, y, z)

∂x2
+

∂2E(x, y, z)

∂y2
+

∂2E(x, y, z)

∂z2
+ k2

0n
2E(x, y, z) = 0, (3.4)

where k0 is the wave vector in vacuum: k0 = ω/c. Since the waveguide is uniform in z-

direction, we can look for only planar wave solutions.

E(x, y, z) = E(x, y) exp(−iβz), (3.5)

where β is the propagation constant. Since we are only looking for plane wave solutions, which

are independent of y-direction, the field distribution varies only across x-direction. Given that

form, the spatial distribution of electric field

E(x, y) = E(x). (3.6)

Further, let us first consider the solution for the transverse y-component of the electric field. For

that purpose, let us assume

E(x) = e(x)j, (3.7)

where j is the unit vector along the y-direction. By substituting Eq. (3.5) into Eq. (3.4) we can

reduce it to the following ordinary differential equation.

d2e(x)/dx2 + [k2
0n

2 − β2]e(x) = 0. (3.8)
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This equation has to hold throughout all regions including the waveguide and the air.

d2e(x)/dx+ [k2
0n

2
0 − β2]e(x) = 0, Region 0: x < 0 (3.9)

d2e(x)/dx+ [k2
0n

2
1 − β2]e(x) = 0, Region 1: 0 < x < a1 (3.10)

d2e(x)/dx+ [k2
0n

2
2 − β2]e(x) = 0, Region 2: a1 < x < a2 (3.11)

d2e(x)/dx+ [k2
0n

2
3 − β2]e(x) = 0, Region 3: a2 < x < a3 (3.12)

d2e(x)/dx+ [k2
0n

2
4 − β2]e(x) = 0, Region 4: a3 < x < a4 (3.13)

d2e(x)/dx+ [k2
0n

2
5 − β2]e(x) = 0. Region 5: x > a4 (3.14)

Here regions 0 and 5 are outside the waveguide, and regions 1 to 4 are inside each respective

waveguide layer. Since no light propagates outside the waveguide, the assumed solution in

region 0 and 5 must decay exponentially with the distance from the surface. In the meantime,

the propagating lights in region 1, 2, 3, 4 are oscillating and have sinusoidal form. Thus we

assume that the solution form of Eqs. (3.9) to (3.14) as below.

e(x) = e0 exp[κ0x], Region 0: x < 0 (3.15)

e(x) = e1 cos[κ1x+ φ1], Region 1: 0 < x < a1 (3.16)

e(x) = e2 cos[κ2x+ φ2], Region 2: a1 < x < a2 (3.17)

e(x) = e3 cos[κ3x+ φ3], Region 3: a2 < x < a3 (3.18)

e(x) = e4 cos[κ4x+ φ4], Region 4: a3 < x < a4 (3.19)

e(x) = e5 exp[κ5(a4 − x)]. Region 5: x > a4 (3.20)

The solutions are determined with unknown parameters such as amplitudes ei, transverse wave

vectors κi, and phases φi, i = 0, 1, 2, 3, 4, 5. These parameters will have to be determined from

the boundary conditions, matching the fields in different regions. Substituting these pieces of

the solution in Eqs. (3.15) to (3.20) into their respective equation in Eqs. (3.9) to (3.14), we
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obtain the following dispersion relations:

−κ2
0 + β2 = k2

0n
2
0, Region 0: x < 0 (3.21)

κ2
1 + β2 = k2

0n
2
1, Region 1: 0 < x < a1 (3.22)

κ2
2 + β2 = k2

0n
2
2, Region 2: a1 < x < a2 (3.23)

κ2
3 + β2 = k2

0n
2
3, Region 3: a2 < x < a3 (3.24)

κ2
4 + β2 = k2

0n
2
4, Region 4: a3 < x < a4 (3.25)

−κ2
5 + β2 = k2

0n
2
5. Region 5: x > a4 (3.26)

Further, we need to apply the boundary conditions and match the field components. For that

purpose, we need to first determine the magnetic field. It has a similar form to the electric field,

but now has only one nonzero component along the z-direction.

H(x, y, z) = kh(x) exp(−iβz + iωt), (3.27)

where k is the unit vector along z-direction. Substituting Eqs. (3.5) and (3.27) into the following

Maxwell equation,

∇× E = −(1/c)∂H/∂t, (3.28)

where c is the speed of light in vacuum. Then we can obtain the following general solution for

the magnetic field, expressed through the same parameters, as the electric field:

h(x) = −(ic/ω)κ0e0 exp[κ0x], Region 0: x < 0 (3.29)

h(x) = (ic/ω)κ1e1 sin[κ1x+ φ1], Region 1: 0 < x < a1 (3.30)

h(x) = (ic/ω)κ2e2 sin[κ2x+ φ2], Region 2: a1 < x < a2 (3.31)

h(x) = (ic/ω)κ3e3 sin[κ3x+ φ3], Region 3: a2 < x < a3 (3.32)

h(x) = (ic/ω)κ4e4 sin[κ4x+ φ4], Region 4: a3 < x < a4 (3.33)

h(x) = (ic/ω)κ5e5 exp[κ5(a4 − x)]. Region 5: x > a4 (3.34)

The ratio between the field amplitude of the electric and magnetic fields, h(x)/e(x), is called

impedance. The impedance h(x)/e(x) has to stay continuous on all boundaries at x = 0,
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x = a1, x = a2, x = a3, x = a4 as below.

−(ic/ω)κ0e0 exp[κ0x]/e0 exp[κ0x]

= (ic/ω)κ1e1 sin[κ1x+ φ1]/e1 cos[κ1x+ φ1],Boundary 1: x = 0 (3.35)

(ic/ω)κ1e1 sin[κ1x+ φ1]/e1 cos[κ1x+ φ1]

= (ic/ω)κ2e2 sin[κ2x+ φ2]/e2 cos[κ2x+ φ2],Boundary 2: x = a1 (3.36)

(ic/ω)κ2e2 sin[κ2x+ φ2]/e2 cos[κ2x+ φ2]

= (ic/ω)κ3e3 sin[κ3x+ φ3]/e3 cos[κ3x+ φ3],Boundary 3: x = a2 (3.37)

(ic/ω)κ3e3 sin[κ3x+ φ3]/e3 cos[κ3x+ φ3]

= (ic/ω)κ4e4 sin[κ4x+ φ4]/e4 cos[κ4x+ φ4],Boundary 4: x = a3 (3.38)

(ic/ω)κ4e4 sin[κ4x+ φ4]/e4 cos[κ4x+ φ4]

= (ic/ω)κ5e5 exp[κ5(a4 − x)]/e5 exp[κ5(a4 − x)].Boundary 5: x = a4 (3.39)

Then we get the following equations:

κ0 = −κ1 tan(φ1), Boundary 1: x = 0 (3.40)

κ1 tan(κ1a1 + φ1) = κ2 tan(κ2a1 + φ2), Boundary 2: x = a1 (3.41)

κ2 tan(κ2a2 + φ2) = κ3 tan(κ3a2 + φ3), Boundary 3: x = a2 (3.42)

κ3 tan(κ3a3 + φ3) = κ4 tan(κ4a3 + φ4), Boundary 4: x = a3 (3.43)

κ4 tan(κ4a4 + φ4) = κ5, Boundary 5: x = a4 (3.44)

where the following substitutions must be made.

φ1 = − arctan(κ0/κ1), (3.45)

φ2 = arctan[(κ1/κ2) tan(κ1a1 + φ1)]− κ2a2, (3.46)

φ3 = arctan[(κ4/κ3) tan(κ4a3 + φ4)]− κ3a3, (3.47)

φ4 = arctan(κ5/κ4)− κ4a4, (3.48)

κ0 =

√
β2 − k0

2n0
2, (3.49)
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κ1 =

√
k0

2n1
2 − β2, (3.50)

κ2 =

√
k0

2n2
2 − β2, (3.51)

κ3 =

√
k0

2n3
2 − β2, (3.52)

κ4 =

√
k0

2n4
2 − β2, (3.53)

κ5 =

√
β2 − k5

2n5
2. (3.54)

Field amplitudes e are also determined from the boundary conditions.

e1 = e0 cos(φ1), Boundary 1: x = 0 (3.55)

e2 = e1 cos(κ1a1 + φ1)/ cos(κ2a1 + φ2), Boundary 2: x = a1 (3.56)

e3 = e2 cos(κ2a2 + φ2)/ cos(κ3a2 + φ3), Boundary 3: x = a2 (3.57)

e4 = e3 cos(κ3a3 + φ3)/ cos(κ4a3 + φ4), Boundary 4: x = a3 (3.58)

e5 = e4 cos(κ4a4 + φ4). Boundary 5: x = a4 (3.59)

After all substitutions of Eqs. (3.45) to (3.54) into Eqs. (3.40) to (3.44) are made, the only

remaining variable is the propagation constant β. The solutions of Eqs (3.40) to (3.44) provide

the complete spectrum of the light propagation in the waveguide.

3.3 Numerical Simulations: Wave Optics

In this section, the tactile sensation imaging principle is numerically simulated using Eqs.

(3.40) to (3.44). Throughout the numerical simulation, we obtain the electromagnetic wave

pattern in the multi-layered optical waveguide and demonstrate the TIR. We also show that if

an optical waveguide is deformed by an external force, the light is scattered and seen from

the surface of an optical waveguide. The wave optics analysis in Section 3.2 becomes too

complex for a thick waveguide such as ours because the number of modes in the thick waveguide

becomes too large. Therefore, in the numerical simulation, we assume the waveguide is very

thin. For a thick waveguide (i.e. few millimeters or larger), the light should be approximated as

a ray that uses the geometric optics approximation method. This method will be described in

Section 3.4.
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Fig. 3.4(a) represents an optical waveguide sensing probe before the light injection, as seen

from its side. Three PDMS layers and one glass plate layer are represented by different colors.

We assume that the light is injected from the left side of the waveguide. The light injection

result is shown in Fig. 3.4(b). Once the light is injected into the waveguide, a small portion

of light diffracts away because of the discontinuity of the mediums, air, and the waveguide.

However, due to Snell’s law, the sinusoidal oscillation of the other light is clearly seen, and it

continues to propagate in the waveguide.
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Figure 3.4: (a) The multi-layered optical waveguide sensing probe as seen from its side. (b) The
light propagation under the total internal reflection in the waveguide.

Next, we investigate the light scattering in the case of waveguide deformation. In this sim-

ulation, we use the same waveguide as before, except it is compressed with a 10-mm-radius tip

for about 5-mm vertical deformation depth (white arrow). The optical waveguide with a small

deformation is shown in Fig. 3.5(a). Fig. 3.5(b) shows the light injection result. Once we inject

the light into the waveguide, we can clearly see that the light hits the deformed region, which

causes the scattering light from the surface of the waveguide (white arrows).

We also simulated to capture the scattering light from the top surface of the waveguide.

Fig. 3.6(a) shows the simulation result when the waveguide is not deformed. We can verify

that because the light is completely reflected in the waveguide, there is no scattering light that

is captured from the top surface of the optical waveguide. Figs. 3.6(b) to 3.6(d) represent the

scattered light when the waveguide is deformed vertically with 0, 2, 4, and 6 mm deformation
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Figure 3.5: (a) The multi-layered waveguide with small deformation at a distance of 1000 mm as
seen from its side. (b) The light dispersion in the waveguide. Notice that scattering lights going out
of the waveguide at a distance of 1000 mm.

depth. We can notice that the total amount of scattered light is proportional to the waveguide

deformation depth.

3.4 Geometric Optics Approximation

In Section 3.2 and Section 3.3, we considered light propagation in the optical waveguide as

an electromagnetic wave, which can be mathematically represented by a solution of Maxwell’s

equations, subject to boundary conditions at the interfaces between PDMS layers. The theory

of this wave propagation is suitable for a waveguide with layers only a few microns thick (Katz,

2002). The wave optic analysis becomes too complex for a case as thick as a few millimeters or

larger. Therefore, light propagating in the thick waveguide should be considered as rays. This

method, called geometric optics approximation, is an alternative to the wave optics method

and is applicable in a waveguide with thick layers as a few millimeters or larger (Katz, 2002).

Using the geometric optics approximation, the critical angle and acceptance angle of the light

for the TIR can be analyzed. The acceptance angle is the maximum angle within which light is

accepted for TIR. To calculate the critical angle and acceptance angle, we used the geometric

optics approximation. In this approximation, we assume the light wave as a ray. This allows

for determining the direction of light illumination. Consider the geometry as shown in Fig. 3.7.

Due to Snell’s law, the propagation angles γ in each layer i, i = 0, 1, 2, 3, 4, 5. are bound by the
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Figure 3.6: The scattered light captured from the top surface of the waveguide when (a) the waveg-
uide is vertically deformed with 0 mm deformation depth, (b) the waveguide is vertically deformed
with 2 mm deformation depth, (c) the waveguide is vertically deformed with 4 mm deformation
depth (d) the waveguide is vertically deformed with 6 mm deformation depth.

following relations.

n1 sin γ1 = n0 sin γ0, (3.60)

n2 sin γ2 = n1 sin γ1, (3.61)

n3 sin γ3 = n2 sin γ2, (3.62)

n4 sin γ4 = n3 sin γ3, (3.63)

n5 sin γ5 = n4 sin γ4. (3.64)

The TIR condition has been achieved when γ0 = γ5 = 90o at the boundaries between the waveg-

uide and air. Light propagating in the waveguide with angles γi or higher in their respective
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layers will be trapped inside the waveguide. The critical angle indicates the minimum propaga-

tion angle γi. To make the propagation angle γi above the critical angle, the acceptance angle

θi for the incident light to the waveguide is calculated.
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Figure 3.7: Graphic representation of light propagation as a ray, propagating in the waveguide at
propagation angles γi, i = 0, 1, 2, 3, 4, 5.

The acceptance angle θi is the maximum angle, under which the light directed into the

waveguide remains trapped inside it. The propagation angle γi are related to the acceptance

angle θi by the same Snell’s law:

sin θi = ni sin(90
o − γi) = ni cos γi. (3.65)

Further, transforming Eq. (3.65), we obtain

sin θi = ni cos γi = ni(1− sin2γi)
1/2 = (n2

i − n2
i sin

2γi)
1/2. (3.66)

But from Eqs. (3.60) to (3.64), all ni sin γi are equal to n0, which is equal to 1 for air. Therefore,

we finally have the acceptance angle θi for each layer i:

θi = asin[(n2
i − 1)1/2]. (3.67)

Light, incident on layer i under the acceptance angle θi, will be trapped inside the waveguide.

The necessary acceptance angle for TIR is calculated. In the current TSIS design, PDMS

layer 1 is the hardest, PDMS layer 2 is the medium, and PDMS layer 3 is the softest. Because

the refractive index is increasing as the material becomes harder, we set the refractive index of
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each layer as 1.16, 1.15, 1.14, and 1.13. Then acceptance angles θi are calculated using Eq.

(3.67). The results are θ1 = 36.00o, θ2 = 34.60o, θ3 = 33.18o, and θ4 = 31.75o. Thus, for the

TIR in the waveguide, the spatial radiation pattern of light-emitting diode (LED) light with the

angle less than 31.75o has been chosen and placed to inject the light.

3.5 Multi-layered Sensing Probe Characterization

To maximize the touch sensation of the TSIS, the TSIS sensing probe is fabricated by em-

ulating the three-layered tissue structure. In this section, we demonstrate the advantage of the

TSIS three-layered sensing probe over the TSIS single-layered sensing probe. For this purpose,

the sensing probe characterization test is carried out to determine the effect of a three-layered

sensing probe compared to the single-layered sensing probe on deformation patterns in response

to the external force. We first calculate the effective modulus, Eeff , of the three-layered sensing

probe. Fig. 3.8 shows the schematic of the three-layered sensing probe.

PDMS1

x1

x2

x3

x4

E1

E2

E3 L3

L2

L1

PDMS3

PDMS2

Glass

Figure 3.8: The schematic of the three-layered sensing probe.

The conventional stress and strain relation is as below.

σ = Eε, (3.68)

where σ is the stress, ε is the strain, and E is the Young’s modulus. If the uniform force F

is applied on the sensing probe surface, then the stress and strain relation can be expressed as

below

F/A = E × (∆x/L). (3.69)
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The spring constant can be defined as

K = F/∆x = (E × A)/L, (3.70)

where A is the cross-sectional area of three layers. Then the stress and strain relations in each

layer can be expressed as below.

F/(x1 − x2) = (E1 × A)/L1, (3.71)

F/(x2 − x3) = (E2 × A)/L2, (3.72)

F/(x3 − x4) = (E3 × A)/L3. (3.73)

Here E1, E2, E3 are the respective Young’s modulus, L1, L2, L3 are the respective thickness

for three layers, and x1, x2, x3, x4 are displacements of layers under the force F . We note that

x4 = 0 because a rigid glass does not allow PDMS3 to move. The displacements of each layer

x1, x2, x3 are given as follows,

x1 = (F/A)× (L1/E1 + L2/E2 + L3/E3), (3.74)

x2 = (F/A)× (L2/E2 + L3/E3), (3.75)

x3 = (F × L3)/(E3 × A). (3.76)

From Eq. (3.70) and Eq. (3.74), the spring constant Kprobe of sensing probe can be expressed

as below.

Kprobe = F/(x1 − x4) = A/(L1/E1+L2/E2+L3/E3) = (A×Eeff )/(L1+L2+L3). (3.77)

Finally, the effective modulus Eeff is as follows.

Eeff = (L1 + L2 + L3)/(L1/E1 + L2/E2 + L3/E3). (3.78)

Thus for a single-layered sensing probe, we need to use an effective modulus Eeff of (L1 +

L2 + L3)/(L1/E1 + L2/E2 + L3/E3).

37



To compare the characteristics between single-layered and three-layered sensing probe, the

indenter test has been carried out using finite element modeling (FEM) on both single and three-

layered sensing probe. In single-layered case, we set the modulus of the sensing probe as the

effective modulus Eeff . Meanwhile in three-layered case, we set three different modulus E1,

E2, E3 in each PDMS layer. Fig. 3.9 and Fig. 3.10 show the maximum deformation and total

deformation area curves for two types of sensing probe under the same force F applied to the

surface of sensing probe.
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Figure 3.9: Maximum deformation of sensing probe when the uniform force F is applied to the
surface of sensing probe.

FEM simulation shows that the deformation area of the multi-layered case varies more than

the single-layered case under the same uniform force F applied onto the sensing probe surface.

See Fig. 3.10. However, in response to the maximum deformation, the difference between

single-layered and multi-layered is not significant. See Fig. 3.9. From these results, we can

conclude that, in terms of deformation area, when the same uniform force F is applied to the

sensing probe, the multi-layered case is more sensitive to the external force than the single-

layered case. But in terms of maximum deformation, the sensitivity to applied force between

single-layered and multi-layered cases is not significant. Thus, in the current TSIS design, the

three-layered sensing probe is considered, but in the next TSIS design, both the single-layered
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Figure 3.10: Deformation area of sensing probe when the uniform force F is applied to the surface
of sensing probe.

and multi-layered sensing probe can be considered for the similar sensitivity to the applied

force.
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CHAPTER 4

TACTILE SENSATION IMAGING SYSTEM

In this chapter, we present the hardware and software design concepts of the TSIS using the

TIR-based imaging principle.

4.1 Overview of Tactile Sensation Imaging System

Fig. 4.1 shows the design overview of the TSIS. The TSIS incorporates an optical waveguide

unit, a light source unit, a camera unit, and a computer unit (Lee and Won, 2011a).

Figure 4.1: The design overview of the tactile sensation imaging system.

The optical waveguide is the main sensing probe of the TSIS. The waveguide is composed

of polydimethylsiloxane (PDMS, Si(CH3)2), which is a high-performance silicone elastomer

(Rajan et al., 2003), (Chang-Yen et al., 2005). In the current design, the waveguide needs to be

flexible and transparent, and PDMS meets this requirement. To reach the level of the human
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touch sensation, the tissue structure of the human finger is emulated in the sensing probe (Lee

et al., 2010c). The human tissue is composed of three layers with different hardness (Flynn and

McCormack, 2009). The epidermis is the hardest layer and it is approximately 1 to 2 mm thick.

The dermis is a softer layer, and is approximately 1 to 3 mm thick. The subcutaneous fat is the

softest layer, which fills the space between the dermis and bone. It is composed mainly of fat and

functions as a cushion when the load is applied to the surface. The thickness of subcutaneous

layer is over 3 mm. Due to the difference in hardness of each layer, the inner layer deforms

more than the outmost layer when the finger presses onto the object (Kandel et al., 2000). To

emulate this structure, three PDMS layers with different hardness were stacked together. PDMS

layer 1 is the hardest layer, PDMS layer 2 is the layer with medium hardness, and PDMS layer

3 is the least stiff layer (Kandel et al., 2000). The height of each layer is approximately 2 mm

for PDMS layer 1, 3 mm for PDMS layer 2, and 5 mm for PDMS layer 3.

The camera is a mono-cooled complementary CMOS camera with 8.4 µm × 9.8 µm in-

dividual pixel size (Guppy F038, Allied Vision Technology, Germany). The camera is placed

below an optical waveguide. A glass plate is placed between the camera and the waveguide to

support an optical waveguide (McMaster-Carr, NJ). The internal light source is a LED with a

diameter of 3 mm (Parts-Express, OH). There are four LED light sources placed on four sides

of the waveguide to provide enough illumination. The direction and incident angle of light is

calibrated so that light is totally reflected in the waveguide. The captured tactile data are trans-

ferred to a local computer to process and display the tactile data. In the following sections, the

hardware and software designs of the TSIS are described in detail.

4.2 Hardware Design of Tactile Sensation Imaging System

In this section, the hardware implementation of the TSIS is described.

4.2.1 Components

Each component of the design for the TSIS is carefully selected so that the proper operation

of the TSIS is achieved. Fig. 4.2 shows the TSIS hardware design schematic.
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Figure 4.2: Design schematic.

In the following, each component for the TSIS hardware design is described in detail.

Camera

For the camera of the TSIS, the mono-cooled complementary CMOS camera with 8.4 µm

× 9.8 µm individual pixel size is used (Guppy-038, Allied Vision Technology, Germany). The

pixel array is 768 (H) × 492 (V) with 8-bit depth and its maximum resolution is 0.4 megapixel.

The camera uses IEEE 1394 (Firewire) interface.

LED

Four ultra-bright white 3-mm LED are used as the light sources of the TSIS (Parts-Express,

OH). They are chosen due to their small size (3 mm) and high-output white light intensity (1,500

mcd). Each LED is rated at a typical forward voltage of 3.6 V, a forward current of 20 mA, and

a viewing angle of 30o. The LEDs are arranged in parallel configuration for a common forward

current of 3.6 V.
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Power Source

Four AA batteries are selected as the DC input power source for four LEDs (Parts-Express,

OH). The batteries are rated at 1.5 V each and are configured in series for a total input voltage

of 6 V.

Potentiometer

A potentiometer of 0 to 1 kΩ was selected so that additional resistance can be added to

the circuit to control the light intensity of the LEDs (Parts-Express, OH). By increasing the

resistance in the circuit, the input voltage to the LED is decreased, thereby creating a dimming

effect in the LED light intensity.

Manual Toggle Switch

A manual on/off toggle switch is used to manually control the current on or off into the

circuit (Parts-Express, OH).

4.2.2 Optical Waveguide Fabrication

In this section, the fabrication method of optical waveguide for the TSIS sensing probe is

introduced. For the material of the optical waveguide, one of the polydimethylsiloxane (PDMS,

Si(CH3)2) dielectric gels, RTV6186, is used (Momentive Performance Materials Inc., NC).

These are low viscosity liquid silicones which cure to form a very soft gel-like elastomer. Two

PDMS component materials (part A and part B) are supplied, where part A is a base agent and

part B is a curing agent. By mixing these two components, the final PDMS optical waveguide

can be produced.

Principle

Cured properties of PDMS can be ensured if they are mixed at a ratio of 1:1 (by weight).

Increasing the ratio of part A to part B will yield a softer PDMS (higher penetration value)

whereas decreasing the ratio of part A to part B will result in a harder PDMS (lower penetration

value).
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Fablicated PDMS Optical Waveguide

The fabricated PDMS optical waveguide sensing probe is shown in Fig. 4.3(a). The optical

waveguide is flexible and transparent. The optical waveguide with LED light injection is also

shown in Fig. 4.3(b).

(a) (b)

Figure 4.3: The fabricated optical waveguide sensing probe. The optical waveguide is flexible
and transparent. (a) The sample of optical waveguide, (b) The optical waveguide with LED light
injection.

4.3 Software Implementation of Tactile Sensation Imaging System

In this section, the software implementation of the TSIS is described in detail. The TSIS

software is built using MATLAB software, a numerical computing environment and fourth-

generation programming language (MathWorks Inc., MA).

4.3.1 Overview

The TSIS software is made to be able to be viewed by an IEEE 1394 (Firewire) camera,

webcam camera, USB camera, or any digital camera that is capable of being recognized in

MATLAB software. The graphical user interface (GUI) uses the MATLAB Image Acquisition

Toolbox to create a link to the camera in the TSIS and computer. The GUI connects the camera,

sets up the camera variables when it is started, and starts the video feed automatically. The

basic functionality of GUI is to be able to start and stop the camera, to view a snapshot or

current tactile image of the processed video, and to save the current tactile image to file. Fig.

4.4 shows the block diagram of the TSIS software architecture.

The video that comes through the camera is frame-by-frame and has the format specific to
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Figure 4.4: The block diagram of the software architecture.

the manufacturer of the camera itself. For example, for the Guppy F-038 camera, the camera

sends the IIDC/DCAM specified Format 7 Mode 0 type data, which is a bitmap array with

8-bits per pixel. For this camera, there is either the choice of using the CMU 1394 Digital

Camera Driver to connect to the camera or using a “.dll” adapter file provided by AVT and using

their UniversalPackage drivers. Basically, all types of digital input devices like IEEE 1394 or

USB cameras work with the TSIS software as long as they are setup correctly to function with

MATLAB.

4.3.2 Procedure and Functionality of TSIS Software

Before the TSIS software main window, there is a “Select Camera” function that detects

any connected cameras that are compatible with MATLAB. This is shown through a small GUI

window which has the camera name, manufacturer, and the resolution or mode which the user

can select. This allows for an easy switch to another camera or different resolution without

having to alter the internal code of the TSIS software. Fig. 4.5 shows the initial window of the

TSIS software.

The left side of the “Select Camera” window has the manufacturer-specific name of the

camera, i.e. “AVT Guppy F038C NIR”. The second field has the different supported resolutions
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Figure 4.5: Initial window of tactile sensation imaging system software.

or “modes” that the camera selected offers. The AVT cameras have different “Format” and

“Mode” settings that are used to display video. The AVT Guppy F038 camera uses the “F7M0-

Mono8-768 × 492” setting, or the Format7 and Mode0, 8-bit monochrome, 768 vertical by

492 horizontal pixels. The main window of the TSIS software is shown in Fig. 4.6. The main

window has the following functional buttons.

Figure 4.6: The graphical user interface of tactile sensation imaging system software.
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Start/Stop Camera Checkbox

The default state of this checkbox is “on”, as the software starts the camera upon startup.

When clicking the checkbox to an “off” state, the window tries to execute a “stop” command.

To start the camera again, a “start” command should be issued again by clicking the checkbox

to an “on” state. While this checkbox is in the “on” state, the video will continue to process and

show on the GUI.

Save Snapshot Button

This button brings up a new figure which shows the image capture of the current video.

The video continues to run in the background, and this figure is a default MATLAB figure with

no extra properties. The other functionality of this button is to write the image to file with a

selected format and name. The current format writes a “.bmp” file format and uses the current

timestamp and the desired target number as the name of the image. Thus, the saved image would

appear in a folder under the current working directory, the target number folder, as “Target1-

020411-131112.bmp”, for an example target number of 1. The “020411” corresponds to the

date (February, 2, 2011) and “131112” corresponds to the time (13 : 11 : 12) in hour : minute :

second format. Consequently, there will never be overlapping images since the file name uses

the current second in the timestamp. The image format could be changed to specify different

image formats such as “.bmp”, “.jpeg”, “.jpg”, “.png”. The current default setting is a 24-bit

RGB Bitmap color. This function saves both the processed image (color image), and the raw

gray-scale image together as an identical file with the raw gray-scale image having a “-raw” tag

appended to the file name.

Target Selection User Interface

The target selection user interface is for choosing the target number. The interface consists

of the target number starting at the default target number of 1 and increasing or decreasing the

selected value with the “+” or “–” interface or manually typing in the desired number into the

edit field. This selects the target number and the folder name where they can store the image.
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Camera Settings Panel

A few available camera settings are found and shown on the right side of the GUI, showing

values such as brightness, gain, and shutter speed. In the camera setting panel, an edit box

is created and controls the settings directly. Once the value in the camera setting panel is

changed, the Guppy F038 camera will change its internal settings and the video will propagate

the changes. There are two added buttons next to the camera setting panel, for allowing a quick

change of settings with either a “default” or a “minimal” state that selects values for each of the

setting parameters and sends them to the camera.

4.4 Sample Tactile Images

Sample tactile images are obtained using the TSIS and its software. To get a sample tactile

image of tissue inclusion, a realistic breast tissue phantom with a 2-mm diameter spherically

shaped inclusion is manufactured (MammaCare Corp., FL). Using the TSIS, the tactile data of

an inclusion are obtained with a 0.7 N normal compression ratio. Fig. 4.7(a) shows the initial

gray-scale tactile data. In Fig. 4.7(b), a color-scale replace the original gray-scale for the clear

visualization. Then, the 3-D reconstruction of tactile image is performed using the pixel value

as the depth information in Fig. 4.7(c).

(a) (b) (c)

Figure 4.7: The tactile imaging experiments for a tissue inclusion. (a) Obtaining tactile image of
a tissue inclusion using TSIS, (b) Raw gray-scale tactile image, (c) Color visualization with 3-D
reconstruction.

From the sample tactile image, we notice that since the light scatters from the optical waveg-

uide on the contact area, the pixel values of the tactile image distribute in a bell shape, where

the pixel intensity is the highest at the centroid of the data and decreases as the distance from
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the centroid of the data increases. In Chapters 5 and 6, the advanced tactile data processing

algorithms will be introduced to estimate the hardness of the touched object or the parameters

of tissue inclusion such as size, depth, and hardness using tactile image.

4.5 The Specification of the Tactile Sensation Imaging System

In this section, the TSIS is characterized and compared with the specification of the human

fingertip. The detailed description of the TSIS specification is given below.

1) Spatial resolution between sensing points: The spatial resolution between sensing points

of the fingertip is at least 0.1 mm, which translates into an approximately 200 × 300 elements

grid on a fingertip size area (20 mm × 30 mm) (Saga et al., 2007), (Johanson and Philips, 1981).

The spatial resolution of the TSIS is the pixel size of the camera. In the TSIS, the pattern

discrimination ability is 9.8 µm and translates into an approximately 2041 × 3061 elements

grid on the same fingertip size area. This makes the TSIS have high tactile spatial resolution.

2) Temporal resolution: With regard to the human fingertip temporal resolution, the finger-

tip vibration bandwidth is a few Hz for separate touches and a hundred Hz for sensing vibration

(Kandel et al., 2000), (Craig and Baihua, 1990). The Guppy F038 camera that is used in the

TSIS provides 768 × 492 resolution at 30 frames per second (30 Hz).

3) Force sensitivity: Force sensitivity is described in terms of the smallest input physical

signal (input) to generate the output electrical signal (Rajan et al., 2003). Force sensitivity of

the TSIS is approximately 2.5 × 10−3 N compared to the human fingertip force sensitivity of

2.0× 10−2 N.

4) Hysteresis: Human fingertip does not return to the same output value (skin relax) when

the input stimulus (applied force onto the fingertip) returns to its original value in a path different

from the path that was previously used (Uttal, 1973). This difference is due to hysteresis. The

TSIS does not show hysteresis. In addition, the TSIS is stable, repeatable and continuous in its

variable output signal.

Table 4.1 summarizes the sensory specification of the human fingertip and TSIS.
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Table 4.1: Sensory specification of the human fingertip and tactile sensation imaging system.

Design criteria Human fingertip Tactile sensation imaging system

Spatial resolution 0.1 mm 9.8 µm

Temporal resolution 0∼100 Hz 0∼30 Hz

Force Sensitivity 2.5× 10−2 N 2.0× 10−3 N

Hysteresis High Low
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CHAPTER 5

TARGET HARDNESS ESTIMATION BY DIRECT CONTACT

In this chapter, we estimate the hardness of the touched object using tactile data. The word

“hardness” is used to describe the mechanical property of the touched object obtained by palpa-

tion. The hardness is expressed by the Young’s modulus, E, having units of force per unit area.

Young’s modulus is the ratio of stress to strain. The stress is defined as the applied force per

unit area. The strain is the fraction change in length in response to the stress. Thus the Young’s

modulus is expressed as stress over strain as below,

E = stress/strain. (5.1)

In this chapter, we estimate the Young’s modulus of the touched object using tactile data ob-

tained by the TSIS.

5.1 Stress Estimation

The stress is measured as force per unit area. In the TSIS design, if the optical sensing probe

of TSIS is compressed by a touched object, it is deformed. Then the light scatters at the contact

area. This scattered light is captured by a camera. Let I(x, y) be the individual pixel value of

the captured tactile data. Since I(x, y) is proportional to the stress, P (x, y), it can be expressed

as follows:

P (x, y) = f(I(x, y)), (5.2)

where f is the conversion function. If C is designated as the contact area, then the force F is

obtained by integrating the stress over the contact area as follows:

F =

∫
C

P (x, y)dC. (5.3)
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The relationship between force and summation of pixel values in tactile data is established via

experiments using a loading machine.

Figure 5.1: The loading machine experiment setup. This setup is used to find the relationship
between the normal force and the summation of pixel values in tactile data.

As shown in Fig. 5.1, the loading machine that we used have a force gauge (Mecmesin,

West Sussex, UK) to detect the applied force to the waveguide. The force gauge has a probe

to measure the force from the range of 0 to 50 N with the resolution of 1.0 × 10−3 N. Since

the camera is an 8-bit digital camera, each pixel has a minimum value of 0 and a maximum

value of 255. We attached a small tip with 2 mm radius to the force gauge to compress the

waveguide. In this experiment, starting from the initial force of 0 N, the force was increased in

the steps of 0.1 N. When the force reached the maximum value of 2.0 N, it was decreased in a

stepwise fashion until it returned to 0 N. The resulting scattered light caused by compression

of the waveguide was captured by a camera, and the corresponding applied force was measured

by the force gauge using the tactile data.

Fig. 5.2 shows the pixel values along the contact area’s of horizontal cross-sections of

the tactile data. As expected, the graph is Gaussian shape and the maximum value is at the

centroid of the tactile data. The plot of summation of pixel values in tactile data versus applied

normal force is shown in Fig. 5.3. As shown in the result, TSIS exhibits a linear response,

good repeatability and low hysteresis. The hysteresis loop is not observed in the curve. To find
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the relationship between the force and the summation of pixel values in tactile data, the linear

regression method was used as below.

y = 1.0× 106 × (0.056 + 1.4778x), (5.4)

where x is the normal force with mN unit and y is the summation of pixel values without units.

Using the linear regression result, if we get a new tactile data, we can estimate the normal force

x throughout the calculation of summation of pixel values in tactile data y. Note that the relation

curve in Fig. 5.3 will be changed if the hardness of TSIS sensing probe is changed or the light

intensity into the TSIS sensing probe is changed.
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Figure 5.2: The pixel value along the contact area (horizontal direction) as the normal force varies.

Since the stress is measured as force per unit area, the final estimated stress, P̂ , is as follows:

P̂ = x/C, (5.5)

where x is the normal force obtained from Eq. (5.4) and C is the contact area.

In this experiment, we assume that the measured object is smaller than the TSIS sensing

probe area. Then the contact area, C, becomes the size of the object. In this case, the contact

area, C, is estimated by the light scattering area in tactile data. The scale factor between the
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Figure 5.3: The relationship curve between the normal force and the summation of pixel values in
tactile data.

actual size and the image pixel distance is 6.79×10−3 mm per pixel. We obtained this ratio by

the calibration.

In this experiments, the relationship curve in Fig. 5.3 was obtained using a small, stiff tip

indenter. Strictly speaking, the relationship curve is only valid for a stiff material. But we use

this curve for the soft polymer, because both materials are homogeneous and isotropic. There

will be some errors due to the material differences. In addition, we have obtained the calibration

curve using the loading machine with 2 mm radius tip. Theoretically, the relationship curve can

be used to estimate forces applied on the objects of different sizes. To investigate the applied

normal force estimation capability using tactile data in more samples of bigger size, we find the

relationship curve in response to the different tip size of the loading machine. The size of tips

we used were radius of 10 mm and 14 mm. We obtained 15 tactile data of each tip size case

under different loading forces and calculated the summation of pixel values in tactile data. Then

the linear regression line was obtained. The experimental results are shown in Fig. 5.4.

According to the Hertzian contact theory, the relationship curve should match each other

regardless of the different indenter sizes (Filonenko-Borodichm, 1965). However, the result
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Figure 5.4: The relationship between the normal force and summation of pixel values in tactile
data in response to the different loading machine tip radius.

shows that there exist some differences between linear regression lines. At 800 mN normal

force, the error between two cases is 2.45%. There can be many reasons for this error. The

impurity of the optical waveguide is one reason. The unequal distribution of lights in the optical

waveguide due to the misalignment of LED position is another reason. In this experiment, we

assume that this error is included with the total estimation error.

5.2 Strain Estimation

The other value needed for the Young’s modulus estimation is the strain. Strain is the geo-

metrical deformation measure indicating the relative displacement between points on the object.

Thus if we know the displacement of any particular set of points on tactile data obtained un-

der different loading forces, then we can find the strain of the compressed object. The point

displacements can be calculated by matching each point sets between tactile data and compute

the distance between point position in one tactile data and point position in another tactile data

(Bruck et al., 1989). To matching two different tactile data efficiently, a novel non-rigid point

matching algorithm called “topology preserving relaxation labeling (TPRL)” has been devel-

oped (Lee and Won, 2011b). The essence of this algorithm is to automatically measure the
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displacement by tracking the change in position of control points extracted from two different

tactile data (Johnson and Christensen, 2002a), (Johnson and Christensen, 2002b). Fig. 5.5 rep-

resents the concept of tracking control points between 3-D reconstructed tactile data obtained

under two different loading forces on the same object. The 3-D reconstruction of tactile data is

performed using the pixel value as the depth information.

( x, y, z)

( x´, y´, z´)

p

q

Figure 5.5: Tracking control points extracted from surface of two different tactile data to estimate
the strain.

TPRL uses iterative algorithm to find appropriate correspondence and transformation func-

tion between control points. The displacement of the contacted object deformation is obtained

from the transformation function. This displacement function is finally used to estimate the

strain information. We show that the proposed TPRL algorithm significantly improves the

matching performance compared to other state-of-the-art point matching algorithms in (Lee

and Won, 2011b). That is the reason why we use TPRL for the strain estimation. In this section,

TPRL algorithm for strain estimation is described in detail.

5.2.1 Problem Definition

The point matching using point features is widely used in computer vision and pattern recog-

nition as point representations are generally easy to extract (Brown, 1992), (Johnson and Chris-

tensen, 2002b). The point matching problem can be categorized as rigid matching and non-rigid

matching based on the deformation of objects captured in the images. Compared with a rigid

case, a non-rigid matching is more complex. Most non-rigid point matching methods use an

iterated estimation framework to find appropriate correspondence and transformation (Zitova,
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2003), (Rangarajan et al., 1997).

The iterated closest point (ICP) algorithm is one of the most well-known heuristic ap-

proaches (Besl and Mckay, 1992). It utilizes the relationship by assigning the correspondence

with binary values of zero or one. However, in the case of non-rigid transformation this binary

assumption is no longer valid, especially when the deformation is large.

The thin plate spline robust point matching (TPS-RPM) algorithm is an expectation maxi-

mization (EM) algorithm to jointly solve for the feature correspondence as well as the geometric

transformation (Rangarajan et al., 1999). The minimizing cost function is the summation of Eu-

clidean distances between the matching points. In TPS-RPM, the binary correspondence value

of ICP is relaxed to the continuous value between zero and one. This soft-assign method im-

proves the matching performance as the correspondences are able to improve gradually and

continuously, without jumping around in the space of binary permutation matrices (Rangarajan

et al., 1996). The algorithm is robust compared to ICP in the non-rigid case, but the joint esti-

mation of correspondence and transformation increases the algorithm complexity. Furthermore,

the Euclidean distance makes sense only when there are at least rough initial alignments of the

shapes. If the initial points are not aligned well, the matching result is poor.

The coherent point drift (CPD) method is another probabilistic algorithm applied to the

non-rigid point matching problem (Myronenko and Song, 2010). The CPD algorithm utilizes

the displacement field between two point sets and it has been extended to the general non-rigid

registration framework with TPS-RPM as a special case.

Another approach is the shape context (SC) method, which uses an object recognizer based

on the shape (Belongie et al., 2002). For each point, the distributions of the distance and orien-

tation to the neighboring points are estimated through a histogram. There distributions are used

as the attribute relations for the points. The correspondences are chosen by comparing each

point’s attributes in one set with the attributes of the other. Only the attributes are considered,

thus a search for the correspondences can be conducted more easily compared to ICP and TPS-

RPM. Generally speaking, the SC method performs better in the handling of complex patterns

than TPS-RPM.
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A recently proposed matching method, the robust point matching-preserving local neigh-

borhood structures (RPM-LNS) algorithm, employs a neighborhood structure concept for the

general point matching problem (Zheng and Doermann, 2006). In RPM-LNS the cost func-

tion is formulated as an optimization problem to preserve local neighborhood relations. The

matching probability is refined through the relaxation labeling process. We will compare the

performance of these algorithms with our approach.

Another interesting point matching approach is the kernel correlation (KC) based method

(Tsin and Kanade, 2004). The cost function of KC is proportional to the correlation of two

kernel density estimates. The work was extended by using the L2 distance between Gaussian

mixture models representing the point set (Jian and Vemuri, 2005). Since the RMS matching

errors of the KC approach and the L2 distance approach are relatively higher than the other

available algorithms such as TPS-RPM, SC, RPM-LNS, and CPD, we have not included the

matching results of these two methods in the experimental results.

To develop an efficient non-rigid point matching algorithm, we generalize RPM-LNS by

introducing the optimal compatibility coefficient for the relaxation labeling method to solve a

non-rigid point matching problem. The relaxation labeling is an iterative procedure that reduces

local ambiguities and achieves global consistency by exploiting contextual information which

is quantitatively represented by “compatibility coefficient” (Rosenfeld et al., 1976), (Hummel

and Zucker, 1983). It is widely known that the relaxation labeling process is greatly affected

by the choice of the compatibility coefficient (Peleg and Rosenfeld, 1978), (Pelillo and Refice,

1994).

In the method of Zheng and Doermann, the compatibility coefficient value was a binary

value of zero or one, depending on whether a point and its neighboring point have corresponding

points (Zheng and Doermann, 2006). In our method, the correlation between point pairs is

measured by the proposed compatibility function, which quantifies the amount of similarity

and spatial smoothness between the point pairs in n-discrete values. This contextual information

combined with a relaxation labeling process is used to search for a correspondence. Then the

transformation is calculated by the thin plate spline (TPS) model (Bookstein, 1989). These
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two processes are iterated until the optimal correspondence and transformation are found. The

proposed relaxation labeling, with a new compatibility coefficient, preserves a topology of point

set, thus we call our method the topology preserving relaxation labeling (TPRL) algorithm (Lee

and Won, 2011b). It is important to note that changing compatibility coefficient improves the

matching performance significantly. In the next section, we describe TPRL in detail.

5.2.2 Topology Preserving Relaxation Labeling (TPRL) algorithm

Let two 3-D reconstructed tactile data obtained under different loading forces as O1 and

O2. From the surface of O1 and O2, a number of control points are extracted. Let P =

{p1, p2, ..., pI}, pi ∈ ℜ3 be a point set extracted from O1 and Q = {q1, q2, ..., qJ}, qj ∈ ℜ3

be a point set extracted from O2. If the object is deformed by the contact of the sensing probe,

the distance between the points changes, especially when points are far apart. However, the

local adjacent points of each point will not change much due to physical constraints (Zheng

and Doermann, 2006). So we define the local adjacent points of each point. For a given point,

pi ∈ P , one can select adjacent points N pi
a , a = 1, 2, ..., A, which are in the circle centered at

pi. We set the radius of a circle as the median value of all Euclidean distances between point

pairs in P . Similarly, for a point, qj ∈ Q, adjacent points are N qj
b , b = 1, 2, ..., B. We determine

the fuzzy correspondence matrix M . Each element of Mpiqj has continuous value between [0,1]

and it indicates the correspondence weight between pi and qj . Same as Mpiqj , MN pi
a N

qj
b

has

continuous value between [0,1] and it indicates the correspondence weight between N pi
a and

N qj
b .

The optimal match M̂ is found by maximizing the energy function as follows.

M̂ = argmax
M

E(M), (5.6)

where

E(M) =
I∑

i=1

B∑
b=1

J∑
j=1

A∑
a=1

MpiqjMN pi
a N

qj
b

(5.7)

subject to
I∑

i=1

Mpiqj = 1, ∀i, and
J∑

j=1

Mpiqj = 1, ∀j, and Mpiqj ∈ [0, 1].
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5.2.3 Searching Point Correspondence

Initially, each point pi ∈ P ′ is assigned with a set of matching probability based on the

shape context distance. After the initial probability assignment, the relaxation labeling process

updates the matching probability. The purpose of the subsequent process is to assign a matching

probability that maximizes C(P ′, Q′,M) under the relaxed condition as Mpiqj ∈ [0, 1]. At the

end of the relaxation labeling process, it is expected that each point will have one unambigu-

ous matching probability. We follow the relaxation labeling updating rule as below (Wu and

Pairman, 1995).

1) Compute the compatibility coefficient which imposes the similarity and spatial smooth-

ness constraints between point pairs.

2) Compute the support function from all compatibility coefficients related to the point.

3) Update the matching probability depending on its support function.

The determination of the compatibility coefficients is crucial because the performance of

the relaxation labeling process depends on them. As a key contribution, we define a new com-

patibility coefficient to relax the binary value into multiple discrete values. The proposed com-

patibility coefficient quantifies the degree of agreement between the hypothesis that pi matches

to qj and N pi
a matches to N qj

b . It is measured by the set of vectors originating from a point and

extending to all other sample points. The full set of vectors increases the algorithm complexity

and processing time. To simplify and speed up the process, log distance and polar angle bins are

used to capture the coarse location information (Belongie et al., 2002). The bins are uniform

in log-polar space, which makes the descriptor more sensitive to positions of adjacent points

than to those of points far apart. In the diagram, the distance is defined as zero in the origin and

incremented by one towards the outer bins as shown in Fig. 5.6(a).

Let d(pi,N pi
a ) ∈ N be the distance between origin point pi and its nearest adjacent points.

Then the distance set of an origin point pi is defined as

DS(pi) = {d(p1,N p1
a ), d(p2,N p2

a ), ..., d(pi,N pi
a )}. For the computation of the angle between

point pairs, the alignment of a diagram with a reference point is necessary. In this research, the
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mass center of a point set is used as a reference point. The direction from a point to the center

of mass is set as the positive x-axis of the descriptor. From this axis, the angle is incremented

by 1 in a counter clockwise direction. Let l(pi,N pi
a ) ∈ N be the angle between origin point

si and its nearest adjacent points. The angle set of an origin point si is given as ANG(pi) =

{d(p1,N p1
a ), d(p2,N p2

a ), ..., d(pi,N pi
a )}. Every point can be an origin and the origin varies with

points in consideration to calculate the location information. Figs. 5.6(b) and 5.6(c) show the

distance and angle sets for a given point pi ∈ P and its corresponding point qj ∈ Q.
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DS(si)={4, 3, 3, 3, 3, 4, 1}

ANG(si)={6, 6, 5, 4, 3, 3, 10}

(b)

DS(tj)={5, 4, 4, 4, 4, 4, 2}

ANG(tj)={6, 6, 6, 5, 5, 5, 11}

(c)

Figure 5.6: The distance and angle computation. (a) Diagram of log-polar bins used in computing
the distance and angle. We use 5 bins for the distances and 12 bins for the angles. (b) A point si ∈ S
(black) from the fish shape with its sets DS(si) and ANG(si) of its 6 adjacent points in S. (c) The
point tj ∈ T (black) in the deformed fish shape which have 6 adjacent points and its distance and
angle sets DS(tj) and ANG(tj).

In the non-rigid degradation of point sets, we note that a point set is usually distorted;

however the neighboring structure of a point is generally preserved due to physical constraints.

The displacement of a point and its adjacent point between two point sets constrain one another.

Thus, if the distance and angle of a point pair (pi,N pi
a ) in the model shape and its corresponding

point pair (qj,N
qj
a ) in the target shape are similar, we say that they have high correlation.

This is further strengthened if a point pair (pi,N pi
a ) in the model shape is closer to each other.

To quantify this knowledge, we introduce the similarity constraint α, β as well as the spatial

smoothness constraint γ.

The first constraint is the similarity which is related to the differences between the distances

and angles of (pi,N pi
a ) and (qj,N

qj
a ). This first constraint imposes that if (pi,N pi

a ) has smaller

distance and angle differences with (qj,N
qj
a ), then they are more compatible. The disparities
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between (pi,N pi
a ) and (qj,N

qj
a ) are defined as follows.

α(pi,N pi
a ; qj,N qj

a )

=

(
1−

∣∣∣∣(di(pi,N pi
a )− dj(qj,N

qj
b ))/max

i,j
{di(pi,N pi

a ), dj(qj,N
qj
b )}

∣∣∣∣) , (5.8)

β(pi,N pi
a ; qj,N qj

a )

=

(
1−

∣∣∣∣(li(pi,N pi
a )− lj(qj,N

qj
b ))/max

i,j
{li(pi,N pi

a ), lj(qj,N
qj
b )}

∣∣∣∣) . (5.9)

The second constraint, spatial smoothness, is measured by the distance between pi and N pi
a .

γ(pi,N pi
a ) =

(
1− di(pi,N pi

a )

max
i

(di(pi,N pi
a ))

)
, (5.10)

where max
i

(di(pi,N pi
a )) is the longest edge of point-adjacent point pairs. Two points pi and N pi

a

are the most salient if γ(pi,N pi
a ) is 1 and the least salient if γ(pi,N pi

a ) is 0. The constraining

relations are illustrated in Fig. 5.7.

Figure 5.7: The general case of the correlation strength depends on the differences of distance and
angle between point pairs. The similarity constraints α, β and the spatial smoothness constraint γ
comprise the final compatibility coefficient for the relaxation labeling process.

We define a total compatibility coefficient by

rpiqj(N pi
a N qj

b ) = α(pi,N pi
a ; qi,N qi

b ) · β(pi,N pi
a ; qi,N qi

b ) · γ(pi,N pi
a ). (5.11)

Clearly, rpiqj(N pi
a N qj

b ) ranges from 0 to 1. A high value of rpiqj(N pi
a N qj

b ) corresponds to

high matching probability between (pi,N pi
a ) and (qj,N

qj
b ), and a low value corresponds to
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incompatibility. The support function qsitj in the k-th iteration is given by

qkpiqj =
I∑

i=1

J∑
j=1

rpiqj(N pi
a N qj

b )Mk

N pi
a N

qj
b

=
I∑

i=1

J∑
j=1

α(pi,N pi
a ; qi,N qi

b ) · β(pi,N pi
a ; qi,N qi

b ) · γ(pi,N pi
a )Mk

N pi
a N

qj
b

.

(5.12)

Note that rpiqj(N pi
a N qj

b ) is weighted by mk

N pi
a N

qj
b

because it depends on the likelihood of adja-

cent point pairs matching probability. Finally, Mk
piqj

is updated according to

Mk+1
piqj

= Mk
piqj

qkpiqj/
J∑

j=1

Mk
piqj

qkpiqj . (5.13)

The optimization process is as follows. If a matching probability between pi and qj is supported

from their adjacent points N pi
a and N qj

b , then the probability of being matched increases. The

probability decreases if they have relatively small support from their adjacent points.

Traditionally sum of rows (or columns) in the matrix M is used as a constraint in the re-

laxation labeling process. In this research, we use sum of rows and columns as a two-way

constraints. In order to meet these constrains, alternated row and column normalization of the

matrix M is performed after each relaxation labeling updates. This procedure is known as

Sinkhorn normalization and it showed that the procedure always converges to a doubly stochas-

tic matrix (Achilles, 1993).

After pre-defined relaxation labeling iteration, the estimated matching probability is as-

signed to every point. To handle outliers, the points with maximum matching probability less

than mmin (mmin=0.95) are labeled as outliers and match them with a dummy point. The outlier

rejection scheme is performed throughout the relaxation labeling process.

5.2.4 Transformation Function

Given a finite set of correspondences between P and Q, we can proceed to estimate a plane

transformation T : ℜ3 → ℜ3 that may be used to map arbitrary points from one image to

the other. In this study, we use thin-plate spline (TPS) model, which is commonly used for

representing flexible coordinate transformations (Lee et al., 2010a), (Lee et al., 2008).
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Let vi denote the target function values at corresponding locations pi = (xi, yi, zi) in the

plane, with i = 1, 2, ..., n. We set vi equal to x′
i, y

′
i, z

′
i to obtain the transformation. In 3-D

interpolation problem, the TPS interpolant f(x, y, z) minimizes the bending energy

If =

∫ ∫ ∫
ℜ3

[(
∂2f

∂x2

)2

+

(
∂2f

∂y2

)2

+

(
∂2f

∂z2

)2

+2(

(
∂2f

∂x∂y

)2

+

(
∂2f

∂x∂z

)2

+

(
∂2f

∂y∂z

)2

)

]
dxdydz (5.14)

and the interpolant form is

f(x, y, z) = a1 + axx+ ayy + azz +
n∑

i=1

wiU(∥(xi, yi, zi)− (x, y, z)∥). (5.15)

where a1, ax, ay, az are the coefficients and wi’s are the weighting factors. The kernel function

U(r) is defined by U(r) = r3 log r3. In order for f(x, y, z) to have square integrable second

derivatives, we require the boundary condition
n∑

i=1

wi = 0 and
n∑

i=1

wixi =
n∑

i=1

wiyi =
n∑

i=1

wizi =0.

A special characteristic of the thin-plate spline is that the resulting transformation is always

decomposed into a global transformation and a local non-affine warping component. The first

four terms describe global affine transform and the remaining terms describe non-linear (non-

global) transformation. Together with the interpolation conditions, f(xi, yi, zi) = vi, this yields

a linear system for the TPS coefficients: K P

P T 0


 W

A

 =

 V

0

 , (5.16)

where K =



0 U(r12) · · · U(r1n)

U(r21) 0 · · · U(r2n)

· · · · · · · · · · · ·

U(rn1) U(rn2) · · · 0


and P =



1 x1 y1 z1

1 x2 y2 z1

· · · · · · · · · · · ·

1 xn yn z1


.

Here, rij = ||Pi − Pj|| is the Euclidean distance between points Pi and Pj . W and A are

column vectors formed from W = (w1, w2, ..., wn)
T and A = (a1, ax, ay, az)

T , respectively.

V = (v1, v2, ..., vn) is any n-vector. The matrix

 K P

P T 0

 is nonsingluar and it is invertable.
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Thus we can determine the coefficients W and A by multiplication of matrices

 K P

P T 0


−1

and

 V

0

. The weighting factors and coefficients W and A determine TPS interpolants

f(x, y, z) = [fx(x, y, z), fy(x, y, z), fz(x, y, z)] is a vector-valued, and this maps each point

(xi, yi, zi) to its correspondence (x′
i, y

′
i, z

′
i), the x, y, z coordinates of the transformation. The

resulting function f(x, y, z) = [fx(x, y, z), fy(x, y, z), fz(x, y, z)] maps each point (xi, yi, zi)

to its correspondence point (x′
i, y

′
i, z

′
i). It provides a continuous displacement field between

O1 and O2. Finally, the nonlinear Lagrangian strain tensor component of the uniaxial loading

configuration ezz is determined as follows:

ezz =
∂fz(x,y,z)

∂z

+1
2

[(
∂fx(x,y,z)

∂z

)3
+
(

∂fy(x,y,z)

∂z

)3
+
(

∂fz(x,y,z)
∂z

)3]
.

(5.17)

From Eq. (5.17), we can estimate the final strain information.

5.2.5 Validation and Performance Evaluation

In order to access the performance of the proposed algorithm, we have compared our match-

ing results with the state-of-the-art algorithms such as SC, TPS-RPM, RPM-LNS, and CPD

method. In the experiments, we set 300 as the number of labeling updates and the alternate

iteration with TPS transformation as 10.

Simulations Based on Synthetic Data

We have tested our proposed method and the state-of-the-art algorithms with respect to

different degrees of deformation, noise, outliers, rotation and occlusion ratio on synthetic data

set. The data set consists of two different shape models. The first model consists of 96 points

to represent a fish shape. The second model is a more complex pattern consisting of 108 points

to represent a Chinese character (“blessing”).

In each test, one of the distortions is applied to a model set to create a target set. Fig. 5.8

to Fig. 5.13 show examples of synthesized data sets (Rangarajan et al., 1999). A total of 100
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data sets is generated at each distortion level. The matching performance of each algorithm

is compared by the mean and standard deviation of the registration error of 100 trials in each

distortion level. We use root mean square (RMS) error for the registration error metric. The

statistical results, error means and standard deviations for each setting, are shown in from Fig.

5.14 to Fig. 5.18.

(a) (b)

Figure 5.8: Synthesized original data sets for statistical tests. (a) fish shape. (b) Chinese character
shape.

(a) (b)

Figure 5.9: Synthesized deformation data sets for statistical tests. (a) fish shape. (b) Chinese
character shape.

In the deformation test results, Figs. 5.14(a) and 5.14(b), five algorithms achieve similar

matching performance in both fish and character shape at low deformation ratio. However,

as the degree of deformation increases, we observe that TPRL shows the robustness to large

deformation compared with other algorithms. The degree of deformation such as 0, 0.035,

0.05, 0.065, and 0.08 indicates the deformation ratio. This measures the percentage of the

deformation degree from the original image. The higher ratio shows the higher deformation

degree. The small ratio shows the lower deformation degree.
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(a) (b)

Figure 5.10: Synthesized noise data sets for statistical tests. (a) fish shape. (b) Chinese character
shape.

(a) (b)

Figure 5.11: Synthesized outlier data sets for statistical tests. (a) fish shape. (b) Chinese character
shape.

(a) (b)

Figure 5.12: Synthesized rotation data sets for statistical tests. (a) fish shape. (b) Chinese character
shape.

The presence of noise makes the point’s location ambiguous. Therefore, this type of data is

more challenging than the deformation data. The noise test results of Figs. 5.15(a) and 5.15(b)

show that all algorithms are affected by this type of data distortion. However, we notice that

TPRL compensates the location ambiguity and finds more accurate correspondences than the

other four.
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(a) (b)

Figure 5.13: Synthesized occlusion data sets for statistical tests. (a) fish shape. (b) Chinese charac-
ter shape.

In addition to the deformation and noise test, present outliers further complicate the point

matching problem. To evaluate the performance of our method with outliers, we added maxi-

mum of 405 outliers to the target set. From the results of Figs. 5.16(a) and 5.16(b) we note that

SC and CPD in both shapes and RPM-LNS in a character shape are easily confused by outliers

and start to fail once the outlier level becomes relatively high. The TPS-RPM are not affected

by outliers as much, but the error is still higher than TPRL. The TPRL is very robust regardless

of the outlier level.

In Figs. 5.17(a) and 5.17(b) we evaluate the influence of rotation. From this result, we

notice that the applied transformation (rotation) does not affect the performance of SC, RPM-

LNS and TPRL. All error curves except TPS-RPM and CPD are relatively constant. Note that

until 30 degrees of rotation, the errors of TPS-RPM and CPD are lower than SC and RPM-LNS.

But from 60 degree of rotation, TPS-RPM and CPD deteriorate quickly. The TPRL is rotation

invariant and consistently outperforms four other algorithms in all degrees of rotations.

Occlusion is also an important degradation in real applications. We use six occlusion levels

to test the five algorithms. As shown in Figs. 5.18(a) and 5.18(b), the RMS error of TPS-RPM

is the largest compared to the other four algorithms. The TPRL achieves the best result in both

fish and character shapes.
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Figure 5.14: Comparison of the matching performance of TPRL (H) with shape context (�), TPS-
RPM (∗), RPM-LNS (�), and CPD ( ). (a) Fish shape deformation test. (b) Character shape
deformation test.
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Figure 5.15: Comparison of the matching performance of TPRL (H) with shape context (�), TPS-
RPM (∗), RPM-LNS (�), and CPD ( ). (a) Fish shape noise test. (b) Character shape noise test.

Simulations Based on Real World Data

We also conducted experiments on real world data. For this experiment, we have used the

Carnegie Mellon University (CMU) hotel sequence available. The database consists of 101

frames of a moving sequence of a toy hotel. We obtained 11 frames as shown in Figs. from

5.19(a) to 5.19(j). In total, 100 points were manually selected from each frame and matched

all images spaced by 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 frames. The experiments were
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Figure 5.16: Comparison of the matching performance of TPRL (H) with shape context (�), TPS-
RPM (∗), RPM-LNS (�), and CPD ( ). (a) Fish shape outlier test. (b) Character shape outlier
test.
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Figure 5.17: Comparison of the matching performance of TPRL (H) with shape context (�), TPS-
RPM (∗), RPM-LNS (�), and CPD ( ). (a) Fish shape rotation test. (b) Character shape rotation
test.

conducted under four different occlusion ratios: 0.0 (100 × 100), 0.1 (90 × 100), 0.2 (80 ×

100), and 0.3 (70 × 100).

Figs. 5.20(a) to 5.20(d) show the results for these experiments. We note that without oc-

clusion, Fig. 5.20(a), five algorithms achieve similar matching performance until 30 frames of

separation. However, as the frame separation increases, we observe that TPRL shows the ro-

bustness compared to other algorithms. The increased mean RMS error from 10 to 100 frames
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Figure 5.18: Comparison of the matching performance of TPRL (H) with shape context (�), TPS-
RPM (∗), RPM-LNS (�), and CPD ( ). (a) Fish shape occlusion test. (b) Character shape occlusion
test.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.19: Sequence images of toy hotel. (a) Frames 0, (b) Frames 10, (c) Frames 20, (d) Frames
30, (e) Frames 40, (f) Frames 50, (g) Frames 60, (h) Frames 70, (i) Frames 80, (j) Frames 90, (j)
Frames 100.

separation is 0.001 mm compared to 0.049 mm in SC, 0.027 mm in TPS-RPM, 0.021 mm in

RPM-LNS, and 0.025 mm in CPD. Figs. 5.20(b) to Fig. 5.20(d) show the results with occlu-

sion. With 0.3 occlusion ratio, the increased mean RMS error is 0.005 mm from 10 to 100

frames of separation, compared to 0.05 mm in RPM-LNS, the second smallest change among

the algorithms.
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Figure 5.20: Comparison of the matching performance of TPRL (H) with shape context (�), TPS-
RPM (∗), RPM-LNS (�), and CPD ( ) in the hotel sequence for increasing frame separation and
different occlusion ratio [(a) 0.0, (b) 0.1, (c) 0.2, (d) 0.3]. Error bars correspond to the standard
deviation of each pair’s RMS error.

Simulations Based on Large Data

We also tested the TPRL performance under a larger data set as shown in Figs. 5.21(a) and

5.21(b). From the image, 1000 points were extracted by curvature scale space corner detector

(He and Yung, 2008). After a model set was chosen, we applied a randomly generated non-rigid

transformation to warp it and added 1000 to 3000 outliers. The TPRL performed the best with

0.35 ± 0.22 mm, 0.38 ± 0.24 mm, and 0.39 ± 0.25 mm RMS errors for the 1000 × 2000, 1000

× 3000, and 1000 × 4000 size point matching, respectively. The CPD method gave the second

highest matching performance with 0.61 ± 0.51 mm, 0.66 ± 0.56 mm, and 0.67 ± 0.56 mm
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RMS errors in the same scenario.
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Figure 5.21: Robustness test on large data set. (a) A straw image and (b) 1000 points extracted
from the straw image.

Processing Times

In order to compare algorithms, it is necessary to analyze the processing time of each algo-

rithm. Assume that both model set and target set have points. The algorithms are based on the

NP-hard problem and have similar computational complexity of O(N2) for matching in ℜ2 and

O(N3) for matching in ℜ3. Among the compared algorithms, the CPD method performs with

the fastest registration time under a large distortion of the data set. The TPRL algorithm takes a

slightly longer time to compute compared to the CPD method. For a 105 × 105 point matching,

the TPRL algorithm takes about 1.69 seconds and the CPD method takes about 1.08 seconds on

a desktop PC with Core 2 Duo CPU with 2.13GHz and 2GB RAM.

5.3 Young’s Modulus Estimation from Stress and Strain

To determine the Young’s modulus of the contacted object, the strain component ezz are

averaged to yield the average strain ēzz. Given the applied normal stress P̂zz, the Young’s

modulus E of the object is then determined from the following equation,

E = P̂zz/ēzz. (5.18)

The proposed Young’s modulus estimation method is validated in the next section.
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5.4 Experimental Results

To validate the target hardness estimation method based on the tactile data, Versaflex CL2000X

and CL2003X (GLS, McHenry, Illinois) soft polymers of Young’s moduli 103 kPa and 62 kPa

have been used. The soft polymer was spherical shape with 3 mm radius. In this experiment, the

TSIS compressed the polymer samples while slowly increasing the compression ratio. At 0.7

N and 1.2 N applied forces, two tactile data have been captured. The obtained tactile data were

then reconstructed to 3-D, and control points were extracted from the surface of 3-D recon-

structed tactile data. The correspondence and transformation function between control points

were estimated using the proposed TPRL algorithm described in Section 5.2.1.

Fig. 5.22(a) represents 200 control points distributions extracted from each of CL2000X soft

polymer tactile data in Fig. 5.5. The point matching result using the proposed TPRL algorithm

is represented in Fig. 5.22(b). Fig. 5.23 represents the experimental result. The lines represent

theoretical CL2000X and CL2003X modulus values from the manufacturer, and the circles and

crosses represent the measured values from the TSIS. The errors of the estimated moduli were

within 4.23% relative error for CL2000X and 5.38% relative error for CL2003X.
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Figure 5.22: Control points extracted from two tactile data obtained under different loading forces
on the same object. (a) Before point matching, (b) After point matching.
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Figure 5.23: The hardness estimation results of soft polymers, CL2000X and CL2003X.

5.5 Discussions

In this chapter, the tactile data processing algorithm capable of estimating the hardness of

the touched object via direct contact are developed and experimentally evaluated. The hardness

of the contacted object is estimated using the tactile data obtained by the TSIS. In order to obtain

the hardness of the contacted object, a new non-rigid pattern matching algorithm called “TPRL”

is developed. The performance of the target hardness estimation method is experimentally

verified using the soft polymers. The results show that when using the TSIS, the hardness of

the touched object can be estimated within 5.38% relative error.

The measured object must be smaller than the area of the TSIS sensing probe. If we are

measuring the elasticity of a surface object, the contact area must be smaller than the TSIS

sensing probe area. However, if we measure a sub-surface object such as tumor, the TSIS sens-

ing probe area can be smaller than the contact tissue surface, as long as the inclusion is smaller

than the probe area. In this case, the contact area, C, is the area of the sensing probe with the

known value. Thus, even if the hidden tumor exists in a variety of sizes and shapes, the contact

area, C, is always a constant, which is the sensing probe area. One possible application of the

TSIS is the early detection of breast cancer. The common breast tumor size is approximately
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20 mm or smaller in stages 0 and I (Krouskop et al., 1998). In stage II, it is approximately 20

to 50 mm (Krouskop et al., 1998). To detect the 50 mm breast tumor, the sensing probe should

be bigger than 50 mm.

Generally, the background light disturbance and drifting of the light source are issues for

the tactile sensor that operates based on the detection of light illumination (Katz, 2002). If the

background light is too bright compared to the light of the tactile sensor, it causes measurement

errors of the TSIS. To prevent this, we use the TSIS in a relatively dark room, which minimizes

the background light disturbance. The drifting of light occurs if light sources of the TSIS are

positioned incorrectly and the camera captures the spurious light. In this case, the drifted light

is shown as noise in the tactile data. To prevent this, precise positioning and directionality of

the light source are required. We carefully positioned and calibrated four light sources with

acceptance angles. These two methods prevented the light disturbance and drifting of the light

source issues during the preliminary experiments. In the future work, we will also consider

using the image segmentation techniques. More specifically, Canny edge detection technique

can be used to extract the boundary of the desired light scattering area in the tactile data and

remove the noise (Canny, 1986).

Typically, in the LED operation, approximately 20% input power is converted to light and

80% to heat (Rico-Secades et al., 2005). Heat at the junction of the LED affects the overall

performance of the LED in terms of light output and spectrum. The amount of light emitted by

the LED decreases as the junction temperature rises. Thus, LED luminaries require a thermal

management system for LED cooling, since most of the energy for the LED is converted to

heat rather than light. Without an appropriate thermal management system, the generated heat

can degrade the intensity of the LED and finally affect the calibration result of the TSIS. In

the current TSIS design, the LED is directly connected to the power source, resulting in the

intensity drift caused by the temperature effect and the variation of the resistance in the power

source. In our experiments, the TSIS takes approximately 20 seconds to take a tactile data of

the touched object. Thus, the LED intensity drift caused by the temperature effect is not large.

In the next TSIS design, we will consider a thermal management system such as heat sinks to
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release heat from the LED. The flip-chip package type LED will also be considered to reduce

the thermal resistance of the LED. To prevent the variation of the resistance in the power source,

we will also consider the constant current LED drive circuit.

Eq. (5.2) is material-dependent. Depending upon the material, the relationship could be

linear or nonlinear. In this research, we assumed that the touched object is homogeneous and

isotropic. In this case, the relationship curve between the normal force and the summation of

pixel values in tactile data is linear. Thus, the applied force is estimated from the summation of

pixel values in tactile data using the normal force versus the summation of pixel values table,

which is previously obtained by the calibration. Then the applied stress, which is the force per

unit area, is obtained by dividing the applied force by the contact area. We have verified this

approach in Section 5.4 for the homogeneous and isotropic material. If the touched object is

inhomogeneous and anisotropic, Eq. (5.2) will not be valid. We will have to re-derive Eq. (5.2)

for the inhomogeneous and anisotropic material case.

The measurement range of the TSIS is controlled by the hardness of the TSIS sensing probe.

This is determined by how we mix two components of PDMS, the viscous fluid silicone (part A)

and the catalyst (part B). The viscous fluid silicone is hardened by the catalyst. If the amount of

catalyst increases, the hardness of the PDMS increases. If the amount of catalyst decreases, the

hardness of the PDMS decreases. In this research, the measurement range of the TSIS designed

for the soft polymer hardness estimation is from a normal force of 0 to 2500 mN. In future work,

we will investigate the different measurement ranges of the TSIS depending upon the different

hardness of the TSIS sensing probe.
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CHAPTER 6

TISSUE INCLUSION PARAMETER ESTIMATION BY INDIRECT CONTACT

The mechanical properties of tissue inclusion such as hardness and its geometry are very im-

portant in detecting and characterizing the severity of the tumor. In this chapter, we devise a

methodology for estimating three parameters of the tissue inclusion: size, depth, and hardness.

The estimated parameters are extracted from the tactile data obtained at the tissue surface using

the TSIS. Two different estimation approaches are proposed in this chapter. The first approach is

to estimate the relative parameters of tissue inclusion. Using the salient features of the captured

tactile data, we estimate the relative inclusion parameters such as size, depth, and hardness.

The second approach is to estimate the absolute parameters of tissue inclusion. The estimation

method consists of the forward algorithm and inversion algorithm. The forward algorithm is

designed to comprehensively predict the tactile data based on the parameters of the inclusion

in the soft tissue. This algorithm is used to develop the inversion algorithm that can be used to

extract the size, depth, and hardness of an inclusion. The proposed algorithms are then validated

by the realistic tissue phantoms with stiff inclusions.

6.1 Problem Formulation

To estimate tissue inclusion’s parameters, we consider the following idealized tissue model

in Fig. 6.1. The assumptions used in the idealized tissue model are as follows (Wellman et al.,

2001b).

1) Most breast tumors are found in the upper outer quadrant of the breast where the tissue is

relatively thin and flat. Therefore, in our breast tissue model, the breast tissue is approximated

as a slab of material of constant thickness that is fixed to a flat, incompressible chest wall.

2) The tissue inclusion is assumed to be spherical and stiffer than the surrounding tissue.
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3) We assume that both breast tissue and tissue inclusion are linear and isotropic.

4) The interaction between the TSIS sensing probe and breast tissue is assumed to be fric-

tionless.

Spherical 

inclusion

Soft tissue

d

h

Sensing probe

E

TSIS

Figure 6.1: The cross-section of an idealized breast tissue model for estimating inclusion parame-
ters. The tissue inclusion has three parameters – diameter d, depth h, and hardness E.

In the following section, we devise two methodologies for estimating three parameters of

the tissue inclusion (size d, depth h, and hardness E): the relative tissue inclusion parameter es-

timation method and the absolute tissue inclusion parameter estimation method. The estimation

of these parameters was performed using tactile data obtained by the TSIS at the tissue surface.

6.2 Relative Tissue Inclusion Parameter Estimation

6.2.1 Relative Size Estimation Method

The relative tissue inclusion size has been estimated using tactile data. We estimate the di-

ameter of an inclusion as its size. In the TSIS operation, as the size of an inclusion increases,

the light scattering increases as the effect of bigger inclusion causes more change in the optical

sensing probe deformation. Thus, we measured the light scattering area of tactile data to esti-

mate the inclusion size. Let I(x, y) be the individual pixel value of tactile data. Then the light

scattering area A captured in the tactile data can be calculated by counting the number of pixels

bigger than the specific value of k;

A = number of pixel values, (6.1)
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that is the number of I(x, y) > k. k is the pixel threshold value and we set it as 5. The area of

Eq. (6.1) is the pixel area in the tactile data. To transform the pixel area to the real area, the

scale factor is used. We used the scale factor between the actual area and the tactile data pixel

area as (6.79 × 10−3)2 mm2 per pixel area. We obtained this ratio by the calibration. Then a

relative size d of a tissue inclusion can be found as follows.

d = 2
√
(6.79× 10−3)2 × A/π. (6.2)

The unit of the relative inclusion size is millimeters. In this research, we assume that a tissue

inclusion is spherical and there is only one inclusion in the tissue. Also, we assume that there

is no noise in the tactile data. In addition, when we calculate the size of tissue inclusion, we did

not consider other two parameters, depth and Young’s modulus.

6.2.2 Relative Size Estimation Experimental Results

We demonstrate the capability of the proposed relative size estimation method. For this

experiment, the realistic tissue phantoms with embedded hard inclusions (simulated tumor)

have been manufactured (CIRS Inc., VA). The phantom includes three hard inclusions with

sizes, 2, 8, and 14 mm. Each inclusion was placed 5 mm below the surface of the phantom

(Lee et al., 2011). The phantom was made of a silicone composite having a Young’s modulus of

approximately 5 kPa. The inclusion was made using another silicone composite, the stiffness of

which was higher than the surrounding tissue phantom. The Young’s modulus of each inclusion

was 120 kPa, which is for fibrous tissue at 5% pre-compression with loading frequency of 4.0

Hz (Krouskop et al., 1998). The schematic of the size phantom is shown in Fig. 6.2 and the

manufactured size phantom is shown in Fig. 6.3. To obtain the tactile data, first we placed

the phantom in the desk. We then placed the TSIS onto the phantom surface where the tissue

inclusion was embedded and pressed it to obtain the tactile data. To compare the tactile data

between three different tissue inclusions, we applied the same loading forces of the TSIS on

three different tissue inclusions. For each tissue inclusion case, we obtained 15 tactile data.

The relative size of an inclusion has been estimated using Eq. (6.2) and averaged. Fig. 6.4

represents the sample tactile data of each inclusion.
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Figure 6.2: The schematic of the size phantom.

2 mm 8 mm

Size phantom

14 mm

Figure 6.3: The manufactured size phantom.

(a) (b) (c)

Figure 6.4: The tactile data of three inclusions embedded in the size phantom. (a) 2 mm size
inclusion, (b) 8 mm size inclusion, (c) 14 mm size inclusion.

The relative size estimation results are shown in Fig. 6.5. The plot shows that the 14 mm

size case had the highest mean size of 8.77 mm and the most variation, with a standard deviation

of 1.24 mm. Conversely, the 2 mm size case had the lowest mean size of 1.67 mm, and the least

variation, with a standard deviation of 0.48 mm. Because we estimated the relative value, the

comparison ratio of each estimated size is also important. The ratio of real size of inclusions

was approximately 1 : 4 : 7. The estimated ratio of relative size was approximately 1 : 3.86

: 5.26. This corresponds to 3.5% and 24.9% relative error. The error is larger for larger size
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inclusion.
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Figure 6.5: Error bar chart of estimated relative diameter of each inclusion.

6.2.3 Relative Depth Estimation Method

As the depth of inclusion increases, the light scattering due to the waveguide deformation

decreases as the effect of an inclusion becomes reduced. Because we have assumed that the

inclusion is spherical, the pixel values of the tactile data distribute in a bell shape, where the

pixel intensity is the highest at the centroid of the pixel values of tactile data and decreases with

increasing distance from the centroid. Thus, we used a centroid pixel value of tactile data to

estimate a relative inclusion depth. To obtain equations for locating centroids of the tactile data,

first we find the moment of a force as referred to in Fig. 6.6.

Fulcrum

d

F

Figure 6.6: Definition of moment of a force.
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The moment M of a force F about some fixed fulcrum is defined as (Kotoulas and An-

dreadis, 2007)

M = Fd, (6.3)

where d is the distance from the fulcrum to the line of action of the force F . Then, assume a

system n point masses situated along a horizontal line, as shown in Fig. 6.7.

d

n1 2 3

F

Figure 6.7: n point masses situated along a horizontal line.

The expression of the moment M is as follows.

M1 = w1x1 + w2x2 + w3x3 + · · ·wnxn, (6.4)

Fd = w1x1 + w2x2 + w3x3 + · · ·wnxn. (6.5)

Thus the distance from the fulcrum to the line of action of the force F is

d =
w1x1 + w2x2 + w3x3 + · · ·wnxn

w1 + w2 + w3 + · · ·wn

. (6.6)

Now, this concept is extended to the case of centroids of x-and y-coordinates of the tactile data.

Since the tactile data is 2-D, the centroid of tactile data, (Xc, Yc), are calculated by (Kotoulas

and Andreadis, 2007), (Johnson, 2007)

Xc =

∑
x

∑
y

I(x, y)xdxdy∑
x

∑
y

I(x, y)dxdy
, (6.7)

Yc =

∑
x

∑
y

I(x, y)ydxdy∑
x

∑
y

I(x, y)dxdy
. (6.8)

Then a relative depth of a tissue inclusion h can be calculated as below.

h = I(Xc, Yc). (6.9)

83



Because the calculated depth is the pixel distance, using the scale fact 6.79×10−3 mm2 per pixel

distance, we transform the pixel distance to the actual distance. Same as the relative inclusion

size case, the unit of the relative inclusion depth is millimeters. As with the size estimation

case, we assume that a tissue inclusion is spherical and there is only one inclusion in the tissue.

Also, we assume that there is no noise in the tactile data. In addition, when we calculate the

depth of tissue inclusion, we do not consider the other two parameters, size and hardness.

6.2.4 Relative Depth Estimation Experimental Results

The depth tissue phantom has three inclusions with different depths: 4, 8, and 12 mm.

The size of all inclusion was 7 mm and their Young’s modulus was 100 kPa, which is about

the invasive ductal carcinoma hardness (Krouskop et al., 1998). The schematic of the depth

phantom is shown in Fig. 6.8 and the manufactured depth phantom is shown in Fig. 6.9.

Consistent with the size phantom experiment case, we obtained 15 tactile data of each inclusion

using the same experimental steps in subsection 6.2.2. Then, the relative depth of an inclusion

was estimated using Eq. (6.9) and averaged. Fig. 6.10 represents the sample tactile data of each

inclusion.

Figure 6.8: The schematic of the depth phantom.

The depth estimation result is shown in Fig. 6.11. The plot shows that the 4 mm depth case

had the highest mean depth of 0.59 mm and the least variation, with a standard deviation of

0.03 mm, whereas the 12 mm depth case had the lowest mean depth of 0.34 mm and the most

variation with a standard deviation of 0.08 mm. The ratio of the real depth of inclusions was

approximately 1 : 1.5 : 3. The estimated relative depth ratio was approximately 1 : 0.74 : 0.57.

This is a relative error of 50.7% and 81.0% for the latter two inclusion depths with respect to
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4 mm 8 mm

 Depth phantom

12 mm

Figure 6.9: The manufactured depth phantom.

(a) (b) (c)

Figure 6.10: The tactile data of three inclusions embedded in the depth phantom. (a) 4 mm depth
inclusion, (b) 8 mm depth inclusion, (c) 12 mm depth inclusion.
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Figure 6.11: Error bar chart of estimated relative depth of each inclusion.
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the first inclusion. This shows larger error for the deepter inclusion estimation.

6.2.5 Relative Hardness Estimation Method

The word “hardness” is expressed by the Young’s modulus E. The relative Young’s modulus

or relative hardness is expressed as relative stress over relative strain. The relative stress is

measured as force per unit area. In this research, we estimate the force F using the summation

of pixels in tactile data M (Lee and Won, 2011a). The relationship between the force F and the

integrated pixel value M is obtained from the initialization.

The other value needed for the relative Young’s modulus is the relative strain. The strain

is the fraction change in length in response to the stress. Strain is the geometrical deformation

measure indicating the relative displacement between points on the target. Thus, if we know

the displacement of any particular set of points on tactile data obtained under different loading

forces to the target, then we can find the relative strain presented by the loading forces. To

find the relative stain T , first we obtained two different tactile data under different compression

ratios. We then measured the relative size from each tactile data using Eq. (6.2). The estimate

strain T is measured by the difference of the each relative size as below.

T =
d1 − d2

d1
, (6.10)

where d1 is the estimated tissue inclusion size using first tactile data and d2 is the estimated

tissue inclusion size using second tactile data. The obtained stress and strain are finally used to

estimate the relative hardness of an inclusion. The unit of the relative hardness of an inclusion

is Pa. In this research, we assume that a tissue inclusion is spherical and there is only one

inclusion in the tissue. Also we assume that there is no noise in the tactile data.

6.2.6 Relative Hardness Estimation Experimental Results

The hardness tissue phantom has three inclusions with different Young’s modulus: 40, 70,

and 100 kPa. The Young’s modulus of the tissue inclusion was chosen to represent normal

glandular tissue (40 kPa) and invasive ductal carcinoma (100 kPa) at 5% precompression with a

loading frequency of 4.0 Hz (Krouskop et al., 1998). Next we added one more inclusion with the
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in between elastic modulus of 70 kPa. The size of inclusions was 10 mm, and they were placed

5 mm below the surface of the phantom. The schematic of the hardness phantom is shown in

Fig. 6.12 and the manufactured hardness phantom is shown in Fig. 6.13. To obtain the tactile

data under different compression ratios, first we placed the phantom in the desk. We then placed

the TSIS onto the phantom surface where the tissue inclusion was embedded and pressed the

TSIS to obtain one tactile data and pressed the TSIS again with a higher compression ratio to

obtain another tactile data. Under two different compression ratios, we obtained 15 tactile data

of each inclusion. The relative hardness of a tissue inclusion was estimated using Eq. (6.10)

and averaged. Fig. 6.14 represents the sample tactile data of each inclusion.

Figure 6.12: The schematic of the hardness phantom.

100 kPa 70 kPa 40 kPa

Hardness phantom

Figure 6.13: The manufactured hardness phantom.

The Young’s modulus estimation result is shown in Fig. 6.15. The plot shows that the

40 kPa Young’s modulus case had the lowest mean of 82.59 kPa, and the smallest standard

deviation, indicating that the observations were close to the mean. On the contrary, the 100

kPa Young’s modulus case had the more widely spread out Young’s modulus, with a 252.25
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(a) (b) (c)

Figure 6.14: The tactile data of three inclusions embedded in the hardness phantom. (a) 40 kPa
Young’s modulus inclusion, (b) 70 kPa Young’s modulus inclusion, (c) 100 kPa Young’s modulus
inclusion.

kPa mean value and 35.87 kPa standard deviation, as can be seen in its error bar chart. The

70 kPa Young’s modulus case had an average of 149.93 kPa and standard deviation of 29.83

kPa. The ratio of the real Young’s modulus of inclusions was approximately 1 : 1.75 : 2.5.

The estimated ratio of relative hardness was approximately 1 : 1.81 : 3.05. This corresponds

to about 3.43% and 22.0% relative error compared to the first inclusion. The error was larger

for the stiffer inclusion. Nevertheless, we could distinguish relative hardness of the inclusions

from the tactile data.
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Figure 6.15: Error bar chart of estimated relative hardness of each inclusion.
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6.2.7 Other Tissue Inclusion Parameters – Shape and Mobility

In addition to inclusion parameters of size, depth, and hardness, shape and mobility are two

additional important parameters that can be used for the tissue inclusion characterization. The

descriptions of these two parameters are given below.

Inclusion Shape Estimation

To estimate the tissue inclusion shape, it is necessary to segment the tactile data into regions

(on their contours) corresponding to the touched object. Thresholding is one of the popular

methods for image segmentation purposes. From a gray-scale tactile data, the thresholding

technique is used to generate the binary data. During the segmenration process, individual pixels

in the tactile data are marked as “object” pixels if the value is higher than some threshold value

(assuming an object to be brighter than the background) and as “background” pixels otherwise.

Typically, an object pixel is assigned a “1” value and a background pixel is assigned a “0” value.

Finally, depending upon a pixel’s label, a binary tactile image is generated by assigning each

pixel white or black. If g(x, y) is a thresholded pixel of I(x, y) at some threshold T ,

g(x, y) =


1 if I(x, y) ≥ T ,

0 otherwise.
(6.11)

One of the popular thresholding methods is the clustering algorithm using K-means variation

(Niemisto et al., 2007), (Hartigan and Wong, 1979). In our case, two clusters (background and

object ) are considered. Let threshold be T , and µB(T ) be the mean of all pixels less than the

threshold (background) and µO(T ) be the mean of all pixel values higher than the threshold

(object). Then the threshold can be found as follows:

∀I ≥ T : |I − µB(T )| ≥ |I − µO(T )|, (6.12)

and

∀I < T : |I − µB(T )| < |I − µO(T )|. (6.13)

The basic idea of K-means variation is to start by estimating µB(T ) as the average of the four

corner pixels (assumed to be background) and µO(T ) as the average of everything else. Set the
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threshold T to be halfway between µB(T ) and µO(T ), thus separating the pixels according to

how close their intensities are to µB(T ) and µO(T ), respectively. Now, update the estimates of

µB(T ) and µO(T ) by actually calculating the means of the pixels on each side of the threshold

T by reducing the threshold T . This process repeats until the threshold T is below the specified

level and labels all tactile data pixels into “object” and “background”. From this process, we can

segment the “object” and the “background”. Based on the segmented “object”, we can finally

estimate the shape of a tissue inclusion.

Inclusion Mobility Estimation

The mobility of the tissue inclusion can be estimated as a Euclidean distance between the

centroid (Xc, Yc) of tactile data obtained through continuous time t. Let the centroids of tactile

data obtained at time t − 1 be (Xct−1 , Yct−1) and centroid of tactile data obtained at time t be

(Xct , Yct). The inclusion mobility M then can be calculated as follows.

M =
√

|Xct −Xct−1 |2 + |Yct − Yct−1 |2. (6.14)

The mobility of the tissue inclusion is estimated as a Euclidean distance between tactile image

centroids. In other words, the longer Euclidean distance means the larger mobility characteristic

of a tissue inclusion, and the shorter Euclidean distance means the smaller mobility character-

istic of a tissue inclusion.

6.3 Absolute Tissue Inclusion Parameter Estimation

In this section, the absolute tissue inclusion parameter estimation method is proposed to

measure the hardness as well as geometric parameters of a target. The estimation is performed

based on the tactile data obtained at the surface of the tissue using the TSIS. The forward algo-

rithm is designed to comprehensively predict the tactile data based on the mechanical properties

of tissue inclusion using FEM. This forward information is used to develop an inversion algo-

rithm that will be used to extract the size, depth, and Young’s modulus of a tissue inclusion from

the tactile data. We utilize ANN for the inversion algorithm. The proposed estimation method

was validated by the realistic tissue phantom with stiff inclusions.
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6.3.1 Forward Algorithm

The purpose of the forward algorithm is to find the relationship between tissue inclusion

parameters and tactile data. In this research, a FEM is considered for the forward algorithm.

The FEM modeling based on the idealized breast tissue model is performed using ANSYS ver.

11.0, an engineering simulation software package (ANSYS Inc., PA). The FEM model consists

of a three-layered sensing probe, soft tissue and inclusion. All are modeled using SOLID95

3D elements available in ANSYS. Appropriate surface-to-surface contact elements have been

defined in the ANSYS database model. The model consists of 3,000 finite elements. In addition,

the following assumptions are used for the FEM forward modeling (Fung, 1993; Parker et al.,

1990).

1) The breast tissue and inclusions are elastic and isotropic. This means that the properties

of a material are identical in all directions.

2) The Poisson’s ratio of each material is set to 0.49 because the breast tissue is elastic.

3) The breast tissue is assumed to be sitting on non-deformable hard surfaces such as bones.

The FEM model that we constructed is shown in Fig. 6.16.

Figure 6.16: The FEM model of an idealized breast tissue model. The sensing probe of TSIS is also
modeled on top of the breast tissue model. In FEM, the deformed shape of the sensing probe is
captured as maximum deformation, total deformation, and deformation area.
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If the TSIS compresses against the tissue surface containing a stiff tissue inclusion, the sens-

ing probe of the TSIS deforms. In FEM, the deformed shape of the sensing probe is captured in

response to the different inclusion parameters of size d, depth h, and Young’s modulus E. To

quantify the amount of sensing probe deformation, the following definitions are used.

1) Maximum deformation, O1
FEM , is defined as the largest vertical displacement of the

FEM element of the sensing probe from the non-deformed position.

2) Total deformation, O2
FEM , is defined as the vertical displacement summation of FEM

elements of the sensing probe from the non-deformed position.

3) Deformation area, O3
FEM , is defined as the projected area of the deformed surface of the

sensing probe.

In the forward algorithm, (d, h, E) are input variables and maximum deformation O1
FEM ,

total deformation O2
FEM , and deformation area O3

FEM of the sensing probe are output variables.

The diagram of input variables (d, h, E) and output variables (O1
FEM , O2

FEM , O3
FEM ) of FEM

is shown in Fig. 6.17.

Figure 6.17: The diagram of input variables (d, h, E) and output variables (O1
FEM , O2

FEM , O3
FEM )

in forward algorithm.

To investigate the relationship between the input variables (d, h, E) and the output variables

(O1
FEM , O2

FEM , O3
FEM ), 134 input variables (d, h, E) are randomly generated with the mini-

mum and maximum constraints of d as [0 mm; 15 mm], h as [4 mm; 12 mm], and E as [40

kPa; 120 kPa] (Krouskop et al., 1998). Then 134 output variables (O1
FEM , O2

FEM , O3
FEM ) cor-

responding to 134 input variables (d, h, E) are generated using FEM. Figs. 6.18(a) to 6.18(c)

represents 134 output variables of maximum deformation O1
FEM , total deformation O2

FEM , and

deformation area O3
FEM with respect to changing input variables (d, h, E). To visualize 134

output variable O1
FEM in 3-D space, the values of O1

FEM are rescaled to [0; 255] and displayed

as circles at the locations specified by input variables (d, h, E). The size of each circle is
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determined by the values.
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Figure 6.18: (a) The maximum deformation O1
FEM , (b) Total deformation value O2

FEM , (c) Defor-
mation area O3

FEM of TSIS sensing probe depending on the inclusion size d, depth h, and Young’s
modulus E. The 4-D dimension shows the maximum deformation value O1

FEM , rescaled from 0 to
255.

We notice that as the size of inclusion d increases, the maximum deformation O1
FEM in-

creases as the effect of bigger tissue inclusion causes more change in the sensing probe defor-

mation. As the depth of inclusion h increases, the maximum deformation O1
FEM decreases as

the effect of stiff inclusion gets reduced and the sensing probe presses the soft tissue. Also, as

the Young’s modulus E of inclusion increases, the maximum deformation O1
FEM increases as

the stiff inclusion makes the sensing probe deform more. We noticed that the other two output

variables O2
FEM and O3

FEM , have similar patterns.
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6.3.2 Mapping Tactile Data

It is necessary to relate FEM tactile data (O1
FEM , O2

FEM , O3
FEM ) and tactile data (O1

TSIS ,

O2
TSIS , O3

TSIS). To map two different tactile data, realistic calibration tissue phantom with

nine embedded stiff inclusions has been manufactured (CIRS, Inc., VA). This calibration tissue

phantom was made of a silicone composite having Young’s modulus of approximately 5 kPa.

The inclusion was made using another silicone composite with the stiffness higher than the

surrounding tissue phantom. We custom designed the calibration tissue phantom with varying

parameters (d, h, E) as shown in Table 6.2.

To map TSIS tactile data to FEM tactile data, tactile data of nine inclusions in calibration

tissue phantoms were obtained using the TSIS. In order to quantify TSIS tactile data, maximum

pixel value O1
TSIS , total pixel value O2

TSIS , and deformation area of pixel O3
TSIS of TSIS tactile

data are computed. We assume that there is no noise in the tactile data.

1) Maximum pixel value, O1
TSIS , is defined as the pixel value in the centroid of the tactile

data.

2) Total pixel value, O2
TSIS , is defined as the summation of pixel values in the tactile data.

3) Deformation area of pixel, O3
TSIS , is defined as the number of pixel greater than the

specific threshold value k in the tactile data.

To find the relationship between TSIS tactile data and FEM tactile data, the graphs of (O1
FEM

: O1
TSIS), (O2

FEM : O2
TSIS), and (O3

FEM : O3
TSIS) were generated. Then, using the linear regres-

sion method, the relationship between TSIS tactile data and FEM tactile data is found. Figs.

6.19(a) to 6.19(c) represent linear regression results. Because the tactile data is normalized,

three data in each graph exist in the same position (1,1). Using these three relationships, the

newly obtained TSIS tactile data (O1
TSIS , O2

TSIS , O3
TSIS) can be transformed into the FEM tac-

tile data (O1
FEM , O2

FEM , O3
FEM ). In this way, we relate TSIS tactile data with FEM tactile

data.

94



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum pixel value O1
APD 

M
ax

im
u

m
 d

ef
o

rm
at

io
n

 O
1 F

E
M

 

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total pixel value O2
APD 

T
o

ta
l d

ef
o

rm
at

io
n

 O
2 F

E
M

 

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deformation area of pixel O3
APD 

D
ef

o
rm

at
io

n
 a

re
a 

O
3 F

E
M

 

(c)

Figure 6.19: The linear regression results between FEM tactile data and TSIS tactile data. (a) The
linear regression result between maximum deformation O1

FEM and maximum pixel value O1
TSIS ,

(b) The linear regression result between total deformation O2
FEM and total pixel value O2

TSIS ,
(c) The linear regression result between deformation area O3

FEM and deformation area of pixel
O3

TSIS .

6.3.3 Inversion Algorithm

The goal of an inversion algorithm is to estimate (d, h, E) through newly obtained TSIS

tactile data (O1
TSIS , O2

TSIS , O3
TSIS). In the FEM forward modeling, 134 input variables (d, h, E)

and their corresponding output variables (O1
FEM , O2

FEM , O3
FEM ) are investigated. Also using

the tissue phantom experiments, the linear regression relationships between (O1
FEM , O2

FEM ,

O3
FEM ) and (O1

TSIS , O2
TSIS , O3

TSIS) are obtained. Now, we design an inversion algorithm to

estimate (d, h, E) using newly obtained (O1
TSIS , O2

TSIS , O3
TSIS). Fig. 6.20 shows the diagram of
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input variables (O1
TSIS , O2

TSIS , O3
TSIS) and output variables (d, h, E) of the inversion algorithm.

Figure 6.20: The diagram of input variables and output variables in inversion algorithm.

In this research, the multi-layered ANN is considered as an inversion algorithm (Bishop,

2007). ANN is a computational model that is inspired by the structure and functional aspects of

biological neural networks and is trained using the input variables to obtain the desired output

variables. The multi-layered ANN consists of neurons united in layers. Each i layer is connected

with i-1 and i+1 layers and neurons within the layer are not connected to each other. To train

the ANN, 125 input variables (O1
FEM , O2

FEM , O3
FEM ) and corresponding output variables (d,

h, E) are used. The remaining nine variables (d, h, E), which are used for the tissue phantom

design, are used for the trained the ANN validation. In ANN, too many neurons would lead

to over-fitting and large variance of error, but not enough neurons would cause high mean-

squared error results. Thus, the numbers of neurons and layers were set experimentally to three

layers. The 1st layer uses 10 neurons with sigmoid activation function. The 2nd layer uses

four neurons with sigmoid activation function. The 3rd layer uses three neurons with linear

activation function. Fig. 6.21 shows the ANN structure.

For the training ANN algorithm, scaled conjugate gradient algorithm (SCGA) is utilized due

to its simple and robustness characteristics compared to the other learning algorithm (Bishop,

2007). SCGA is based upon a class of optimization techniques well known in numerical anal-

ysis as the conjugate gradient methods. SCGA uses second order information from ANN but

requires only O(N) memory usage, where n is the number of weights in ANN.

6.3.4 Experimental Results

To validate the performance of the proposed estimation method, tactile data of nine tissue

inclusions were obtained using the TSIS and then quantified as (O1
TSIS , O2

TSIS , O3
TSIS). These
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Figure 6.21: The multi-layered artificial neural network structure.

(O1
TSIS , O2

TSIS , O3
TSIS) are used to estimate inclusion parameters (d, h, E) through the trained

ANN. To validate the performance of the proposed estimation method, the cross-validation

method called leave-one-out-cross-validation (LOOCV) metric is considered (Picard and Cook,

1984). The LOOCV is a special case of k-fold cross-validation where k equals the number

of instances in the data (Picard and Cook, 1984). After getting new TSIS tactile data of each

inclusion, inclusion parameters (d, h, E) of each inclusion were estimated using the ANN with

the LOOCV. These estimation trials were performed 100 times per inclusion and the results

were averaged.

First we used the root mean squared error (RMSE) performance metric. Let T be the true

inclusion parameters (d, h, E) in Table. 6.2, and Y be the estimated inclusion parameters (d̂, ĥ,

Ê) in Table. 6.2. Then the RMSE ej can be calculated as follows.

ej =

√√√√1

n
×

n∑
i=1

(Tij − Y ij)
2 (6.15)

where i is the number of inclusions which is nine and j is the number of tissue inclusion param-

eters, which is three in our case. Figs. 6.22(a) to 6.22(c) show the RMSE of each parameter (d,

h, E) with 100 experimental trials. Figs. 6.22(a) to 6.22(c) shows the RMSE of each parame-

ter (d, h, E) estimation over 100 trials. Table 6.1 shows the RMSE of all inclusion parameter

estimation results.

Next, we calculate the relative error for the validation of the estimation performance. The
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Figure 6.22: The mean square error of inclusion’s parameter estimation over 100 experiments. (a)
Inclusion size case, (b) Inclusion depth case, (c) Inclusion hardness case.

Table 6.1: The root mean squared error (RMSE) of inclusion parameter estimation.

Inclusion parameter RMSE

Size (d) 1.25 mm

Depth (h) 2.09 mm

Modulus (E) 28.65 kPa

relative estimation errors of each inclusion case are shown in Table. 6.2. The results show

that the minimum and maximum relative estimation errors for the tissue inclusion size case are

0.75% and 115.5%. The mean estimation error is 22.54% with 36.03% standard deviation. For

98



the depth estimation case, the minimum and maximum relative errors are 6.25% and 79.25%.

The mean error is 36.34% with 23.64% standard deviation. For the Young’s modulus estimation

case, the minimum and maximum relative errors are 17.03% and 123.27%. The mean error is

38.32% with 32.99% standard deviation.

As can be seen in the results, the size and depth was estimated precisely compared to the

Young’s modulus. The reason for the higher estimation error of Young’s modulus case com-

pared to other two property cases is that the inclusion Young’s modulus change is not large once

the Young’s value is greater than the specific threshold value. Conversely, inclusion size and

depth variations appear more variable in the tactile data. Thus, estimation errors of inclusion

size and depth cases are lower than the Young’s modulus estimation case.

Table 6.2: The actual parameters (d, h, E) and estimated parameters (d̂, ĥ, Ê) with relative esti-
mation errors of 9 inclusions in the calibration tissue phantom.

No. True d Est. d̂ Err. True h Est. ĥ Err. True E Est. Ê Err.
1 2mm 4.31mm 115.5% 5mm 8.2mm 64% 120kpa 77.12kPa 35.73%
2 8mm 7.38mm 7.75% 5mm 7.41mm 48.2% 120kpa 78.31kPa 34.74%
3 13mm 9.73mm 25.15% 5mm 6.55mm 31% 120kpa 80.35kPa 33.04%
4 7mm 7.34mm 4.86% 4mm 7.17mm 79.25% 100kpa 82.1kPa 17.89%
5 7mm 5.52mm 20.57% 8mm 8.5mm 6.25% 100kpa 77.06kPa 22.94%
6 7mm 5.56mm 29.43% 12mm 7.75mm 35.41% 100kpa 79.92kPa 20.08%
7 10mm 10.09mm 0.9% 5mm 5.88mm 17.6% 40kpa 89.31kPa 123.28%
8 10mm 10.07mm 0.75% 5mm 5.85mm 17% 70kpa 98.12kPa 40.17%
9 10mm 10.64mm 6.41% 5mm 6.42mm 28.34% 100kpa 82.97kPa 17.03%

Mn. 22.54% 36.34% 38.32%
Std. 36.03% 23.64% 32.99%

6.4 Sensitivity and Specificity Test

In this section, the sensitivity and specificity of the TSIS are investigated. To measure the

sensitivity and specificity of the TSIS, we used the tissue phantom which contains eight tissue

inclusions (MammaCare Corp., FL). The sensitivity of the TSIS was obtained by calculating

true-positive results, Tp, and false-positive results, Fp, through detecting eight tissue inclusions

in the phantom using the TSIS. To measure the specificity of the TSIS, the number of true-

negative results, Tn, and number of false-negative results, Fn, was calculated while scanning
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the tissue phantom without tissue inclusions. The experimental results show that the number of

true-positive results, Tp, was six and the number of false-negative results, Fn, was two, resulting

in a sensitivity of 75% for the TSIS. For the specificity, the number of true-negative results, Tn,

was seven and the number of false-positive results, Fp, was one. Thus, the specificity is 87.5%.

These are the preliminary results of the TSIS sensitivity and specificity test. If we increase the

number of samples, then we may collect more precise TSIS sensitivity and specificity data.

The relationship between sensitivity and specificity can be illustrated by the receiver oper-

ating characteristic (ROC) curve, which is a graphical plot of the true-positive rate (sensitivity),

against the false-positive rate (1-specificity) (Rangayan, 2005). A ROC curve facilitates ad-

vanced analysis of the classification accuracy of a diagnostic method (Metz, 1978). An ROC

curve for TSIS sensitivity and specificity is shown in Fig. 6.23. The graph is plotted using the

true-positive rate (sensitivity) and false-positive rate (1-specificity).
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Figure 6.23: Receiver operating characteristic (ROC) curve of TSIS.

Generally, the closer the ROC curve follows the left-hand border of the graph and then the

top border of the graph, the more accurate the test. The closer the curve comes to the 45o

diagonal of the graph, the less accurate the test. The shape of the ROC curve can be determined

by the area under the curve (AUC). Thus, the AUC can be used as a measure of test accuracy. An
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AUC of 1 represents a perfect test and an AUC of 0.5 represents a worthless test. A experimental

result that gives a larger AUC indicates a better method than one with a smaller area (Roques

et al., 2000). In general terms, an AUC above 0.8 is considered excellent, between 0.75 and 0.8

is very good, between 0.7 to 0.75 is good, between 0.6 to 0.7 is poor, and between 0.5 to 0.6 is

a fail (Roques et al., 2000). Because the AUC of the TSIS ROC curve is 0.735, according to the

classification of (Roques et al., 2000), the TSIS experimental results can be considered as good.

6.5 Discussions

In this chapter, the tissue inclusion parameter estimation method is proposed to quantify

the hardness and geometric parameters of tissue inclusions. The estimation is performed based

on the tactile data obtained by the TSIS. Two different estimation approaches are proposed in

this chapter. The first approach is to estimate the relative parameters of tissue inclusion. Using

the salient features of the captured tactile data, we estimate relative inclusion parameters such

as size, depth, and hardness. The second approach is to estimate the absolute parameters of

tissue inclusion. To design the absolute parameter estimation method, we used the FEM based

forward algorithm and the ANN based inversion algorithm. The performance of the method

was experimentally verified using realistic tissue phantoms with embedded stiff inclusions. The

experimental results showed that the relative size and hardness estimation errors were smaller

than the relative depth estimation errors. If the inclusion’s size was smaller, the estimation error

was also smaller. Also the shallower depth inclusion case has smaller depth estimation error

than the inclusions embedded deeper. Furthermore, if the Young’s modulus of an inclusion was

smaller, the estimation error was smaller than the higher Young’s modulus case. We conclude,

however, that we could distinguish between soft, medium, and hard inclusions, which will

allow us to distinguish malignant and benign tumors. For the absolute parameter estimation

experiments, the proposed estimation method can measure the size, depth, and Young’s modulus

of a tissue inclusion with 1.1%, 2.86%, and 17.79% minimum relative errors, respectively. This

work is the initial step towards achieving the TSIS and associated parameter estimation method

for early breast tumor detection and characterization.

101



The tissue inclusion parameter estimation method is a phantom - or patient - dependent

approach. The forward algorithm using FEM has been constructed based on the idealized breast

tissue model. Different women have different breast thickness, shape, and Young’s modulus,

so the parameters of the FEM model should be updated to the new geometry for the better

estimation results. For this purpose, the FEM model that we used is parameterized and can be

easily changed depending upon the different patient geometry.

To map TSIS tactile data to FEM tactile data, only nine inclusions were used. Although

we showed that the relationship between TSIS tactile data and FEM tactile data can be ap-

proximately linear, the number of sample data is not enough to describe the whole relationship

between TSIS tactile data and FEM tactile data. If we use more tissue inclusions for the map-

ping purpose, the relationship would be more accurate and estimation errors will be reduced.

In this research, we estimate three parameters such as size, depth, and hardness of tissue

inclusion using three salient features of tactile image simultaneously. This method has been

performed by finding relationships between three parameters and three salient features of tactile

image using forward algorithm and then train the inversion algorithm with forward algorithm

data. In the future work, we will investigate the individual relationship between each parameter

and each salient feature of tactile image. This way will allow us to investigate more accurate

relationship between tissue inclusion parameters and tactile images.

The accurate classification of cancer at an early stage can prevent unnecessary future diag-

nostic tests. In this regard, a classification system is the important tool. The primary objective

of the classification system is to minimize potential diagnosis errors and to provide medical

examination results in an elaborated manner and within very short time. Previously, various

classification systems using statistical learning algorithms have been successfully implemented

on different bioinformatics applications like diagnosis of leukemia, lung cancer, ovarian can-

cer, and brain cancer (Byvatov and Schneider, 2003), (Golub et al., 1999), (Shipp et al., 2002).

Although these implementations turned out to be a success, there is still a need for the robust

and efficient classification algorithm. In future work, the support vector machine (SVM) can be

considered for the tactile data classifier design for cancer classification. The SVM is a set of
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related statistical supervised learning algorithms. It was originally designed for classification

and regression tasks as a potential alternative to conventional ANNs (Vapnik, 1995). Usually,

the prediction accuracy of the SVM-based classifier is higher than that of the ANN (Vapnik,

1995).
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this dissertation, a tactile sensation imaging system (TSIS) and associated algorithms ca-

pable of measuring the characteristics of tissue inclusions were designed and experimentally

evaluated. The main focus of this dissertation was on breast tumor warning application, specif-

ically identifying tumor parameter estimation such as size, depth, and hardness. The work

presented in this dissertation will extend to other applications such as prostate or thyroid tumor

detection.

In Chapter 2, we presented a background and literature review of artificial tactile sensor. A

review of the human tactile sensing mechanism was presented, followed by a review of various

artificial tactile sensor designs and elasticity determination systems. The application of modern

breast tumor detection methods was also discussed.

In Chapter 3, we described the principle of the tactile sensation imaging, which utilizes the

total internal reflection (TIR) in the optical sensing probe. We analyzed the feasibility of the

tactile sensation imaging principle using wave optics, which clearly showed that the tactile data

can be obtained when the TSIS sensing probe is compressed by the external force. The analyti-

cal solution of tactile sensation imaging was then verified using the numerical simulations.

In Chapter 4, we presented the hardware and software design descriptions of the TSIS. The

description of each component for the TSIS hardware design is presented first, followed by

the optical waveguide fabrication method and software design description. The specification

of the TSIS was also provided. To get a sample tactile image of tissue inclusion, a realistic

breast tissue phantom with a 2-mm diameter spherically shaped inclusion was manufactured.

Througout the phantom experiments, the TSIS enabled the successful detection of stiff tissue
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inclusions.

In Chapter 5, we presented the tactile data processing algorithm for the target hardness

estimation which is accomplished by adopting a new non-rigid point matching algorithm called

“topology preserving relaxation labeling (TPRL).” Using this algorithm, a series of tactile data

was registered and strain information was calculated. The stress information was measured

throughout the integration of pixel values of the tactile data. The stress and strain measurements

were taken for unique identification of the elasticity of the touched object. The measurement

method was validated by commercial polymer samples with a known hardness. The results

showed that using the TSIS, the hardness of the touched object was estimated within 5.38%

relative error.

In Chapter 6, we investigated the capability of the TSIS to quantify the hardness and geo-

metric parameters of tissue inclusion via indirect contact. The estimation was performed based

on the tactile data obtained at the surface of the tissue using the TSIS. Two different estimation

approaches are investigated. The first approach is to estimate the relative parameters of tissue

inclusion. Using the salient features of the captured tactile data, we estimate relative inclusion

parameters such as size, depth, and hardness. The second approach is to estimate the absolute

parameters of tissue inclusion. The estimation method consists of the forward algorithm and

inversion algorithm. The forward algorithm is designed to comprehensively predict the tac-

tile data based on the parameters of the inclusion in the soft tissue. This algorithm is used to

develop the inversion algorithm that can be used to extract the size, depth, and hardness of an in-

clusion. The performance of the estimation method was experimentally verified using realistic

tissue phantoms with nine embedded stiff inclusions. For the relative tissue inclusion parameter

estimation case, the experimental results showed that the relative size and hardness estima-

tion errors were smaller than the relative depth estimation errors. Furthermore, if the Young’s

modulus of an inclusion was smaller, the estimation error was smaller than the higher Young’s

modulus case. For the absolute tissue inclusion parameter estimation case, the experimental

results showed that the minimum and maximum relative estimation errors for the tissue inclu-

sion size case were 0.75% and 115.5%. The mean estimation error was 22.54% with 36.03%
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standard deviation. For the depth estimation case, the minimum and maximum relative errors

were 6.25% and 79.25%. The mean error was 36.34% with 23.64% standard deviation. For the

Young’s modulus estimation case, the minimum and maximum relative errors were 17.03% and

123.27%. The mean error was 35.97% with 33.38% standard deviation.

7.2 Future Work

The work presented in this dissertation is the initial step towards developing a TSIS for early

breast tumor detection and characterization. Here are some future works.

The TSIS developed in this dissertation is not robust to the background light disturbance

and drifting of the light source. If the background light is too bright compared to the light of

the TSIS, it causes error. Thus, TSIS should be used in a relatively dark room to minimize the

background light disturbance. In addition, the drifting of light occurs if the light sources of TSIS

are positioned incorrectly and the camera captures the spurious light. In this case, the drifted

light is shown as noise in the tactile data. To prevent this, precise positioning and direction of

the TSIS light source are required. Future works may focus on the digital image processing of

tactile image using image segmentation algorithm. More specifically, the image segmentation

technique can be used to extract the boundary of the desired light scattering area in the tactile

data and remove the noise. This will generate the final tactile image without noise and light

disturbance.

Usually the LED is quite sensitive to the light intensity drift which is possibly caused by the

variation of the resistance in the power source. To prevent the variation of the resistance in the

power source, we will consider the constant current LED drive circuit in the TSIS. The constant

current circuit will prevent the intensity drift of LED light sources of the TSIS.

Breast tissue mechanically behaves as a viscoelastic polymer, meaning it is both viscous

and elastic (Darvish, 2009), (Sridhar and Insana, 2007). If the breast tissue is pressed by the

TSIS, it needs time to be stabilized. Thus, we press the TSIS onto the breast tissue and wait

for specific time without releasing the pressure until the deformed breast tissue stabilizes. The

required waiting time would be from few seconds to several minutes depending upon the breast
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tissue density and composition. In future work, we will investigate the relationship between the

viscoelastic behavior of breast tissue and the TSIS performance, and we will also investigate

the exact specific waiting time required for breast tissue stabilization.

The tissue inclusion parameter estimation method, proposed in this dissertation, is a phan-

tom or patient dependent approach. The FEM based forward algorithm has been constructed

based on the idealized breast tissue model. Because women have different tissue parameters,

rather than the idealized breast tissue model, if the patient is changing, the FEM based forward

algorithm should be redesigned to regenerate the proper tactile data for the better estimation

results. For this purpose, the FEM model in this dissertation is parameterized and can be easily

changed depending upon the different patient organ geometry.

There are large variations in the tissue inclusion parameter estimation errors. The one reason

of this is because of the variation of the ANN performance. In this research, we utilized the

Scaled Conjugate Gradient algorithm (SCGA) as the ANN learning algorithm for its simplicity

and low complexity. Despite of its advantages, however, we found that the SCGA fails to find

the final optimal solution of ANN in some cases. In future works, we will consider to use

advanced ANN learning algorithm such as Levenberg-Marquardt algorithm (LMA). The LMA

interpolates between the Gauss-Newton algorithm (GNA) and the gradient descent method. The

LMA is more robust than the GNA, which means that in many cases it finds an optimal solution

even if it starts very far off the final minimum. We believe that if we use the advanced ANN

learning algorithm, the final parameter estimation error will be decreased.

In the future, we will consider SVM model with three different data sets (normal, benign,

and malignant of a tissue inclusion) having multiple dimensional feature spaces (size, depth,

and Young’s modulus of a tissue inclusion) for classification. Prior to classification, detailed

statistical analyses of tactile data obtained from the TSIS will also be performed for normal (no

tumor), benign, and malignant.
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Higher-Dimensional, Multi-class classification

In the previous example, we had only two variables, and we were able to plot the data on a

2-D plane. If we add a third variable, then we can use its value for a third dimension and plot

the data in a 3-D cube. Data on a 2-D plane can be separated by a 1-D line. Similarly, data in

a 3-D cube can be separated by a 2-D plane. To classify three data sets (negative, benign, and

malignant of a tissue inclusion), a 3-D SVM should be used. In this example, 1st data can be

the size of the tumor, 2nd data can be the depth of the tumor, and 3rd data can be the Young’s

modulus of the tissue inclusion.

Although the SVM algorithm is normally adapted for discriminating data from the two

classes, it can also easily be converted into a classification algorithm with multiple classes. In

future work, we shall find the most optimal and ultimate hyperplane decision method to classify

three classes (negative, benign, and malignant of a tissue inclusion) using 3-D data (size, depth,

and Young’s modulus of a tissue inclusion).
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