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1 Introduction

Encoding a biological signal or decoding a stimulus for an ensemble of neu-

rons is the primary objective of the brain-machine interface (BMI)[1]. BMIs

have had successful application in auditory and visual implants [2, 3] as well

as controlling movement of neuroprosthetics [4]. Regardless of the applica-

tion, most BMIs are supported by adaptive filtering algorithms that use the

individual firing rates of neurons in the ensemble to estimate the driving

biological signal. Whenever there is a requirement to process signals that re-

sult from operation in an environment of unknown statistics, adaptive signal

processing provides a means of tracking the temporal evolution of system pa-

rameters. The use of adaptive filters offers signal processing capabilities that

would otherwise not be possible and have been successfully applied in such

diverse fields as digital communications, digital control, radar and biomedical

engineering [5].

Linear estimation techniques such as the Weiner filter [6], the Kalman

filter [7, 8], the least mean squares (LMS) algorithm [9] and point process

adaptive filters [10, 11] have been employed to achieve pseudo electro myo-

graphic signal reconstruction. Nonlinear approaches to the estimation prob-

lem for BMIs include the extended Kalman filter [12], the unscented Kalman

filter [13] and particle filters [14, 15].

Research has suggested that particle filters are better suited for neural

signal processing than other estimation algorithms since they can be applied
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in non-Gaussian, non-stationary environments. However, due to the compu-

tational complexity of implementing particle filters, they are not employed in

current BMI technology. This work presents an application of the Bayesian

auxiliary particle filter (BAPF) for estimating neural driving signals. It is

demonstrated that the BAPF is capable of superior parameter estimation

than other filtering techniques in terms of the error between the true and

estimated signal.

A parallel hardware architecture of the BAPF is described that signif-

icantly increases throughput over serial processing. The target synthesis

platform is a field programmable gate array (FPGA). Even with clock rates

slower than conventional processors, FPGA can yield substantially higher

throughput when configured to process signals in parallel. The latency of

the hardware depends solely on the number of neurons in the observed en-

semble and is independent of the number of particles.
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2 Background

This chapter presents many of the decoding algorithms that have been ap-

plied to brain machine interfaces (BMIs). The advantages and limitations of

each algorithm are addressed. Signal processing hardware platforms are also

discussed and how reconfigurable logic can improve throughput performance.

2.1 Wiener Filtering

The Weiner Filter (WF) is an optimal linear estimator in the mean squared

error (MSE) sense that assumes a linear mapping between the system state or

the model parameters and the input observations or the delayed spiking ac-

tivity of individual neurons. Assuming knowledge of an invertible correlation

matrix R of the input signal u(t) where

R = E[u(t)u(t)T ] (1)

and the cross-correlation vector p between u(t) and some desired response

d(t)

p = E[u(t)d(t)] (2)

the optimal tap-weight vector w = [w0 · · ·wM−1] of the linear traversal filter

can be expressed through the Wiener-Hopf Equations as

3



w = R−1p (3)

The output y(t) of the filter is a weighted sum of the current and previous

M inputs, which are stored in the registers of a tap-delay line of length M [5].

This output can be defined to be the stimulus or driving signal. The traversal

filter block diagram is illustrated in Figure 1. It should be noted that the

WF also assumes that the input signal is a stationary process, that is, the

mean and variance do not change over time.

z-1 z-1

w 0

u(t) u(t-1)

w 1

Σ

z-1
u(t-M+2)

w M -2

Σ

u(t-M+1)

w M -1

Σ

.   .   .

.   .   .

.   .   .
y(t)

Figure 1: Block diagram of linear traversal filter

The WF has been successfully demonstrated to generate control of a

robotic arm using the instantaneous firing rates of individual neurons in the

primary, premotor and posterior parietal corticies of primates as the input to

the linear filter [16]. Recordings from the primary and dorsal premotor cor-

ticies have been used as inputs to a WF to recreate center-out reaching tasks

[17]. The filter was also applied in [18] to reconstruct 2D cursor movements

using electrode arrays implanted in paralyzed human participants.
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When estimating the signal, it is often advantageous to observe a large

number of neurons, which are believed to be correlated with the signal [19,

20]. This approach results in each neuron in the ensemble having its own

WF with a unique weight vector that contributes to the overall output of

the system. Depending on the number of delayed input samples M and the

number of neurons in the ensemble K, inversion of the correlation matrix

of dimension MK x MK during training periods becomes computationally

intensive as M and K become large [21].

2.2 Least Mean Square

An alternative to the Weiner-Hopf equations is to use stochastic gradient-

based algorithms for finding w. These algorithms converge to the optimum

Weiner solution based on incoming data. The least-mean-square (LMS) al-

gorithm developed by Widrow and Hoff [22] is one such algorithm. The

LMS algorithm does not require any knowledge of the correlation matrix

and avoids matrix inversion. It uses the estimation error e(t) to update the

filter coefficients in accordance with some learning rate ε. Estimates of the

optimum tap-weight vector ŵ are obtained through three steps.

1. Compute the output

y(t) = ŵ(t)Tu(t) (4)
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2. Compute the estimation error

e(t) = d(t)− y(t) (5)

3. Update the tap weights

ŵ(t+ 1) = ŵ(t) + εu(t)e(t) (6)

The computational savings per iteration gives the LMS an advantage over the

Weiner filter for real-time processing. However, if the correlation matrix of

the input vector is ill conditioned (that is, the eigenvalue spread is large) the

LMS algorithm produces excessive error. This translates into longer training

sessions, which negates some of the desired properties of the LMS [5].

2.3 Kalman Filtering

A generalization of the Wiener solution for computing the optimal MSE, is

the Kalman filter (KF). Using a state-space approach to the estimation prob-

lem, Kalman was able to make improvements in that there is no assumption

of a stationary environment [23]. The basic KF can be applied to linear

estimation problems. Here the system state vector x(t) to be estimated is

modeled by Equation 7 as

x(t+ 1) = Φ(t)x(t) + h(t) (7)
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where Φ(t) is the known state transition matrix and h(t) is a zero mean

Gaussian process with a diagonal covariance matrix Qh(t). The measurement

equation describing the observation vector z(t) is defined in Equation 8 to

be

z(t) = C(t)x(t) + v(t) (8)

with C(t) being a known measurement matrix and v(t) is also a zero-mean

Gaussian process with diagonal covariance Qv(t).The covariance matrix P(t)

associated with the error e(t) = x(t)− x̂(t) between the actual state and the

estimated state x̂(t) is expressed as

P(t) = E[e(t)e(t)T ] = E[(x(t)− x̂(t))(x(t)− x̂(t))T ] (9)

In order to use z(t) to achieve the best possible x̂(t), Equation 10 is used

[24, 25, 26]

x̂(t) = x̂(t− 1) + K(t)(z(t)−C(t)x̂(t− 1)) (10)

The Kalman gain K(t) minimizes the MSE and was found in [23] to be

K(t) = P(t)H(t)T (H(t)P(t)H(t)T + Qv(t))
−1 (11)

The Kalman filtering process is illustrated by the block diagram of Figure 2

It has been shown that it is feasible to acquire 2D cursor control by

applying the KF to recordings from the motor cortex [27, 28, 29]. Additional

support for using the KF in cursor control can be found in [30], where the
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Figure 2: Signal flow graph of Kalman Filtering

algorithm was used in closed-loop decoding experiments. The KF was also

utilized to decode neural activity responsible for arm movement in the motor

cortex [31].

By incorporating some previous history of the state estimates, the Nth

order KF offers improvement over the standard KF in performing reaching

tasks [32]. The switching Kalman filter (SKF) proposed in [33] uses multiple

KFs that operate in parallel to estimate hand kinematics with less MSE than

the KF.

The extended Kalman filter (EKF) can be applied to situations where the

state transition and measurement matrices are nonlinear. The EKF attempts

to linearize the model by calculating the Jacobian of Φ(t) and C(t) around
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the estimated state. The EKF follows the same recursive structure described

above except Φ(t) and C(t) are dependent on the current estimated state

[34]. The first application of the EKF for neural signal processing was seen

in [35], where control and tracking of spatiotemporal cortical activity are

performed.

The unscented Kalman filter (UKF) is another nonlinear version of the

KF. Rather than trying to linearize the model through a first-order Taylor

expansion as in the EKF, the UKF transforms a set of points and propagates

them through the actual nonlinear function to eliminate the need to calculate

any derivatives [36]. This provides more accurate results while at the same

time reducing some of the computationally intensive steps involved with the

EKF.

An N th order UKF was applied in [13] to accurately reconstruct reaching

tasks in two rhesus macaques monkeys. Although the EKF and UKF offer a

way to approximate nonlinear systems they are not optimal estimators [37].

Furthermore, they are susceptible to divergence. Error covariance is always

under-approximated in stable filters. Since the Kalman gain is dependent on

the error covariance matrix, it too is under-estimated. If the covariance is

too small then K(t) goes to zero and no adaptation will occur [38]. Invert-

ibility issues also arise when the number unknown parameters needing to be

estimated become large [39].
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2.4 Neural Plasticity

Despite the success of both the linear and nonlinear estimators, the perfor-

mance of these algorithms degrade over time due to the dynamic firing prop-

erties of individual neurons. Sensory experiences seem to leave their mark

on the brain by altering the strength of synapses between neurons. Based

on how active they are during an experience, some synapses on a neuron

grow stronger and others weaker. The pattern of synaptic strength changes

represents a memory of the experience [40, 41]. Changes that occur in the

organization of the brain and their spiking responses to various stimuli as a

result of experience are referred to as neural plasticity [42].

Neural plasticity can be the result of environmental changes, learning,

normal experience or brain injury. It has been shown that thinking, learning

and acting actually change the brain’s functional anatomy if not also its

physical anatomy [43, 44]. However, when processing an ensemble of neural

signals using the algorithms discussed in the previous sections, there is little

or no effort to account for the dynamic properties of the individual neurons.

2.4.1 Dynamic Tuning Function

The firing rate of a neuron can typically be modeled using a tuning function.

A neuron’s tuning function describes how a neuron encodes information in

response to a stimulus [45]. Each neuron has its own model parameters which

comprise the state vector x(t) for that neuron. The following equation defines
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a tuning function for a Gaussian-shaped hippocampal place cell.

λ(t) = exp

{
α(t)−

(s(t)− µ(t)
2)

2ξ(t)2

}
, (12)

Place cells fire when an animal is in a specific region s(t) and are respon-

sible for spatial mapping [46]. Each neuron is tuned to have a maximum

firing rate eα at the center of its receptive field µ and responds to a range ξ

of locations. Figure 3 shows the tuning function of a place cell modeled by

Equation 12 with a state of x(t0) = [α = 3.5 µ = 10 σ = 10]T.
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Figure 3: Tuning function for a single hippocampal place cell.
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However, plasticity results in neurons having dynamic state vectors. This

means that a neuron will exhibit different firing properties as it evolves. This

process is illustrated in Figure 4. Here it can be seen how the same neuron

responds very differently to the same stimulus over time.
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Figure 4: A dynamic tuning function at three different instances of time.

Depending on how much variation the neurons exhibit will dictate how

often the system needs to be retrained or recalibrated. In order to maintain

an accurate encoding/decoding process from a dynamic neuron, the evolution

of the neuron’s tuning function parameters must be approximated as part of
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the system state vector. The following signal processing algorithms describe

how to track the time-varying parameters of a plastic neuron.

2.5 Steepest Descent Point Process Adaptive Filtering

The algorithm discussed in this section is based on a steepest descent adaptive

filtering methodology. It considers the observed neural spike trains as point

processes that have a Poisson arrival rate. Using the instantaneous firing

rate of a neuron, it seems to be possible to estimate dynamic tuning function

parameters [10].

Over an observation interval (0,T], N(t) is the counting process of the

total number of spikes fired by a given neuron up to time t, where 0 <

t ≤ T. A random point process representing neural firing times can be

characterized by its conditional intensity function λ(t, s(t),x(t),H(t)), where

s(t) is a vector representing the biological signal to which the neural system

is tuned, x(t) is a vector representing the state of tuning function parameters

for this neuron and H(t) denotes the history of the spiking process and the

biological signal up to time t [47]. Given the spiking history and the model

parameters, the instantaneous firing rate of a neuron can be described in

terms of its spiking probability by Equation 13

λ(t|s(t),x(t), H(t)) =
lim

∆t→ 0
P (N(t+ ∆t)−N(t) = 1|s(t),x(t), H(t))

∆t

(13)

13



The probability of a neuron spiking over [t, t+ ∆t) can be assumed to be

λ(t|s(t),x(t), H(t))∆t, which generalizes the inhomogeneous Poisson process

[48]. A discrete version of these functions can be obtained by dividing T into

K individual time steps of size ∆t. Each time step is then indexed by k with

k = 0, . . . , K − 1. If ∆t is made small enough (on the order of milliseconds),

then receiving more than one spike per sample interval will not occur and

therefore, ∆Nk = Nk − Nk−1 = 1 if a spike occurs during the observation

interval or 0 otherwise [49].

Using the conditional intensity function of Equation 13, an expression for

the probability of observing a spike over ∆t is

P (∆Nk) = [λ(tk|xk,Hk)∆t]
∆Nk [1− λ(tk|xk,Hk)∆t]

1−∆Nk + o(∆tk) (14)

From [49], it was shown that for small enough values of ∆t the conditional

probability reduces to

P (∆N = 1|xkHk) = exp(∆Nklog(λ(t|xkHk)∆t)− λ(tk|xkHk)∆t) (15)

Since the probability density of Equation 15 depends on the unknown

parameter vector xk, the log of Equation 15 as a function of xk given Nk is

the sample path log likelihood and results in the instantaneous log likelihood

defined as

lk(xk) = log(λ(t|xk,Hk))∆t− λ(t|xk,Hk) (16)
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Equation 16 measures the instantaneous accrual of information from the

neural spike train about the parameter vector x and was therefore used as

the cost function in deriving a steepest descent point process adaptive filter

[10].

The derivation of an adaptive filter using instantaneous steepest descent

to estimate a parameter vector x takes the form

x̂k = x̂k−1 − ε
[
∂Jxx

∂x

]
x=x̂k−1

(17)

where x̂k is the parameter estimate at the kth iteration of the algorithm

computed from the previous estimate x̂k−1, the step-size parameter ε and

the cost function Jk(x), typically chosen to be a quadratic function of x is

the instantaneous log likelihood of a Gaussian process. Similarly, to derive an

adaptive algorithm to estimate the time varying parameter vector of a point

process, the cost function in Equation 17 is replaced by the instantaneous

likelihood in Equation 16 to yield

x̂k = x̂k−1 − ε
[
∂lxx

∂x

]
x=x̂k−1

(18)

A recursive update equation for implementing a steepest descent point

process adaptive filter using the conditional intensity function as a method

to define an error between the previously estimated and current states of the

system is then given as

15



x̂k = x̂k−1 − ε
[
∂logλ

∂x
(∆Nk − λ∆tk)

]
x=x̂k−1

(19)

Although this filter does not include the encoded signal as part of the

state vector, it does provide a powerful technique to observe the affects of

neural plasticity on the system model. It also provides insight as to why the

processes in the previous sections would tend to degrade over time.

2.6 Stochastic State Point Process Adaptive Filtering

Based on the work in Section 2.5, the algorithm was extended to also include

a learning rate that is proportional to the error and is therefore dynamic.

Here a recursive expression for the posterior mean xk and variance Wk of

the system state is used to track dynamic neurons as well as estimate the

driving signal. This process is well defined in [11] and the recursive update

can be obtained using the following steps.

1. Given a state transition matrix F, predict xk based on xk−1: xk based

on xk−1:

xk = Fxk−1 (20)

2. Update the variance with zero-mean Gaussian noise Q:

Wk|k−1 = FWk−1F
T + Q (21)

3. Update the posterior variance in terms of the probability of firing λ
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defined in Equation 15:

(Wk|k)
−1 = (Wk|k−1)−1 +

[(
∂logλ

∂xk

)
[λ∆t]

(
∂logλ

∂xk

)T
−(∆Nk − λ∆t)

(
∂2logλ

∂xk∂xTk

)]
xk−1

(22)

4. Update the mean (state):

(xk|k) = (xk|k−1) +

[(
∂logλ

∂xk

)T
(∆Nk − λ∆t)

]
xk−1

(23)

Unfortunately, this methodology assumes an approximately linear, Gaus-

sian global environment, which fails to be accurate when a large and diverse

set of system parameters are present. It was also found that when periods

of neural inactivity are encountered, the filter would lose track of the correct

estimates and was not able to ’lock on’ when the neuron started to fire again

[50]. An additional drawback of the algorithm is that it requires two matrix

inversions in order to update the posterior mean.

2.7 Particle Filtering

Particle filters can be used to estimate the current state of both linear and

nonlinear systems using numerical simulation methods that approximate the

often difficult to solve integrals of the recursive Bayesian estimation problem
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[51]. If the integrals cannot be solved analytically, Monte Carlo integration

can be used to provide discrete support to represent the posterior probability

p(N(t)|x(t)) as a set of randomly chosen weighted samples, or particles, from

a proposal density that is chosen to approximate the posterior. As the num-

ber of particles becomes large, the approximation converges to the optimal

Bayesian estimate.

The estimates obtained by using particle filters are not selective, that is

they do not favor local optima, as is the case with many least squares-based

algorithms. As a consequence, they may provide estimates which are both

accurate and robust [52].

Given the previous state and the current observations, recursive Bayesian

estimation uses a two-stage process to solve for the posterior distribution. In

the first stage, Bayes’ rule is used to update the posterior from the previous

step. In the second stage, the current posterior is calculated using this up-

dated posterior. The unknown state vector x(t) is estimated by a set of P

random samples, the particles xr(t) with r = 0, . . . , P − 1, at each iteration

of the algorithm. Each particle has its own associated weight wr(t). It is

assumed that each xr(t) is the sum of the previous value, a hyperparameter

Θ = [θ, ψ1, . . . , ψK ] and an error e(t):

xr(t) = xr(t− 1) + Θ + e(t) (24)

The particle values are simulated from a proposal density π that approx-
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imates the current posterior distribution of the parameters. Each particle

weight is then assigned a value based on how likely they are to represent the

current observations N(t) by the following equation

wr(t) ∝ wr(t− 1)
p(N(t)|xr(t))p(xr(t)xr(t− 1),Θ)

π(xr(t)|xr(t− 1), N(t),Θ)
(25)

where r = 1, . . . , P .

Equation 25 states that the weight of a particle at time t is proportional to

its former weight at time t-1 and its new likelihood and inversely proportional

to the probability given to it by the proposal density π. When Poisson firing

rates are assumed, the posterior density becomes

p(N(t)|xr(t)) =
(λ∆t)∆N(t)e−λ∆t

∆N(t)!
(26)

The particle weights are then normalized so that they sum to unity. Next,

the particles are resampled. This process will retain particle values with

higher probabilities and discard ones with low probability. Low weighted

particles are then reassigned values from high weighted particles.

Various sampling techniques have been employed such as importance sam-

pling (IS), sampling importance sampling (SIS) and sampling importance

resampling (SIR) [51] in an attempt to avoid the effects of degeneracy. De-

generacy occurs when all but a few particle weights are close to zero. This

results in most of the particles yielding no viable information and the filter

output becomes based on just a few particle estimates. Once the particles
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have been resampled, the state estimate x(t) can be computed as weighted

sum of the particle values as

x̂(t) =
P−1∑
r=0

wr(t)xr(t) (27)

Particle filters have been shown to be a powerful algorithm for estimating

parameters in neural firing state models. Decoding a neuron’s response to a

wind stimulus was successfully simulated in [53]. Here a simple exponential

model was used to represent the firing rate of a single neuron in a cricket

sensory system. This was further improved in [54], where the tuning function

parameters are also estimated as part of the state vector to account for neural

plasticity.

The particle filter was found to outperform the Kalman filter estimate in

[55]. Here, 185 neuron channels are used as the observations in estimating

2D hand kinematics in a primate reaching task. This work did not however

take into account that the tuning functions are dynamic and no effort was

made to track the system parameters.

2.8 Field Programmable Gate Array Architectures

Field programmable gate arrays (FPGAs) are customizable logic devices that

are comprised of configurable logic blocks (CLBs), programmable intercon-

nections and input-output cells. Each CLB consists of look-up tables (LUTs),

multiplexers, flip-flops, basic logic elements (AND, OR and NOT), block
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random access memory (BRAM) and shift registers [56, 57]. The number

of CLBs contained within a single FPGA can vary from hundreds to tens of

thousands. In addition to the CLBs, current generation devices incorporate

dedicated fixed point multipliers for efficient implementation of arithmetic

functions.

FPGAs offer advantages over other processing devices such as a DSP or

application specific integrated circuit (ASIC). DSPs are essentially highly

specialized general purpose processors tailored to the needs of signal process-

ing [58]. Although DSPs offer efficient execution of computationally intensive

algorithms such as fast Fourier transform pairs, they operate using high level

instruction sets and do not lend themselves to parallel processing architec-

tures which adversely affects throughput performance. Conversely, with the

FPGA, multiple DSP computations can be executed simultaneously in par-

allel through dedicated architectures.

While the high speed and low production costs of ASICs make them

appealing for real-time signal processing applications, the initial cost of de-

signing an optimized architecture is expensive and time-to-market can take

years [59]. Another deficiency of the ASIC is that its circuitry is static once

it is produced. That is, the functionality of the device can longer be altered.

However, using an FPGA, synthesis of a design can be implemented instantly

and any changes that need to made can be reprogrammed into the design.

FPGAs provide an ideal platform for digital signal processing imple-

mentation, combining the reprogrammability, architectural flexibility and
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system-level integration of general purpose processors with the performance

offered by customizable hardware. Even with clock speeds well below con-

ventional processors, reconfigurable logic can yield substantially superior

throughputs when made massively parallel [60]. Therefore, the BAPF algo-

rithm can be implemented in hardware for real-time neural signal processing

using an FPGA.

2.8.1 Virtex: Fine-grained Device

The fine-grained architecture of the Xilinx Virtex FPGA uses a general rout-

ing matrix to configure the interconnects between the CLBs. The only other

resources available on first generation Virtex devices is BRAM and clock

synchronization control. A top-level topology of the Virtex family is shown

in Figure 5.

Each CLB of Virtex family devices is composed of two slices. Each of

these slices consists of two logic cells (LCs). The LCs themselves contain a

four-input LUTs, control logic and a flip-flop. A detailed schematic of a slice

can be seen in Figure 6.

Although Virtex devices lack dedicated arithmetic units, multiplication

and full 1-bit adders can be configured through AND gates and XOR gates.

Aside from the on-chip BRAM, each of the LUTs can be used to store data

as 16 bits or combined with the other LUT in the LC to store data as 32

bits. Maximum clock rates for these devices reach 200 MHz.
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Figure 5: Virtex FPGA architecture

Figure 6: Detailed view of Virtex slice

2.8.2 Virtex-5: Course-grained Device

By interconnecting CLBs to create modules such as adders and multipliers,

FPGA performance is reduced [57]. To overcome this, course-grained archi-
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tectures incorporate frequently used modules as hard macros. This is seen in

the later generation Xilinx Virtex-5 family, where some of the slices contain

a DSP. In particular, the Virtex-5 devices have 18-bit x 25-bit embedded

multipliers called a DSP48E, whose architecture shown in Figure 7.

Figure 7: Detailed view of DSP48E

Additional features of Virtex-5 devices include: phase-locked loops to

serve as a frequency synthesizer to produce a wide range of frequencies, 36

Kb dual-port distributed RAM is available to reduce signal routing and clock

rates of up to 550 MHz are possible with some designs. The functionality

of each slice was further enhanced by expanding the architecture to include

four LUTs, four flip-flops, 16:1 multiplexers and 32-bit shift registers. The

Virtex-5 slice is shown in Figure 8. One practical limitation of the Bayesian

auxiliary particle filter (BAPF) is that it is computationally intensive. Ow-
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Figure 8: Detailed view of Virtex-5 slice

ing to the large number of tracked parameters, each of which is modeled by

a large number of particles, this method is not well suited to real-time imple-

mentation using a general purpose sequential processing unit. For example,

the simulations presented in Section 3.5 tracked up to 100 parameters for 100

neurons, each modeled with 100 particles. It is for this reason that particle

filters are not used for real-time BMI systems [13].
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3 Preliminary Work

A major deficiency in particle filtering is the effect that outliers or unex-

pected observations have on filter performance [61]. Auxiliary particle filters

address this problem by performing resampling at time t − 1 using the cur-

rent observation at time t before updating the particles. More specifically,

the Bayesian auxiliary particle filter (BAPF) introduced by Liu and West [62]

uses a two-stage weight update procedure. The first stage weights are used

in the resampling process. The second stage weights are used to compute

the state estimate as a weighted sum.

The Bayesian auxiliary particle filter is used to track two parameters

in each of K hippocampal place cell neurons whose intensity is described

according to Equation 35. The technique is assessed by simulating neurons

that are tuned to the position of a virtual mouse following a random walk

trajectory along a track. Reconstructed mouse positions are compared to the

true mouse positions and results are quantified using both the mean squared

error metric and confidence intervals.

Investigation of the BAPF to reconstruct neural signals in cases where

the simulated spike train had been corrupted by varying degrees and types

of spike noise are carried out. Performance of the algorithm is presented

and compared against the linear Wiener filter and the sampling importance

resampling (SIR) particle filter. It is shown that the BAPF is a more robust

decoding algorithm the Wiener and SIR particle filter in terms of MSE.
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One focus of this research is to translate the BAPF into programmable

hardware such as one of the field programmable gate array (FPGA) devices

discussed in Section 2.8. This chapter also presents parallel processing units

that are utilized to facilitate the implementation of the BAPF. By exploiting

properties of the algorithm which make it conducive to parallel processing,

a highly scalable hardware architecture can be developed for its use in real-

time neural signal processing. Synthesis results for each module are reported

for resource utilization, throughput and clock rate.

3.1 Bayesian Auxiliary Particle Filtering

Successful application of the BAPF was demonstrated in [50] where the pa-

rameters of a Gaussian shaped tuning function for a single neuron are esti-

mated using the driving signal and firing times as the observations. It was

compared to the algorithm described in Section 2.6 and was shown to result

in less MSE. This section demonstrates how the BAPF can be extended to

include the driving signal as part of the estimated state vector using only

firing times of an ensemble of neurons as the observations.

The specific implementation of the BAPF for estimating neural driving

signals is described next. Note that N (0, σ) refers to a normal random vari-

able with zero mean and standard deviation σ.

1. Simulate the hyperparameters according to:

Θr ∼ N (0, σ1), (28)
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where σ1 is some fixed constant.

2. Compute non-noisy particle estimates:

x̂r(t) = xr(t− 1) + Θr (29)

3. Compute the first stage weights gr(t) using the previous second stage

weights wr(t− 1):

gr(t) ∝ wr(t− 1)p(N(t)|x̂r(t)) (30)

Resample x̂r(t) according to gr(t).

4. Simulate the hyperparameters according to:

Θr ∼ N (0, σ2), (31)

where σ2 is some fixed constant.

5. Define xr(t) by adding noise to the resampled x̂r(t) as:

xr(t) = x̂r(t) + Θr (32)

6. Compute second stage weights:

wr(t) ∝ p(N(t)|xr(t))
p(N(t)|x̂r(t)

(33)
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7. Compute an estimate of the state as a weighted sum of xr(t):

χ(t) =
P−1∑
r=0

wr(t)xr(t) (34)

3.2 Neural Firing Model

Although the methods presented here are applicable to any number of neural

tuning function models, the Gaussian hippocampal place-cell model is used

as a prototypical example. The term λj(t) represents the instantaneous firing

rate of the jth neuron:

λj(t) = exp

{
αj(t)−

(s(t)− µj(t)2)

2ξj(t)2

}
, j = 1, . . . , K (35)

In this model, the firing rate of each neuron is controlled by the driving signal

s(t) and three parameters, αj(t), µj(t) and ξj(t).

The parametric quantity exp {αj(t)} characterizes the maximum firing

rate of neuron j and can only be achieved when the driving signal is at the

center of the jth neurons receptive field µj(t). The parameter ξj(t) character-

izes the width of the neuronal receptive field, with larger values of ξ signifying

neurons that are responsive to a broader range of driving signal values. In or-

der to make the neural tracking process more robust, the proposed Bayesian

auxiliary particle filter here simplifies the model described in Equation 35 by

assuming that the parameters α and ξ are (a) constant over time and (b) the
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same for all K neurons. Equation 35 therefore simplifies to:

λj(t) = exp

{
α− (s(t)− µj(t)2)

2ξ2

}
, j = 1, . . . , K (36)

Note that these simplifications apply only to the Bayesian auxiliary particle

filter and the simulated neurons have unique parameters αj(t) and ξj(t).

The assumption is based on prior work concerned with Bayesian auxiliary

particle filter tracking [50]. Specifically, it was noted that if the maximum

firing rate for a typical neuron is assumed to be 50 spikes per second, then

α ≤ ln(50), or equivalently α ≤ 3.9.

Since α has such a small range of viable values, it is hypothesized here

that assigning it to a pre-selected a priori constant would introduce only

modest error. By eliminating the need to track α, gross errors in estimating

s(t) are avoided since even small over-estimates of α result in biologically

impossible firing rates.

Similarly, the parameter ξ measuring the receptive field width is modeled

as a constant because it is observed that precise knowledge of its true value

was not necessary for accurate tracking of s(t), even though a wide range of

values is biologically plausible [63]. Since α and ξ are assumed constants, the

unknown state parameters are s(t) and µj(t) which must be estimated using

only the observed spike firings Nj(t).

Neural spikes are assumed to arrive according to an inhomogeneous Pois-

son process, meaning that for a given time interval ∆t, the expected number
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of spikes in the jth neuron is λj∆t:

p(Nj(t) = 1) = λj∆t exp {−λj(t)∆t} (37)

For the purposes of this work, the time intervals are assumed to be sufficiently

small that there can be at most one spike arrival per interval (i.e. Nj(t) =

0 or 1).

3.3 Time Bins

The neural firing variable Nj(t) is assumed to be observed at discrete time

intervals of ∆t seconds, i.e. t = ∆t, 2∆t, . . . , T∆t. To further facilitate the

execution of the Bayesian auxiliary particle filter, time bins are incorporated

B1, . . . , BM , each comprised of b consecutive time steps such that each bin

is of duration b∆t and that the total number of bins is M = T/b. The state

parameters s(t) and µj(t) are assumed to be constant over each bin, meaning

that the time variable can be redefined to index bin number instead of time

step.

Specifically, if t = 1, . . . , T is replaced with t = 1, . . . ,M without loss of

generality. The notation Nj(t) will hereafter refer to the number of firings in

bin t with t = 1, . . . ,M .
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3.4 Methods

In order to verify the accuracy with which the BAPF can decode a biological

signal, a series of simulations are executed in which a virtual mouse moved

back and forth along a track of length 300 cm. The time-varying parame-

ters of an ensemble of hippocampal place cells and the mouse position are

estimated using the BAPF. The only observed parameters are the neural

firing times. The mouse position s(t) is simulated as a random walk with

the change in position from one time step to the next given by a normally

distributed zero-mean random variable; the random walk standard deviation

is selected at random for each time step from a uniform distribution ranging

from 0 to 2.0 cm/time step. Each trial simulates 30 seconds of neural be-

havior with a sampling period of ∆t = 2ms. The BAPF is compared to the

linear Weiner filter and standard sampling importance resampling particle

filter described in Section 3.4.3. Simulations are coded in MATLAB.

3.4.1 Neural Signal Simulation

Each simulation began by defining a random walk trajectory and the three

parameters (αj(t), µj(t), and ξj(t)) for each of the K hippocampal place

cells. For each neuron, αj(t) is varied at random such that the maximum

firing rate varies linearly over the 30s simulation up to a maximum of 50

spikes/second. Likewise, the spatial receptive field for each neuron ξj(t) is

also chosen at random, varying linearly over the range 10 ≤ ξj(t) ≤ 20.

The receptive field centers µj(t) of each of the neurons are defined to
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be linear functions of time with initial values uniformly distributed on the

range −50 ≤ µj(0) ≤ 350 cm and rates of change selected at random over the

range −0.5 to +0.5 cm/s. Using these simulated neuron parameter values,

the instantaneous firing rate λj(t) is calculated for each neuron. Finally, spike

trains are generated using a Poisson random process with λj(t)∆t expected

firings per time step. A maximum of one firing is allowed per time step;

since ∆t = 2ms, it is not necessary to enforce a minimum refractory period

between spikes.

3.4.2 Filter Parameters

As stated in Section 3.2, several assumptions are made in designing the

BAPF. These assumptions served the dual purpose of reducing computa-

tional complexity while also making the filter more robust. The BAPF as-

sumed that the neural parameters αj and ξj(t) are the same constant for all

K neurons: α = 3.5 and ξ = 4. This assumption takes advantage of the fact

that precise knowledge of these two parameters is not essential for accurate

estimation of the driving signal s(t).

It is also assumed that the BAPF could be initialized using estimates of

the true values of µj(0) and u(0), ±5 (15cm) error. This assumption is based

on earlier work in which it is determined that the BAPF can capture place

cell parameters to within ±5 cm during a brief training period in which both

the driving signal s(t) and the neural firings Nj(t) are observed [50].

As described in Section 3.3, data is grouped into non-overlapping bins of
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b = 25 samples (duration 50ms). The receptive field centers µj(t) and the

mouse position s(t) are assumed to be constant (i.e. stationary) over the

duration of each bin. In all cases, P = 100 particles are used to estimate

the state parameters. It is assumed that the mouse position s(t) varied

substantially faster than the receptive field centers µj(t). Consequently, the

standard deviations s characterizing mouse position (see Steps 1 and 4 of

Section 3.1) are made an order of magnitude larger than their counterparts,

ψj and µj(t).

3.4.3 Sampling Importance Resampling Particle Filter

The Sampling Importance Resampling (SIR) particle filter [53, 54] is used

as a benchmark for the BAPF neural decoder. SIR filters are sequentially

designed at each stage using weights which are proportional to a product of

the former weights and the current prior and likelihoods. These newly calcu-

lated weights are used to simulate particles designed to estimate the signal

at the new stage. SIR filters do not employ hyperparameters or any of the

auxiliary features characteristic of BAPF algorithms. Studies indicate that

SIR filters frequently fail to be robust or adapt to signal changes [61]. This is

a consequence of the way in which their weights are calculated. The results

show that BAPF filters consistently out-perform their SIR counterparts.
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3.4.4 Wiener Filtering

The performance of the auxiliary particle filters is also compared against

benchmark Wiener filters which have been used in real-time BMI applications

[19]. Wiener filters are applied to exactly the same artificial data sets that

are analyzed with the auxiliary particle filter. The Wiener filter estimate of

mouse position, û(t), is given by:

û(t) = γ +
K∑
j=1

0∑
τ=−d

Nj(t− τ) ρj,τ (38)

Here, Nj(t − τ) refers to the number of spikes of the jth neuron during the

τ th prior bin. Spike bin rates are weighted by ρj,τ .

These weights (and the offset γ) are determined using an optimal linear

least squares fit between Nj(t−τ) and s(t) that is calculated using a training

subset of the data. As with the auxiliary particle filter, the Wiener filter is

implemented using 50 ms time bins. The number of lagged bins is d = 20,

hence the Wiener filter operated over the preceding one second of data. Each

30 second simulated data set is divided evenly into two 15 second intervals.

The first interval is used to train the Wiener filter weights. The second

interval is used to test those weights in predicting s(t). Owing to its poor

performance on this particular data set, the Wiener Filter results are only

presented as a benchmark reference in Figure 9.
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3.4.5 Robustness Testing

The robustness of the BAPF is tested by using noisy spike observations

for tracking mouse position. Three common neural signal processing errors

are tested: missed spike detections, falsely detected spikes and incorrectly

sorted spikes. Errors of this nature have been shown to markedly degrade

the theoretical information content of the encoded neural signal [64]. In all

three cases, spike times are generated as described in Section 3.4.1.

For trials involving missed spike detections, a fraction of the detected

spikes are deleted. Likewise, for trials involving falsely detected spikes, a

fraction of the spike-free time steps are assigned spikes. For trials involving

spike sorting errors, neurons are paired together. Then, for a fraction of the

times when a spike occurred in one neuron but not its mate, the spike is

transferred from the given neuron to its mate. In all tests of robustness, K

= 50 neurons are used.

3.5 Software Simulation Results

The Bayesian auxiliary particle filter is evaluated under five experimental

conditions: two with ideal noiseless spike trains and three with various types

of spike noise. Figure 9 shows signal reconstruction mean square error (MSE)

using ideal (i.e. noiseless) spike trains as a function of the number of neurons

K included in the simulation.

Each point in Figure 9 represents an average over 100 simulated data
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Figure 9: Comparison of MSE vs number of neurons for the SIR particle
filter and BAPF

sets; in each data set, all simulated parameters (i.e. αj(t), µj(t), ξj(t), s(t),

and Nj(t)) are completely re-randomized as specified in Section 3.4.1. By

averaging over 100 completely different data sets for each test case. The

differences between the true mouse trajectories and their reconstructions are

quantified using the MSE metric.

Figure 10 demonstrates the superior estimation capabilities of the BAPF

over the SIR particle filter. In this 30 second simulated experiment, 50 dy-

namic neurons are observed. The animal position and receptive field centers
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are estimated by both filters using 100 particles. Due to the perceived accu-

racy of the BAPF, a 4 second close up in Figure 10 is required to exaggerate

the difference on an expanded scale between the BAPF estimate and the true

position.
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Figure 10: Top:Position estimates for the BAPF and SIR particle filter.
Bottom: 4 second window of position estimates.

Figure 11 compares neural reconstruction by the BAPF and SIR particle

filters for a single typical mouse trajectory using ideal noiseless spikes. The

results are expressed using 95% confidence intervals; note that the BAPF

38



confidence interval (white) is nearly identical to the actual mouse trajectory

(black).

The confidence interval for the BAPF is substantially narrower than its

SIR particle filter counterpart, indicating superior tracking of both mouse

position and the dynamic neural firing parameters. In contrast to Figure 9,

in which each data point represents the filter performance averaged over 100

data sets, the results in Figure 11 are constructed from 100 simulations of

a single data set. Thus, the results in Figure 11 illustrate that, unlike the

SIR particle filter, the BAPF is consistently able to reconstruct the mouse

trajectory.

Figure 11: Mouse trajectory reconstruction (expressed using confidence inter-
vals) for a typical random walk using K = 50 neurons. [Black] actual mouse
trajectory; [White] BAPF confidence interval; [Gray] SIR particle filter con-
fidence interval. The BAPF confidence interval is nearly indistinguishable
from the actual mouse trajectory.

In Figure 12, a percentage of the simulated spikes have been deleted.

Commonly known as missed detections or false negatives, this scenario arises
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when action potential waveforms are too small to trigger the detection thresh-

old. The results demonstrate that the BAPF outperformed the SIR particle

filter by an order of magnitude for all the missed detection percentages.
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Figure 12: MSE vs % missed detections for a 50 neuron ensemble.

Figure 13 illustrates filter performance when false positive spikes are in-

jected into the spike train at various rates. False positives arise when signal

noise is misinterpreted by the neural processor as a spike. As with the missed

detection trials, the BAPF significantly outperformed the SIR particle filter

at all false alarm rates tested, although the difference is greater for smaller
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rates.
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Figure 13: MSE vs false alarm rate (spikes/sec) for a 50 neuron ensemble.

Figure 14 compares filter performance as a function of spike sorting er-

ror. Spike sorting error occurs when a spike originating from one neuron

is attributed to some other neuron. In this experiment, sorting errors are

generated between pairs of neurons. It is found that BAPF performance is

significantly better than that of the SIR particle filter up to a spike sorting

error rate of 50%.

There are many existing methods used to decode neural spike trains.
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Figure 14: MSE vs % sorting error for a 50 neuron ensemble.

These include both linear and non-linear approaches [1]. Although these ap-

proaches represent important strides towards understanding the underlying

neural processes, their drawbacks limit their applicability and stability in

BMIs. For example, non-adaptive methods must be periodically retrained.

Kalman filter-based methods (both linear and non-linear) are not capable of

estimating multimodal distributions and assume that all noise is Gaussian

[37].

The underlying algorithm of the BAPF addresses many of the limitations
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of current neural decoding methods. For example, BAPFs have a built-

in memory of the neural system as it evolves over time. This memory is

effectively encoded in the particles through the assumption of Markov chain

priors.

The posterior distribution of the evolving neural parameters given past

firing is approximated using particles and their associated weights. Neural

parameter estimates are constructed using a compromise between this ap-

proximated posterior distribution and the current likelihood of neural firing

via the Bayesian paradigm. When the neural firing likelihood does not accu-

rately characterize current firing, the compromise favors the approximated

posterior distribution in order to correct the estimate in subsequent time

steps.

In contrast, simple adaptive filters use a single MAP estimate. When this

estimate is inaccurate for example, as a consequence of noise, unusual spike

activity, or firing dormancy, the system’s lack of memory makes it difficult

for the filter to correct the estimate in subsequent time steps.

The number of computations required to implement particle filtering al-

gorithms is extremely high compared to some of the estimation techniques

mentioned earlier. This is due to the large number of tracked parameters,

which are modeled by a large number of particles. For example, the simu-

lations presented here track up to 100 parameters, each modeled with 100

particles. These required 125 seconds to execute 30 seconds of simulated data

in the MATLAB environment. Particle filtering algorithms using general
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purpose processors for BMI applications is not practical. The serial nature

of general purpose processors prevents on-line use of the BAPF algorithm

when the state vector incorporates a large number of dynamic parameters.

This suggests that a parallel processing architecture in configurable hardware

of the BAPF algorithm would lend itself for use in real-time application of

BMIs. A parallel hardware implementation will also accommodate large neu-

ral ensembles as well as an increase in the number of particles used by the

filter.

3.6 Parallel BAPF Implementation

Each of the P particles described in Section 3.1 used to estimate the driving

signal s(t) are arranged in a parallel fashion as seen in Figure 15. They

share the same control logic, which allows all particles to perform the same

computations simultaneously. The controller provides enable signals to the

datapath based on the sampling rate, the number of neurons and number of

particles.

3.6.1 Particle Datapath

A more detailed view of the datapath for a single particle is shown in Figure

16. Here, it can be seen that each particle stores an estimate for s(t) and

an estimate of the receptive field centers of all K neurons in the observed

ensemble. If the number of particles P is restricted to a power of two, it will

significantly reduce the amount of logic required to implement the BAPF.
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Figure 15: Top level diagram of the Bayesian auxiliary particle filer

The multiplexers assigned to each element of the state vector will pass

data according the the controller. Upon reset, all P particles are given the

same initial estimate of the state vector by setting the select line shared by

all multiplexers to 2. Select is set to 0 to store the results of Equations 29

and 32. Setting select to 1 allows the resampled values of Equation 30 to be

stored in the state registers.

The architecture in Figure 17 determines what values get stored for the

second stage weights of each particle. The reset signal for the filter acts as the

select line for both multiplexers. When reset is asserted, both multiplexers

will output data from input 1. In the case of the multiplexer responsible for
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Figure 16: Parallel logic storing the state vector for a single particle

the weight value, the output data is the initial number of particles−1, which

is accomplished by shifting a single bit to the right by log2(number of particles).

For the multiplexer passing the enable signal, the value on input 1 is the ac-
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tual reset signal itself, which at this time is equal to 1.

When the reset signal is 0, particle first stage weights defined by Equation

30 are fed back and the enable signal is determined by the controller. Each

particle has its own multiplexer for determining weight values. However, the

logic for determining the enable signal is common to all particles since all

second stage weight values are stored simultaneously. The initialization value

of number of particles−1 is also common to all particles.

computed weight 1

reset

>>shift
right

number of particles

0 1

enable

0 1

en
D

Q

2nd stage
weight 1

sel

sel

computed weightP

0 1

en
D

Q

2nd stage
weightP

sel

Particle 1 Particle P

Figure 17: Second stage weights
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3.6.2 Random Sampling

According to the filter implementation described in Section 3.1, Equations

28 and 29 define the estimated state to be drawn from a normal distribu-

tion. Generation of random variables with distributions such as the normal,

Poisson, chi-squared, exponential and many others can be obtained from a

uniformly distributed random variable on the interval (0, 1] [65, 66]. A part

of this research is concerned with generating standard normal distributions

or random variables with zero mean and unit variance. Several techniques

for transforming a uniform distribution into a normal distribution have been

investigated and their hardware implementations are described. The random

number generator in Figure 15 will use either of the methodologies described

in Section 3.6.5 or 3.6.6 depending on the required hardware resources.

Storing the random samples along a tapped delay line allows x̂r(t) to be

formed as the sum of the delayed sample and xr(t − 1) through a feedback

loop as seen in Figure 16. The length of the tapped delay line for s(t) esti-

mates is P . The length of the tapped delay line for µ(t) estimates is KxP .

This can result in a long delay line. However, if the RNG is allowed to run

at a rate much higher than the system sampling rate, all random samples

can be refreshed before the next computation. This process is also used to

implement Equation 32.
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3.6.3 Linear Feedback Shift Registers with Skip-ahead Logic

Generating a uniform random number on the interval (0, 1] in hardware is

typically done using a linear feedback shift register (LFSR)[67]. An LFSR is

an ordinary shift register made up of m flip-flops and mod-2 adders (XOR

gates) that are interconnected to form a feedback circuit. The register is

initially seeded with any value other than 0. Then on each clock cycle, all

bits are shifted one position and the resulting output bit of the feedback logic

becomes the input bit to the shift register [68].

Since there are a finite number of possible states, the sequence will even-

tually repeat itself and is therefore not truly random. It is for this reason

that LFSRs are often referred to as pseudo-noise (PN) generators. In order

to extract as long a PN sequence as possible, the feedback taps are chosen

according to a generator polynomial g(x) which results in a 2m − 1 maxi-

mal length sequence [69], where m is the number of bits in the register. If

the coefficient of bit position n for g(x) is 0, then that bit is omitted from

the feedback logic. The contents of the shift register represents a number

between 0 and 1 defined as

r =
m−1∑
n=0

xn
1

2n
(39)

Figure 18 shows an example of a PN generator which uses a generator poly-

nomial of g(x) = x4 + x3 + x1 + 1, where xn represents bit position n.

The output of a PN generator is assumed to be spectrally white. That is,
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x4 x3 x2 x1 1

g(x)

Figure 18: Feedback Circuit of an LFSR

all frequencies should have approximately the same value across the power

spectrum and are uncorrelated. However, there exists some degree of cor-

relation between consecutive outputs of the PN generator. This is because

from one state to the next, the contents of the register are shifted only one

bit position and the input bit may or may not change. This results in a

lowpass effect, where high frequency spectral components decrease resulting

in non-white noise [70].

In order to avoid attenuation of the high frequency components and decor-

relation of the uniform distribution, skip-ahead logic can be employed [71].

This process advances the contents of the register by k states rather than

just one. Doing this will shift the register contents by k bits and allow k bits

to be altered. Defining the behavior of the LFSR in matrix notation, x(t)

is the register state vector at time t and G is the state transition matrix

representing the generator polynomial where:

50



G =



gm−1 gm−2 · · · g1 g0

1 0 0

0 1 0

...
. . .

...

0 0 · · · 1 0


and x =



xm−1

xm−2

...

x1

x0


with the state of the register at time t+1 being defined by

x(t+ 1) = Gx(t) (40)

For example, given a generator polynomial g(x) = x3 + 1 for m = 4 the

transition matrix to advance the state to x(t+ 1) is

G =



1 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


(41)

Which results in

x(t+ 1) =



x3(t+ 1) = x3(t)⊕ x0t

x2(t+ 1) = x3(t)

x1(t+ 1) = x2(t)

x0(t+ 1) = x1(t)


(42)

In order to advance the state by k stages, one simply exponentiates the state
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transition matrix to the kth power. Using the skip-ahead technique for k = 3,

the transition matrix of Equation 41 becomes

G3 =



1 1 1 1

1 0 1 1

1 0 0 1

1 0 0 0


(43)

The resulting state vector is now expressed as

x(t+ 1) =



x3(t+ 1) = x3(t)⊕ x2t⊕ x1t⊕ x0t

x2(t+ 1) = x3(t)⊕ x1t⊕ x0t

x1(t+ 1) = x3(t)⊕ x0t

x0(t+ 1) = x3(t)


(44)

An efficient hardware implementation of an LFSR using skip-ahead logic is

presented in [72], where efforts are made to reduce the amount of extra logic

that results from using this technique.

Note that when using this method, the value of k should not be a prime

factor of 2m − 1 otherwise a maximal length sequence can not be obtained.

As is the case in this example, k = 3 which is a factor of 2m−1 = 15 and the

resulting sequence repeats after 5 6= 2m − 1 cycles. This phenomena can be

avoided by using a Mersenne sequence in which the length of the sequence is

a prime number [73].
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A 16-bit LFSR using skip-ahead logic is implemented as an initial step for

designing a parallel BAPF architecture. The generator polynomial is chosen

as g(x) = x15 + x14 + x13 + x4 which results in a maximal length sequence of

65535. The number of advanced states is k = 13.

3.6.4 Cumulative Distribution Function Transformation

The cumulative distribution function (CDF) describes the probability that

an observed random variable X is less than or equal to x [74].

x 7→ FX(x) = p(X ≤ x) (45)

The CDF of X can be obtained by integrating its probability density function

(pdf) fX(x) from −∞ to x, which describes the likelihood of X to occur at

a given value x [75].

FX(x) =

∫ x

−∞
fX(x)dx (46)

The mapping of Equation 45 can be used to produce a value on the real

number line from a corresponding probability on the interval (0,1] generated

from Equation 39. The pdf of a normal random variable with mean µ and

variance σ2 is defined as

fX(x) =
1

σ
√

2π
exp

{
(x− µ)2

2σ2

}
(47)

Unfortunately, there is no closed form solution to the integral of Equa-
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tion 46 for normally distributed random variates [76]. Numerical integration

techniques are therefore often used to obtain a solution to this problem. One

such solution is to use the error function erf(x) [77]. The error function is

defined for positive values of x as

erf(x) =
2√
π

∫ x

0

e−u
2

du (48)

The CDF of X for standard normals can be determined using Equation 48

as

FX(x) =
1

2

[
1 + erf

(
x√
2

)]
(49)

Using the relation erf(−x) = −erf(x), one can find the CDF for negative

values of x.

Approximations to Equation 48 can be obtained using a Taylor series ex-

pansion, Chebyshev expansion or continued fractions [78]. Exhaustive tables

which list the values of FX(x) for values of x with high resolution are widely

available [79]. These tables are often implemented as look-up tables (LUT)

in hardware and direct synthesis of the approximations is not required. Val-

ues are simply read from memory resulting in higher throughput. However,

the LUTs required to store the erf(x) values can become costly in terms of

memory usage.
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3.6.5 Composite Look-up-table

As discussed in Section 3.6.4 approximations to Equation 48 are often im-

plemented using a LUT, which consume large amounts of memory resources.

One way to reduce memory requirements is to use a composite LUT [80].

This methodology utilizes two LUTs to estimate the inverse cumulative dis-

tribution function (ICDF).

Here a high resolution LUT and a low resolution LUT, which is a deci-

mated version of a high resolution LUT, are used to represent different por-

tions of the ICDF curve. The ICDF curve for normal distributions exhibits

an approximately linear relationship for values on the interval (0.1, 0.9) and

is highly nonlinear for values outside this domain. The decimated low reso-

lution LUT is used to represent the majority of the values that lie between

0.1 and 0.9 using a stair case approximation and the high resolution LUT is

used to represent the remaining values. This allows for large memory savings

in the linear regions while introducing only modest errors and the nonlinear

regions can be approximated more accurately [80].

3.6.6 Box-Muller

An alternative to using a LUT is to use a computational algorithm that

transforms the uniform distribution into a normal distribution such as the

method suggested by Box and Muller [81]. The Box-Muller transformation

generates two normally distributed numbers N1 and N2 from two uniformly

distributed numbers U1 and U2. The resulting values represent co-ordinates
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in a 2D plane within a circle of radius 1. The two uniform distributions are

transformed into normal random variables by the Box-Muller method using

the following steps:

let ω = 2πU1 (50)

let R =
√
−2ln(U2) (51)

N1(0, 1) = R cosω (52)

N2(0, 1) = R sinω (53)

There are a number of ways to perform computations involving exponen-

tials, logarithms and trigonometric functions in hardware. However, there

are trade-offs between hardware utilization and throughput. The Coordi-

nate Rotation Digital Computer (CORDIC) algorithm is an iterative process

for computing the rotation of a vector in a Cartesian coordinate system and

evaluating the length and angle of the vector [82]. The CORDIC method was

later expanded for multiplication, division, logarithm, exponential and hy-

perbolic functions. The resulting vector zn of the rotation of a vector [x0, y0]

by an angle θ in Cartesian coordinates can be computed by the following

matrix operation:

 xn

yn

 =

 cos θ − sin θ

sin θ cos θ


 x0

y0

 (54)

Using the identity: cos θ = 1/
√

1 + tan2 θ and factoring out cos θ Equa-
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tion 54 can be modified as follows: xn

yn

 =
1√

1 + tan2θ

 1 − tan θ

tan θ 1


 x0

y0

 (55)

If tanφ = 2−n, then

KnR sin(θ ± φ) = R sin θ ± 2−nR cos θ (56)

KnR sin(θ ± φ) = R cos θ ∓ 2−nR sin θ (57)

where, Kn =
√

1 + 2−2n

These equations can be used to implement the rotation of a vector R

through either a positive or negative angle equal in magnitude to tan(2−n).

Therefore, a sequence of rotations with increasing powers of n can be used

to rotate R through any desired angle [83].

In the CORDIC method, the rotation by an angle θ is implemented as an

iterative process, consisting of finer rotations during which the initial vector

is rotated by pre-determined step angles [84]. As the number of iterations

increases, so does the accuracy of the algorithm. This algorithm uses very

little resources with only shift and add operations. However, the number of

iterations required to achieve the desired accuracy may become burdensome.

The CORDIC algorithm is used to implement the trigonometric, loga-

rithmic and square root functions in Equations 51 through 53 of the Box-
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Muller algorithm as illustrated by Figure 19. Starting with two 16-bit LFSRs

described in Section 3.6.3, each seeded with a different initial value, two in-

dependent uniform random numbers between 0 and 1 are generated. Since

there is no dependence between R and ω for computing the output sequences,

they are computed in parallel.

U1 is passed through a constant multiplier where it is scaled by 2π to

execute Equation 50. U1 is then delayed for 61 clock cycles to synchronize it

with U2 for the final stage. While U1 is being delayed, U2 is being processed

by the CORDIC log unit for 28 clock cycles to achieve the desired accuracy.

The output of this unit is then multiplied by -2, which is carried out by a

left-shift of one bit and an inversion of the sign bit in order to avoid hardware

resource consumption and to decrease computational latency.

This intermediate quantity is then passed to the CORDIC square root

unit for 44 clock cycles to complete the implementation of Equation 51.

U1

U2

2π

CORDIC
Log << shift left negate CORDIC

Square Root

Z-61 CORDIC
sin/cos

sin ω

cos ω

R

N1(0,1)

N2(0,1)

Figure 19: Box-Muller using CORDIC processors
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While the final value of R is being computed, the sinω and cosω values are

simultaneously being processed by another CORDIC processor which takes

11 clock cycles. The reason for the 61 cycle delay in the ω datapath is

that computation of sinω and cosω require only 11 clock cycles total and

computing R takes 72 clock cycles. Two multiplications can now be executed

in parallel to produce the two sequences defined by Equations 52 and 53,

which require another 3 clock cycles.

The total number of clock cycles needed to compute a pair of random

values is 75. However, this is just an initial delay until the computational

pipeline is filled. Once the pipeline is full, the minimum latency to produce a

pair of random values is only one clock cycle. The processing architecture of

the parallel Box-Muller method implemented with two LFSRs described in

section 3.6.3 utilized 2922 of an available 15360 slices on the Xilinx Virtex4

XC4VSX35 with a clock frequency of 100 MHz.

Additionally, the length of N1 and N2 can be conveniently increased by

using a re-seeding process of one of the LFSRs. After 2n−1 cycles, the LFSR

that generates U1 is given a new initial value and the LFSR that generates

U2 is allowed to repeat. The sequence of values that represents U2 will be

the same. However, the order of the sequence of the next 2n − 1 values that

represents U1 will be different. This will produce a different pair of values

that represent R and ω. This process can be repeated 2n−1 times to generate

all possible combinations of U1 and U2.

An efficient way to implement this methodology is to use a counter that
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has the same number of bits as the LFSRs. After 2n − 1 cycles, the counter

is incremented by one and that value is used to re-seed the U1 LFSR. This

process continues until the counter cycles through all possible values with

the exception of zero.

3.6.7 Computing the First Stage Weights

The first stage weight gr(t) for the rth particle is defined by Equation 30 to

be a product of the second stage weight from the previous iteration wr(t−1)

and the likelihood p(Nj(t)|µrj(t), sr(t)) of each neuron firing during a sample

period given the estimated state vector of that particle. Assuming a Poisson

firing model the conditional probability for neuron j is computed as a product

over a block duration as

p(Nj(t)|µrj(t), sr(t)) =
∏
j,t∈B

(λj∆t)
∆Nj(t)e−λj∆t (58)

3.6.8 Computing Exponentials

Computing ex is performed using two look-up tables (LUT). Let x = w + v,

where w is the integer part of x and v is the fractional bits of x. Since

ewev = ew+v, computing ex can be implemented as the product of two terms.

The architecture in Figure 20 is capable of computing ex for −12 ≤ x < 4 in

increments of 2−18. Since the maximum firing rate for a neuron is eα ≈ e3.9,

the integer LUT does not need to store values for x > e3.

Two LUTs are used to store values for ex in read only memory (ROM).
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Figure 20: Architecture for computing ex

The first stores values of ex for integers between -12 and 3. The second stores

values of ex for 0 ≤ x ≤ (1 − 2−18). Memory addresses 0 through 3 for the

integer based ROM hold the values of e0 through e3. Memory addresses 4

through 12 hold values of e−1 through e−12. The sign bit of x is used as

the select line of a multiplexer that passes the 4-bit memory address to the

ROM.

For positive values of x, the bits representing the integer portion point to

the actual memory location to produce the desired ew. For negative values

of x, its absolute value is offset by 5 to produce ew−1. This is done by taking

the two’s complement of the integer bits and adding 4.

By including an adder, size of the ROM for ev was reduced from storing

values of e±1 to storing values of e0≤x<1. Assume the desired quantity is e−1.5.
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Since e−1e−0.5 = e−2e0.5, only the exponential positive fraction values are re-

quired. By subtracting bxc from x, the value |v| is obtained. This quantity is

then converted to an unsigned integer that points to the appropriate memory

address.

The values ev and ew are next multiplied to compute ex. For negative

values of x, the result is processed as ew−1e1−|v|. This unique processing

architecture reduces ROM by a factor of 2 and requires only 5 clock cycles

to compute an exponential.

3.6.9 Computing the Likelihood

Initially, the term λj = exp
{
α− (µrj (t)−sr(t))2

2ξ2

}
must be computed. The quan-

tity µrj(t)− sr(t) is the output of the subtracter in Figure 21. The multiplier

output is
(
µrj(t)− sr(t)

)2
. As discussed in Section 3.4.2, α = 3.5 and ξ = 4.

Therefore, division by by 2ξ2 is performed by right shifting 5 bit positions,

which is then subtracted from α. This process takes 3 clock cycles and the

output is passed to the exponential unit in Figure 20.

Σ

−

+
s r(t)

µj(t)
>> shift right

Σ

α

−

+

Π

Figure 21: Architecture for computing α− (sr(t)−µrj (t))2

2ξ2

By combining the architectures of Figure 20 and Figure 21 the term λj
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of Equation 58 can be obtained. As described in Sections 3.3 and 3.4, for a

block size of 25 with a 500 Hz sampling rate ∆t = 0.05 seconds. The term

λj∆t is then computed using a constant multiplier. By reusing the hardware

in Figure 20 with x = −λj∆t, the value e−λj∆t is produced.

Raising λj∆t to the ∆Nj power is implemented using the processing ar-

chitecture of Figure 22. Here, the register is initially set to equal 1. The

number of firings for neuron j ∆Nj is multiplied by 4, which is implemented

as a left shift of two bit positions. This value is compared to a counter which

stops the register from storing the multiplier output. ∆N is initially multi-

plied by 4 because it takes 4 cycles for the product of the multiplier to be

formed. If no firings occurred, ∆N = 0 and the output of Figure 22 is 1.

en

D QΠ

counter

a<b ?

a<b ?

2

<< shift left
∆N

reset

en

0

1

sel

a=b ?

λ∆t

0

0

1

sel

1

λ∆t∆N

Figure 22: Architecture for computing λ∆t∆N

The processing units of Figures 20, 21 and 22 can be configured to com-
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pute the conditional probability of Equation 58 for a single neuron over one

block period. This process is carried out in parallel for all K neurons for all

P particles. The likelihoods for each neuron of particle r are then multiplied

together with wr(t) to implement Equation 30.

3.7 Hardware Synthesis Results

Table 1 presents the required hardware resources for each of the processing

modules described in this Chapter. The target device for implementing the

modules was a Xilinx XC5VSX50T field programmable gate array. This

specific device is capable of running at clock rates of up to 100 MHz. The

available hardware resources consists of 288 fixed point multipliers, 34 Mbits

of block random access memory and 32640 slices and flip-flops.

Table 1: Hardware resource utilization for particle processing units

Slices DSP48Es clock-cycles latency

Figure 19 3506 0 1 (after pipelining) 3.7 ns

Figure 20 55 1 5 1.4 ns

Figure 21 12 2 3 3.0 ns

Figure 22 51 4 4/sample 1.6 ns

Each neuron will require at least 118 logic slices and 7 embedded mul-

tipliers per particle. To accommodate 50 parallel neural signals estimated

using 100 particles would require 590k slices. This would exceed the amount

available on the XC5VSX50T. A processor this large would need to be parti-

tioned over multiple devices. However, current generation FPGAs have over
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100K slices and 2k embedded multipliers. A smaller processor, one that could

support 16 parallel channels estimated with 50 particles would not consume

all available resources. Future devices will be likely to provide even more

resources to support larger designs.

3.8 IEEE 754 Floating Point Package

The IEEE-754 single precision floating point standard is considered for per-

forming computations for the BAPF. The floating point system provides a

variable resolution for the range of numbers being represented. In this for-

mat, a 32-bit number is divided into fields as seen in Figure 23 [85]. One bit

is the sign bit S, where 0 makes the value positive and a 1 designates it as

negative, eight bits are assigned as the exponent and the remaining twenty

three bits are the mantissa. The exponent E is coded in a biased form as

E-127. Using this scheme a value n is represented as:

n = (−1)S2E−127M (59)

Modules for performing floating calculations according the IEEE-754 stan-

31 30 23 22 0. . . . . . . . . .

S E M

Figure 23: IEEE 32-bit floating point format representation
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dard for multiplication/division and addition/subtraction have been designed

using the Verilog HDL. Modules for converting between 18-bit fixed point

and 32-bit floating point numbers have also been designed using the Verilog

language.
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4 Future Work

This chapter discusses work yet to be completed. Described here are the

remaining processing elements that need to be synthesized. The filter esti-

mates computed using the hardware architecture are compared the estimates

obtained in the MATLAB floating point environment. A proposed time line

is also presented for completing the research.

4.1 Resampling

The resampling process of particle filters is the computing bottle neck of

the algorithm. Here, particles with high weights are retained while par-

ticles with low weights are discarded and replaced with more likely state

estimates. Performing this process sequentially can become problematic in

terms of processing time when the number of particles is large. A paral-

lel resampling process would be more appealing for real-time applications of

particle filtering.

By providing each particle with knowledge of all other particle weight and

state values, every particle can be resampled simultaneously in two clock cy-

cles. The current particle weights and state estimates are stored in temporary

registers. This requires one clock cycle. Then through the use of compara-

tors, multiplexers and uniform random numbers, all particles are resampled

on the next clock cycle.
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4.2 Computing the Second Stage Weights

Equation 32 defines wr(t) as the ratio of the likelihoods of the initial estimate

and the resampled noisy estimate. By reusing the hardware described in

Figures 20, 21 and 22 and following the process described for computing the

likelihoods, the ratio can be obtained using a CORDIC divider.

4.3 Signal estimate as a weighted sum

According to Equation 33, the filter output is computed as a weighted sum

of the second stage weights and the particle estimates. Multiplying wr(t)

and sr(t) can be performed as seen in Figure 16 and summed in parallel as in

Figure 15. This process could be implemented with P multipliers and P − 1

adders which could execute over 3 clock cycles. It could also be implemented

with a single MAC to execute over P + 3 clock cycles.

4.4 Automated Controller

Based on the sampling period, block size, number of neurons and number

of particles, a state machine will be designed to provide control signals to

the datapath. These signals will include select lines for multiplexers, enable

lines for date registers, as well as reset signals for multipliers and counters.

The controller can be developed through the use of counter, comparators and

multiplexers.
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4.5 Verification

Once the controller and datapath have been designed, the filter output will

be compared with the simulated MATLAB results to verify that the hard-

ware architecture is operating correctly. It is expected that there will be

a difference between the two due to quantization error. Further evaluation

of the architecture will be performed in order to determine the number of

bits needed to provide acceptable precision of the estimated driving signal.

Additionally, verification will done to evaluate the performance of the filter

as the number of particles increases and decreases. Additionally, real animal

data will be used as the input to the filter to observe how

4.6 Throughput Comparison

Once it has been determined that the BAPF is functional, the parallel pro-

cessing architecture will be compared to a sequential implementation using

overall latency as the metric. This will show the benefits of a parallel scheme

and provide support for the use of the BAPF for real-time applications. Com-

parisons will be made for throughput as a function of particles as well as a

number of neurons.

4.7 Proposed Timeline

The synthesis of all remaining processing elements is to be completed by June

1, 2010. It is expected that the controller will be designed and synthesized
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by July 15, 2010. Verification is anticipated to be finished before October 1,

2010. Research is to be completed and defended by the end of the 2010 Fall

semester.
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