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Need discriminative techniques to enhance acoustic
modeling

Maximum Likelihood-based systems can be improved
upon by discriminative machine learning techniques

Support Vector Machines (SVM) have had significant
success on several classification tasks

Efficient estimation techniques now available for SVMs

Study the feasibility of using SVMs as part of a full-
fledged conversational speech recognition system

Motiv ation
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Dissertation addresses acoustic modeling
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MMs used is most state-of-the-art systems

aximum likelihood (ML) estimation dominant approach

xpectation-maximization algorithm

ybrid Connectionist Systems — artificial neural
etworks (ANNs) used as probability estimators

Acoustic Modeling
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SVMs have been used in several static classification
tasks since the 1990’s

State-of-the-art performance on the NIST handwritten
digit recognition task (Vapnik et al.) — 0.8% error

State-of-the-art performance on Reuters text
categorization (Joachims et al.) — 13.6% error

Faster training/estimation procedures allow for use of
SVMs on complex tasks (Osuna et al.)

Significant SVM research advances beyond
classification — transduction, regression and function
estimation

SVM Success Stories
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Efficient estimation procedures for classifiers based on
ML — expectation-maximization makes ML feasible
for complex tasks

Convergence in ML does not necessarily translate to
optimal classification

Representation Vs. Discrimination
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Risk minimization often used in machine learning

: defines the parametrization
: is the loss function

: belongs to the union of the input and output spaces
: describes the distribution of .

Loss functions can take several forms (squared error)

Avoid estimation of  by using empirical risk

Minimum empirical risk can be obtained by several
configurations of the system
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Control over generalization

, the VC Dimension is a measure of the capacity of the
learning machine
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Hyperplanes C0, C1 and C2 achieve perfect
classification — zero empirical risk

However, C0 is optimal in terms of generalization

Optimal Hyperplane Classifier s
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Hyperplane:

Constraints:

Optimize:

Lagrange functional setup to maximize margin while
satisfying minimum risk criterion

Final classifier:
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Constraints modified to allow for training errors

Error control parameter,  used to penalize training
errors
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Data for practical applications typically not separable
using a hyperplane in the original input feature space

Transform data to higher dimension where hyperplane
classifier is sufficient to model decision surface

Kernels used for this transformation

Final classifier:
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Example Non-Linear Classifier

* * class 1
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decision boundary

2-dimensional input space

3-dimensional transformed space

class 1 data points:
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“Chunking” — proposed by Osuna et al.

Guarantees convergence to global optimum

Working set definition is crucial

Practical SVM T raining
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From Classifier s to Recognition
* ISIP ASR system used as the starting point

* Likelihood-based decoding —  used

* SVMs do not generate likelihoods

* Ignore  and use model priors

* Posterior estimation required

* Feature space needs to be decided — frame level data vs.
segment level data

* Use SVM derived posteriors to rescore N-best lists
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Gaussian assumption is good for overlap region

Leads to compact distance-posterior transformation —
sigmoid function

Posterior Estimation

SVM Distances
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Allows for each classifier to be exposed to a limited
amount of data.

Captures wider contextual variation

Approach successfully used in segmental ASR systems
where Gaussians are used to model segment duration

Segmental Modeling
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Gaussian computations replaced with SVM-based
probabilities in the hybrid decoder

Composite feature vectors generated based on
traditional HMM-based alignments

Hybrid Recognition Frame work

HMM

convert to
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segmental
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Basic hybrid system operates on a single hypothesis-
derived segmentation

* Approach is simple and saves computations

Alternate approach involves N segmentations

* Each segmentation derived from the
corresponding hypothesis in the N-best list

* Computationally expensive

* Closer in principle to other rescoring-based
hybrid frameworks

* Allows for SVM and HMM score combination

Processing Alternatives
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Often used for benchmarking non-linear classifiers

11 vowels spoken in a “h*d” context

Training set consists of 528 frames of data from 8
speakers

Test set composed of 476 frames from seven speakers

Small size of training set makes the dataset challenging

Best result reported on this dataset — 29.6% error

xperimental Data - Deter ding Vowel
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Results - Static Data Classification

Best SVM performance: 35% classification error with
RBF kernels

Polynomial kernels perform worse — best performance
was a 49% classification error

gamma
(C=10)

classification error
%

C
(gamma=0.5)

classification error
%

0.2 45 1 58

0.3 40 2 43

0.4 35 3 43

0.5 36 4 43

0.6 35 5 39

0.7 35 8 37

0.8 36 10 37

0.9 36 20 36

1.0 37 50 36

100 36
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Telephone database of 6-word strings

Training Data

* 52000 sentences

* 1000 sentences as cross-validation set to
estimate sigmoid parameters

Test data

* 3329 sentences — speaker independent
open-loop test set

Number of phone classifiers — 30

39-dimensional MFCC features used

xperimental Data - OGI Alphadigits
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OGI Alphadigits (AD):
ffect of Segment Pr opor tion

vious research suggests 3-4-3 proportion
ass, et al.)

 SVM classifiers, segment proportion does not have
 significant impact on classifier accuracy or system
formance, especially with RBF kernels

-3 proportion used for all further experiments

Segmentation
Proportions

WER (%)
RBF kernel

WER (%)
polynomial kernel

2-4-2 11.0 11.3

3-4-3 11.0 11.5

4-4-4 11.1 11.4
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AD — Eff ect of K ernel Parameter s

RBF kernels perform better under both the fair and
oracle experiments

Best performance: 11.0% WER vs. 11.9% baseline

Using single segmentation does not reduce N-best list
size significantly

RBF
gamma

WER (%)
hypothesis

Segmentation

WER (%)
Reference

Segmentation

polynomial
order

WER (%)
hypothesis

Segmentation

WER (%)
Reference

Segmentation

0.1 13.2 9.2 3 11.6 7.7

0.4 11.1 7.2 4 11.4 7.6

0.5 11.1 7.1 5 11.5 7.5

0.6 11.1 7.0 6 11.5 7.5

0.7 11.0 7.0 7 11.9 7.8

1.0 11.0 7.0

5.0 12.7 8.1
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AD — Err or Modalities

Common word class groups used for error analysis

N-segmentations used for rescoring

SVM and HMM classifiers seem to have
complementary strengths

Combining the system outputs seems reasonable

Data
Class

HMM
(%WER)

SVM
(%WER)

a-set 13.5 11.5

e-set 23.1 22.4

digits 5.1 6.4

alphabets 15.1 14.3

nasals 12.1 12.9

plosives 22.6 21.0

Overall 11.9 11.8
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AD - Likelihood Combination

Score combination improves overall performance

Improvement consistent over all error modalities

Normalization
Factor

HMM+SVM
(%WER)

100000 11.8

10000 11.4

1000 10.9

500 10.8

200 10.6

100 10.7

50 10.8

0.0001 11.9

likelihood SVM score
HMM Score
norm factor
-------------------------------+=
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Telephone database of conversational speech

Challenging task for ASR systems — casual speaking
style with large perplexity

114,000 utterance training set

2,427 utterance speaker-independent test set

42 phones used to model pronunciations

39-dimensional MFCC features used

Variance-normalized data used

Experimental Data — SWB
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Baseline HMM system uses cross-word context-
dependent triphone models

12 mixture Gaussians per state

Baseline performance of 41.6% WER

90,000 utterances used for estimation of SVM classifiers

24,000 utterances used as cross-validation set

Segment proportion of 3-4-3 used

Rescoring with hypothesis-based segmentation results
in 40.6% WER using RBF kernels

SWB - Baseline and Experiments
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Improvement possible from good segmentations and
rich N-best lists studied by including reference
segmentation and transcription

Expt. 4 indicates that SVMs do a better job than HMMs
when exposed to good segmentations

Drop in improvements by hybrid system, in comparing
expts. 1 and 2, needs further investigation

S. No.
Information Source HMM Hybrid

Transcription Segmentation AD SWB AD SWB

1 N-best Hypothesis 11.9 41.6 11.0 40.6

2 N-best N-best 12.0 42.3 11.8 42.1

3 N-best + Ref. Reference — — 3.3 5.8

4 N-best + Ref. N-best + Ref. 11.9 38.6 9.1 38.1

Oracle Experiments
*
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Type-A errors: seg1 vs. seg2
Type-B errors: seg3 vs. seg4

N-best lists — Type-B errors common

SWB N-best lists — Type-A errors also significant

Segmentation Issue
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Chunking converges faster when the working set is
composed of examples that violate the Karush-Kuhn-
Tucker optimality conditions

Several support vectors with multipliers at the upper
bound (C) — they form the BSVs

If example identified as a BSV for several iterations, the
example is probably mislabeled

Faster convergence and better classifiers by eliminating
mislabeled data

A “large enough” value for C must be chosen

Identification of Mislabeled Data
*
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Identifying mislabeled data results in compact
classifiers

Synthetic Data Example

class 1

class 2

mislabeled

sample

mislabeled data not identified

increased number of SVs

complex classifier

mislabeled data identified

fewer SVs

simple Classifier
*



Static classification task — Deterding vowel data

* achieved 35% classification error

Continuous speech recognition — AD and SWB

* AD — 11.0% WER vs. 11.9% baseline

* SWB — 40.6% WER vs. 41.6% baseline

Score combination improves performance further

Oracle experiments — reference segmentation and
augmented N-best lists

Segmentation is a primary issue in limited success of the
hybrid system

Summar y of Experiments
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First successful attempt to integrate SVMs into a
complex recognition system

Developed a simple hybrid HMM/SVM framework

Significant performance improvements on small
vocabulary task and marginal improvements on large
vocabulary task

* 11.9% to 11.0% on Alphadigits

* 41.6% to 40.6% on SWB

Exploration of segment level information

Concept of identifying mislabeled data

Disser tation Contrib utions
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Role of posterior estimation in the hybrid framework

Use ability of SVMs to identify mislabeled data for data
clean up and confidence measures

Iterative SVM parameter update as part of HMM
estimation

Access to alternate segmentations during SVM
estimation

Fisher kernels and alternate hybrid approaches

Bayesian approaches for parameter estimation to avoid
need for a cross-validation set

Future W ork
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