Support Vector Machines

Speech Recognition

January 25th, 2002

Aravind Ganapathiraju

Institute for Signal and Information Processing Department of Electrical and Computer Engineering Mississippi State University

Organization of Presentation

- * Motivation for using support vector machines (SVM)
- * SVM theory and implementation
- * Issues in using SVMs for speech recognition hybrid recognition framework
- * Experiments data description and experimental results
- * Error analysis and oracle experiments
- * Summary and conclusions including dissertation contributions

Motivation

- * Need discriminative techniques to enhance acoustic modeling
- * Maximum Likelihood-based systems can be improved upon by discriminative machine learning techniques
- * Support Vector Machines (SVM) have had significant success on several classification tasks
- * Efficient estimation techniques now available for SVMs
- * Study the feasibility of using SVMs as part of a fullfledged conversational speech recognition system

ASR Components

* Dissertation addresses acoustic modeling

Acoustic Modeling

- * HMMs used is most state-of-the-art systems
- * Maximum likelihood (ML) estimation dominant approach
- * Expectation-maximization algorithm
- * Hybrid Connectionist Systems artificial neural networks (ANNs) used as probability estimators

SVM Success Stories

- * SVMs have been used in several static classification tasks since the 1990's
- * State-of-the-art performance on the NIST handwritten digit recognition task (Vapnik et al.) 0.8% error
- * State-of-the-art performance on Reuters text categorization (Joachims et al.) 13.6% error
- Faster training/estimation procedures allow for use of SVMs on complex tasks (Osuna et al.)
- * Significant SVM research advances beyond classification — transduction, regression and function estimation

Representation Vs. Discrimination

- * Efficient estimation procedures for classifiers based on ML expectation-maximization makes ML feasible for complex tasks
- * Convergence in ML does not necessarily translate to optimal classification

Risk Minimization

- * Risk minimization often used in machine learning $R(\alpha) = \int Q(z, \alpha) dP(z), \quad \alpha \in \Lambda$
 - α : defines the parametrization
 - Q: is the loss function
 - z: belongs to the union of the input and output spaces
 - **P**: describes the distribution of z.
- * Loss functions can take several forms (squared error)
- * Avoid estimation of *P* by using empirical risk

$$R_{emp}(\alpha) = \frac{1}{l} \sum Q(z_i, \alpha), \qquad \alpha \in \Lambda$$

* Minimum empirical risk can be obtained by several configurations of the system

Structural Risk Minimization

* Control over generalization

$$R(\alpha) \le R_{emp}(\alpha) + f(h)$$

h, the VC Dimension is a measure of the capacity of the learning machine

Optimal Hyperplane Classifiers

- * Hyperplanes C0, C1 and C2 achieve perfect classification zero empirical risk
- * However, C0 is optimal in terms of generalization

Optimization

- * Hyperplane: $x \cdot w + b$
- * Constraints: $y_i(x_i \cdot w + b) 1 \ge 0 \quad \forall i$

* Optimize:
$$L_P = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{N} \alpha_i y_i (x_i \cdot w + b) + \sum_{i=1}^{N} \alpha_i \alpha_i$$

* Lagrange functional setup to maximize margin while satisfying minimum risk criterion

* Final classifier:
$$f(\mathbf{x}) = \sum_{i=1}^{numSVs} \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b$$

Soft Margin Classifiers

- * Constraints modified to allow for training errors $y_i(x_i \cdot w + b) \ge 1 - \xi_i \quad \forall i$
- * Error control parameter, *C* used to penalize training errors

Non-linear Hyperplane Classifiers

- * Data for practical applications typically not separable using a hyperplane in the original input feature space
- * Transform data to higher dimension where hyperplane classifier is sufficient to model decision surface

 $\Phi:\mathfrak{R}^n\to\mathfrak{R}^N$

* Kernels used for this transformation

$$K(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j)$$

* Final classifier: $f(x) = \sum_{i=1}^{numSVs} \alpha_i y_i K(x, x_i) + b$

Example Non-Linear Classifier

2-dimensional input space

< class 1

🕂 class 2

O decision boundary

class 1 data points:

(-1,0) (0,1) (0,-1) (1,0)

class 2 data points:

(-3,0) (0,3) (0,-3) (3,0)

class 1 data points: (1,0,0) (0,1,0) (0,1,0) (1,0,0)

class 2 data points: (9,0,0) (0,9,0) (0,9,0) (9,0,0)

 $(x, y) \Rightarrow (x^2, y^2, \sqrt{2}xy)$

- * Guarantees convergence to global optimum
- * Working set definition is crucial

From Classifiers to Recognition

- * ISIP ASR system used as the starting point
- * Likelihood-based decoding $-\log P(A/M)$ used
- * SVMs do not generate likelihoods

$$P(A/M) = \frac{P(M/A)P(A)}{P(M)}$$

- * Ignore P(A) and use model priors P(M)
- * Posterior estimation required
- * Feature space needs to be decided frame level data vs. segment level data
- * Use SVM derived posteriors to rescore N-best lists

- * Gaussian assumption is good for overlap region
- * Leads to compact distance-posterior transformation sigmoid function

Segmental Modeling

- * Allows for each classifier to be exposed to a limited amount of data.
- * Captures wider contextual variation
- * Approach successfully used in segmental ASR systems where Gaussians are used to model segment duration

Hybrid Recognition Framework

- * Gaussian computations replaced with SVM-based probabilities in the hybrid decoder
- * Composite feature vectors generated based on traditional HMM-based alignments

Processing Alternatives

- * Basic hybrid system operates on a single hypothesisderived segmentation
 - * Approach is simple and saves computations
- * Alternate approach involves N segmentations
 - * Each segmentation derived from the corresponding hypothesis in the N-best list
 - * Computationally expensive
 - * Closer in principle to other rescoring-based hybrid frameworks
 - * Allows for SVM and HMM score combination

Experimental Data - Deterding Vowel

- * Often used for benchmarking non-linear classifiers
- * 11 vowels spoken in a "h*d" context
- Training set consists of 528 frames of data from 8 speakers
- * Test set composed of 476 frames from seven speakers
- * Small size of training set makes the dataset challenging
- * Best result reported on this dataset 29.6% error

Results - Static Data Classification

gamma (C=10)	classification error %	C (gamma=0.5)	classification error %
0.2	45	1	58
0.3	40	2	43
0.4	35	3	43
0.5	36	4	43
0.6	35	5	39
0.7	35	8	37
0.8	36	10	37
0.9	36	20	36
1.0	37	50	36
		100	36

- * Best SVM performance: 35% classification error with RBF kernels
- * Polynomial kernels perform worse best performance was a 49% classification error

Experimental Data - OGI Alphadigits

- * Telephone database of 6-word strings
- * Training Data
 - * 52000 sentences
 - * 1000 sentences as cross-validation set to estimate sigmoid parameters
- * Test data
 - * 3329 sentences speaker independent open-loop test set
- * Number of phone classifiers 30
- * 39-dimensional MFCC features used

OGI Alphadigits (AD): Effect of Segment Proportion

Segmentation Proportions	WER (%) RBF kernel	WER (%) polynomial kernel		
2-4-2	11.0	11.3		
3-4-3	11.0	11.5		
4-4-4	11.1	11.4		

- Previous research suggests 3-4-3 proportion (Glass, et al.)
- * For SVM classifiers, segment proportion does not have any significant impact on classifier accuracy or system performance, especially with RBF kernels
- * 3-4-3 proportion used for all further experiments

AD — Effect of Kernel Parameters

RBF gamma	WER (%) hypothesis Segmentation	WER (%) Reference Segmentation	polynomial order	WER (%) hypothesis Segmentation	WER (%) Reference Segmentation
0.1	13.2	9.2	3	11.6	7.7
0.4	11.1	7.2	4	11.4	7.6
0.5	11.1	7.1	5	11.5	7.5
0.6	11.1	7.0	6	11.5	7.5
0.7	11.0	7.0	7	11.9	7.8
1.0	11.0	7.0		1	1
5.0	12.7	8.1			

- * RBF kernels perform better under both the fair and oracle experiments
- * Best performance: 11.0% WER vs. 11.9% baseline
- * Using single segmentation does not reduce N-best list size significantly

<u>AD — Error Modalities</u>

Data Class	HMM (%WER)	SVM (%WER)
a-set	13.5	11.5
e-set	23.1	22.4
digits	5.1	6.4
alphabets	15.1	14.3
nasals	12.1	12.9
plosives	22.6	21.0
Overall	11.9	11.8

- * Common word class groups used for error analysis
- * N-segmentations used for rescoring
- * SVM and HMM classifiers seem to have complementary strengths
- * Combining the system outputs seems reasonable

AD - Likelihood Combination

Normalization Factor	HMM+SVM (%WER)
100000	11.8
10000	11.4
1000	10.9
500	10.8
200	10.6
100	10.7
50	10.8
0.0001	11.9

likelihood = SVM score + $\frac{\text{HMM Score}}{\text{norm factor}}$

- * Score combination improves overall performance
- * Improvement consistent over all error modalities

Experimental Data — SWB

- * Telephone database of conversational speech
- * Challenging task for ASR systems casual speaking style with large perplexity
- * 114,000 utterance training set
- * 2,427 utterance speaker-independent test set
- * 42 phones used to model pronunciations
- * 39-dimensional MFCC features used
- * Variance-normalized data used

SWB - Baseline and Experiments

- * Baseline HMM system uses cross-word contextdependent triphone models
- * 12 mixture Gaussians per state
- * Baseline performance of 41.6% WER
- * 90,000 utterances used for estimation of SVM classifiers
- * 24,000 utterances used as cross-validation set
- * Segment proportion of 3-4-3 used
- * Rescoring with hypothesis-based segmentation results in 40.6% WER using RBF kernels

Oracle Experiments

S. No.	Information Source		HMM		Hybrid	
	Transcription	Segmentation	AD	SWB	AD	SWB
1	N-best	Hypothesis	11.9	41.6	11.0	40.6
2	N-best	N-best	12.0	42.3	11.8	42.1
3	N-best + Ref.	Reference			3.3	5.8
4	N-best + Ref.	N-best + Ref.	11.9	38.6	9.1	38.1

- Improvement possible from good segmentations and rich N-best lists studied by including reference segmentation and transcription
- * Expt. 4 indicates that SVMs do a better job than HMMs when exposed to good segmentations
- * Drop in improvements by hybrid system, in comparing expts. 1 and 2, needs further investigation

Segmentation Issue

- Type-A errors: seg1 vs. seg2Type-B errors: seg3 vs. seg4
- * N-best lists Type-B errors common
- * SWB N-best lists Type-A errors also significant

Identification of Mislabeled Data

- * Chunking converges faster when the working set is composed of examples that violate the Karush-Kuhn-Tucker optimality conditions
- * Several support vectors with multipliers at the upper bound (C) — they form the BSVs
- * If example identified as a BSV for several iterations, the example is probably mislabeled
- * Faster convergence and better classifiers by eliminating mislabeled data
- * A "large enough" value for C must be chosen

Synthetic Data Example

* Identifying mislabeled data results in compact classifiers

Summary of Experiments

- * Static classification task Deterding vowel data
 - * achieved 35% classification error
- * Continuous speech recognition AD and SWB
 - * AD 11.0% WER vs. 11.9% baseline
 - * SWB 40.6% WER vs. 41.6% baseline
- * Score combination improves performance further
- * Oracle experiments reference segmentation and augmented N-best lists
- * Segmentation is a primary issue in limited success of the hybrid system

Dissertation Contributions

- * First successful attempt to integrate SVMs into a complex recognition system
- * Developed a simple hybrid HMM/SVM framework
- * Significant performance improvements on small vocabulary task and marginal improvements on large vocabulary task
 - * 11.9% to 11.0% on Alphadigits
 - * 41.6% to 40.6% on SWB
- * Exploration of segment level information
- * Concept of identifying mislabeled data

Future Work

- * Role of posterior estimation in the hybrid framework
- * Use ability of SVMs to identify mislabeled data for data clean up and confidence measures
- * Iterative SVM parameter update as part of HMM estimation
- * Access to alternate segmentations during SVM estimation
- * Fisher kernels and alternate hybrid approaches
- * Bayesian approaches for parameter estimation to avoid need for a cross-validation set

Acknowledgements

I would like to thank Dr. Joe Picone for all the mentoring and guidance he has provided during the course of my Ph.D. I would also like to thank Jon Hamaker for the comments he provided during the experimentation and the writing of this dissertation.

Related Publications

- A. Ganapathiraju, J. Hamaker and J. Picone, <u>"Continuous Speech Recognition</u> <u>Using Support Vector Machines</u>" submitted to *Computers, Speech, and Language*, October 2001.
- 2. A. Ganapathiraju, J. Hamaker and J. Picone, <u>"A Hybrid ASR System Using Support</u> <u>Vector Machines,"</u> *Proceedings of the International Conference of Spoken Language Processing*, vol. 4, pp. 504-507, Beijing, China, October 2000.
- A. Ganapathiraju and J. Picone, <u>"Support Vector Machines for Automatic Data</u> <u>Cleanup,"</u> Proceedings of the International Conference of Spoken Language Processing, vol. 4, pp. 210-213, Beijing, China, October 2000.
- 4. A. Ganapathiraju, J. Hamaker and J. Picone, <u>"Hybrid HMM/SVM Architectures for</u> <u>Speech Recognition,"</u> *Speech Transcription Workshop*, College Park, Maryland, USA, May 2000.
- 5. A. Ganapathiraju, J. Hamaker and J. Picone, <u>"Support Vector Machines for Speech</u> <u>Recognition,"</u> *Proceedings of the International Conference on Spoken Language Processing*, pp. 2923-2926, Sydney, Australia, November 1998.