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ABSTRACT

High resolution spectral estimation algorithms
traditionally are constrained to process a finite segment of
data, assuming the data to be zero outside the analysis
interval. These assumptions ultimately limit the resolution
which can be achieved by these estimators. Analytic signals
provide an alternate signal representation whereby long-term
phase information can be incorporated into the analysis
data. Analytic signal-based spectral estimators are shown
to achieve higher resolution than their real signal
counterparts, due to the phase-invariance property of an
analytic signal. This is demonstrated in both the analog
and discrete domains, The linear predictive estimates of
stationary signals in additive Gaussian noise, using a
complex 1linear ©predictor, are shown to be more consistent
than those obtained wusing a comparable real linear
predictor. Expefimental results are included for two
analysis algoithms: the Burg algorithm and the
autocorrelation method.

The analytic signal representation has been applied to
data compression techniques for speech encoding. Multi-pulse
linear predictive coding (MPLPC) is developed as a
sub-optimal two-stage system identification algorithm.
Several complex parameter coding algorithms are presented as
sub-optimal solutions to a two-dimensional quantization

problem. Two techniques to transform complex predictor

coefficients to equivalent real predictor coefficients are




included as alternate coding algorithms. An analytic
multi-pulse 1linear predictive coding system (AMPLPC) has
been designed which provides improved speech quality over
its real signal counterpart at rates ranging from

9.6 kbits/s to 14.4 kbits/s.
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CHAPTER I
INTRODUCTION

Since the advent of digital signal processing in the
late 1950s, the goal of producing the digital equivalent of
the analog spectrum analyzer has spawned literally hundreds
of digital spectral estimation techniques. Some of these
fall in the category of "high resolution spectral
estimators"™ while others are simply derivatives of the
analog Fourier transform. In any event, the relative
shortcomings of virtually all of these approaches has been
well documented 1in the 1literature [1-10]*. The common
thread among all these digital techniques 1is that they
involve the estimation of the spectrum of a sampled,
bandlimited, stationary time series from a finite number of
samples of that process.

In this dissertation, the conventional approach of
processing a single set of samples of a one-dimensional
signal is discarded in favor of operating on an analytic, or
"single-sideband," representation of this signal.
Throughout this work, it is assumed that a continuous stream
of data is available to form the analytic signal, as is
typically the case in such applications as speech encoding.
This analytic signal is shown to incorporate the long-term
phase information of the signal into the analysis 1interval.

This representation of a signal is shown to be a natural

* .
Numbers in brackets refer to numbered references.




choice when dealing with finite sample sets. Surprisingly,
the computational burden required by the complex, or
two-dimensional, sequence is comparable to its real, or

one-dimensional, equivalent.

While the analytic signal representation as applied to
purely one-dimensional signals is not a traditional approach
in time series analysis, the notion of an analytic signal
has found its way into many applications. Single-sideband
signals [11-13] utilize an analytic signal representation to
minimize the bandwidth required to transmit a signal. In
sonar and radar signal detection applications, spatially
diverse transducers are deployed to sample a
multidimensional wave front. These sensors are deployed 1in
b such a fashion that the signals generated by these
F transducers are normally phase delayed versions of the same
signal. In a very simple case, where only a signal and its
quadrature component are used, the composite signal is

essentially an analytic signal. In additive noise, these

sensor arrays provide improved signal detection
capabilities, as the array can be focused in the direction
of the strongest component of the signal. This is known as
beam forming [14]. In fact, in most geophysical
applications, multi-channel signal processing 1is quite
common {1,2].

Analytic signal processing of one-dimensional signals
such as speech is not an entirely new idea. Hartwell [3]

proposed the analytic signal as a basis for conventional

i...—_zy.____._ = _?
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fast Fourier transform (FFT) analysis. The work of
Jackson [4], Soong [15], and Kay [16] explore some of the

basic 1issues of frequency estimation and linear prediction,

mostly from an experimental standpoint. The notions of the

Hilbert transform envelope have been used in pitch detection

‘ applications by Ananthapadmanabha and Yegnanarayana [17],
among others. However, the bulk of this dissertation
presents a unified view of conventional time domain window
theory and its relation to analytic signal processing.
Also, a speech compression system which is based upon these
notions of an analytic signal has been designed to provide
very natural sounding speech at rates in the range of

9.6 kbits/s.

b Conceptually, this dissertation is divided 1into three
parts. First, the fundamentals of analytic signal
processing are presented in Chapter II. The basic

definitions of both an analog and discrete analytic signal
are given, as well as the motivations behind these
particular conventions, The generation of an analytic
h signal from a real signal is developed in terms of a Hilbert

transform operation. Also, the reconstruction of a real
signal from its associated analytic signal is derived. This
reconstruction capability is essential to such applications
i as speech encoding. The technique presented here is
Q' attributed to Hartwell [3]. While it is not the only method
of recovering a real signal, it is particularly efficient

‘. for most speech encoding applications, and is used

_



extensively in Chapter VII,

The second portion of this dissertation deals with the
subject of spectral estimation and spectral resolution.
This topic is dealt with in three separate chapters.
Chapter III is most fundamentally important chapter to this
work, as the basic characteristics of windowed signals are
presented from an analog viewpoint. It is in this chapter
?’ that the phase invariance property of an analytic signal is
first introduced. This property is the basic asset of the
analytic representation, and its many ramifications must be
fully appreciated to completely grasp the advantages of the
analytic signal. Spectral resolution is discussed in terms
of the capability of the Fourier transform to accurately

estimate the long-term spectrum of a deterministic signal

-

from a time limited version of that signal.

In Chapter IV, the basic results of Chapter III are
extended to the discrete domain. The only major difference
results from the nature of the signal representation.
Discrete spectral representations normally make assumptions
about the signal outside the analysis interval. Typically,
the signal is assumed to be zero or periodic outside the
interval of interest. Naturally, the extent to which these
assumptions are valid influence the accuracy of the

corresponding spectrum. The phase information embedded in

the analytic signal alleviates to some degree the effects of
any inaccuracies in these assumptions. Alternate solutions

have traditionally involved the use of time domain window

®
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functions, an ad hoc solution which doesn't really address
the root of the problem. Thus, also in this chapter,
discussions of the nature of the discrete spectrum and the

merits of time domain windows are included.

The discussion of spectral estimation concludes with
Chapter V, in which the analytic signal is shown to provide
increased resolution over the real signal for linear
predictive spectral estimation. As an introduction, the
complex linear predictor is presented from a least squares
system identification standpoint. The phase invariance
property of the analytic signal is then extended to general
least squares spectral estimation. The performance of the
analytic signal-based estimator 1is then compared both
5 theoretically and experimentally to a comparable real signal
] estimator by considering two particular estimation
algorithms: the Burg algorithm and the autocorrelation
method. These two estimators are chosen primarily because
of their relevance to the speech coding applications
presented in Chapter VII, The analytic signal-~based
J estimator is shown to provide more accurate estimates of the
1!’ frequencies of sinewaves in additive white Gaussian noise,
i thus attaining higher resolution in the frequency domain
than its real signal counterpart.

The third major portion of this dissertation deals with
‘B the application of analytic signals to speech coding.
Analytic signal-based linear predictive coding of speech is

QD compared to the more common real signal coding. The key

s i i i i ]



issue examined here 1is whether the analytic signal can
provide improved speech quality at comparable or lower bit
rates than an equivalent real signal system, In order to
make this comparison effectively, a speech coding algorithm
which produces high quality, very intelligible synthetic
speech at medium to low bit rates is required. Multi-pulse
linear predictive coding (MPLPC) [18] was chosen as a
suitable algorithm, primarily because of its capability to
produce high quality speech at a variety of bit rates.

In Chapter Vi, this algorithm is developed as a
sub-optimal technique for the generation of a pulsed
excitation signal for an LPC encoder, using a minimum
mean-square error criterion. Chapter VII contains the
details of a complete analytic multi-pulse linear predictive
coding (AMPLPC) system. Several complex parameter coding
techniques are are evaluated on a subjective listening basis
for their quality versus bit rate and bit rate versus
complexity tradeoffs.

The majority of this dissertation is intended to be a
self-contained work., In particular, the material in
Chapter II thru Chapter V requires very 1little background
other than a basic signals and systems theory background.
While most of the material in Chapter VII on speech coding
is experimental in nature, a large part of the material
dealing with algorithms and coding techniques parallels that

found in the expansive collection of literature which exists

on speech coding. For those unfamiliar with speech coding, a




brief survey can be obtained in [19-23].

Though most of the notation presented is fairly
standard, one comment 1is in order. Traditionally, the
notation in most discrete systems textbooks follows a
convention of suppressing the sampling rate in any discrete
expressions (or equivalently, assuming a sampling rate
of 1 Hz). On the other hand, most analog system textbooks
include the sampling rate in all expressions. In order to
clearly distinguish between analog and discrete operations,
the sampling rate is explicitly defined as 1/T throughout
the first five chapters. In doing this, any variation of an
expression with the sampling rate 1is <clearly 1identified.
Further, in order to accurately differentiate analog spectra
from discrete spectra, analog spectra are expressed as
functions of w, i.e., F(w), while discrete spectra are
expressed as functions of ejw, i.e., F(ejw). In the
remaining chapters, it 1is convenient to suppress this

sampling rate, since only discrete sequences are dealt with,

and the sampling rate dependence is obvious.




CHAPTER II
ANALYTIC SIGNALS

t LR

An analytic signal, being nothing more than a signal
plus its quadrature, embeds 1long-term phase information
about a signal into the complex signal representation. In
.. this chapter, the basic notion of an analytic signal, in
both the analog and discrete domains, is presented.
Further, the process of converting a discrete analytic

signal to its corresponding discrete real signal is derived,

a process fundamental to such applications as speech coding.
Apnalog Analytic Sigpals

The motivation underlying an analytic signal
representation is best explained by examining the
information content in the spectrum of a real signal., For
any real-valued signal, f(t), it is easily shown that the
Fourier transform of the signal, which is defined as [13]

b o0 -jwt
F(w) =J f(t)e dt , (1)

has a magnitude which is an even function [13] of frequency:
[Feo)| = [FC-w)] (2)

This suggests that the spectral representation of this

T

signal contains redundant information in the sense that the

e .



signal can be reconstructed from the information in either

’ the positive or the negative frequency domain. The

frequency bandwidth occupied by this signal can be minimized

.‘p by removing this redundancy, and creating what can be

thought of as a "single-sideband signal." This was perhaps
the first major application of an analytic signal,

The complex-valued signal, sa(t), called an analytic

” signal [12], can be formed as the sum of a real component,

s(t), and an imaginary component, ;(t), such that
s (t) = s(t) + js(t) . (3)

The components of the analytic signal need not be defined as
being orthogonal in the complex plane, but are only defined
“ that way for convenience. It is wuseful in certain signal
processing applications to maintain a simple relationship
between s_(t) and s(t), and thus, s(t) is constrained to be
equal to the real part of sa(t). The term analytic is drawn
from complex variable theory [24], in that a function is
said to be analytic at a point if its derivative exists at
‘k? that point and in the neighborhood of that point. In this
sense, a discrete analytic signal cannot exist, since in a
discrete domain, derivates do not exist. This connection
with analytic function theory will be clarified presently.
An analytic signal is frequently thought of as having a
‘0 one-sided spectral density [12]. By requiring that the
Fourier transform of sa(t), Sa(jw), be zero for negative

“ frequencies, the relationship between S(jw) and the Fourier

|




10

transform of s(t), §(jw), must be

SCiw) = jsSCjw) , w<o,
(4)
= -jS(jw) , w>0 .
The spectrum of sa(t) is now one-sided:
S,(iw) = 2s(jw) , w>0,
(5)

o, w <0,

The transformation required to produce s(t) from s(t) is

known as a Hilbert transform [12],

s(t)

(1/w) J  f(x)/(t-x) dx ,

£(t) ¥ (1/wt) , (6)

where "¥" denotes time convolution. The multiplication by j
in the frequency domain in Equation 4 is equivalent to a
phase shift of 90 degrees in the time domain, making ;(t) in
phase quadrature with s(t). Thus, the Hilbert transformer
is also known as a 90-degree phase shifter, and an analytic
signal is really just a signal plus j times its quadrature.
The term analytic is somewhat of a misnomer. Given any
real signal, the signal formed from Equation 3 is not
guaranteed to be an analytic function. A simple case would
be a discontinuous real signal such as a step function or an
impulse function. However, given a real bandlimited signal,

the complex signal formed from Equation 3 will be analytic.

(Recall a bandlimited function can be represented as a sum




1

of sin(x)/(x) functions, each of which is analytic over its
entire domain.) In communication theory and signal
processing, most signals encountered are usually assumed to
be bandlimited. Thus, provided s(t) is bandlimited, the
signal of Equation 3 can be called an analytic signal, since

it is analytic over the entire complex plane.

A bandlimited continuous signal can be uniquely
represented by a set of samples taken at a sampling rate
known as the Nyquist rate [25]. Even though analyticity is
meaningless in a discrete domain, there exists a discrete
sequence [5], s,(nT), corresponding to s,(t) above, such

that
s,(nT) = sa(t)ltznT , | (7)

where T = 1/fS and fs is the Nyquist sampling frequency.
The discrete signal, or sequence, sa(nT) is defined as a
discrete analytic signal, since the relationship between the
spectrum of sa(nT) and the spectrum of s(nT) is similar to
that of Equation 5, that is,

jw jw

S(e )= 28e ), O<Lw<wmw,
a (8)

"
o
!

=
I\
=
N
o

The complex signal, sa(nT), is given as
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‘D sa(nT) = s(nT) + j;(nT) y (9)

where s(nT) is formed from s(nT) via a discrete convolution

process [5],

s(nT) = I s((n-m)T) h(m) , (10)
M= =00
” and,
h(m) = [sin®(wm/2)1/(vm/2) , m £ 0 ,
(11)
=0, m=20 .

The discrete filter, h(m), is known as a discrete Hilbert
transformer. Once again, the real sequence s(nT) is equal
to the real part of the complex sequence sa(nT).
P Since the complex sequence sa(nT) occupies half the
bandwidth of the real sequence s(nT), sa(nT) can be sampled
at half the sampling rate of s(nT). To recover s(nT) from
the downsampled version of sa(nT)} the downsampled version
of sa(nT) must first be upsampled. In discrete real signal
analysis, upsampling involves interpolating the real signal,
for example, using a sin(x)/x type interpolation
“ function [25]. This process of interpolation can be viewed
as a filtering operation. 1In analytic signal analysis, the

same is true [3], but the interpolation function is somewhat

“ different.
- Let the analytic signal s,(t) be bandlimited
from 0 < w < B, such that it can be sampled at its Nyquist
‘. rate, fs = (B/2w). Since sa(t) is analytic, from

a
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Equation 5, Sa(w) = 0 for w < 0., The spectrum, Sa(w), can

‘ be expanded in a Fourier series [25], giving
0 jn(2n/B)w
S_(w) = z e (12)
a N==oo Ay !
where
B -jn(2n/B)w
‘0 q, = (1/B) IO Sa(w)e dw , (13)
or,
q, = (21/B) sa(-2ﬁn/B) (14)

The Fourier coefficients, q are just samples of the

n’
inverse transform of Sa(w) evaluated at t = -2wn/B, so that
by substituting Equation 14 into Equation 11,

” o0 jn(2w/B)w

Sa(w) = (2n/B) % sa(-2nn/B) e ” (15)

Nn== o

Taking the inverse Fourier transform of Sa(w) and wutilizing

the fact that Sa(w) is zero for negative frequencies,

-1
F {Sa(w)}

w sa(t)

B o jemnw/B jwt
= (1/B) J T sa(-Znn/B)e e dw
0 Nz=oo
5 B jwlt+(2mn/B)]
= (1/B) & s_(-2wn/B) [ e dw
N=s= o0 a 0

jBlt+(2mwn/B)]
e -1

(1/B) ¢ s_(-2wn/B)
N==oco a j[t+(2ﬂn/B)]

'I"
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0 e jL(Bt/2) + mn]
= X sa(-2wn/B) e X

N==o

“ jL(Bt/2) + mn] -j[(Bt/2) + mn])

e - €

2jl(Bt/2) + mn]

o0 jL(Bt/2) + mwn]
=% sa(-2wn/B) e X
n=-
“ [sin((Bt/2) + mn)1/((Bt/2) + mn)
00 jl(Bt/2) - mwn)
=¥ s (2mn/B) e X
N==

[sin((Bt/2) - wn)]/((Bt/2) - ™n) . (16)

Thus, time interpolation in the analytic domain corresponds
b to a convolution process between the signal and a complex
sin(x)/x function. This interpolation function, while
rather complicated in general, has a relatively simple form
when applied to the problem of recovering a real signal
sampled at its Nyquist rate from its corresponding analytic
signal, also sampled at its Nyquist rate.

In order to upsample the discrete analytic sequence
” sa(nT), sampled at its Nyquist rate of T = 2n/B, Equation 16
can be evaluated at t = wk/B. This gives an upsampled
analytic signal whose real part is the desired real signal.
In this case, the interpolation function simplifies to

jm((k/2)-n) sin(w((k/2)=n))

sa(wk/2B) =3 sa(2ﬁn/B)e .
N=- oo n ((k/2)=n)

(17)

e
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o The exponential term in Equation 17 can be expanded to

Jjw((k/2)=n)

“ e = cos(w((k/2)-n)) + jsin(w((k/2)-n)) .
When k is even, the only non-zero term in Equation 17
contributing to the real part of sa(wk/2B) occurs when
k = 2n. When k is odd, the only contributions come from the
” product of the imaginary part of sa(wk/2B) and the imaginary
part of the exponential., Thus, the interpolation process

gives

Re{sa(ﬂk/2B)}

Re{sa(wk/ZB)} , k = even integers,

o0

X Im {sa(an/B)} X

“ Nz =oa
sin2(w((k/2)=n))

(w((k/2)=n))

y kK = odd integers.
(18)

The 1latter part of Equation 18 is recognized as a
convolution of the imaginary part of the analytic signal
‘@ with a discrete Hilbert transformer.

The recovery process consists of using the real part of
sa(nT), and placing in between these samples a sample which
is computed by convolving the imaginary part of sa(nT) with
a Hilbert transformer, as shown in Figure 1. The real part
‘0 of the analytic signal enters the upper delay line, used to
compensate for the delay in the Hilbert transformer, while

the imaginary part also enters the delay 1line of the




|

16

discrete Hilbert transformer. Each of these sequences is
"stuffed" with a =zero between each sample value, and
further, the imaginary part 1is delayed in time by one
sample., The switch alternately selects the real part of
sa(nT), and then the output of the Hilbert transformer. The
delay lines are shifted at the upsampled rate, (2/T).

This recovery process is intuitively satisfying, since
it is almost the inverse of the process used to generate the
analytic signal. Further, implementation is reduced ¢to a
mere digital filtering operation. Other techniques to
implement Equation 17 exist, such as a frequency domain
approach using an FFT, but these are generally more
computationally expensive, and certainly not as elegant.
Later, it will be seen that this particular implementation

is well suited to speech coding, while any implementation

generally will suffice for spectrum analysis applications.
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CHAPTER III
o ANALYSIS OF WINDOWED ANALOG SIGNALS

Introduction

The inherent advantages in wusing an analytic signal
representation result from the constraint of a finite length
analysis interval. In signal detection and estimation
” problems, for practical reasons, a finite amount of data is
collected, and some decision about the signal is made Dbased
on this data. Thus, only a window, or finite portion, of the
actual signal 1is analyzed. The assumptions about the
relationship of this windowed signal to the actual signal
can introduce certain errors in the estimation process. In
” this chapter, the effects of a rectangular window upon an
analog signal consisting of multiple sinewaves of arbitrary

frequencies and phases are considered.

Ihe Spectrum of a Real Sinewave

The spectrum of a windowed sinewave can be computed
w from Equation 1. Suppose the signal of interest is a single

cosinewave of unknown frequency and phase,

s(t) = cos(w1t + 0) . (19)
The finite length version of this signal can be written as

‘% the product of the signal with a rectangular window
sw(t) = s(tlwW(e) , (20)

:
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where W(t), a rectangular window of 1length T seconds, is

given by

1]
-

’ -T/2 L tXT/2,

© e (21)

elsewhere .

fl
o
-

This notation will be convenient from the standpoint that
“ both the structure of the window and the position of the

window can be easily changed. The phase shift, #, actually
represents the position of the window in time, since by
varying ©, any portion of the signal can be made to appear
in the window.

The computation of the spectrum of this windowed signal
is most instructively performed in the frequency domain., We
' note that multiplication in the time domain is equivalent to
convolution in the frequency domain of the spectrum of s(t)

with the spectrum of W(t), where

S(w) = F{s(t)}
= ﬁ[ejﬂd(w-w1) + e_jmd(w+w1)] y
‘i’ and
W(w) = F{W(t)}
= Tsin(wT/2)/(wT/2) ; (22)

here d(w) denotes the unit impulse function. Performing the

“ convolution in the frequency domain, we obtain

A1 -j0
Sw(w) = wTle Sinc(x - x1) + e Sinc(x + x1)] , (23)

L



where

x= wI/2, x,= w;T/2, and Sinc(x) = sin(x)/x .

” The Sinc(x - x1) term is the contribution from the positive
frequency component, while the Sinc(x + x1) term corresponds
to the negative frequency component.
To accurately estimate the frequency of this sinusoid
in additive noise, given no a priori information about this
? frequency, the location of the peak in the magnitude
spectrum of this signal can be used as a criterion. From
Equation 23, it is seen that the peak in the magnitude
spectrum is a function of both the phase of the signal, 0O,
and the length of the window, T. The dependence on these
two parameters can also be interpreted in the frequency
9 domain as an "aliasing," or leakage, between negative and
positive frequency components of the signal s(t), when
rectangularly windowed by W(t). These components arise from
the convolution of the Fourier transform of the signal with
the Fourier transform of the rectangular window, as
demonstrated above, They occur because the effective
w frequency response of the window is wider than the distance
between these spectral components, thereby creating an
overlap in the frequency domain.
In Figure 2, this aliasing is depicted by plotting the
‘N@ magnitude of the spectrum for both the positive and negative
frequency components separately. ' In Figure 3, the composite
‘9 magnitude spectrum from Equation 23 1is plotted. In this

case, a frequency of 1000 Hz, a phase of 30 degrees, and a

a
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window length of 1.3 ms are used. The regions of overlap
” indicate that aliasing occurs among positive and negative
components, similar to the aliasing which occurs when a
q’ signal is undersampled.

In Figure 4, the frequency estimate, as determined by
the peak in the magnitude spectrum, is plotted versus the
window 1length for © = 0, 30, 60, and 90 degrees. As
‘ expected, the estimate of the frequency improves as the
window length increases. This is due to the fact that as
the window length, T, increases, the sin(x)/x nature of the
frequency response of the rectangular window approaches an
ideal impulse, thereby reducing the amount of aliasing
between positive and negative frequency components. The
0 error is large when the window length is less than one-half
the period of the signal, since it is difficult to determine
the frequency of the signal when there is only one
zero-crossing within the window. For a fixed window length,
the error is frequency dependent, as the error for low
frequency signals is larger than that for higher frequency

? signals. Stated another way, this implies the estimate is
*( improved as more cycles of the signal are included in the
window.

Figure 5 contains the frequency estimate plotted versus
the phase, @, for window lengths of 0.75, 1.0, 2.0, and
4.0 ms. Generally, the error is sinusoidally distributed
when the window is reasonably long, oscillating about the

‘E’ correct frequency. This variation with phase arises because

—
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the contributions from positive and negative frequency
components add vectorially in a manner determined by the
phase of the signal, producing a maximum in the spectrum
which is a function of phase. The random nature of the
error implies that such an error cannot be artificially
compensated, as if it were a fixed bias of some sort,
because the amount of bias varies. In the detection of an
unknown frequency, these frequency errors will severely
1imit the resolving power of the estimator, requiring
excessively long window lengths to accurately resolve the

frequency.

The Spectrum of the Sum of Two Real Sinewaves

To better understand this phenomena of aliasing between
frequency components of a signal, consider a signal
consisting of the sum of two sinusoids of arbitrary

frequencies and phases,
s(t) = cos(w1t + 0D+ D) + cos(w,t + B + 02) . (24)

The phase angle, #, common to both sinewaves, will denote
the general phase of the signal with respect to the window.
This angle can be varied to bring any portion of the signal
into the window. The individual phase angles, 01 and 02,
denote the phase of each sinewave with respect to each

other, giving some flexibility to the signal description.

Obviously, a simple case is both ﬂ1 and ﬂz equal to zero.
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The Fourier transform of this signal consists of
impulses located at +/-w1 and +/-w2, that is,

S(w) =nle d(w-w1) + e d(W+w1)]

+nle d(w-w,) + e d(w+w,)] o (25)
The spectrum of the windowed version of this signal,
computed as before by convolving S(w) with Equation 22, is
j(o+0.)
Sw(w) = mwTle Sinc(x - x1)

+ e Sinec(x + x1)]

j(0+0,)
+Tle Sinc(x - x2)

-3 (0+0,)
+ e Sinc(x + x5)] , (26)

where

x = wl/2, Xq= w1T/2, and Xo2 w2T/2 .

The peak in the spectrum for each sinewave will be shifted
due to aliasing. However, there are two contributing
factors to this peak shifting. First, there 1is the wusual

aliasing between positive and negative frequency components,

Second, there is additional "in-band" aliasing between the
two positive components and the two negative components,
more traditionally termed leakage. Both types of aliasing

*e are a function of the phase of the signal, ©, the phases 2)1

and 02, and the window length. This 1is depicted 1in

i‘ Figure 6, where the magnitude spectrum for each frequency
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component is plotted separately; the overlapping regions
indicating areas where aliasing occurs, The composite
spectrum 1is plotted in Figure 7. The spectral errors
associated with real signals arise from the windowing
process itself, and ultimately limit the resolution which

can be achieved with a particular window length.

Apalysis of a Complex Sinewave

The obvious remedy to completely eliminate the aliasing
between positive and negative frequency components is to
remove the negative frequency components via an analytic
signal representation. For the single cosinusoid of
Equation 19, the analytic counterpart can be formed from

Equation 3 and Equation 4,

sa(t) = cos(w1t + D) «+ jcos(w1t + D) ¥ (1/wt),

jo -j0
S (w) =nle d(w-w,) + e d(w+w, )]
a 1 1

jo -j0
+ wjl=je d(w-w1) + je d(w+w1)]
jo
= 2nle d(w-w1)] . (27)

Performing an inverse Fourier transform, we find that

jw1t + 0
e . (28)

sa(t)

As expected, the analytic signal corresponding to a single

sinewave 1is a complex exponential, and has only positive

frequency components., The spectrum of the windowed version
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of s (t), s, (t), is found as follows:

saw(t) = sa(t)W(t) ’
Saw(w) = Sa(w) * W(w)

jo
= 2nT Sine(x - x;) e (29)

where

¥ = wI/2 and Xq = w1T/2 .

Recall, since this is an analytic signal, there is only a
contribution from the positive frequency component.

Clearly, the peak in the magnitude spectrum always
occurs at w = Wy, since the Sinc function is a maximum when
its argument is zero, and because the negative spectral
components of saw(t) have been removed. This is depicted in
Figure 8, where the magnitude of the spectrum of saw(t) is
plotted versus frequency for a 1000 Hz sinewa}e of zero
phase, with a 1.3 ms 1long window. The analytic signal
spectrum gives higher resolution in the sense that the peak
in the magnitude spectrum is only dependent on the structure

of the window, and not on the position of the window in

time, the phase of the signal, or the length of the window.
Analysis of the Sum of Iwo Complex Sinewaves

The analytic signal alone, however, is not the failsafe
remedy for detecting windowed sinewaves. Consider the

signal of Equation 24, whose analytic windowed counterpart

is
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j(w1t+0+01) j(W2+D+02)
+ e

saw(t) = [e IW(e) . (30)
The spectrum of this signal is
jo P
S (W) = 2mTe e Sine(x - x4)
2,
+ € SinC(X - X2)] ° (31)

The peaks in the spectrum are once again shifting as a
function of the phases and the window 1length. This
shifting, however, is due only to aliasing among the
positive frequency components, as depicted in Figure 9. In
Figure 10, the composite spectrum is shown. This peak,
however, is independent of the phase of the signal, #, which
controls the portion of the signal within the window. Thus,
the error 1in the frequency estimates will be fixed if the
signals themselves have a fixed phase shift relative to one
another (01 and ﬂz are constant). As O varies, or as the
window slides along the signal, the magnitude spectrum
remains fixed. This type of error is a fixed bias,
Therefore, the analytic signal, for the sinusoidal
signals above, has the phase information embedded in such a
manner that the spectral estimates are consistent and
independent of time. This is a property of the Hilbert
transform, in that it draws information about the signal

outside the window, into the window, making the analytic

signal phase coherent, in a sense, with the window. Real
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signals, on the other hand, experience significant time

@ variations as shown above.
k Spectral ——t-a—tws i i of an Analytic Signal
i

Just how general is this phase invariance property of
the magnitude spectrum of an analytic signal? For any
signal that is a sum of sinewaves, these results will hold
*@ true. This includes all periodic signals, since a periodic
signal can be represented as a sum of sinusoids via a
Fourier series. This property is more general, however, and
can be applied to other real signals, of which sinewaves are
just a special case.

Let sa(t) be an analytic signal which satisfies the
i@ Dirichlet conditions [25] (implying that its Fourier

transform exists). The window, W(t), can represent any type
of window function, provided it is of finite duration, and

its Fourier transform exists; in general, let

W(t) £(t) , =-T/2 <t <T/2,

(32)
o, elsewhere .

Let sap(t) be a phase rotated version of sa(t), where phase
rotated implies some fixed phase shift is added to the

Fourier phase spectrum, such that

q 3
‘ sap(t) e s, (t) , (33)

and,

“ i0
Sap(w) Sa(w)e

—
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Then, the spectrum of the windowed version of this signal,

sapw is given by
Sapw(w) = Sap(w) ® W(w)
Jo
= e [Sa(w) ¥ Wiw)l . (34)

The magnitude spectrum, given by
Is putwdl= Is o *wenl (35)

is independent of the phase rotation. The effect of this
phase rotation upon the analytic signal can be thought of in
three dimensions as a rotation of the signal about its time
axis, similar to the rotation of a screw .

This phase invariance property does not hold for real
windowed signals. The spectrum of the real signal

corresponding to Equation 33 can be found by noting that

sp(t) Re{sap(t)}

*
(1/2) (s, (t) + s, (8)}

jo % -0
(1/72) {sa(t)e + sa(t)e } .

The Fourier transform of sp(t) is

h1% * -jo
Sp(w) = (1/2)[Sa(w)e + Sa(-w)e 1. (36)

The spectrum of the windowed version of this signal is
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wn
~~
=
Nt
]

pW Sp(w) * Wiw)

-jb

0
(1/2)[e” S_(w) * W(w) + e = Sr(=w) * WG] .

(37)

The aliasing between positive and negative frequency
components appears in the presence of the exponential term
ejg and its conjugate, e'jﬂ. The magnitude spectrum of this
signal is a function of the angle D.

In the case of periodic signals, or sums of periodic
signals, this phase invariance implies the magnitude
spectrum of the analytic signal will be constant versus
time, since this phase shift is equivalent to a time delay.
This is precisely the cases presented above, in the form of
the sinewaves, where the angle @ denoted both the phase
shift and the time delay. For other signals, this phase
shift can significantly change the appearance of the real
signal in the time domain. An interesting example 1is the
case of the ideal 1low-pass filter impulse response, the
sin(t)/(t) function. The analytic signal, with a variable
phase shift, which corresponds to this real signal is

M

sap(t) = e [sin(t)/(t) + j(l-cos(t))/t]. (38)

By varying the angle ©, the real part of this signal can

change dramatically, as shown in Figure 11, where this real

signal is plotted for © = 0, 45, 90, 135, 180 degrees. The

magnitude spectrum of the windowed analytic signal will be
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the same for all of these signals, while in the real case,
there will be the wusual variations. In time series
analysis, where continuous signals are always represented by
as small a segment of the signal as possible, the analytic

signal becomes the natural choice for improved spectral

resolution.
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CHAPTER IV
m‘ ANALYSIS OF FINITE LENGTH DISCRETE SEQUENCES

'ti Introduction

The effects of windowing on a signal are most
pronounced in the discrete domain, where operations such as
spectral estimation are routinely performed on a finite

segment of a signal. The equivalent of the analog Fourier

=
=»

transform in the discrete domain is termed the discrete
Fourier transform (DFT), or, when performed computationally
efficient, the fast Fourier transform (FFT). This chapter
presents a comparison of the performance of FFT-based
spectral estimation for real and analytic signals,
Qﬁ Actually, it is of no surprise that the basic results of the
previous chapter hold, with only slight differences due to
the nature of the signal representation. The results
presented here were observed experimentally by Hartwell (3]

using a DFT.
J The Discrete Spectrum
e

In the discrete time domain, the spectrum of a discrete
signal, or sequence, can be represented via a sum of
weighted complex exponentials called the discrete Fourier

transform [5]. The accuracy of this transform is related to

S5
- |

the type of sequence being analyzed. A periodic sequence
can be exactly represented by a discrete Fourier series,

‘@ similar to the analog case in which a periodic signal is

L
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expanded in a Fourier series. For an aperiodic sequence, in
general, the appropriate representation is a discrete
Fourier transform, which must be computed over the entire
extent of the sequence. If the sequence 1is not time
limited, this involves analyzing an infinite set of data
points.,

The classic question then arises: Given a segment of a
sequence, how accurately can the spectrum of that sequence
be computed? If the sequence is periodic, and the period is
known, or if the sequence is of finite duration, the
spectrum can be computed exactly [5]. Otherwise, it can
only be approximated by one of several techniques to be
subsequently discussed. The most popular of these 1is the
fast Fourier transform mentioned above, or equivalently, the
sampled z-transform.

A reasonable approach to estimating or detecting the
frequency of a signal, with no a priori information about
its frequency content, is to again examine the magnitude
spectrum, as determined from a sampled z-transform. An
ordinary discrete Fourier transform and the inverse discrete

Fourier transform are defined as

jkam/NT N-1 ~-j2nnk/N
F(e ) = X f(nT)e y 0 < k £ N-1,
n=0
=0, elsewhere .
N-1 jkan/N j2mnk/N
f(nT) = (1/N) £ F(e ) e , 0 < n < N-1,
k=0

=0, elsewhere ,
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where N is the number of samples spaced T seconds apart.
Observe the resolution of this transform in the frequency
domain is only 1/NT Hz (the sample rate divided by the
number of points used to compute the transform), as values
of the frequency response are given only at the so-called
orthogonal frequencies, k/NT Hz.

To obtain further resolution, that is, values of the
frequency response between orthogonal frequencies, this
transform can be interpolated in the frequency domain. This
process of interpolation can be efficiently performed using

a sampled z-transform, defined as

Jw N=-1 =jnwT
F(e ) v f(nT) e . (39)
n=0

The transform is now a continuous function of frequency.
However, for this interpolation to be exact, it is assumed
that the sequence is a finite length sequence N points long,
making the frequency response of the sampled z-transform
exact. In practice, this is generally not the case, yet the
latter representation of the spectrum is a reasonable one,
since to some extent, the true spectrum of the signal is
being approximated through a frequency domain interpolation

process [5]. Thus, the problem reduces to analyzing the

spectrum of a (at present) rectangularly windowed sequence.




33
The Discrete Spectrum of Multiple Sipewaves

Let the sequence s(nT) be composed of a sum of

cosinewaves of arbitrary frequencies and phases, that is,

Q
s(nT) = % cos(nwiT + 0 + ﬂi) . (40)

i=1

The spectrum is found from Equation 38 to be
Jw N-1 Q -jnwT

S(e ) T % cos(nwiT + D + Di)e
n=0 i=1

Q N-1 j(nwiT + 0D + 01)
r & (1/72)(e
i=1 n=0

-j(nwiT + 0+ 0;) -jnwT
+ e €

Q Jj(o + D;) N-1 JnT(w;=w)
(172) = [ e T e
i=1 n=0

=30 + B;) N=1 -jnT(w;+w)
+ € L e ] . (u1)
n=0

Using the identity [5],

N1 =n -N -1

5 a =(1-a )Y(1-2a ), (42)

n=0

Equation 41 can be simplified to

-jlw = wi)NT

jw Q 1 - e jo jﬂi
S(e ) = (1/2) [ e e

i=1 -j(w - wi)T
1 - e
=jlw + wi)NT

1 - e -j9 -jDi
+ e e 1. (43)

=jlw + wi)T

1 - e
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Observe that the first term corresponds to the positive
frequency components of the sequence, while the second term
corresponds to the qegative frequency components,

In the analytic case, the cosinewaves are replaced by
complex exponentials, and the complex sequence has only the

positive frequency component term, specifically,

Q j(nwiT + 0 + Di)
s,(t) = £ e i (4l4)
i=1
and
-j(w = w.)NT
JW jg Q - € . J@l
Sa(e ) = e [ e . (45)
i=1 -j(w - wi)T
1 - e

Recall, the phase shift @ actually represents the position
of the window in time, while the number of data points, N,
represents the length of the window (NT seconds).

It is instructive to examine Equations 43 and 45 for
the case of a single cosinewave. When Q = 1, Equation 43
simplifies to

jlw = w1)NT . .
Jjw 1 - e Jjo 301

S(e ) (172) [ e e
Jjlw = w1)T

+ e e 1, (u6)
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while Equation 45 simplifies to

~jlw = w1)NT
Jjw o 1 - e jﬂ1
S.(e ) = e e . (47)
-j(w - w1)T

1 - €

The magnitude spectrum of the real cosinewave from
Equation 46 is seen to be a function of the phase angle, 0.
The presence of the ejﬂ term and its conjugate indicate the
usual aliasing between positive and negative frequency
components of the real signal. The peak in this spectrum
will shift as a function of 0O.

This is depicted in Figure 12, where this peak location
is plotted versus window length, N, for ©® = 0 and
® = 90 degrees, and in Figure 13, where this peak 1location
is plotted versus phase, P, for N = 20, 40, 80, and
160 points. The frequency of the cosinewave is 313 Hz, a
non-orthogonal frequency for all the window lengths used,
and the sampling rate is 8 kHz. Note that the magnitude of
the error in the peak location generally decreases as the
frame length increases, indicating that accurate estimation
requires more cycles of the signal within the window. As
the window 1length 1is increased, the aliasing between
positive and negative frequency components is reduced, as it
was for the analog case of Chapter III.

The nature of this error produced by the sampled

z-transform should be emphasized. For a given value of

frequency, Wqsy particular values of N will produce a correct
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estimate. These values occur when the frequency w4 falls on
an orthogonal frequency. In this case, the window length is
exactly an integer multiple of one period of the sinewave,
‘ﬁ' and the sampled z-transform produces values of the frequency
response at orthogonal frequencies which are equivalent to
the discrete Fourier series [5]. Further, the discrete
Fourier transform 1is actually equivalent to a discrete
‘~ Fourier series, in that the representation of the signal as
being periodic outside the window 1is correct. When the
frequency of the sequence is not an orthogonal frequency,
errors due to the windowing process exist, since the
assumptions about the signal outside the window are not
correct.
q;n The analytic signal, on the other hand, produces an
exact estimate of the peak location, due to the absence of
frequency component aliasing. While this is more difficult
to show because of the complexity of Equation 47, this
equation 1is easily evaluated. In Figure 14, the peak
location is plotted versus window length, for the same
dtl signal and sampling as in the real case. The error is zero
for all values of the window length. Once again, this is
not the case for the multiple sinusoids of Equation 45, as
the aliasing among positive frequency components still

exists. The phase invariance of the analytic signal is

still preserved, however, since the magnitude spectrum of
Equation 45 is not a function of #. As before, this phase

q‘ invariance is a property of the analytic signal

"
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representation. The estimation errors in the spectrum of

the analytic signal will be less severe than in the real

case, since analytic signals only suffer from positive

dgq frequency component aliasing.

Ti D in Windowi

This problem of rectangular windowing was recognized
‘F’ very early in the digital signal processing arena [6-8].
The classic ad hoc solution involves the use of a time
domain window. The aliasing due to the rectangular window
can be partially eliminated by using a non-rectangular
window with a frequency response which is effectively much
narrower than the frequency response of a rectangular
ﬂ} window, Windows such as the Hamming, Hann, or Bartlett
windows are all commonly used to smooth data before
processing. These windows tend to reduce the effects of both
types of aliasing. It is of no surprise that the time
domain shape of these windows goes to zero at the edges of
the window. These windows serve only to make the signal
inside the window appear to be a time limited signal,
thereby, allowing the sampled z-transform to be more
accurate at non-orthogonal frequencies, The frequency
response of these windows is a function of their 1length,

however, the 1longer the window, the narrower the frequency
‘rl, response. A large number of points is required to obtain a
window with a narrow response. Also, these windows distort

‘ﬁﬁ any non-stationarities in the signal, as these
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non-stationarities tend to be smoothed, or averaged out.
Burg [9] posed a different question: Why assume the
signal to be zero outside the window, when in fact we know
it not to be? Further, in his maximum entropy formulation,
he hypothesizes that it is more natural to choose a signal
of maximum entropy which satisfies the data constraints [9].
Intuitively, it is difficult to Jjustify "corrupting"
perfectly good data samples by applying a non-rectangular
window. The analytic signal can actually be viewed as an
alternate solution to the problem of estimating a sequence
from only a finite number of samples. It is attractive in
that the original data is retained, and phase invariance is
added via the Hilbert transformer. It is elegant in that
the primary aliasing effects are eliminated. To obtain
further resolution, and 1limit the aliasing among positive

frequency components, a non-rectangular window can be wused,

as Wwith real signals, but this is generally not required.
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CHAPTER V
LINEAR PREDICTION USING AN ANALYTIC SIGNAL

Introduction

The desire to accurately estimate the spectrum of a
signal at non-orthogonal frequencies, as well as model these
spectra as a smooth function of frequency (similar to the
spectra normally displayed on an analog spectrum analyzer),
led to the development of parametric spectral estimators.
While there are many classes of these types of estimators,
they are all essentially derivatives of the minimum
mean-squared error estimator drawn from least-squares system
jdentification theory [10,26,271. The estimation of an
autoregressive process in a general least-squares sense
shall be considered, with applications centered around the
problem of the detection of sinewaves in additive noise.
While the techniques presented here are certainly not
optimal estimators for this type of signal, they will serve
to demonstrate the improved resolution that can be achieved
using an analytic signal. Experimental results are
presented for the popular autocorrelation technique [28-30],
and the numerically robust Burg lattice-based

algorithm [31].

The Complex Linear Predictor

While the complex linear predictor can be easily

derived from the orthogonality principle [32], an alternate
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derivation is presented here which highlights the 1least
mean-square error nature of linear prediction. Let the

complex sequence be

s(nT) = s.(nT) + j s; (nT) . (48)

Suppose this signal can be approximated by a linear
combination of P previous values (that 1is, 1linearly
‘i’ predicted). The predicted value can be written with complex
prediction coefficients as

s(nT) a;s((n-1)T) , (49)

1]
n Mo

i=1

- 1

The prediction error is the difference between the actual

"
n'M-o

: (ui + jvi)s((n-i)T) ¥ (50)

value, s(nT), and its predicted value, s(nT). The
prediction error is a complex quantity, and its energy can
be computed by summing its squared magnitude over all time.
In time series analysis, for practical reasons, these
«“ computations are restricted to a finite interval of N

points. Thus, let the prediction error energy be defined as

E.= £ e(mTe (mT) ,
m=0
N-1 - ~ *
= ¢ [s(mT) - s(mT)1[s(mT) - s(mT)] |,
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N-1 * ~%
= ¥ [s(mT)s (mT) - s(mT)s (mT)
m=0

- s(mT)s (nT) + s(mT)s (mT)] . (51)

In order to find the optimal predictor parameters, this
prediction error energy must be minimized.

The error energy can be minimized by finding the
predictor parameters that minimize the gradient of En,

defined as
grad E. = dE /du. + JdE /dv. , (52)

where dEn/dur denotes the partial derivative of the
prediction error at time nT with respect to a prediction

parameter, u., where 1 < r £ p. The energy error

minimization implies solving
lgrad E | = 0 . (53)

While this error can be minimized over several different
intervals, the approach presented here minimizes the error
over the interval [0,N-1], which represents a typical
segment, or frame of a sequence.

By substituting Equation 50 into Equation 51, the error

energy can be written in terms of the components of the

prediction parameters, uy and Vi i.e.,
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N-
E = %
n m=0

1 %
{[ s(mT)s (mT)

p
- s(aT) T (up - jvy)s ((m=1)T)
i=1

* p
- s (mT) = (ui + jvi)s((m-i)T)
i=1

p
+ [z (ui + jvi)s((m-i)T)] X

p
[T (ug - juds ((m=0)T} . (54)

Setting the partial derivative of Equation 54 with respect

to u. equal to zero, for 1 £ r £ p, we obtain

N=1

z {-s(mT)s*((m-r)T) - s*(mT)s((m-r)T)
m=0
p %
+ s((m=-r)T)[ % (ui - jvy)s ((m=1)T) ]
i=1
% p
+ 5 ((m=r)T)[ ¢ (ui + jvi)s((m-i)T)] } =0, (55)
i=1
or, upon simplification,
N-1 ¥ #
y  ={ s(mT)s ((m=-r)T) + s((m=r)T)s (mT) }
m=0
p x N=1 %
+ & a; % s((m-r)T)s ((m-1)T)
i=1 m=0
p N-1
+ I ay r s ((m=r)T)s((m-i)T) = 0 , (56)
i=1 m=0




43

again 1 £ r £ p. This gives a system of p linear equations
and p unknown coefficients.
Equation 56 can be further simplified by defining the
short-term complex autocorrelation function as
N-1

R(r,i) = = s((m-r)T)s ((m=1)T) . (57)
m=0

Equation 56 then simplifies to

* P % *
-R(0,r) - R (0,r) + x [aiR(r,i) + a,R (ryi)] = 0. (58)
i=1
Repeating the above procedure for the partial derivative of
Equation 54 with respect to Viey we find
¥ *
(59)

¥ P
jR(O,r) = jR (0,r) + T
i=1

Combining Equations 58 and 59 into Equation 53, we see that

R(O,r) = % aR(rd), 1<&r<p. (60)
i=1

Equation 60, of course, 1is Kknown as the Yule-Walker

equation [20] which we see holds true for complex predictor

coefficients. This technique of determining the LPC

parameters is commonly called the covariance method [191,

though it really is just the 1least-squares solution to a

system identification problem [26].
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Equation 60 can be written in matrix notation as shown

below for the case of p = 2,

R(C0,1) R*(1,1) R(1,2) a,
- |, s : (61)
R(0,2) R (2,1) R'(2,2) a,
Noting that R (i,j) = R(j,i), and R (i,i) = R(i,i), we
obtain
R(0,1) R(1,1) R (1,2) a
= . (62)
R(0,2) R(1,2) R(2,2) a,

The square matrix in Equation 62, being Hermitian [33] but
not Toeplitz [34], has properties which allow its inversion
to be performed efficiently [35]. While neither
computational efficiency nor stability considerations will
be discussed here in great detail, two popular variations to
Equation 62 will be presented, the autocorrelation method
and the Burg algorithm. The autocorrelation method [28-30]
guarantees stability of the 1linear predictor. The Burg
algorithm [31] guarantees stability and is also numerically
robust.

The short-term autocorrelation function can be computed
only over the N point interval, assuming the sequence is
zero outside the interval; in this case it is given by

N-1

R(i) = s(nT)s ((m-1)T) , 1<i<p. (63)
m=1i

Equation 60 then simplifies to
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R(r) = 'g aiR*(i-r) , 1<r<p. (64)
i=1

This is known as the autocorrelation method, and while it
departs from the least squares solution, it has the property
of producing a linear predictor whose poles are always
stable. In certain applications like speech coding, this is
of primary importance. Further, Durbin showed that this
formulation can be computed in an efficient recursive
manner [35], since the square matrix in Equation 62 1is now
both Hermitian and Toeplitz. Also, as a consequence of the
Durbin recursion, Itakura [30] showed that this computation
can be performed in a lattice-type structure, where
predictor parameters are replaced by reflection

coefficients, computed as

N-1 %
e (m) b (m=1)
m=0 (i-1) (1-1)
ki = .
N-1 2 N-=1 2 (1/2)
{ % le (m)) | z l(b (m=1))1 1}
m=0 (i-1) m=0 (i=1)

(65)

The form of this 1lattice filter 1is shown in Figure 15.
Makhoul has shown that Equation 65 is only a special case of
a generalized lattice structure [29]. Lattice methods are

very powerful tools, since they are numerically

well-conditioned [20], and computationally efficient [10].
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The reflection coefficients of a lattice filter can be
converted to predictor coefficients wusing the Durbin

recursion [20,35]:

35,1 = K4 (66)
* o
%i,5 % fi-1,3 " kjaj_1,i-3 ° 1§ Li-1., (67)
This procedure is performed recursively for

i=1, 2, eeey Dy and when i = p, the final predictor
coefficients are obtained.

Finally, Burg theorized that by choosing a different
constraint, other than the usual mean-squared error norm,
the reflection coefficients could be determined directly
from the signals within the 1lattice filter [31]. By
minimizing the sum of forward and backward error signals in
the lattice, ei(m) and bi(m), the reflection coefficients

can be calculated as

2 r e (m) b (m=1)
m=0 (i-1) (i-1)
k. = ] (68)
1 N-1 2 N-1 2
{ = lc(e (m))] + T |(b (m=1))1 1}
m=0 (i-1) m=0 (i-1)

Note that for these formulations, involving different
reflection coefficients constrains, the complex reflection
coefficients always have a magnitude less than unity. This
is a necessary and sufficient condition for the stability of

the linear predictor [9,20]. Also, these complex reflection

coefficients can be computed and converted to predictor
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coefficients while performing only scalar divisions. It
should be emphasized that these formulations produce
coefficients that are different from the 1least-squares
solution. Once again, it is not the attempt here to advocate
one particular technique, but rather to demonstrate the
advantages of using a complex predictor over a real

predictor.

Derivation of the Step-Down Procedure

The Durbin recursion that converts predictor parameters
to reflection coefficients 1is also called the step-up
procedure [20]. A similar procedure for converting
predictor parameters to reflection coefficients, called the
step-down procedure, exists in the real case [20], and here
is extended to the complex case.

The z-transform of the forward prediction error at

stage i of the lattice of Figure 15 can be written as

Ei(z) = Ai(z)S(z) ) (69)
where
i
Aj(z) = 1 - j§1 a;z™? (70)
and
S(z) = Z{s(mT)} . (71)

Substituting the recursion relations of Equations 66 and 67

we obtain

into Equation 70, where a., = a; s,
J 1,
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i=1 . .
- -J _ -1
Ai(z) =1 - j§1 3y, 52 kiz (72
i-1 * —J _1
= 1 - j§1 [31-1,j - ki ai_1’i_j] 4 - 1’12
s i-1 3
. i-1 .
_ _ -1 - 1-]
= A;_4(2) = k3277 [ 1 j§1 3j.1,i-j 2 ]
- -i7
A;(2) = Ay _4(2) - kyz " Ay _(1/2) (73)
where 11_1(1/2) is defined as
— i"1 * . .
- i-]

J
From Equation 69, the prediction error can be written as

E(2) = A;_1(2)8(2) - k2™t B, _(1/2)8(2) . (75)

i
Note that the first term is essentially the error at
stage i-1.

Let the backward prediction error be defined from the

second term of Equation 75, that is,

B, (2) z~1 R, (1/2)5(2) (76)

*
; Giyie1-]

=11 - 1*1-3 1 5¢2) . (77)

n M

J

The inverse z-transform of Equation 77 yields, after an

index change,
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%
: 3 ;3 s(m+j-1) . (78)

nM™e

bi(m) = s(m-1i) -

J

The backward prediction error is seen as the error in
predicting the sample at time m-i from all future samples.

The z-transform of the backward prediction error at

stage i-1 can be written as

By () = 271 X (1/2)8(2) (79)
- i+ L
=z [ 1- 2 a4 ;27 18(2) . (80)
j=1 =)

The backward prediction error at this stage is then given as

i-1 *
b;_q(m) = s(m-i+1) - j§1 3.1, 3 s{m+j-i+1) . (81)
The z-transform of the forward error, using

Equations 73 and 75, can be written as
_ -1 -i+1 <
Ei(Z) = Ei_1(z) - k;z [ z Ai_1(1/z)S(z)] . (82)
Using Equation 79, the prediction error is found from the
inverse z=-transform to be

e;(m) = e;_¢(m) = kyb, 4(m-1) . (83)

Thus, the lattice can be viewed as the combination of a
forward and backward predictor.

An expression for the backward prediction error similar

to Equation 83 can be found by combining Equations 73 and 76
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as follows:

B,(z) = z 1l B;_,(1/2) - kjz*A,_,(2) 1 5(z2)

= 272V E_(1/2)8(2) - kjA_4(2)8(2)

-1 *
z7 By _1(2) - kyA;_4(2)8(z) .

After substituting Equation 69 into Equation 84, the inverse

z-transform will yield

b (m) = by_y(m-1) = kie;_4(m) . (84)

Equations 83 and 84, of course, allow the reflection
coefficients to be computed in the 1lattice filter
formulation of Figure 15 via Equation 65 or 68.

The step-down procedure can now be obtained wusing the
relationships between the forward and backward predictors,
and one additional relationship for 11(1/2) that follows

from Equation 73, namely,

R e % i

A, (1/2) = A;_4(1/2) - kyz7A,_4(2) . (85)
Next, substituting Equation 85 into Equation 73, we obtain

A(z) = Ap_(2) 1 = Lyl %1 - k27 R C172) (86)

Solving for Ai-1(2)’ we find that

A _4(2) = [A(2) - kyz B (/100 - Ikgl%0, (BT
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where ki £ 1,
Substituting Equations 70 and T4 into Equation 87

gives the derived result,

i-1 j i i i
- . .z Y = {1 - . .z .z
1 j§1 a1_1’Jz { jE1 al,Jz + klz X
(- 7 &t 41331701 - |k, |°]
521 i,i+1-3% i .

(88)

Equation 88 is solved recursively by equating polynomial
coefficients for i = p, p-1, «ee, 1 to obtain a set of
reflection coefficients from a set of predictor
coefficients. The computational procedure can be summed
up [20] as follows:

*

21,5 * K3®1,1-5
a.

with k; = a; (89)

fO!" i = p,p-1,.o.,1, and j = 0,1,000,1-1’

where a; g = 1 for 1 X i £ p and we shall be guaranteed that
b
lkil < 1, The 1lattice filter realization is equivalent to

the FIR realization, from a digital filtering standpoint.

Phase Invariance of the Analytic Signal-Based
Linear Predictor

The phase invariance property of analytic signals which

has been developed in the previous chapters can be extended

to the case of linear prediction. Let the phase rotated
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analytic sequence, sap(nT), be defined as the sampled data
sequence corresponding to the analog signal of Equation 33.
The short-term autocorrelation function, computed from
Equation 57, is found to be

N-1 3§D -3D
Rap(r,i) = & s,((m-r)T)e s ((m-1)T)

[}
o

N-1 .
= Z sa((m-r)T)sa((m-i)T)
m=0

R (ryi) . (90)

The short-term autocorrelation function for analytic signals
is thus independent of the phase angle, 0.

This result is not altogether unexpected, as linear
predictive coding (LPC), by design, is blind to the phase of
the signal. The LPC parameters determine an FIR filter
which, when stable, 1is constrained to be of minimum
phase [9,10], regardless of whether or not the sequence
itself is of minimum phase. The autocorrelation function and
the power spectral density are a Fourier transform pair, and
the power spectral density 1is related to the squared-
magnitude of the Fourier transform. It 1is expected, then,
that the autocorrelation should be independent of the phase
of the signal, since the magnitude spectrum is also
independent of this phase.

Since the short-term autocorrelation function is

computed over a finite interval, this function for a real

signal can easily be shown not to be phase invariant,
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Starting with Equation 36, the short-term autocorrelation

function for the real signal can be derived as follows:

jp -30 &
(172) [ e s,(nT) + e sa(nT) | - (91)

sp(nT)

N-1

- * '3
R(r,i) sp((m-r)T)sp((m-l)T)

m=0
N-1  jO -i0
= (1/74) [e sa((m-r)T) + e sa((m-r)T)] X

'jﬂ % jﬂ
[e sa((m-i)T) + e sa((m-i)T)]

= (/1) T [s,((m-r)T)s,((m-1)T)

+ 52 ((m=r)T)s, ((m-1)T)

23D
+ e sa((m-r)T)sa((m-i)T)

=230 *
+ e sa((m-r)T)sa(m-i)T) . (92)

Due to the windowing process, a dependence on the phase
angle, O, exists., In the 1limit, as N (effectively the
window width) goes to infinity, these phase effects average
out. However, with periodic signals, and finite N, a very
definite phase dependence can develop. This is most easily

viewed by considering sinewaves embedded in noise, and will

be included at the end of this chapter.
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Downsampling the Analytic Signal

While on one hand, 1linear predictive coding can be
viewed as a system identification algorithm, it is also
essential to view it as a spectral flattening algorithm.
The spectrum of the error signal that is produced at each
stage of the lattice filter becomes successively more flat
(or white) wuntil the prediction error eventually becomes a
white noise signal [19,36]. As such, the linear predictor
tends to model any artifacts in the spectrum, attempting to
produce a residual with a white spectrum.

The power spectrum of the discrete analytic signal,
like its analog counterpart, 1is one-sided over the range
- to + , and hence half the bandwidth of the original real
signal, This implies +that the analytic signal can be
downsampled to half the original sampling rate of the real
signal without any 1loss of information. In fact, this is
vital to prevent the 1linear predictor from modeling any
artifacts of the signal in the dead band, and to assure that
any additive white noise appearing in the real signal will
also be white noise in the complex signal [26]. Further, any
inaccuracies in the generation of the analytic signal via
the Hilbert transform process which may appear in the dead
band will not be modeled. In general, 1linear prediction
performs best when a signal is sampled at or very close to
its Nyquist rate. As the sampling rate 1is 1increased, the

numerical accuracy required in the computations increases,

and the process tends to become more ill-conditioned [20].
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A frame of N points of a real signal is then processed as
(N/2) complex points, hence, the total computational 1load
for the analytic signal 1is comparable to the computation

required for the real signal.

Frequency Estimation of a Sipngle Sinewave

The frequency and phase of a sinewave can be estimated
by performing a linear prediction on the signal, and then
computing the zeroes of the inverse LPC filter polynomial.
In this section, we shall only consider what is termed
"exact order" identification. A sinewave 1is basically a
one-pole signal, that 1is, its spectrum contains a pole of
zero bandwidth at the frequency of the sinewave; the
conjugate of this pole is also present with a real signal.
As such, it can be exactly modeled by using a real second
order linear predictor. The zeroes of the predictor
polynomial ((A(z)) can be computed using any standard
polynomial rooting routine.

In the analytic case, a single complex parameter, a, or
k1, can be used for prediction, since the complex signal has
only one pole and no conjugate. In this case, the predictor
polynomial would be

2-1

A(z) =1 -k . (93)

1

The zero of this filter is ky, and from Equation 60, is

given by,
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*
ky = R(O,1)/R (1,1) . (9u)

This expression for k1 can be simplified from Equation 57,

j(w1mT + D)
noting that for s(mT) = e ,
N-1 j(w1mT + D) =i(w (m=-1)T + 0)
R(0,1) = £ e e
m=0
jw1T N-1
= e PN (1)
m=0
jw1T
= Ne . (95)
Also,
N-1 j(w;(m=-1T + 0) -j(wy(m=1)T + 9)
R(1,1) = X e €
m=0
= N, (96)

Thus, combining Equations 94, 95, and 96, we find that

k.] = e . (97)

The sinewave, or pole, is estimated exactly, independent of
the data length, N, or sequence phase, 0.

This rather remarkable result is perhaps the most
attractive reason for using analytic signals in spectral
estimation. It is an extreme example of what the phase
invariance property can do for estimation problems. This is

not the case with real signals, as has been well documented

in the 1literature [10,37,38]. The combined effects of the




57

errors occurring with real signals are exhibited as 1line
splitting and frequency bias. The root of the problem lies
in the finite length of the data, and the position of the
window with respect to the signal. While these errors may
not seem significant for an isolated frame of data, the
implications of this phenomena manifest themselves in an
application such as speech coding, where continuous spectral
estimates of the incoming signal are computed.

In Figures 16 and 17, the maximum entropy spectra of
successive six point frames of a single sinewave, whose
frequency 1is 1797 Hz, are computed using the Burg
algorithm [31]. The sampling rate is 8 kHz, and zero mean
Gaussian white noise is added such that the signal-to-noise
ratio 1is 60 dB. Figure 16 contains a plot of the spectra
computed from the LPC parameters of the real sinewave with a
second order real lattice, while Figure 17 contains the
analytic spectra computed using a comparable single order
complex lattice, computed using three (complex) point
frames, Even though the signal 1is periodic, the maximum
entropy spectra tend to fluctuate in the real case, due to
the phase dependence of the estimator. Voiced regions of
speech exhibit short term periodicities that are similar in
nature to this sinewave example [19,39-41]. Generally, over
such a stationary section of speech, the spectrum of the LPC
filter fluctuates in a similar manner, having the effect of

unnaturally modulating a pole frequency and bandwidth which

in actuality is fixed.
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One typical remedy for this problem is to use a model
order much higher than the order of the signal, and use a
large number of data points, allowing the spectral estimator
to offset these effects by "overfitting" the signal [26].
Another remedy is to employ the use of a time domain window
over the signal before computing the autocorrelation values.,
Historically, there was significant motivation to use a time
domain window based on previous experience with fast Fourier
transforms [6,7]. A third remedy is to average the frequency

estimate over many frames of data [8].

While the single sinewave is a special case for the
analytic signal, the resolution achieved by the analytic
signal exceeds that of the real signal even for the case of
multiple sinewaves. In this section, the performance for a
signal consisting of two sinewaves embedded 1in white
Gaussian noise will be investigated. There are several
measures which can be used to demonstrate this improved
resolution. By treating the frequency estimates as a random
variable, the performance can be compared by examining the
dependence of the variances of these random variables on the
frame length and signal-to-noise ratio [42].

Let the real signal to be estimated, s(nT), be defined

as the sum of two cosinewaves plus additive noise,

s(nT) = cos(w1nT + 01) + cos(w2nT + 62) + Gv(nT) . (98)
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The sequence v(nT) represents additive, zero mean, white
Gaussian noise whose variance is unity. The signal-to-noise

ratio is given by
SNR = 1/(G2) , (99)

assuming independent sinewaves. Since this is actually a
two-pole signal, a fourth order real estimator and a second
order complex estimator will be wused. Once again, the
zeroes of the LPC polynomial will be computed and the
frequency estimates will be taken as the values of the =zero
frequencies that 1lie in the range 0 < f £ (1/2T). In
Figure 18, a histogram of these estimates obtained using the
Burg algorithm 1is plotted for 100 successive frames of the
real signal, while in Figure 19, a histogram is plotted for
the analytic signal. The frequencies of the sinewaves are
367 Hz and 859 Hz, while the phases are all set to zero.
The frame length is 20 points for the real signal, 10
complex points for the analytic signal. The signal-to-noise
ratio is 40 dB. The real estimator produces estimates which
have a wider distribution, indicating a 1larger variance.
Observe the rather large probability of a "miss" with the
real estimator, that is, a frequency estimate of 0 Hz.

Since these estimators are generally unbiased [26], the
variance of the frequency estimate of the lower frequency

sinewave can be approximated by

var(f) = % (f - f1)2 , (100)
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where f‘1 = 367 Hz. 1In Figures 20-22, the performance of the
real LPC analyzer 1is compared to the performance of the
analytic LPC analyzer. The logarithm of the variance around
f1 is plotted versus the frame length for signal-to-noise
ratios of 20 dB, 40 dB, and 60 dB, respectively. This
variance is computed by finding the frequency of the zero of
the LPC estimator which 1is <closest to f1. In low
signal-to-noise environments, the LPC estimator tends to
miss this frequency entirely, i.e., detect only one of the
two sinewaves. In this case, the estimator usually produces
a zero at DC for the lower frequency. Thus, in practice,
there is an upper limit on the variance, in which case the
LPC estimator misses the frequency most of the time. The
numerical value of this wupper 1limit for the examples
presented here is approximately 5.0 dB. When the variance is
at or above this value, the LPC estimator is missing the
frequency most of the time.

In Figure 20, for a low signal-to-noise ratio, it can
be observed that the real estimator does not significantly
improve with an increased frame length, while the analytic
estimator does 1indeed improve. The variance of a robust
estimator should decrease asymptotically with an increasing
frame length [43], as a 1longer frame length allows the
additive noise that appears in the frame ¢to be more
uncorrelated with the signal. At the higher signal-to-noise

ratio of 60 dB in Figure 22, there 1is a decrease in the

variance in both estimators as the frame length increases.
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In Figures 23-25, the variance 1is plotted versus
signal-to-noise ratio for frame lengths of
20, 40, and 80 points, respectively. Observe the threshold
effect that this algorithm experiences. In Figure 23, for
instance, this threshold was found to be 45 dB for the real
signal, and 20 dB for the analytic signal. Here, the effect
of the phase invariance is seen to drastically improve the
performance of the estimator at low signal-to-noise ratios.

In Figures 26-28, the variance of the estimate of f1 is
again plotted versus the phase ﬂ1, while 02 is zero. A
frame length of 20 points is used, and the signal-to-noise
ratio varies from 20 to 60 dB. The performance is
relatively wuniform, as the estimators are relatively
insensitive to phase differences between the two sinewaves,

To ensure that these results are not just a function of
the estimator, this sequence of plots is repeated for the
autocorrelation method of Equation 64. 1In this case, the
sinewaves are more closely spaced, at frequencies of 414 Hz
and 671 Hz. Figures 29-31 contain comparative plots of the
variance versus frame length for both real and analytic
estimators, parallel to Figures 20-22, It should be
emphasized that the improvement in performance gained by
using an analytic signal 1is really independent of the
particular algorithm; it is more a byproduct of the finite
data length constraints.

Another reason for the superior performance of the

analytic signal, as observed by Jackson [44], is related to
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the Hilbert transform process. A sinewave goes through
various zero crossings, which in the presence of additive
noise, provide the correlation function with little
information, since the "localized" signal-to-noise ratio at
a zero crossing 1is very small. The analytic signal,
however, being a complex exponential, always has a magnitude
of one. Thus, by virtue of the imaginary-part of the
analytic signal being the quadrature of its real part, the
amplitude of the signal always manages to stay well above
the noise. This same concept has been used in applications
ranging from antenna arrays to directional sensor arrays,

where spatially diverse receivers are arranged to always

detect a strong component of the signal.
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CHAPTER VI
LEAST SQUARES MULTI-PULSE LINEAR PREDICTIVE CODING

Introduction

A major source of error in frame-based spectreal
estimators as applied to speech signals typically arises
when the signal does not quite correspond to the model that
is assumed for the signal. An accurate model for the
production of voiced sounds [19,39-41] involves driving an
all-pole filter with a pulse-like glottal waveform whose
spectrum can be represented as an all-zero function.,
Typical LPC analysis algorithms have the capability of
modeling not only the all-pole nature of the vocal tract,
but also some of the glottal waveform [26], 1leaving a
prediction residual which 1is pulse-like 1in nature. By
driving this LPC filter with a train of ideal impulses
spaced at a pitch period that is approximately the same as
the pitch period found in the residual, natural sounding
voiced speech can be generated. Alternately, by driving this
filter with a white noise source, unvoiced speech can be
produced.

The LPC analysis normally performed, however, assumes
that the driving function of the vocal tract model was
actually a white noise signal, uncorrelated with the speech
signal. This inaccuracy in the model leads to errors in the

estimated parameters. One common complaint of LPC estimation

is that the pole bandwidths produced by the LPC all-pole
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model are consistently too narrow, or overspecified, during
voiced segments of speech [45,46]. Unvoiced utterances are
usually modeled very well by the noise-excited LPC filter.
One measure of this is the fact that the higher order
reflection coefficients rapidly approach zZero during
unvoiced passages, allowing a reduction of the model order
without a perceptible degradation in the quality of the
synthetic speech [19,21]. Another measure is the structure
of the residual itself. Voiced utterances, and other sounds
that cannot be <classified as either voiced or unvoiced,
generally result in a much more complicated residual
containing a very detailed harmonic structure. The residual
associated with an unvoiced utterance, on the other hand,
resembles a white noise sequence. In this chapter, a joint
process estimation algorithm is presented which attempts to
simultaneously estimate the smooth spectral structure of the
speech signal and its pulse-like driving function. Atal [47]
and Lee [48] have considered variations of this problem,
basically incorporating a priori knowledge of the driving
function obtained from alternate estimation procedures.
Least Squares Identification of Speech Using a Non-Ideal
Driving Function

Given the very basic speech production model of voiced

sounds as a linear filter with some quasi-periodic input

sequence, the system can be represented by the following

difference equation:




65

s(n) = kz: a, s(n-k) + g bjus(n), (101)
= J=1

where -p £ n £ N-1, Here, the sampling rate, T, will be
taken as unity, and the frame length is N+p points. Also,
to guarantee that a wunique solution for the parameters
exists, (p+q) < (N+p). The speech signal, ;(n), is thus the
output of an all-pole system (or 1linear predictor) whose
input is a sum of gq arbitrary sequences. The sequences
uj(n) can represent any type of function from an ideal
impulse to a white noise sequence. It is assumed here that
the input speech signal, s(n), and the driving functions,
uj(n), are zero mean. If in actuality they are not, then
the formulations presented below can be easily modified to
include a constant term to account for any fixed bias that
may appear due to the presence of a non-zero mean input.

Let the parameter vectors (a and b), the signal matrix

(U), and the signal vector (Z) take on the following form:

a=lajay...ap 1, B=0byb, ... 17,  (102)
Ll=[_s=ﬂu], (103)
where
[ s(=1) s(-2) ... s(-p) ]
S(O) S(-1) o e 0 S(-p+1)
=5 = . . . . y (10"‘)
| s(N-2) S(N=3) ... s(N=p=1)
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u1(0) u2(0) eee u_(0)
u () us(h) ud(1)
u, = . ; . q , (105)
U 1) up(N=1) e u(Re1)
and
7 = s(0) s(1) ... s(N=1) 1T, (106)

Note that U is a N x (p+g) matrix, while Z is - a
N-dimensional vector. Also, in the following discussion, a
frame of N+p samples of the speech signal is being
considered as the measurements, or frame, of the signal.

The least squares estimates of the parameter vectors a

and b can be found [26] by noting that

A- _'.._T

Z—![alb]o (107)
Let the error in prediction be defined as

N-1

[ s(n) - s(n) 12, (108)

2]
[}

z

n=0

= [

ey

-71T iz -71. (109)

N

Upon taking the derivative of E with respect to each
parameter, or, performing the entire operation in vector
form, by differentiating E with respect to the vector
[ 2! bl, (and setting the derivatives equal to zero) the

least squares estimates [26] are found to be

a _
[ —-- ] - (uTw-TuT 7 . (110)
b
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The product uTg, a real symmetric matrix, can be partitioned

to give

:
[]

uTy = | ceemtoeee ) (111)
]
!

Here Bs is a pxp correlation matrix of the signal, whose

elements are given by

_ T
Ry = Ug Ug
= [sij , (112)
where
N=1
Sjj = nfo s(n-i)s(n=-3) ,

and 1 < i < pand 1< j < p, while Bu is a qxq correlation

matrix of the input, that is,

T
R, = Qu !u
= [rij] , (113)
where
N-1
.. = 4 . .
ri; o ul(n)uJ(n) ,

and 1 £ i L gand 1 £ j < q.
The matrix D, most easily viewed as a matrix containing
information about the crosscorrelation of the input with the

delayed output, is given by

D =

=

U
u

o nA

(114)

i
~—

-]

ij” ?
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where
N=1
d.. = £ . -1
i3 o uJ(n)s(n i), (115)
and 1 £i<p and 1< j £ q. The vector QTE can be
decomposed into two parts, that is,
vz - ¥ 1 a7, (116)
where
_ N-1 N-1
r=[ £ s(n)s(n=-1) ... £ s(n)s(n-p) 1], (117)
n=0 n=0
and
_ N-1 N-1
d=1[ I s(n)u1(n) eee 2 s(n)u_(n) 1 . (118)
n=0 n=0 q

The vector d contains information about the crosscorrelation
of the input with the output, while the vector T contains
the p correlation values of the signal s(n).

Thus, by making the appropriate substitutions from

above, Equation 110 can be rewritten as:

BS E D a r
]
S P — = | ——= |,
T | _ _ (119)
o’ iR, b da |
or
Raa + Db =r , (120)
and
P2 +RDb=2d. (121)
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Assuming Bu is not singular, this partitioned system can be
solved for the least squares estimate of the parameter
vector a. Rewriting Equation 121 and solving for E, we see

that

and (122)
b=R""13-p"3].

Substituting Equation 122 into Equation 120, we find that

Ria + D R'd -DTE1 =7,
or,
(R, - D R

this gives

u u

a= (B -DR,~DNI7N (¥ - DR

, 41 . (123)

Observe that both inverses which appear in Equation 123 can
be singular. Also, more importantly, the linear predictor
portion of Equation 101 is not guaranteed to be stable.

From ;, the vector b can be obtained by substituting

Equation 123 into Equation 122, that is,

ol -1 e T =15Tq=1;= =13
b=R~ {d-DIR,-DR,~DI'[r-DR"d]I} .
(124)
The vector b is a weighting function 1in that it assigns
weights to the various components of the driving function in

Equation 101,

If both the D Bu'1QT and D Bu'1a terms were zero, the

predictor parameters, E, obtained from Equation 123 would be
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equivalent to the "normal" least squares predictor
coefficients, as Equation 123 reduces to the equivalent of
Equation 60. The normal least squares solution assumes an
input to the system which is white noise, or similarly, a
prediction error which is orthogonal to the signal. If
-1

q=1 R

R, becomes a scalar equal to the reciprocal of the

=57 ana p R -Y4

signal power in the input u(n). The D Bu R,

terms will be zero if the input signal, u(n), is orthogonal
to the speech signal, s(n). A simple case of this is if the
input signal is white noise.

Typically this is not the case with speech signals, and
the parameters determined under this assumption are not the
minimum mean-square error parameters. Only in unvoiced
regions of speech 1is this assumption valid. On the other
hand, given access to just the output speech signal, and no
information about the input excitation signal, these optimal
predictor coefficients cannot be determined in a
straightforward manner. Over a finite length of data, it is
difficult to satisfy the requirement that the input signal
is orthogonal to the output signal. For a speech signal,
this results from the fact that the actual input signal to
the vocal tract is not a white noise signal. For other
estimation problems, such as signals embedded in additive
noise, the <correlation of the noise with the signal cannot
be exactly zero over a finite 1length of data. As this

correlation fluctuates from frame to frame, so will the

parameters. Hence, it is not surprising that in practice
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the estimates obtained show unusual behavior for even simple
signals in additive noise.

The parameters computed from Equation 123 differ from
the true 1least mean-square error parameters in that any
information about the driving function has been removed from
the correlation computation. The normal least squares
approach produces parameters which will fluctuate as the
signal within the analysis frame changes. In speech
analysis, for instance, this translates to a certain
dependence of the parameters upon pitch. These parameters
will change as the number or shape of the glottal pulses
within the frame changes, even though the vocal tract itself
may be stationary. This produces an error which is pitch
dependent, since for very low pitches, the magnitude of the
) Bu’1DT term will be small compared to higher pitched
cases. For applications such as speech coding and speech
recognition, it is wuseful to have a set of predictor

parameters which are decoupled from the input driving

function.
A Sub-Optimal Algorithm for Joint Process Estimation

A good approximation to the speech production model of
voiced sounds is a time-varying linear filter driven by a
pulse-train, as stated above. In low bit rate coding of
speech, this pulse train is assumed to consist of ideal
impulses spaced a fixed distance apart in time by the pitch

period. A very general representation of this type of
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structure can be defined as

q
aks(n-k) + .Sinc(w(n—tj)) . (125)

( ) -
s\n = z
- J-‘I \]

k=1
The merit in this representation is that the bandlimited
excitation pulses are not constrained to occur at sample
instants. If a bandlimited pulse does occur at a sample
instant, its response, being of the form Sinc(w(n-t)), has
only one non-zero value at n = t. If this pulse occurs in
between two sample points, it has an infinite number of
non-zero values, and has the shape of the Sinc function.
Ideally, Equation 125 <could be solved to find the
optimal predictor parameters, pulse weights, and pulse
positions. However, this is a nonlinear optimization
problem which is computationally intensive, with no
guarantee of a unique solution. If these pulses are
constrained to exist only at sample points, Equation 125 can

be rewritten as

q
aks(n-k) + _2 bjd(n-tj) . (126)

~ p
s(n) = L
=1 J=1

k
Observe also that the excitation pulses, being impulses, are
orthogonal to one another. These pulses now represent the
driving function of Equation 101, where uj(n) = d(n-tj).

In this case, the correlation matrix, Bu’ in

Equation 113, simplifies to the identity matrix, I, since
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the only non-zero terms are unity valued diagonal elements.

Equation 123 can now be simplified to
- _ T _1 o —
a =[R, -DD ] [r - Dd] . (127)

Observe that the optimal predictor parameters are computed
by removing the contributions to the autocorrelation
function due to samples located at the pulse positions. It
is equivalent to computing the correlation function only
during instances when the glottis is closed, and there is no
input to the vocal tract. Still, however, the least squares
optimization problem remains a nonlinear one, because the
pulse locations are not known a priori. In fact, for this
reason, in speech coding, the problem has been conveniently
dichotomized into two separate problems: pitch detection and
coefficient computation.

The sound pressure wave which is recorded through a
microphone as a speech signal in reality is an airflow which
undergoes turbulence as it travels through the vocal tract
region [49). While the model of voiced speech production as
an all-pole system with a periodic or quasi-periodic input
approximates the vocal tract as a concatenation of lossless
tubes [19], the vocal tract is more accurately modeled as a
concatenation of lossy tubes, due to frictional forces
acting along the vocal tract walls. The airflow through the
vocal tract undergoes turbulence due in part to the velocity

gradient created by these frictional forces 1in the vocal

tract walls. It is common for turbulent systems to exhibit
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a phenomena called strange attraction, where the system will
exist in one metastable state for one period of time, then
suddenly jump to another metastable state for another time
interval, and continue doing so in an almost random
fashion [50]. 1In some systems, like speech production, this
exhibits itself as a process known as period doubling. The
system begins with a certain periodic disturbance, and then
slips into a state where the time scale of these
fluctuations increases, giving rise to subharmonic
disturbances.

In the speech signal, this phenomena tends to occur at
the beginning or end of a voiced segment. At the onset of a
voiced segment, where the speech waveform is changing from
either silence or unvoiced to voiced, the pulses are
irregularly spaced but converging towards periodicity. In
Figure 32, a typical speech signal 1is shown with its
residual below. Note that the residual "excitation" pulses
can mark for wus the pitch periods. It is not unusual for
the perceived pitch period to change dramatically throughout
a voiced segment. Extreme cases include words at the end of
a sentence, where certain articulation patterns tend to
produce a pitch period which can drastically increase, as
shown in Figure 33 (Again the residual is given below the
speech waveform.).

Another common phenomena peculiar to the speech signal

is termed secondary excitation. The residual associated with

a voiced segment exhibits very sharp pulses that correspond
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to points in the original waveform where the signal is not
linearly predictable. During such voiced segments, it is
common for a secondary pulse to occur between two pitch
pulses. After the main excitation that occurs at the
glottal closure, there 1is a secondary excitation that can
occur not only at glottal opening and during the open phase,
but also after closure [18]. 1In Figure 34, a typical speech
waveform and residual (given below) in which secondary
excitation occurs is shown. The pitch detection process is
particularly sensitive to these phenomena, and a large class
of pitch detection schemes fail to properly track pitch
through these kinds of waveforms [22]. In all of these
cases, it becomes evident that it is desirable to discard
any notion of pitch or periodicity in favor of a more
flexible excitation function consisting of multiple pulses.
The model in Equation 126 <can provide this multiple
pulse excitation as 1long as the pulse locations can be
determined. To avoid the nonlinear optimization problem, a
suboptimal approach can be employed in which the pulses are
located in a recursive fashion. This is most
straightforwardly performed by searching all possible pulse
locations for the pulse position and amplitude that minimize
the error between the model and the actual speech signal.
After this pulse is located, its position remains fixed, and
all other positions are searched for the next pulse, which
is again determined on a squared error basis. This process

is repeated until all pulses in the frame are located.
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This pulse 1location process can be constrained in
several different manners., A little thought dictates that
some notion of pitch should be maintained, that is, the
pulses should be located somewhat synchronous to a pitch
period. If the pulses are constrained to minimize the error
over an entire segment of speech, they 2ll might be
allocated in one particular area, and not distributed
throughout the segment. For this reason, a pragmatic
tradeoff is to allocate a fixed number of pulses per frame,
the same frame used to compute the LPC coefficients.,

The number of pulses 1located in this frame should
ideally depend upon the pitch period. Since the highest
pitch normally found in human speech 1is approximately
500 Hz, it is possible to have pitch pulses spaced at a
minimum of 2 ms intervals. Using a sampling rate of 8 kHz,
this is equivalent to a pitch distance of 16 samples. The
spectrum of the speech signal is slowly varying with time,
such that over a frame of 160 samples (20 ms) the signal
appears pseudo-stationary. Thus, by 1locating 16 pulses
every 160 samples, the multiple pulse excitation should
produce at least two pulses for every pitch period of the
highest possible pitch frequency. 1In this manner, any type
of pitched excitation should be reasonably modeled, yet no
explicit pitch estimate is required.

The least squares multi-pulse linear predictive coding

(LSMPLPC) algorithm, where Q pulses are located in every N

point frame of a speech signal, can be summarized as follows




T7

(after computing R_ and F from the speech data):

S

1. Set q = 0, and compute a from Equation 127.

2. Let q=q+ 1, tq = 0, and compute D, R and d.

u’
3. Compute a from Equation 123 and
b from Equation 124,
4, Synthesize ;(n) and compute the mean-squared
error over the frame, that is,
N=-1 2

EC(t,q) = = ( s(n) - s(n) ) .
n=0

5. Let tg =ty +1, if(t, < N),

compute D, R , and E, and go to step 3.

a?
6. Choose the position, k, for which E(tq,q) is a
minimum, and let tq = k.
7. Retaining the q excitation positions,
if (g < Q), go to step 2.
8. Using the final parameter vectors, a and B,
along with the Q excitation positions, {tj},
synthesize the speech estimates, ;(n),

for n = 0, ..., N-1 from Equation 126, and

repeat for the next N samples of the signal.

The pulse locations are determined by selecting the position

that minimizes the error between the model and the signal.

A pulse is then installed at that position, and the search
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procedure for the next pulse is initiated. Throughout the
process, the predictor parameters and pulse amplitudes are
continually optimized. While this algorithm is only
suboptimal, it presents a systematic technique for
generating the driving function for this particular model.
In this case, we have used ideal impulse functions as our
excitation format.

This algorithm 1is quite computationally intensive,
generally running approximately 10,000 times real-time on a
general purpose machine. Experimental results indicate that
the 1interaction between the ideal impulse functions and the
predictor parameters 1is relatively small. The parameter
optimization technique does not significantly alter the
values of the LPC coefficients, thereby producing a pulse
train very close in structure to that which would have been
generated assuming no interaction between the driving
function and the LPC estimation.

In Figure 35, a sample speech segment and its
prediction residual (below) are shown for a female speaker
whose pitch period is 3.6 ms. A relatively high-pitched
speaker 1is chosen 1in order to maximize the effect of the
non-ideal driving function. In Figure 36, the impulse
responses of both the LPC and LSMPLPC filters are shown. In
Figure 37, the spectrum implied by the predictor parameters
computed from the above algorithm 1is compared to the

spectrum produced by the parameters computed at step 1 (the

conventional LPC covariance method parameters) of the
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algorithm. In Figures 38 thru 40, the case of a male
speaker whose pitch period is 5.1 ms is presented. In both
the female and male examples, we have used N = 160,
(1/T) = 8 kHz, p = 16, and Q = 16. The LPC spectra and the
LSMPLPC sptectra are very close, In fact, the actual
differences between the LPC parameters and the LSMPLPC
impulse response are extremely small. This implies that the
pulse locations will not be greatly affected by the
differences in parameters. The slight differences that
exist in these spectra, as well as the slight differences in
the corresponding LPC parameters, certainly are not
significant when normal parameter coding techniques are
applied. This is not to say that there is no interaction
between the speech excitation signal and its LPC spectrum,
but rather that the ideal impulse model is not accurate
enough to remove these effects.

Of course, as more pulses are added, the effects of the
pulsed excitation on the parameter calculation will
increase, However, the discussion presented above is
actually an introduction to the speech coding application
discussed in detail in Chapter VII. 1In order to achieve a
reasonable data compression of the speech signal, the number
of pulses must be kept to the minimum required for an
acceptable synthetic speech quality. After discovering that
the interaction between coefficients and pulses is small
when only a few excitation pulses are used, this algorithm

can be extensively simplified.
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Multi-Pulse Linear Predictive Coding

Atal introduced multi-pulse 1linear predictive coding
(MPLPC) [18] as an analysis-by-synthesis technique to
construct the multiple pulse excitation function. As such,
it 1is a suboptimal approach to a least squares optimization
problem. Since it requires no voiced/unvoiced decision, or
pitch detection, it 1is an attractive medium rate speech
coding algorithm. However, the algorithm as detailed above
is not quite complete. A very essential part of this
algorithm involves the use of perceptual weighting [18].

All data compression algorithms for speech will
generate some errors. In order to produce the most
natural-sounding synthetic speech, it is desirable to force
these errors to occur in regions of the spectrum that are
tolerable to the human ear, specifically, in the vicinity of
the formant frequencies. The mean-square error criterion
typically employed in speech coding systems is not the best
metric for human perception, but a convenient one for
computational reasons. The performance of MPLPC is
disappointing without some perceptual weighting, because a
large number of pulses are required to produce good quality
speech. By de-emphasizing the error spectrum in the vicinity
of a formant frequency, a subjectively meaningful measure of
the difference between the synthetic speech and the original
speech can be produced [51-55], Since the pulse location

process 1is essentially an analysis-by-synthesis technique,

if it is performed on the perceptually weighted speech, then
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the errors produced by the pulses will be masked to the
extent that our model of masking 1is correct. The errors
produced by the inaccuracies of the pulsed excitation tend
to appear as noise that is flat in the frequency domain. By
de-emphasizing the speech energy in the regions around the
formants during the pulse location process, the effective
signal-to-noise ratio around a formant will be lower than
that in a region between two formants. When this noise
weighting process is inverted at the synthesizer, the
majority of the spectral errors generated by this algorithm
will fall around a formant, and be subjectively less
perceptible than if they were distributed equally throughout
the spectrum,

Atal [18) has shown that this can be accomplished by
processing the speech through a noise-weighting network
whose transfer function is defined as:

-k k

p -
apz 1701~ % ak(rz) 1 . (128)

P
H(z) = [ 1 - X
= k=1

The noise-weighting constant, r, ranges from zero to one.
In the extreme, where r = 0, the output of the network is
the prediction residual. When r = 1, H(z) = 1, and the
output is the original speech. This network produces
broadened-bandwidth speech, that is, speech where the
bandwidth around formants have been widened [20] by

approximately (1/ T)1n(1/r) Hz. This broadened-bandwidth

speech, then, 1is somewhere between the residual and the
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original speech in its character. Speech with a high Q
spectrum (i.e., narrow bandwidth about a formant), when
passed through this network, losses its resonant structure
in favor of the almost white nature of the prediction
residual. Speech with a low Q spectrum passes through the
network virtually unchanged in appearance, as the change in
the formant bandwidths produced by this network is not
noticeable,

The advantage of this formulation is that it «can be
easily inverted at the synthesizer, and requires no extra
computation. This is not the case in the LSMPLPC algorithm
presented above, because the parameters are computed jointly
with the pulses. The computational savings is perhaps the
most important reason why it is desirable to decouple the
parameter calculation from +the pulse 1location process.
Atal [18] found from subjective listening tests that
r = 0.85, a bandwidth broadening of 413 Hz at 1/T = 8 kHz,
was optimal for MPLPC. Use of this noise-weighting factor
allows the location of 8 pulses every 10 ms to accurately
model the speech signal, as only minimal improvements are
obtained by adding additional pulses [18].

It is important also to recognize the computational
implications this perceptual weighting has upon MPLPC.
Because the parameters are now decoupled from the predictor
coefficients, and the formant bandwidths widened ¢to a

minimum of 413 Hz, the computations required to find the

pulses can be vastly simplified through the use of a
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CHAPTER VII
ANALYTIC MULTI-PULSE LINEAR PREDICTIVE CODING

Introduction

Analytic multi-pulse linear predictive coding (AMPLPC)
is conceptually identical to its real signal equivalent, the
only major difference being the nature of the parameters
themselves. The analytic signal based system uses complex
parameters, that require somewhat more sophisticated
two-dimensional coding algorithms, while MPLPC uses real
parameters that employ well understood coding techniques.
In this chapter, the details of an AMPLPC system are
presented. This encoder compresses speech sampled at 8 kHz
(conventional 64 kbits/s companded PCM) to a rate of

9.6 kbits/s.

Pulse Location for a Complex Signal

The pulse location process can be greatly simplified
through the wuse of a crosscorrelation function. Let the
analytic speech sequence, or any complex sequence, be
denoted by sa(n). Since the LPC analyzer is equivalent to
filtering the original speech with an all-zero FIR filter,
the original speech <can be regenerated by passing the
prediction residual through an all-pole IIR filter that is
the 1inverse of the all-zero FIR filter. Similarly, the

synthetic speech is generated by applying the multi-pulse

driving function to the input of the same IIR filter. When
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the LPC synthesizer with zero initial conditions is excited
with an ideal impulse of unit amplitude, it will produce an
output signal defined as the impulse response, h(n). From
Equation 69, if we drop the stage i notation, cast E(z) as
the input and S(z) as the output of the synthesizer, then we
see that

-1

h(n) = Z {1/A(2)} . (129)
Since h(n) is the output of a stable =all-pole IIR filter,
h(n) is infinite in duration, and asymptotically decays to
zero when all the poles of this filter are strictly inside
the unit circle in the z-plane [19].

The optimal place to locate a pulse would be the
position that produces the minimum error between the actual
speech, sa(n), and the synthetic speech produced by exciting
the synthesizer with this pulse. The pulse amplitude,
defined as G, must also be determined on a minimum
mean-square error basis., The mean-square error 1is the
difference between the speech and this scaled impulse

response, that is,

m
(1]
s ™
(1]
0]

[s,(n) - G h(n-m)1ls.(n) - G h (n-m1 ,  (130)

]
s ™

= [ sa(n)s:(n) - G*Sa(n)h*(n-m)
n

-G s:(n)h(n-m) s GG n(n-mbn¥(n-m) 1 . (131)
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Here, m denotes the position of the pulse in time. The
limits on the summation are not explicitly stated for the
following reason. In theory, these limits should extend for
all time, while in practice, they usually extend over a
single frame of speech. In fact, if assumptions about the
length of the impulse response are made, the range of the
summation can be even smaller, as any errors due to
truncation effects will be minimal.

The optimal amplitude of the pulse can be easily
determined by minimizing Equation 131 with respect to both
the real and imaginary parts of G. Let G be defined as

G=A+ jB . (132)
Setting the derivative of Equation 131 with respect to A
equal to zero gives

® %
[ -sa(n)h (n-m) - sa(n)h(n—m)

’ + 28 h(n-m)h (n-m) 1 = 0 ,
or alternately,
[ -2 Re{sa(n)h*(n-m)}
’ + 28 h(n-mb*(n-m) 1 = 0.  (133)

Solving for A, we obtain

A= Rel T [s (mh"(n-m)1}/{ £ [h(n-mh’ (n-m)1} . (134)
n n

Setting the derivative of Equation 131 with respect to B
equal to zero gives

T [j sa(n)h*(n-m) - J s:(n)h(n-m)
n

+ 2B h(n-m)h*(n-m) l1 =0,
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or,

£ [ -2 In{s (n)h (n-m)}
’ + 2B n(n-m)h’ (n-m) 1 = 0 .
Solving this equation for B gives

B = In{ £ [s,(n)h (n-m)1}/{ & [h(n-m)h’(n-m)1} .  (135)
n n

Combining Equations 134 and 135, we observe that

c=1{zx [sa(n)h*(n-m)]}/{ 5 [hin-m)h (n-m)1} . (136)
n n

The optimal pulse amplitude is identified as Jjust the
crosscorrelation of the impulse response with the signal at
time instant m, divided by the power in the impulse
response.

The mean-square error expression of Equation 131 can be
simplified by substituting G from Equation 136, that is,

E=2x1I sa(n)s:(n) ]

n

- {0 % [sh(nh(n-m)13/0 5 [h(n-mh (n-m11} x
n n

P sa(n)h*(n-m) ]
n

- { £ (s (mh"(n-m11/0 = [h(n-m)n’ (n-m) 11} x
n n

s [ s (n)h(n-m) 1
n a

# 40 2 [s (m)h (n-m11/0 5 [nn-mh*(n-m)11} x
n

o]

{ £ [s;(n)h(n-m)1/[ = [h(n-m)h" (n-m)11} x
n n

| h(n-m)h*(n-m) 1,
n
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=3 Sa(n)s:(n)
n ¥ 2 *
-1z [s_(n)h (nem)]|“/{ £ [h(n-m)h (n-m)J}. (137)
n n

Since this error is always a positive quantity, it will be
minimum when the second term is maximum. The critical part
of the second term is just the magnitude of the
crosscorrelation function. Thus, the optimal pulse location
is the point at which the crosscorrelation function 1is a
maximum, and the optimal amplitude of this pulse is the
value of this crosscorrelation function divided by the power
in the impulse response, as seen from Equation 136.

Once the first pulse is 1located, 1its scaled impulse
response cah be subtracted from the original speech, and the
procedure repeated in an iterative fashion for all the
subsequent excitation pulses. A good approximation to this
procedure is to merely subtract the autocorrelation function
of the impulse response, h(n), from the crosscorrelation
function. Thus, the crosscorrelation function need only be
computed once, thereby reducing the computational
requirements even further.

Perceptual weighting has a very important impact upon
the pulse location procedure. If this algorithm is
performed on the original speech, a large number of pulses
will be required, and the required bit rate will once again
be disappointing. Speech waveforms for both males and

females during voiced intervals can exhibit poles whose

bandwidths are very small. The impulse response, h(n), will
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be very long in these cases, requiring the crosscorrelation
function to be computed over an excessively 1long interval.
Without a reliable crosscorrelation function, the pulse
locations cannot be accurately determined.

It is important to find the pulse 1locations with
resolution down to a sample time, as slight errors in the
pulse locations can produce significant errors in the
harmonics of the excitation signal. For instance, suppose
the optimal pulse locations were equelly spaced at a
distance of 40 samples with an 8 kHz sampling rate. If this
distance was computed to be 39 samples, the first harmonic
of the excitation signal would be in error by 5 Hz, the
second harmonic in error by 10 Hz, and so forth. Errors of
this order are certainly perceptible [55]}, as the synthetic
speech will become hoarse and scratchy if the errors occur
in a random fashion. By increasing the bandwidths of the
poles of the synthesis filter wusing perceptual weighting,
the impulse response length is guaranteed to be very short,
typically 2 ms long, allowing an accurate computation of the
crosscorrelation function.

The broadened-bandwidth speech then 1is desirable not
only for its auditory masking properties, but more
importantly, for the fact that the pulse location process
can be performed accurately with a minimal number of
computations. This computational consideration makes the

system very sensitive to noise~weighting. In the

noise-weighted domain, the crosscorrelation function can be
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accurately computed using a window on the order of 5 ms.
Because of the restriction of a finite analysis interval,
the analytic signal is again an attractive alternative.
However, the difference here is that the time resolution
that can be attained with the analytic signal is half that

of the real signal, due to the downsampling process.

Complex Parameter Coding

While the LPC parameters can be computed in a number of
ways, subjective listening tests performed during this study
indicate that there is no perceptible difference in the
synthetic speech when any of these techniques is used with
MPLPC or AMPLPC. The lattice-based Burg algorithm of
Chapter V is a natural choice to compute LPC parameters
because it is robust and because it always generates a
stable synthesis filter. Since the complex reflection
coefficients are guaranteed to have a magnitude less than or
equal to one, these coefficients can be treated as a
two-dimensional random variable distributed within or on a
unit circle. Reflection coefficients, or some
transformation of reflection coefficients (such as log area
ratios), generally are less sensitive to quantization errors
than predictor parameters [36]. Gallagher [56], among
others, has studied the properties of optimal
multidimensional quantizers, specifically for problems

dealing with the transmission of Fourier transform data. In

this section, the problem of coding reflection coefficients
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shall be considered.

In theory, the optimal way to code a complex reflection
coefficient would be to design an optimal two-dimensional
quantizer. Generally, this involves <collecting statistics
on the probability density function of the coefficient, and
designing a quantizer which produces a minimum quantization
error. Let the density function for a reflection
coefficient, k, be defined as pk(u,v), where k = u + jv. If
oD

D bits are assigned to this coefficient, L = possible

values are allowed for k, each value denoted as kj' The
quantization error can be computed as

L
E= = J plu,v)l(k - kj)|2 du dv ,

j=1 S.

J j
where Sj denotes the quantization region for which all
values of k in S. are quantized to k.. Optimization

J J
techniques [57] can yield the exact regions Sj for a given
distribution, pk(u,v), and the values kj' Alternately, the
S. can be approximately determined by designing the

J
quantizer such that areas of highest probability are most
accurately quantized while areas of lower probability are
allowed greater quantization error. This procedure is
similar to those implemented in [58-601] for a
one-dimensional random variable. However, the drawback with

these approaches is that they are not that simple to

implement, requiring an exhaustive search procedure similar

to that found in vector quantization encoders [60].
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Further, they do not exploit any relationship between
reflection coefficients and the speech signal.

One of the desirable properties of the lattice is that
a measure of both the error in the estimation process and
the order of the signal is obtained at each stage of the
lattice [19]. The energy in the error at stage i in the
lattice decreases by a factor of 1 - Iki|2’ If, for
instance, the signal being analyzed is a harmonic process,
it will at some point in the lattice produce a reflection
coefficient equal ( or in practice very close) to unity in
magnitude. At this point, the analysis should be terminated
since the error energy becomes very small. A single
sinewave analyzed using the analytic signal based lattice
will produce a first coefficient, k1, whose magnitude is
unity.

Further, in speech analysis, typically anywhere from
five to six poles are sufficient to model the smooth
spectral structure of the signal, and any coefficients
beyond this order are usually very small. When the signal
is unvoiced, usually only two or three poles are required.
Since a reflection coefficient in the lattice is a measure
of the correlation between the backward and forward errors,
when a reflection coefficient is small, it 1is not as
sensitive to quantization errors as when it is large. Thus,
since the magnitudes of the reflection coefficients decrease
at each successive stage in the lattice, fewer bits can be

allotted to the higher order coefficients. The quantizer
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can also be structured to weight larger reflection
coefficients more than smaller ones.

The first reflection coefficient in the lattice acts as
an adaptive pre-emphasizer in that it attempts to flatten
the spectrum of the signal. Typically, the distribution of
this coefficient is skewed, as will be seen presently.
During voiced segments, the value of k1 from Equation 68
tends to have a value around 0.6 + 0.6j, implying a zero at
500 Hz in the spectrum. During unvoiced segments, this same
coefficient tends to take a value around -0.3 - 0.3j. 1In
order to distribute this coefficient more uniformly about
the unit circle, and decrease the sensitivities of all the
coefficients to quantization error, a fixed pre-emphasis
characteristic is employed with the filter defined by

-1

Hp(z) =1 - (0,3 +0.3j)z . (138)
This pre-emphasis transformation is generally called "soft"
pre-emphasis. During voiced segments, a "hard" pre-emphasis
transformation of 1 - (0.6 + 0.6,]')2'1 should be used.
However, unvoiced signals require a different
transformation, since their spectrum typically has a
high-pass frequency response from 0 to 4 kHz. This 1is
opposite to the low-pass frequency response of the voiced
speech spectrum [20]. The pre-emphasis transformation of
Equation 138 is a good compromise for both cases. Adaptive

pre-emphasis can also be wused, but transmission of an

adaptive pre-emphasis constant is not efficient.
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Pre-emphasis does not impair the performance of the system,
and most importantly, allows the reflection coefficients to
be efficiently encoded on a magnitude/phase basis.

The long-term statistics of these reflection
coefficients have been compiled using a data base of speech
which consists of Harvard phonetically balanced
sentences [61] spoken by six male and six female speakers
plus some conversational speech. The total data base is ten
minutes in duration, and includes both speech low-pass
filtered to a 3.3 kHz bandwidth, and telephone bandwidth
speech which has a bandpass characteristic extending from
300 Hz to 3.3 kHz [62]. The statistics depend somewhat upon
the input filtering conditions, so these two common
filtering characteristics have been included 1in the data
base.

While log area ratios have traditionally been shown to
be the transformation of reflection coefficients 1least
sensitive to quantization error [19], these are not
desirable for complex coefficients. The transformation of a
complex reflection coefficient to a log area ratio requires
one complex division per coefficient, making it a
computationally expensive transformation. More importantly,
the resulting distributions of parameters are not amenable
to the magnitude/phase coding algorithms described below,
since the distributions of log area ratios are considerably

skewed. Instead, comparable performance can be achieved by

directly coding the magnitude and phase of the coefficient.
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In Figures 41 and 42, two-dimensional scatter plots of
the distributions of +the -eight reflection coefficients
bounded by the unit <circle are shown, The density, or
intensity, of the dots is proportional to the amplitude of
the probability density function of the coefficient. The
corresponding magnitude and phase distributions are also
shown in Figures 43 and 44, Note the considerable
differences between the distributions of the four lower
order coefficients and the four higher order coefficients.
The phase of the higher order coefficients tends to be a
uniformly distributed random variable, mainly due to the
pre-emphasis filter, while the magnitude tends to have a
Rayleigh-type distribution. The magnitude of a higher order
coefficient typically is bounded by a constant less than
one. The lower order coefficents, however, tend to have
skewed distributions, especially with respect to the phase.

One simple approach to coding a complex parameter would
be to encode both the magnitude and phase using a linear
quantizer. As an example, suppose a total of four bits 1is
allotted to this coefficient, two bits for the magnitude and
two bits for the phase. One possible quantizer design to
satisfy these constraints is shown at the upper left of
Figure 45. Each cell depicts a region for which all values
of the coefficient within that region are set to the value
at its center. There are Ux4 or 16 possible values. What

is objectionable about this quantizer (for 1lower order

coefficients) is that the reflection coefficients of smaller
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magnitude are quantized more accurately than the more
probable reflection coefficients of larger magnitude.

The structure of this quantizer can be altered to
better suit the coefficient distribution by doing one of two
things. First, more bits could be allotted to the phase
than to the magnitude. Second, the magnitude could be
transformed such that the 1larger magnitudes are favored.
One such transformation, commonly used, though not optimal,
is the inverse sine function. The inverse sine function
allows the distribution of the magnitude to appear more
uniform. The quantizer at the upper right of Figure 45 is
designed such that the inverse sine of the magnitude is
encoded linearly, while the phase is still encoded
uniformly. With suitable scaling of the magnitude, this
coding scheme represents a good tradeoff between complexity
and optimality. This two-dimensional quantizer design,
called fixed magnitude/fixed phase coding, can be summarized
as follows (Note that wu, is a scale factor or maximum

i
magnitude.):

1. Convert ki to magnitude/phase, that is,
JjD.
i
ki = [k;l e .

2. If |ki| > uj,

3. Compute Ri = (2/1n) sin-1[|kil/ui] .

set Ikil = Uj .
4, Encode Ri and ﬂi on a linear scale,
using my bits for the magnitude and

ni bits for the phase.
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The values of the scale factors, u,, and bit assignments are

given below in Table 1.

Table 1. Complex Reflection Coefficient Bit Allocations

Coefficient Maximum Magnitude Phase

Number Magnitude Bits Bits
1 1.0 T 7
2 1.0 T 7
3 0.9 6 6
4 0.8 6 6
5 0.7 5 5
6 0.6 y 4
7 0.5 b 4
8 0.5 3 3

The values 1in Table 1 were determined by subjective
listening tests in which the quantization of a particular
parameter was isolated, using the AMPLPC algorithm.

Still, however, it seems that a better job of
quantization can be done, at a reasonable level of
complexity. What is required 1is a coding scheme where
coefficients with large magnitudes are favored over
coefficients with smaller magnitudes. A technique to do
this is called fixed magnitude/variable phase coding (see
Figure 45 for an example). Here, the number of bits
allotted to the phase depends upon the value of the
magnitude. The phase bit allotment table can even be made

nonlinear; 1t 1s easy to see that there are quite a number

of possibilities. A11 of this quantization can be
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conveniently performed using a table lookup procedure. In
general, this coefficient coding can reduce the bit rate of
the coefficient information by as much as 25%, or allow the
improved quantization of the coefficients at an equivalent
rate.

Let us examine the quantizer shown at the bottom left
of Figure 45, A maximum of three bits is allotted to the
phase, while a minimum of one bit is allotted when the
magnitude 1is very small. By wutilizing the 1long term
statistics of a coefficient, the average bit rate for this
coefficient will be the same four bits as in the fixed
magnitude/fixed phase coding scheme. The structure 1is
however better suited to the distributions in
Figures 41 thru 44, provided we use a scale factor for the
magnitude. Subjective listening tests indicate that this
variable rate quantization of the <coefficients does not
degrade the speech noticeably, because the smaller
reflection coefficients are not as sensitive to quantization
as the larger ones. This is, in fact, merely a more exact
approach to an optimal quantizer design, where source
characteristics are exploited using a variable length code.
At the bottom right of Figure 45 , the inverse sine
transformation of the magnitude 1is combined with the
variable phase coding. Here, even more emphasis 1is placed
upon quantization of the large reflection coefficients.

In MPLPC, however, a majority of the rate is devoted to

the driving function. The savings 1in rate by utilizing
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these variable rate schemes are balanced by the increased
system complexity, and the fact that they are variable rate
schemes. Variable rate coding algorithms are notorious for
being very sensitive to channel errors. For this reason,
the fixed magnitude/fixed phase coding scheme was chosen.
Though sub-optimal, 1its performance is very close to that

achieved by the variable rate schemes.

Complex to Real Parameter Transformations

The capability to transform the complex reflection
coefficients to the corresponding real coefficients is
useful from both a coding standpoint and a compatibility
standpoint. The AMPLPC system could be made compatible with
MPLPC by transforming both the LPC polynomial and
multi-pulse excitation into its real signal equivalent.
While the transformation of the driving function will not be
discussed here, there are several simple possibilities that
might be considered. In fact, in a basic pitch-excited LPC
system, the only transformation required is that of the LPC
polynomial. It should be emphasized that the technique
presented here 1is a transformation based on an impulse
invariance design strategy. It does not produce the
identical parameters that would have been computed using a
real signal-based system, but rather produces a real LPC
polynomial which approximates the frequency response

(actuslly the impulse response) of the complex LPC

polynomial.
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The basic difference between the complex LPC polynomial
and the real LPC polynomial is that the complex polynomial
does not have conjugate poles, A simple technique to
transform the complex polynomial is to find the roots of the
polynomial, and add the conjugates of these roots to the
polynomial., This 1is also the most exact way of performing
the transformation. However, this 1is a computationally
expensive process, generally involving extreme numerical
accuracy for an accurate estimation of the roots.
Alternately, the LPC polynomial can be transformed directly.

There exists a one-to-one mapping between the predictor
coefficients and the autocorrelation function that produces

these coefficients [40], which is

i
R(i) = £ a, .R(i-j) , 1<1<p, (139)
[y l’J
j=0
where the ay j are defined in Equations 66 and 67. There
?
also exists a simple relationship between the

autocorrelation function of the analytic signal and the
autocorrelation function of the original real signal [32].
This can be derived by computing the long-term
autocorrelation function for the signal of Equation 3, and

simplifies to
Ra(i) = 2Rss(i) + 2sz;(i) ’ (140)

where Ra(i) denotes the autocorrelation function of the

analytic signal, Rss(i) denotes the autocorrelation function
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of the real signal, and Rs;(i) denotes the crosscorrelation
between the signal and its Hilbert transform,

A simple transformation strategy would be to compute
the autocorrelation function from the predictor parameters,
upsample the autocorrelation function using Equation 16,
take the real part of this wupsampled autocorrelation
function, and perform the Durbin recursion [35] to obtain
the corresponding real predictor coefficients, . This is
an autocorrelation-invariant type design, as the
autocorrelation structure of the real LPC polynomial
approximates that of its analytic counterpart. The above
strategy can be circumvented because this type of
transformation can also be performed directly on the LPC
polynomial.

Suppose a set of p complex reflection coefficients are
given, It is assumed that these coefficients imply the
spectrum of an analytic signal which has Dbeen downsampled,
otherwise the problem is trivial. The reflection
coefficients can be transformed to predictor coefficients
using the step-up procedure of Equation 66 and Equation 67
in Chapter V. The predictor polynomial of order p now
represents the impulse response of & filter, and can be
upsampled to yield 2p complex points wusing the complex
interpolation function of Equation 16 in Chapter II, giving
an upsampled polynomial, Hu(z). This interpolation process

is not exact in the sense that the impulse response in the

upsampled domain is not a finite length impulse response. In
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fact, to be more exact, the predictor polynomial can be
upsampled to L complex points, where L >> 2p. However,
since it is restricted to be a stable filter, the impulse
response amplitude decays with time, and the errors
introduced by truncation are minimized.

This complex polynomial still has no conjugate poles,
but these can Dbe introduced by defining a new polynomial,

Hc(z), such that

Hc(z) is easily shown to have zeroes that are the conjugates
of the original polynomial, Hu(Z)'

Let A(x) be some polynomial with p complex zeroes, and
no conjugate zeroes. Then, A(x) can be written as the

product of its roots:
A(x) = (x-r1)(x-r2) cee (x-rp) . (141)

The conjugate of A(x) is given by

A*(x)

[(x-r1)(x-r2) . (x-rp)]* y

* % ¥ % ¥ %
[(X —r1)(X -rz) e o 0 (x -Fp)] .
Now define a new polynomial, Ac(z), such that

A*(z=x*)

Ac(z)
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Ao(2) = [(z-r})(zorp).e(zor)] . (142)

The polynomial A (z) is just a polynomial whose coefficients
are the conjugates of the coefficients of A(x), and
obviously it has zeroes that are the <conjugates of the
zeroes of A(x).

To complete the conversion we observe that the product
of Hu(z) and Hc(z) will give a polynomial that has zeroes
occuring as conjugate pairs. However, the product of these
two polynomials is not in general an FIR filter due, once
again, to the upsampling process. Two approaches can be
taken at this point. An LPC analysis can be performed on
this new series to obtain an FIR filter of order 2p, or the
series can be truncated to the first 2p points. The first
technique is optimal requiring further computation, while
the second technique is only approximate requiring no
additional work.

In this manner, a complex polynomial can be converted
to its real equivalent. This allows simple one-dimensional
coding schemes to be applied to this filter, as well as
allowing the analytic system to be compatible with its real
signal equivalent. The transformation process can be viewed
as an alternate coding technique, though a very complicated
and computationally expensive one. What remains as an
adjunct to this thesis 1is a more complete study of this

parameter transformation that includes performance

comparisons between real and analytic LPC systems.
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Complex Pulse Coding

The largest portion of the bit rate of the AMPLPC
system is devoted to the multi-pulse excitation., These
pulses have a complex-valued amplitude and a location within
the frame that must be coded. Within a frame of speech,
some of these pulses corresponding to the pitch pulses will
be 1large, while the majority of these pulses will be small
in amplitude, and randomly distributed throughout the frame,
As stated in Chapter VI, typically 16 real-valued pulses
located every 20 ms are sufficient. In the analytic case,
this corresponds to 8 complex-valued pulses located over the
same time interval. In order to accurately quantize the
larger pulses, that are fewer in number, a gain term,
corresponding to the magnitude of the largest pulse within a
10 ms frame, is transmitted. All pulse amplitudes are then
normalized by this value, and encoded once again on a
magnitude/phase Dbasis. Since the smaller amplitude pulses
are less significant, a variable number of bits can be
allotted for the phase, depending upon the value of the
magnitude. In practice however, this does not provide a
significant savings in rate to warrant the increased
complexity.

The actual magnitude/phase quantization and the
location of the pulse can all be encoded into one value via
a table 1lookup procedure. Subjective 1listening tests

indicate that 13 levels of quantization for the magnitude

and 15 levels of quantization for the phase of each pulse

e —
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are sufficient. Since the complex pulses are constrained to
20 sample point locations (similar to the real signal case
where pulses are constrained to be located within 40 sample
point locations), the entire information for a pulse can be
efficiently encoded into 12 bits. The individual quantizers
for the magnitude and phase are uniform quantizers, as these
variables tend to be uniformly distributed. Two gain terms
are transmitted per frame, each encoded 1logarithmically

using six bits per gain term.
A 9.6 kbits/s AMPLPC System

The complete .analytic signhal-based MPLPC system is
shown in Figure U46. The analytic signal is formed by
passing the input speech through a Hilbert transformer.
This Hilbert transformer is implemented as an 81-point FIR.
The frequency response of the Hilbert transformer 1is shown
in Figure 47 for 41 and 81-p6int designs. A 41-point design
produces significant distortion in the ouput speech, while
the differences in designs above 81-points is minimal. The
bandpass filter at the input of the system eliminates energy
in the speech signal around DC and 4 kHz, regions in which
the Hilbert transform design has its largest error,
Bandpass filtering the speech is a compromise that allows a
reduction in the order of the Hilbert transform filter. The
transfer function of the Hilbert transformer will always go

to zero at DC and 4 kHz, so it is important that there be

little speech energy in these regions.




106

After the analytic signal is downsampled by a factor of
two, an eighth order «complex Burg algorithm analysis is
performed to generate the complex reflection coefficients.
The residual produced by this analysis is used to synthesize
the noise-weighted speech. Since the sampling rate 1is
actually U kHz, the equivalent bandwidth-broadening factor
(r') for AMPLPC can be found by recalling that the bandwidth

increase, BW, is given by

BW = (1/wT)in(1/r) ,
or,
=27 T(BW)
r = e .

For the analytic system, since the sample period is

T = 2T ,

then the equivalent bandwidth-broadening factor, r', is

-4nT(BW)
rt = e

:r’2.

Thus, since r = 0.85 for MPLPC, r' = 0.72 for AMPLPC,

The noise-weighted speech 1is wused to 1locate the
multi-pulse excitation. To allow the system to operate at
9.6 kbits/s, two complex pulses are located every 40 ms
(20 complex samples). Since the frame length is
160 real points (80 complex samples), eight pulses are
allocated per frame. At 12 bits per pulse, plus 12 bits for

the two gain terms, 108 bits are expended for the driving

function. After the driving function is found, both the
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driving function and coefficients are coded. The
coefficients are coded using the allocations of Table 1,
bringing the total rate to 192 bits per frame, or
9.6 kbits/s. It is important to observe that the uncoded
parameters are used in the pulse location process. This
minimizes any effects due to quantization errors, and
improves the quality of the synthetic speech considerably.
At the synthesizer, the packet of coded speech 1is
unpacked. The driving function is constructed and fed into
a complex lattice synthesizer along with the coefficients.
The output of this synthesizer is fed into the
reconstruction filter detailed in Chapter II. An 81-point
FIR design for the Hilbert transformer is also used at the
synthesizer. The use of a high-pass filter (fc = 200 Hz) at
the output of the system tends to remove some of the noise

which appears due to quantization effects.

A Comparison ison of the Performance of AMPLPC to MPLPC

The performance of the AMPLPC system was compared to a
similar MPLPC system. The MPLPC system implemented follows
that developed by Atal [18]. The only fair way such a
comparison can be made is to require both systems to operate
at an equivalent rate. These comparisons were performed at
two bit rates, 9.6 kbits/s and 14.4 kbits/s. In the complex
case, the 14.4 kbits/s system differed from the 9.6 kbits/s

system in three ways. First, so as to remove any severe

quantization effects from the coefficients, eight bits were
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allotted to the magnitude and phase of each of the eight
coefficients. Next, eight bits were expended on each gain
term. Finally, 12 complex pulses were used every frame,
instead of eight.

Subjective listening tests indicated the AMPLPC system
to be superior to MPLPC at both rates. In particular, the
difference was larger at 14.4 kbits/s than at 9.6 kbits/s.
The AMPLPC system generates synthetic speech that is less
hoarse and more smooth than MPLPC. It is interesting to
note that the LPC coefficients themselves are coded more
efficiently as real coefficients than as complex
coefficients. The system performance degrades considerably
as the number of bits allotted to the complex coefficients
is 1lowered from the 84 bits in Table 1, when using a fixed
bit allocation. However, because of the downsampling
process, the multi-pulse excitation, comprising the majority
of the rate, 1is coded more efficiently in the complex
domain. Thus, the overall effect is to provide improved
quality at an equivalent rate.

The differences 1in quality are probably not great
enough to justify the increased system complexity, however.
The algorithm jtself still exhibits the same problems 1in
both real and complex domains. Typical of many waveform
coders, as the bit rate goes down below a certain threshold,
the synthetic speech becomes hoarse and scratchy. The

system itself is very sensitive to different types of

speakers, as well as coding algorithms, parameter
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statistics, etc. The analytic signal offers an improvement,
but in itself is not the solution. If further degradations
in quality are accepted, by utilizing a fixed
magnitude/variable phase coding algorithm, the rate of the
AMPLPC system can be lowered to approximately 8 kbits/s.
Here, the performance will be similar to that of the 9.6
kbits/s MPLPC system, but consistently of a lower quality
than the 9.6 Kkbits/s AMPLPC system. Subjective listening
tests seem to indicate a preference for the higher rate
versions of this algorithm over the lower qate versions, as

a definite threshold effect in performance versus bit rate

exists.
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CHAPTER VIII
SUMMARY

This dissertation has presented two new results
concerning analytic signals. First, the analytic signal
representation has been shown to be a natural choice for
time series analysis. A new property of the analytic time
series, called phase-invariance, allows analytic
signal-based spectral estimators to achieve higher
resolution than their real signal counterparts., This
property implies that the magnitude spectrum of a periodic
analytic signal computed from a frame-based spectral
analysis algorithm will not vary as a function of time or
equivalently, as a function of the position of the window.
Thus, the spectral estimates obtained from parametric
spectral analysis algorithms are more consistent, especially
in the presence of additive noise.

Second, a new type of speech coder utilizing analytic
signals has been shown to provide improved synthetic speech
quality. An analytic signal-based multi-pulse LPC
algorithm, the first of its kind, was implemented at
9.6 kbits/s to verify this. A fixed magnitude/variable
phase <coding algorithm was introduced as a sub-optimal
technique of encoding a complex LPC reflection coefficient.
The complex reflection coefficients, however, when viewed as
a part of the entire AMPLPC system, were shown to be more

sensitive to quantization than the real reflection

coefficients. The multi-pulse excitation, on the other




hand, was more efficiently coded as an analytic quantity.

The design of the complex parameter coding algorithms
presented in Chapter VII are by no means meant to be
optimal. Instead, these algorithms were developed as a
means to compare the performance of one system to another.
Future work should be directed towards developing coding
schemes which explicitly exploit the complex nature of the
parameters. The variable rate algorithm presented was an
jnitial attempt at doing this. There are many interesting
possibilities involving vector quantization techniques which
lend themselves to analytic signals, and any coding
efficiencies which can be derived from these should be
investigated.

The overall approach of this work has been to compare
the performance of -equivalent real and analytic systems.
However, there is no guarantee that what is optimal for a
real signal is optimal for an analytic signal. The
development of a purely analytic speech coding algorithm,
that truly exploits the complex nature of the signal, should
be investigated in detail. There are several interesting
questions to be resolved in regards to the coding
efficiencies that can be achieved with a one-sided spectrum.
Further, the sensitivity of the reconstruction process to
these algorithms must be examined.

Finally, more basic questions exist in relation to the

problem of parameter estimation. The LSMPLPC algorithm

presented in Chapter VI was an attempt to decouple the
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driving function of the speech signal from the vocal tract
transfer function. This problem of Jjoint estimation is
common to many areas of signal processing. The iterative
approach presented here is a promising technique. There are
many questions to be answered concerning the validity of
such an approach, as well as the convergence (or lack of
convergence) of this kind of an iterative algorithm. Given
some relatively accurate initial estimate of the driving
function, <c¢an an estimate of both the driving function and
the filter characteristic be obtained simultaneously? The
answer to this question has many implications not only in

spectral estimation problems, but also in the adjacent areas

of speech recognition and speech coding.
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