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ABSTRACT

CalciumSim: Simulator for calcium dynamics on neuron graphs using

dimensionally reduced model

Piyush Borole

MASTER OF SCIENCE

Temple University, December, 2021

Gillian Queisser, Mathematics, Chair

Calcium signaling has been identified with triggering of gene transcriptions

associated with learning and neuroprotection in neurons. Studies indicate

that dysregulation of calcium signaling is correlated with severe Alzheimer

Disease pathologies. A stable calcium wave or signal arising from triggers in

dendritic synapses needs to reach soma with constant amplitude for proper

functioning of neurons. In this study, we introduce “CalciumSim”, a calcium

dynamics simulator which works on dimensionally reduced model. Numerical

analysis is conducted to obtain the best configuration of neuron geometry to

make the code efficient and fast. Alongside, biologically important insights

are derived by modulating and changing parameters of the simulation. The

ability of “CalciumSim” to work with real neuron geometries allows user to

study calcium signalling in a realistic model.
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CHAPTER 1

Introduction

1.1 Calcium Signalling

Ca2+ signalling in neuron indicates biochemical response to a synaptic

trigger. While the Ca2+ signalling occurs through the cytosol of neuron, in

reality, the Ca2+ levels in cytosol at rest are very low. However, neurons

employs plethora of mechanisms which modulates local Ca2+ concentration

in cytosol leading to Ca2+ signalling toward soma. Reaching nucleus, this wave

triggers gene transcriptions associated with learning and protecting neurons

[22, 26, 28, 23, 17, 21, 31]. The study in [18] demonstrates pathway through

which Ca2+ ions elicits response in nucleus.

The calcium transport mechanisms in neuron are enlisted in table 1.1 and il-

lustrated in figure 1.1. Due to low Ca2+ concentrations in cytosol, Ca2+ stores

in Endoplasmic Reticulum (ER) are utilized for creating stable Ca2+ signal

[12, 2, 11, 27]. The ER is equipped with calcium exchange mechanisms such

as ryanodine receptors channels (RyR), inositol 1, 4, 5-triphosphate (IP3) re-

ceptors and SERCA pumps for transporting Ca2+ ions across ER membrane.

The RyR channels on the ER have a positive feedback property whereby the

opening is facilitated by the presence of cytosolic calcium which triggers the

release of even more calcium through surrounding channels. This is necessary

as calcium signaling cannot be facilitate only by diffusion due to fast buffering
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reaction [7]. Disruption in stable Ca2+ signalling is associated with neurode-

generation [4, 19, 14, 8]. Therefore learning how various parameters involved

in calcium dynamics influences this signalling is vital to identify therapeutic

targets. Previous studies study focused on simple neuron geometries involv-

ing cylindrical cable geometry [7, 6]. However, considering the complexity of

neuron it is important to have a tool which implements calcium dynamics in

real neuron geometry. In this study, we created a simulator “CalciumSim” in

Matlab implementing diffusion and channel dynamics. It accepts any neuron

geometry and reliably models calcium signalling for that neuron. Before test-

ing on real geometry, it was tested on simple geometry involving long cable

structure to ensure that results matches the previously done studies in [7].

1.2 Calcium dynamics

The calcium dynamics model studied here is obtained from [7, 6]. The

primary spatio-temporal equations governing Ca2+ dynamics in neuron is by

diffusion equation which are as follows:

∂u

∂t
= ∇.(D∇u)

The one dimensional version of diffusion equation is

∂u

∂t
= D

∂2u

∂x2

The four main chemical components involved in Ca2+ diffusion are cy-

tosolic Ca2+, Calbindin-D28k (CalB), Endoplasmic Reticulum (ER) Ca2+, and

Inositol 1, 4, 5− Triphosphate (IP3). The cytosolic Ca2+and Calbindin-D28k

(CalB) are present in cytosol and buffer each other. The ER Ca2+ present in

ER do not interact chemically with any other species. Similarly, IP3 present

in cytosol, does not chemically interact with either Ca2+ or CalB. The inter-

action between cytosolic Ca2+and Calbindin-D28k (CalB) is given by:

Ca2+ + CalB ⇀↽
k+b
k−b

[CalBCa2+] (1.1)
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Where k+
b and k−

b are association and disassociation constants. The values

are mentioned in table 1.2 The diffusion equations for cytosolic calcium (cc),

endoplasmic calcium (ce), Calbindin-D28k (b) and IP3 (p):

∂cc
∂t

= Dc∆cc + (k−
b (b

tot − b)− k+
b bcc) (1.2)

∂cc
∂t

= Dc
∂2cc
∂x2

+ (k−
b (b

tot − b)− k+
b bcc) (1.3)

∂b

∂t
= Db∆b+ (k−

b (b
tot − b)− k+

b bcc) (1.4)

∂ce
∂t

= Dc∆ce (1.5)

∂p

∂t
= Dp∆p− kp(p− pr) (1.6)

TheDc,Db andDp are diffusion constants for Ca2+, CalB and IP3 molecules.

The pr term is concentration of basal IP3 in cytosolic space. kp is the IP3 molecule

decay constant. btot is initial CalB concentration (remains constant through-

out) and btot − b indicates CalB-Ca2+ complex concentration. The initial and

constant values are enlisted in table 1.2

1.2.1 Membrane transport mechanisms

ccc s ss-

-

6 6

?

? ?

Cytosol

ER

Activation flux

PMCA NCX

SERCA

IP3R RyR c Ca2+
s CalBcs Buffering

Figure 1.1: Neuron Membrane Transport

Regulation of Ca2+ ions in the cytosol of Neuron is regulated by various

pumps and channels present over plasma membrane (PM) and endoplasmic

reticulum membrane (ERM). The table 1.1 enlists pumps, channels and leak-

age terms modelled in this study. Figure 1.1 illustrates neurons along with its

membrane transport mechanisms for Ca2+.
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Table 1.1: Summary of mechanisms modelled in this study

Name Location Flux Direction
IP3receptors (IP3R) ERM ER → Cytosol
Ryanodin receptors (RyR) ERM ER → Cytosol
Sarco/ER Ca2+-ATPase pumps (SERCA) ERM Cytosol → ER
Leakage ERM ER → Cytosol
plasma membrane Ca2+-ATPase pumps (PMCA) PM Cytosol → Extracellular space
Na+/Ca2+exchangers (NCX) PM ER Cytosol → Extracellular space
Leakage flux PM Extracellular space → Cytosol

The flux jERM forms flux over ER membrane constituting of jI , jR, jS and

jl,e fluxes (from IP3R, RyR, SERCA and leakage flux respectively). Similarly,

flux jPM forms flux over PM constituting of jP , jN and jl,p (from PMCA, NCX

and leakage flux).

jERM = jI + jR − jS + jl,e (1.7)

jPM = −jp − jN + jl,p (1.8)

Exchange mechanisms are assumed to be distributed uniformly for the

simulation.

IP3R channels

The Ca2+ flux density generated by IP3R channels from ER to cytosol is

calculated by

jI = ρI · poI · II (1.9)

II = IrefI

ce − cc

crefe

(1.10)

poI = (
d2ccp

(ccp+ d2p+ d3cc + d1d2)(cc + d5)
)3 (1.11)

where ρI is the IP3receptors density on the ER membrane, II is single

channel Ca2+current and poI is the probability that channel is in the open

state. The model is obtained from [3] where IrefI is chosen to match ER

Ca2+concentration at equilibrium (see table 1.2). Open state probability poI is
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calculated by equation 1.11 used from model stated in [9]. The parameters

d1, d2, d3 and d5 given in table 1.2.

RyR channels

The RyR channel flux density is calculated as follows:

jR = ρR · poR · IR (1.12)

IR = IrefR

ce − cc

crefe

(1.13)

Where ρR is RyR channel density on ER membrane, IR is single channel

Ca2+current and poR is the probability that channel is in the open state. The

model of open and closed state probability is governed by the following set

ordinary differential equations obtained from [15]. This model proposes four

state model with two open states o1 and o2 and two closed states c1 and c2

probabilities. The open state probability for channel is calculated as sum of

the two open states o1 and o2.

poR = o1 + o2 (1.14)

o1 = 1− o2 − c1 − c2 (1.15)

∂c1
∂t

= k−
a o1 − k+

a c
4
cc1 (1.16)

∂c2
∂t

= k+
c o1 − k−

c c2 (1.17)

∂o2
∂t

= k+
b c

3
co1 − k−

b o2 (1.18)

∂o1
∂t

= −∂o2
∂t

− ∂c1
∂t

− ∂c2
∂t

(1.19)

The values for k±
a , k

±
b and k±

c are presented in table 1.2

Pumps

SERCA

The current from sarco/endoplasmic reticulum Ca2+-ATPase or SERCA pumps
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is described by following equation modelled after [24]. This was adapted for

the one-dimensional case.

jS = ρS
IScc

(KS + cc)ce
(1.20)

The model is dependent on Ca2+ ion concentration in cytoplasm and en-

doplasmic reticulum. Parameters for the model is specified in table 1.2.

PMCA

The plasma membrane Ca2+-ATPase (PMCA) current is modelled as second-

order Hill-equation adapted from [13]

jp = ρp
Ipc

2
c

K2
p + c2c

(1.21)

This model is dependent on cytosolic Ca2+concentration. The values for the

constants are presented in table 1.2

NCX

The Na+/Ca2+exchanger current is modelled as first-order hill equation adapted

from [13]. The Na+ concentration at the Plasma Membrane is assumed to be

constant.

jN = ρN
INcc

KN + cc
(1.22)

Similar to PMCA, NCXmodel is dependent only on cytosolic Ca2+concentration.

The values for the constants are presented in table 1.2

Leakage

Endoplasmic reticulum membrane (ERM) and plasma membrane (PM)

allows leakage of Ca2+ions into cytosol. These leakage fluxes are modelled

as jl,e and jl,p for Endoplasmic reticulum membrane and plasma membrane

respectively.

jl,e = vl,e · (ce − cc) (1.23)

jl,p = vl,p · (co − cc) (1.24)
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Where ce is ER Ca2+concentration, cc is cytosolic Ca
2+concentration and co is

extracellular Ca2+ concentration (Constant value throughout, see table 1.2).

The velocities vl,e and vl,p are calculated by setting net flux across ERM and

PM zero at equilibrium. These values are presented in the table 1.2.

Table 1.2: Parameters for simulation study

Initial and Equilibrium values SERCA pumps
cc 50 nM Is 6.5× 10−21 mol µM s−1

ce 250 µM Ks 180 nM
co 1 mM ρS 2390 µm−2

btot 40 µM PMCA pump
Diffusion/reaction IP 1.7× 10−23 mol µM s−1

Dc 220 µm2 s−1 KP 60 nM
Db 20 µm2 s−1 ρP 500 µm−2

Dp 280 µm2 s−1 NCX pumps

k−b 19 s−1 KN 1.8 µM

k+b 27 µM−1s−1 IN 2.5× 10−21 mol s−1

p 40 nM ρN 15 µm−2

kp 103 s−1

pr 40 nM Leakage
IP3R Channel vl,e 37.8 nm s−1

d1 0.13 µM vl,p 4.49 nm s−1

d2 1.05 µM Ca2+/IP3 release
d3 0.94 µM jcSY NP 2.5× 10−21 mol s−1 µm−2

ρI 17.3 µm−2 τc 10 ms

IrefI 1.1× 10−19 mol s−1 jpSY NP 5× 10−21 mol s−1 µm−2

crefe 250 µM τp 200 ms
d5 82.3 nM

RyR Channels

k−a 28.8 s−1

k+a 1500 µM−4 s−1

k−b 385.9 s−1

k+b 1500 µM−3 s−1

k−c 0.1 s−1

k+c 1.75 s−1

ρR 3.0 µm−2

IrefR 3.5 × 10−18 mol s−1

Calcium release and IP3 production

Calcium activation is modelled as influx density entering the dendrite with

value jSY NP = 2.5×10−18 mol µm−2 s−1 that linearly decreased to zero within

1 ms. IP3 molecules are produced by calcium dependent AMPA receptor in

the synapses [20]. The production of IP3 molecules is also modelled as influx

with initial strength 5× 10−18 mol µm−2 s−1 linearly decreasing to zero over
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200 ms as described in [6].

1.3 Dimensionality reduction

The diffusion problem associated with calcium dynamics is a three dimen-

sional problem. However, we notice that the membrane mechanisms asso-

ciated with calcium dynamics assumes that the channels and leakage occurs

uniformly over the membrane. Essentially, the movement of fluxes through the

membranes occurs uniformly over the ER and plasma membrane. Addition-

ally, the Ca2+ released from ER diffuses almost instantaneously in the cross

section of cytosol [7]. We make use of this rotational symmetry to reduce the

three-dimensional problem to one-dimension along the axis of the neuron. To

reduce the problem, we scale each term in diffusion equation with appropriate

scaling factor. Let the dendrite radius be R and ER radius be r. The diffusion

and reaction of cytosolic Ca2+ , CalB and IP3, occurs in the cytosolic cross-

section area at the point of interest. Therefore, they are scale by the factor

equal to the cross-section area i.e. π(R2 − r2). Since the ER Ca2+diffusion

term operates in ER only, they will be scaled with ER cross-sectional area i.e.

πr2. All the fluxes occurring over the plasma membrane and ER membrane

are scaled by factor equal to circumference of dendrite i.e. 2πR and ER i.e.

2πr respectively. Effectively, we have following equations (Note, the direction

along neuron axis is z-direction):

(R2 − r2)
∂cc
∂t

=
∂

∂z
((R2 − r2)Dc

∂cc
∂z

)− (R2 − r2)(k−
b (b

tot − b)− k+
b bcc)

+ 2rjERM + 2RjPM (1.25)

r2
∂ce
∂t

=
∂

∂z
(r2Dc

∂ce
∂z

)− 2rjERM (1.26)

(R2 − r2)
∂b

∂t
=

∂

∂z
((R2 − r2)Dc

∂b

∂z
)− (R2 − r2)(k−

b (b
tot − b)− k+

b bcc)

(1.27)

(R2 − r2)
∂p

∂t
=

∂

∂z
((R2 − r2)Dp

∂p

∂z
) (1.28)
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For the activation flux, as it enters in the cytosolic cross-section, it is also

scaled with π(R2 − r2).

1.4 Numerical Methods

Consider the following initial value problem between time span t0 to tN :

Y ′(t) = f(t, Y (t)) . . . (t0 ≤ t ≤ tN) (1.29)

Y (t0) = Y0 (1.30)

t0 < t1 < t2 < . . . ≤ tN

tn = t0 + nδt . . . n = 0, 1, . . . , N

Now if this is a simple function, integration can yield a closed form solution.

However, for complex problems such as the PDEs, ODE solvers are employed

to integrate over time. In this section we consider three solvers - forward Euler,

Backward Euler and Dormand-Prince Pair method.

1.4.1 Forward Euler

Forward Euler is an explicit method which calculates value at future time

step using current time point. Consider the forward difference approximation

for Y ′ as

Y ′(t) ≈ 1

δt
[Y (t+ δt)− Y (t)] (1.31)

Y (t+ δt) = Y (t) + Y ′(t)δt (1.32)

(1.33)

The forward Euler being first order method has a local truncation error in

the order of O(h2). Furthermore, consider Y ′(t) = λY (t).
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Y (t+ δt) = Y (t) + Y ′(t)δt (1.34)

= Y (t) + Y (t)δtλ (1.35)

= Y (t)(I + λδt) (1.36)

Y (t+ 2δt) = Y (t)(I + λδt)2 (1.37)

Y (t+ nδt) = Y (t)(I + λδt)n (1.38)

The forward Euler is stable only if |(I+λδt)| < 1 because anything ≥ 1 would

lead the series to diverge. This means that forward Euler is only conditionally

stable.

Due to such instability, often the choice of step size in forward Euler and

other explicit methods are influenced by stability and not necessarily accuracy.

When the explicit methods fails to work without taking extremely small steps,

the problem is known as stiff problem [30, 25]. In such cases, as stability is the

only issues, unconditionally stable implicit methods should be used instead.

1.4.2 Backward Euler

Backward Euler is an implicit method which calculates value at future time

step using future time point itself.

Y (t+ δt) = Y (t) + Y ′(t+ δt)δt (1.39)

Consider Y ′(t) = λY (t+ δt),

Y (t+ δt) = Y (t) + Y ′(t+ δt)δt (1.40)

= Y (t) + Y (t+ δt)δtλ (1.41)

Y (t+ δt)(I − λδt) = Y (t) (1.42)

Y (t+ δt) = (I − λδt)−1Y (t) (1.43)

Y (t+ 2δt) = Y (t)(I − λδt)−2 (1.44)

Y (t+ nδt) = Y (t)(I − λδt)−n (1.45)
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The Backward Euler is stable if |(I − λδt)−1| < 1 or |(I − λδt)| > 1. However,

|(I − λδt)| > 1 (1.46)

1− λδt > 1 or 1− λδt < −1 (1.47)

λδt < 0 or λδt > 2 (1.48)

δt is always > 0 and if we restrict λ < 1 then λδt < 0 always. Therefore,

backward Euler is unconditionally stable. The backward Euler being first order

method has a local truncation error in the order of O(h2).

1.4.3 The Dormand-Prince pair method

The Dormand-Prince pair method as described in [10] is a ODE solver of

Runge-Kutta (RK) family. It forms a pair of explicit fourth-and fifth-order

RK formula. The error between the fourth- and fifth order accurate solution

are used for implementing an adaptive time-stepping scheme. One step of

Dormand-Prince pair method consist of following steps [5, 16].

k1 = hf(tk, yk) (1.49)

k2 = hf(tk +
1

5
h, yk +

1

5
k1) (1.50)

k3 = hf(tk +
3

10
h, yk +

3

40
k1 +

9

40
k2) (1.51)

k4 = hf(tk +
4

5
h, yk +

44

45
k1 −

56

15
k2 +

32

9
k3) (1.52)

k5 = hf(tk +
8

9
h, yk +

19372

6561
k1 −

25360

2187
k2 +

64448

6561
k3 −

212

729
k4) (1.53)

k6 = hf(tk + h, yk +
9017

3168
k1 −

355

33
k2 −

46732

5247
k3 +

49

176
k4 −

5103

18656
k5) (1.54)

k7 = hf(tk + h, yk +
35

384
k1 +

500

1113
k3 +

125

192
k4 −

2187

6784
k5 +

11

84
k6) (1.55)

Next, we use these to calculate next step value of order 4 (yk+1,4) and order 5

(yk+1,5),
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yk+1,4 = yk +
35

382
k1 +

500

1113
k3 +

125

192
k4 −

2187

6784
k5 +

11

84
k6 (1.56)

yk+1,5 = yk +
5179

57600
k1 +

7571

16695
k3 +

393

640
k4 −

92097

339200
k5 +

187

2100
k6 +

1

40
k7

(1.57)

The difference between yk+1,5 and yk+1,4 gives us error estimate which can

be used for calculating optimal step size (hopt).

|yk+1,5 − yk+1,4| = | 71

57600
k1 −

71

16695
k3 +

71

1920
k4 −

17253

339200
k5 +

22

525
k6 −

1

40
k7|

(1.58)

s = (
ϵhold

2 · |yk+1,5 − yk+1,4|
)
1
5 (1.59)

hopt = shold (1.60)

Where hold is the previous step size and ϵ is user defined tolerance. It is pro-

vided as in-built function by Matlab known as ODE45. As an explicit method,

it is accurate up to order four, but only on nonstiff problems. Dormand Prince

pair method’s local truncation error is O(h5).

1.5 Method of Lines

Method of Lines is one of the techniques used for solving PDEs. In this

technique, we discretize all the dimensions, except one, converting PDEs to

ODE and then solving them using ODE solver. The figure 1.2 illustrates

Method of Lines working. In our case, the diffusion PDEs have two dimensions,

namely spatial and temporal. We discretized the spatial dimension such that

left hand side of PDE can be calculated with known values. The progression

in time is performed by some ODE solver such as Forward or Backward Euler.
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6

Yx0,t

6

Yx1,t

6

...

6

Yxn−1,t

6

Yxn,t

δt

Yx0,t+δt Yx1,t+δt ... Yxn−1,t+δt Yxn,t+δt

Figure 1.2: Method of Lines interpretation
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CHAPTER 2

Numerical Analysis

2.1 Discretization

For diffusion PDEs, Method of Line described in section 1.5 is employed

where left hand side derivatives are modelled as ODEs with right hand side

discretized. Discretization of right hand side can be done by finite difference

method. However, the neuron geometries we work with have unequal spacing

between the points. Additionally, neurons geometries have branched struc-

tures. In order to solve our dimensionally reduced diffusion problem, we need

to identify appropriate discretization scheme. First, discretization scheme for

an unbranched cable geometry with unequally placed points is derived. Next,

the discretization scheme is applied to branched cable. Lastly, discretization

for end points is derived. Since the PDEs are diffusion equations, principle of

mass conservation is applied for deriving appropriate discretization.
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2.1.1 Unbranched cable

s−1

h1

s0
h2

s1
Figure 2.1: 1D Unbranched cable

For an 1D unbranched cable in fig. 2.1 We start with

accumulation = fluxin − fluxout (2.1)

dM

dt
= j−1→0 − j0→1 (2.2)

Considering the 1D nature of the problem, here volume is length of neuron.

In order to avoid double counting of h1 for C0 and C−1 calculations, we consider

h1/2 as effective length on left of point 0. Similarly, we take h2/2 length on

right side of point 0.

Mass = Concentration× Length (2.3)

M = C0 ·
h1 + h2

2
(2.4)

dM

dt
=

h1 + h2

2
· dC0

dt
(2.5)

j−1→0 = −Dc
dC−1

dx
. . .Fick’s Law of diffusion (2.6)

j0→1 = −Dc
dC1

dx
. . .Fick’s Law of diffusion (2.7)

We substitute equations 2.5 – 2.7 in 2.2



16

h1 + h2

2
· dC0

dt
= Dc · (

dC1

dx
− dC−1

dx
) (2.8)

h1 + h2

2
· dC0

dt
= Dc · (

C1 − C0

h2

− C0 − C−1

h1

) (2.9)

h1 + h2

2
· dC0

dt
= Dc · (

C−1

h1

− (
1

h1

+
1

h2

) · C0 +
C1

h2

) (2.10)

dC0

dt
=

2Dc

h1 + h2

· (C−1

h1

− (
1

h1

+
1

h2

) · C0 +
C1

h2

) (2.11)

This is for a general case where the spacing is uneven. If the spacing is

even, we can set h1 = h2 = h

dC0

dt
=

Dc

h2
· (C−1 − 2 · C0 + C1) (2.12)

This formula resembles second-order central difference formula with three-

point stencil [1 2 1].

2.1.2 Branched cable

s1
h1

s0
h2

s2

s

�
�

�
�

�
�
�

��3

h3

Figure 2.2: 1D Unbranched cable

Assuming influx from left and efflux from point 2 and 3, we employ similar

approach for a branched cable by using mass conservation in fig. 2.2

dM

dt
= j1→0 − j0→2 − j0→3 (2.13)
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Here, since we have three neighbors adjoining 0, we take effective length

as h1/2 + h2/2 + h3/2.

M = C0 ·
h1 + h2 + h3

2
(2.14)

dM

dt
=

h1 + h2 + h3

2
· dC0

dt
(2.15)

j1→0 = −Dc
dC1

dx
. . .Fick’s Law of diffusion (2.16)

j0→2 = −Dc
dC2

dx
. . .Fick’s Law of diffusion (2.17)

j0→3 = −Dc
dC3

dx
. . .Fick’s Law of diffusion (2.18)

We substitute 2.15 – 2.18 in 2.2,

h1 + h2 + h3

2
· dC0

dt
= Dc · (

dC2

dx
+

dC3

dx
− dC1

dx
) (2.19)

h1 + h2 + h3

2
· dC0

dt
= Dc · (

C2 − C0

h2

+
C3 − C0

h3

− C0 − C1

h1

) (2.20)

h1 + h2 + h3

2
· dC0

dt
= Dc · (

C1

h1

+
C2

h2

+
C3

h3

− (
1

h1

+
1

h2

+
1

h3

) · C0) (2.21)

dC0

dt
=

2Dc

h1 + h2 + h3

· (C1

h1

+
C2

h2

+
C3

h3

− (
1

h1

+
1

h2

+
1

h3

) · C0)

(2.22)

Thus, we obtain a general formula for calculating dCi

dt
for point i:

dCi

dt
=

2Dc∑
j∈N hj

· (
∑
j∈N

Cj

hj

− (
∑
j∈N

1

hj

) · Ci) (2.23)

Where N is set of neighboring points to i. This discretization scheme is

used for Cytosolic Calcium, ER Calcium, CalB and IP3 diffusion equations.

2.1.3 End Points

s−1

h1

s0
h2

s1
Figure 2.3: End point of cable, point −1 is a ghost point
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The end points are modelled with Neumann boundary condition. Consider

the end point 0 and it’s neighbor 1 at a distance h. In order to apply equation

2.12, we need to introduce a ghost point at −1 from point 0 at a distance h

such that distance between point −1 and 1 is 2h as in fig. 2.3

The Neumann Boundary condition is given as dC
dx

= α, where alpha is some

constant. From fick’s first law of diffusion, we have,

j = −D · dC
dx

(2.24)

dC

dx
= − j

D
(2.25)

Where, j is an incoming or activation flux and D is diffusion coefficient.

For our problem, we can use central difference for approximating dC0

dx
at point

0.

dC0

dx
= − j

D
(2.26)

C1 − C−1

2h
= −j/D (2.27)

C−1 = C1 + 2h · j

D
(2.28)

We will consider cytosolic Ca2+diffusion equation here with diffusion con-

stant Dc. Plugging this in 2.12,

dC0

dt
=

Dc

h2
· (C−1 − 2 · C0 + C1) (2.29)

dC0

dt
=

Dc

h2
· (C1 + 2h · j

Dc

− 2 · C0 + C1) (2.30)

dC0

dt
=

Dc

h2
· (2 · C1 − 2 · C0) + 2 · j

h
(2.31)

For neurons, the activation flux j is 0 when there is no trigger at that end

point. The equation reduces to

dC0

dt
=

Dc

h2
· (2 · C1 − 2 · C0) (2.32)
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Or more generally,

dCendpt

dt
=

Dc

h2
· (2 · Cneighbor − 2 · Cendpt) (2.33)

We use equation equation 2.31 with j = 0 when end points are not triggered

and j = α when end point is triggered.

The same is true to ER Ca2+, CalB and IP3 diffusion equation.

2.1.4 Implementation

s0
h1

s1
h2

s2
h3

s3 s4
h4

s
�

�
�
�
�

5

h5

s
�

�
�

�
� 6

h6

Figure 2.4: Branched cable Illustration

This type of discretization obtained in 2.23 and 2.33 allows us to vectorize

the problem. For example, the branched cable in fig 2.4, the PDEs and be

written as:



dC0

dt

dC1

dt

dC2

dt

dC3

dt

dC4

dt

dC5

dt

dC6

dt


=

2 ·Dc∑
i∈N hi

∗
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− 1
h1

1
h1

1
h1

−( 1
h1

+ 1
h2
) 1

h2

1
h2

−( 1
h2

+ 1
h3

+ 1
h5
) 1

h3

1
h5

1
h3

−( 1
h3

+ 1
h4
) 1

h4

1
h4

− 1
h4

1
h5

−( 1
h5

+ 1
h6
) 1

h6

1
h6

− 1
h6





C0

C1

C2

C3

C4

C5

C6


(2.34)

2.2 Choice of ODE solvers

2.2.1 Diffusion PDE

The diffusion PDEs described by equations 1.3 – 1.6 are implemented us-

ing the Method of Lines (MOL) method described in section 1.5. This requires

us to discretize the right hand side of PDEs with reasonable step size in spatial

dimension. In order to determine the appropriate step size in spatial dimen-

sion for discretization, we considered a cable geometry for neuron with length

64µm (Similar to fig. 2.1). Refinements were created with step size 0.25µm,

0.5µm, 1µm, 2µm, 4µm and 8µm dividing the neuron into 256, 128, 64, 32,

16 and 8 sections respectively. The simulation was carried out for 1 second

(Note: This is simulation time and not actual time taken for simulation). A

calcium pulse or activation was initiated at the left-most end of neuron at

150ms time point. The cytosolic Ca2+ concentration profile for neuron when

concentration at midpoint is highest (point at L = 32µm) was plotted for each

refinement. Similar plots were made for CalB, IP3 and Endoplasmic Reticu-

lum (ER) Ca2+ diffusion profiles. As seen in fig. 2.5, as the refinement gets

finer, the concentration profile converges to a solution. Considering the con-

vergence, spatial step size of 1µm was determined to be appropriate choice.

Further refinement only increases average run time without substantially con-
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tributing to accuracy.

(a) Cytosolic Ca2+ profile (b) CalB profile

(c) ER Ca2+ profile (d) IP3 profile

Figure 2.5: Testing for spatial refinement needed for PDE discretization

With this, the ODEs obtained from PDEs need to be integrated using

an ODE solver. We explored explicit methods namely Forward Euler and

Dormand-Prince pair method. With Forward Euler, temporal refinements

were created with times steps 25µs, 50µs, 100µs, 200µs and 400µs. Same

cable geometry cable geometry was utilized and simulation was allowed to run

for 500 milliseconds (Note: This is simulation time and not actual time taken

for simulation). Concentration profile for first or left-most point over 500

milliseconds was plotted for cytoplasmic Ca2+, CalB, IP3 and ER Ca2+ con-

centrations. As the refinement increases, concentration profiles converges to a
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solution. 100µs was identified to be the largest step size that can be chosen

without compromising accuracy (See fig. 2.6). Note that for IP3 diffusion

plot in fig. 2.6d, larger step sizes can also be selected without compromising

accuracy. However, considering all four diffusion plots in fig. 2.6, step size

of 100µs was selected for Forward Euler method. Considering the high accu-

racy of Dormand-Prince pair method, the Matlab in-built function ODE45

(Dormand-Prince implementation) was used for testing. There was no differ-

ence in solution between a forward Euler with step size 100 µs and ODE45

with average step size 1 µs (but ODE45 takes more iterations for integra-

tion). This is owing to the fact that ODE45 as a default behavior will divide

time steps into smaller fractions of 1 µs even when large deviations are not

expected. Therefore, considering the fast yet accurate performance of forward

Euler implementation, it was used as the ODE solver for discretized diffusion

PDEs.
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(a) Cytosolic Ca2+ profile (b) CalB profile

(c) ER Ca2+ profile (d) IP3 profile

Figure 2.6: Testing for temporal refinement needed for Forward Euler

2.2.2 RyR channel ODE

For testing ODE solvers for RyR channel ODEs, we need equilibrium four-

state probabilities as ground truth. At equilibrium, there is no change in

probability states o1, o2, c1 and c2. Consequently,

∂c1
∂t

=
∂c2
∂t

=
∂o1
∂t

=
∂o2
∂t

= 0 (2.35)

From equations 1.16 – 1.19, we also know that ODEs are dependent on

cytosolic Ca2+concentration. Therefore, we can use equations 1.15 – 1.18 and

2.35 to create a system of linear equations to obtain equilibrium four-state

probabilities at various concentrations of cytosolic Ca2+. The system of linear
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equations is as follows:
1 1 1 1

k−
a 0 −k+

a c
4
c 0

k+
b c

3
c −k−

b 0 0

k+
c 0 0 k−

c




o1

o2

c1

c2

 =


1

0

0

0

 (2.36)

Fig. 2.7 demonstrates how the four states o1, o2, c1 and c2 of RyR channel

varies with increasing concentration of cytosolic Ca2+. As the concentration

of cytosolic Ca2+ increases, the open state probability o1 approaches 1.

Figure 2.7: Equilibrium probabilities of four state at varying Cytosolic

Ca2+ concentration

For the study, we considered Forward Euler, Dormand-Prince pair and

Backward Euler described in 1.4.2 section. Of these, forward and backward

Euler were implemented as described in sections 1.4.1 and 1.4.2 while for

Dormand-Prince pair method, an in-built Matlab function ODE45 was uti-

lized.
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Figure 2.8: Average step size needed for stability of ODE solver indicated

that Implicit Backward Euler remains stable with larger step size for a range

of cytosolic Ca2+ concentration

.

Forward Euler method was employed for varying concentrations of cytosolic

Ca2+. However, it was noted that with an increase in cytosolic Ca2+ concentra-

tion, the step size needed for stability decreases. A similar trend was observed

while using ODE45. While ODE45 utilizes adaptive stepping, the average step

size calculated for a cytosolic Ca2+ concentration was in the range of Forward

Euler step size. However, the step size required for stability in Backward Euler

remained consistent over a range of cytosolic Ca2+ concentration (0.005 to 50

µM) as seen in fig. 2.8. The need to take smaller step sizes in explicit methods

for stability indicates stiffness in ODEs. Therefore, Backward Euler which is

stable and accurate over larger step sizes was chosen as ODE solver choice for

RyR channel ODE. The step size needed in backward Euler for RyR channel

ODE is well above 100µs (See fig. 2.8, the step size needed for diffusion PDE.
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This puts limits on the step size choice for RyR ODE. Therefore, in order to

be consistent with PDE evolution, RyR channel ODE step size is also chosen

to be 100µs.
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CHAPTER 3

Results

3.1 Introduction

Before running the simulator on real neuron geometries, the wave and sys-

tem behaviour is studied on simple cable geometry. We consider a cable with

L = 64µm, dendrite radius 0.4µm, ER radius 0.15µm, number of points 129

and distance between two adjacent points 0.5µm. The initial and parameter

values are taken from table 1.2. The activation flux is initiated after 150 ms

of simulation time. The time between 0 − 150 ms is kept as buffer time for

system to equilibrate.

3.2 Cytosolic Ca2+ and CalB initial concen-

trations

The cytosolic Ca2+ and CalB diffusion equations (1.3 and 1.5 respectively)

are couple together by a reaction term. As this reaction is a reversible reaction,

the system reaches an equilibrium with equilibrium species concentrations dif-

ferent from initial values. However, the equilibrium concentrations are unique

for each initial condition. From [7, 6], we want to maintain a equilibrium

cytosolic Ca2+ concentration at cc = 50 nM. The initial cytosolic Ca2+ con-
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centration is cinitc , initial CalB concentration is btot = 40 µM and equilibrium

CalB concentration is b. The concentration of CalB-Ca2+ complex formed is

cinitc − cc = btot − b. Considering these values, we can obtain intial cytosolic

Ca2+ concentration. First we find an expression for equilibrium CalB concen-

tration

∂cc
∂t

= Dc
∂2cc
∂x2

+ (k−
b (b

tot − b)− k+
b bcc) (3.1)

∂cc
∂t

= Dc
∂2cc
∂x2

= 0 (3.2)

. . .At equilibrium no change occurs (3.3)

k−
b (b

tot − b) = k+
b bcc (3.4)

b =
k−
b b

tot

k−
b + k+

b cc
(3.5)

We can rewrite equation 3.4 as follows:

k−
b (c

init
c − cc) = k+

b bcc (3.6)

cinitc = cc +
btotcck

+
b

k−
b + k+

b cc
(3.7)

. . . substituting b using eq. 3.5 (3.8)

Substituting values from table 1.2 and cc = 50 nM, we find that the ini-

tial value is cinitc = 2.703 µM. Simulations with a range of initial cytosolic

Ca2+ values were performed for 0.1 second. The theoretical equilibrium values

and simulation derived equilibrium values were obtained and compared in ta-

ble 3.1. It was noted that the theoretical and simulation values were identical

which demonstrates proper functioning of this couple system. Since the test

was for the coupled cytosolic Ca2+ and CalB system, the pump mechanisms

were turned off. As a sanity check of the implementation, for any simulation,

the system was initialized with cinitc = 2.703 µM initial value and allowed to

equilibrate for 0.1 second before the pump mechanisms start to operate.
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Table 3.1: Initial and Equilibrium Cytosolic Ca2+ concentration

Initial value Theoretical equilibrium value Simulation equilibrium value Error
5 µM 0.0982 0.0982 2.02E − 07
4 µM 0.0765 0.0765 3.62E − 07
3 µM 0.0559 0.0559 2.36E − 07
2.703 µM 0.05 0.05 1.67E − 16
2 µM 0.0363 0.0363 4.65E − 07
1 µM 0.0177 0.0177 3.53E − 10
0.5 µM 0.0087 0.0087 2.30E − 08

3.3 RyR Channels

The RyR channels open state probability is governed by set of ODEs (Eq.

1.16 – 1.19) which are cytosolic Ca2+ dependent. Plot in figure 3.1 demon-

strates the switch like nature of RyR channels open probability (poR). Once the

cytoslic Ca2+ concentration reaches a certain threshold (approximately 4 µM),

the open state probability shoots to 1. This is vital for calcium wave. The

RyR cahnnels dynamics takes places at much smaller time scale compared to

diffusion and IP3R mechanism. Therefore, for the progression and sustenance

of stable wave, immediate release of Ca2+ ions into cytosol is needed. This pro-

cess it mediated by RyR channels which allow massive bursts of Ca2+ ions flux

from ER Ca2+ stores after sensing increase in cytosolic Ca2+ concentration.
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Figure 3.1: Open State Probability poR quickly approaches 1 as the cytosolic

Ca2+ concentration increases.

3.4 IP3R channels

Along with RyR channels, IP3R channel modulates the dynamics to ensure

progression of stable Ca2+ wave. From equation 1.11 it can be seen that

the open state probability of IP3R channels are dependent on the cytosolic

Ca2+ and IP3 concentrations.

Open state probability poI for various combinations of cytosolic Ca2+ and

IP3was calculated. Concentration ranging from 0 to 20 µM with the step

size of 0.01 µM for each were used to calculated poI . In total, four million

combinations or probabilities were calculated and plotted in subfigure 3.2a.

As seen in the violin plot figure 3.2b, most of the concentration values are

close to zero (In the range of 10−4). Very few combinations raises poI to the

range of 0.1 − 0.2. This is also seen in figure 3.2a where a thin light band

of high probability area is seen surrounded by very low probability area plot.

This means that the IP3R channels, similar to RyR channels, demonstrates

“on-off” states with a very narrow range for “on” state. The concentration

range for cytosolic Ca2+ and IP3 for “on” probability is 0.1−2 µM and 0.1−20
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µM .

Noticing the top most part of subfigure 3.2a, we note that before the light

region begins, there is a very thin region of low probability (almost zero). This

leads to an interesting phenomenon when the IP3 molecule decays slowly. The

decay of IP3 molecule is influenced by kp, where low value allows sustained

higher concentration of IP3. Consider a situation where the concentration of

IP3 molecule is around 5µM and is sustained for a long time due to smaller

value of kp. With equilibrium Ca2+ concentration of 0.05µM , the poI is close

to zero. However, as a calcium wave passes, the cytosolic Ca2+ concentration

shoots up to 11µM while passing through high probability zone. But, once the

wave passes and the cytosolic Ca2+ concentration starts decreasing, it again

enters the zone of higher probability which leads to massive IP3R flux. This

again causes cytosolic Ca2+ concentration to increase and the cycle contin-

ues until the IP3 molecule decays entirely. This can be seen in subfigure 3.3a

where after a massive jump in cytosolic Ca2+ concentration (caused by wave)

there are periodic but shorter increases in cytosolic Ca2+ concentration when

kp is low. This is also seen in ER Ca2+ concentration in subfigure 3.3b where

after a massive dip (caused by wave) there is periodic dip in concentration as

soon as ER Ca2+ concentration starts increasing. However, we note that as

the kp increases, the IP3 molecule decays sooner allowing cytosolic Ca2+ con-

centration to decline without passing through high poI zone. it is also seen

that the ER is able to replenish its Ca2+stores without losing them to IP3R

channels. However, beyond kp = 103s−1, the rate at which replenishment of

ER Ca2+does not increase. For our simulations, we set the kp value to 103s−1.
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(a) poI distribution as function of cy-

tosolic Ca2+and IP3 concentration

(b) Violin plot distribution of poI

Figure 3.2: For most of the combinations of cytosolic Ca2+and IP3 concentra-

tion, the poI is close to zero

(a) Cytosolic Ca2+ concentration pro-

file over time

(b) ER Ca2+ concentration profile over

time

Figure 3.3: Variation in concentration profile behaviour with respect to in-

creasing kp
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3.5 Concentration profiles

In order to understand wave mechanics, it is important to understand how

the wave affects concentration profile for cytosolic Ca2+, CalB, ER Ca2+and

IP3 for the point where the wave passes through. The concentration profiles

are plotted for the midpoint in the cable geometry. The simulation time is 1000

ms. The first subfigure 3.4a shows that when the wave reaches the point, there

is a sharp increase in cytosolic Ca2+ concentration followed by exponential

decrease over time. This sharp increase creates an imbalance in the CalB-

Ca2+ reaction equilibrium pushing forward reaction. This is associated with

sharp decline in CalB concentration (see subfigure 3.4b) followed by steady

increase as pump mechanisms start removing extra Ca2+ ions from cytosol.

The increase in cytosolic Ca2+ concentration is mediated by RyR and IP3R

channels which immediately transports Ca2+ from ER to cytosol leading to

exhaustion of ER Ca2+(see subfigure 3.4c). However, the replenishment of ER

Ca2+ mediated by SERCA pumps is a slow process and the concentration does

not rise to equilibrium value for a very long time. This creates Ca2+deficiency

in ER for a long time. We also see that IP3 concentration rising as a result of

diffusion but decays to equilibrium values. This decay is rapid as a result of

kp = 103s−1.
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(a) Cytosolic Ca2+ concentration pro-

file over time

(b) CalB Ca2+ concentration profile

over time

(c) ER Ca2+ concentration profile over

time
(d) IP3 concentration profile over time

Figure 3.4: Concentration profiles with a stable wave progressing through the

neuron

3.6 Stable and abortive Calcium Wave

The conditions needed for stable calcium wave moving from one end of

cable neuron to other is described in [7]. This study does an exhaustive search

to identify suitable conditions needed for sustaining a stable wave. However,

this study focuses only on a cable geometry with equally spaced points. In
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order to ensure that the our simulator (CalciumSim) works as expected, we use

a cable neuron geometry with L = 64µM and compared the plots generated

with the plots in [7]. To match the [7] study, radius of dendrite and ER is kept

constant for the entire neuron. It was noted that due to few differences in the

model we implement versus the study (For instance, [7] does not implement

IP3R channels but we do), the exact values may not match but the trend and

behaviour of components is consistent.

The first plot we look at is an example of stable calcium wave and abortive

wave. Figure 3.5a demonstrates an example of stable Ca2+ wave moving

through the neuron. When a wave is stable, amplitude of the wave remains

constant throughout. Whereas in abortive waves, the amplitude rapidly de-

creases well below the RyR channel triggering levels which stalls the wave.

(a) Example of a stable wave (b) Example of an abortive wave

Figure 3.5: Cable Neuron cytosolic Ca2+ concentration profile at various time

points indicating movement of Ca2+ wave

Next, we were interested in studying the effects of changing dendrite and

ER radius on the wave behaviour, specifically on amplitude and velocity. We

want to work with real neuron geometries which has uneven dendrite radius.

Therefore, it is important to study the behaviour on simpler geometry to pre-

dict its effects in real geometry. For this purpose, we utilized the same cable
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geometry but with dendrite radius values 0.2, 0.4, 0.8, 1.6 and 3.2 µm. Since

actual value of ER radius did not inform a lot about wave behaviour, we consid-

ered looking at the ER radius to dendrite radius ratio (r and R respectively).

We noticed that as the ER/dendrite radius (r/R) ratio increases, the ampli-

tude and velocity of the stable wave increases (see figure 3.6). From subfigure

3.6a, we see that while higher radius ratio leads to faster wave progression,

overall, increase in dendrite radius leads to decreasing of wave velocity. With

respect to amplitude, the value remains relatively constant for a particular

radius ratio.

(a) Amplitude change with respect to

r and R

(b) Velocity change with respect to r

and R

Figure 3.6: Effects of dendrite (R) and ER (r) on wave amplitude and velocity

Further, as the RyR channels plays an important part in stable wave, [7]

indicates that RyR density plays an important part in amplitude and velocity

of the wave. We conducted a series of experiments with changing RyR channel

density along with changing dendrite radius and ER radius (see figure 3.7).

When experimenting with changing dendrite radius, ER radius is selected by

multiplying dendrite radius with a specific ratio (r/R = 0.375). This ratio

was selected considering the ability to produce stable wave over wide range

of dendrite radius. Whereas, while experimenting with changing ER radius, a

constant dendrite radius of 0.2µm was selected to match [7] study.



37

Overall, as the RyR density increases, the wave amplitude and velocity in-

creases (See figure 3.7). The two amplitude plots (subfigures 3.7a, 3.7c) shows

quasi-linear increase with respect to RyR density. However, the wave ampli-

tude decreases as the dendrite radius increases while it increases with increase

in ER radius. Similar trend is observed in wave velocity (See subfigures 3.7b,

3.7d) where it increases with increasing ER radius and decreasing Dendrite

radius.
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(a) Amplitude change w.r.t RyR den-

sity and dendrite radius

(b) Velocity change w.r.t RyR density

and dendrite radius

(c) Amplitude change w.r.t RyR den-

sity and ER radius

(d) Velocity change w.r.t RyR density

and ER radius

Figure 3.7: Effects of RyR density on amplitude and velocity

Additionally, we see that there is a strong positive correlation of 0.97 be-

tween wave velocity and amplitude as seen in the figure 3.8.
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Figure 3.8: Strong correlation between wave amplitude and velocity

From these results, we expect the wave to progressing faster in the thinner

sections of the neuron and slowly in thicker parts of the neuron (especially

Soma).

3.7 Wave behaviour

3.7.1 Merging waves

In real neurons, with multiple synaptic activation, two waves originating

at different ends may end up meeting at a point. In order to understand the

nature of this meeting of waves, we simulated the cable neuron with activation

at both left and right ends. The wave meets in the center and cancels each

other effects. This is seen in left side figure of 3.9. The neuron cable initially

shows low cytosolic Ca2+ concentration indicated by dark blue color. As the

activation occurs on both ends, the wave progression is seen by warmer colors

indicating rise in Ca2+ levels. As the two waves meets in center, the progression

cancels out and the cable again settles to low levels of cytosolic Ca2+. The

right side of figure 3.9 shows ER Ca2+ concentration in the cable neuron.
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Initially, the concentration is very high indicated by red color. As the wave

starts on both ends, the concentration drops indicated by cooler colors as the

wave progress. This is due to transport of ER Ca2+ to cytosol. As the left

wave meets the right, there is very little to no ER Ca2+ left for progressing

left wave. Same thing happens with wave approaching from the right. This

exhaustion of Ca2+ in ER stalls the wave progression on both end. As seen

in 3.4c, the replenishment of Ca2+ in ER is very slow further dampening the

wave and cancelling it altogether.

Figure 3.9: Calcium wave initiated on both end meeting at the center. Left:

Cytosolic Ca2+ concentration evolution over time in cable neuron. Right : ER

Ca2+ concentration evolution over time in cable neuron

3.7.2 Y-shaped neuron geometry

In real neurons, there are branch points where waves could meet or one

branch acts as influx and others as efflux. To test this, we created a Y-

shaped geometry with two branches (each L = 32µm) merge with to a common

branch of L = 32µm. In first experiments, both the branch points were
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activated to initiate Ca2+ waves in both branches. The wave progression

for this experiment is seen in figure 3.10. In subfigure 3.10b left hand side,

we see two waves meeting and progressing in the common branch. unlike in

previous section where two meeting waves stalls each other, here the meeting

waves have a path where the ER Ca2+ reserves are not exhausted (i.e. common

branch). We also see that the amplitude of the wave in common branch is same

as amplitude in individual branches. Merging of waves does not affect the wave

amplitude or velocity in common branch.
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(a) left: Equilibrium state, Right: Ac-

tivation or triggering of end point at

two branches

(b) left: Merging of two waves at the

connection, Right: Progression of wave

in common branch

Figure 3.10: Wave progression in Y-shaped geometry when two end points are

triggered
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We conducted another experiment in which only one branch is triggered

allow wave progression from one branch to connection point. This can be seen

in subfigure 3.11a right side. In subfigure 3.11b left side, we notice that the

wave splits after arriving at the connector point. The splitting of wave in other

branch and common branch causes wave progression with same amplitude and

velocity as in the original wave.
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(a) left: Equilibrium state, Right: Ac-

tivation or triggering of end point of

top branch

(b) left: Splitting of wave in bottom

and common branch, Right: Progres-

sion of wave in bottom and common

branch

Figure 3.11: Wave progression in Y-shaped geometry when one end point is

triggered
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These observations are important in understanding Ca2+ signalling in real

geometry. We can expect that even if a wave is triggered at one spot in neuron,

it will spread all around the neuron if given enough time.

3.8 Real neuron geometry

To summarise the three main observations in sections earlier, we learn that

1. Wave velocity and amplitude at a point will depend on dendrite ratio at

that point in neuron,

2. two or more waves approaching towards each other will cancel each other

out if there is no waveless path available to progress and

3. at branching points, the wave will split into all branches connected to

the common node.

For the experiment 5 real neuron geometries were obtained from James

Rosado (see Implementation chapter). To study wave progression and cumu-

lative effect of various calcium waves at soma, for each geometry, we randomly

selected 10, 5 and 1 points on the neuron. Once activated, the wave is allowed

to progress until the wave covers the entire neuron. The cytosolic Ca2+ con-

centration profile over time for soma for each of the cells. This is presented in

figure 3.12 where each subfigure correspond to a neuron cell. We first notice

that the soma profile for all cells apprears similar. The difference associated

with amplitude reached can be attributed to difference in radius at soma point

for all cells. Furthermore, in each cell, triggering 10, 5 or 1 point does not

change the profile in any way. The only difference is time lag. However, this is

understandable as the trigger points location can vary with some being closer

to soma and other being away. This is particularly seen in subfigure 3.12c

where one of the 10 or 5 points were closer to soma, but the single trigger

point (green) was randomly picked at a distance away from soma. From this

experiment, we see that a single trigger or multiple trigger elicit same response
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at soma. This is not unexpected as we know that if a wave passes a point, it

exhausts ER Ca2+ stores followed by very slow replenishment. This cancels

out any other Ca2+ wave approaching that point.

For visualizing calcium wave progression in real neuron geometry we create

video file with script provided by James Rosado. Figures 3.13 – 3.14 provides

screenshots of the wave progression for neuron cell geometries Cell 1, Cell 2,

Cell 3, Cell 4 and Cell 5. For demonstration, videos for 5 trigger points were

created. Going from left to right in each figure, we see that as the waves

initiates, it passes through each point in neuron.
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(a) Ca2+ profile in Cell 1 (b) Ca2+ profile in Cell 2

(c) Ca2+ profile in Cell 3 (d) Ca2+ profile in Cell 4

(e) Ca2+ profile in Cell 5

Figure 3.12: The cytosolic Ca2+ concentration profiles at soma for 5 real neu-

ron cell geometries. Each cell was triggered with randomly selected 10, 5 and

1 points
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Figure 3.13: Wave progression with 5 trigger points in Cell 1

Figure 3.14: Wave progression with 5 trigger points in Cell 2

Figure 3.15: Wave progression with 5 trigger points in Cell 3
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Figure 3.16: Wave progression with 5 trigger points in Cell 4

Figure 3.17: Wave progression with 5 trigger points in Cell 5
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CHAPTER 4

CalciumSim simulator

4.1 Introduction

CalciumSim is a calcium simulator which models Ca2+ dynamics in three-

dimension neuron geometries. CalciumSim is implemented in Matlab which

implements the Ca2+diffusion equations and pumps mechanisms explained in

the introduction section. Figure 4.1 shows the flow of the simulator and var-

ious functions developed. The files “readSWC.m”, “getGraphStructure.m”

and “makeMatlabMovCalcium.m” marked in red boxes are obtained from

“https://github.com/jarosado0911/Hodgkin-Huxley-MatLab-Repo” authored

by James Rosado. The program accepts neuron file and simulation run time

in “CalciumSim.m”. This program pass file to “stencilMakerCalcium.m” to

create a stencil matrix for the diffusion equations as described in 2.34. The

“stencilMakerCalcium.m” utilizes “readSWC.m” and “getGraphStructure.m”

files to read from “.swc” files. The “CalciumSim.m” also initializes cytosolic

Ca2+, ER Ca2+, CalB and IP3 concentration at t = 0 and sets step sizes for

ODE solvers. “CalciumSim.m” also allows us to either select activation point

or randomly creates activation points on neuron geometry. The stencil and

initial values are passed on to “coupledEquations.m” file which carries out

PDE integration.

“coupledEquations.m” first obtains fluxes generated by pumps and leak-
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age mechanisms (“pumpEquations.m”, “IP3REquations.m” and “RyREqua-

tions.m”). The “pumpEquations.m” and “IP3REquations.m” takes cytosolic

Ca2+, ER Ca2+and IP3 concentration to return flux values for SERCA, NCX,

PMCA, two leakage and IP3R channels. “RyREquations.m” uses backward

Euler in “Euler.m” file to solve ODE and returns RyR channel flux. The

“coupledEquations.m” then passes these values to “Euler.m” which utilizes

forward Euler to calculate cytosolic Ca2+, CalB, ER Ca2+ and IP3 concen-

trations at next time step. The derivative function for diffusion equations

in obtained from “diffusionEquation.m” which also determines the activation

flux values for Ca2+ and IP3 in cytosol. Once the the simulation is com-

pleted, the four concentration values (namely cytosolic Ca2+, ER Ca2+, CalB

and IP3concentrations) for all time steps are saved in “ySol.mat” file for all

points on neurons. There is also an option to store flux values for any pump

mechanism for all time steps and points in neuron. This “ySol.mat” along

with the respective “.swc” file can be passed to “makeMatlabMovCalcium.m”

(from “James’s” code) to create a movie to visualize calcium movement in the

neuron.

Figure 4.1: Flowchart of CalciumSim: The red boxes indicates files from an-

other author
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4.2 “.swc” file

The website “http://neuromorpho.org/” [1] maintains a database of 160598

neuronal cell geometries across various species and regions of nervous sys-

tem. The geometry files are contributed by researchers from all around the

world and are stored in special format called as “.swc” files. The file con-

tains points matrix with seven columns. Each of columns are described in

“https://neuroinformatics.nl/swcPlus/” -

1. SampleID : point identifier

2. TypeID : This identify the type of point it is. The values are described

as follows -

• −1: root

• 0: undefined

• 1: soma

• 2: axon

• 3: (basal) dendrite

• 4: apical dendrite

• 5+: custom

3. x : x-axis coordinates in µm

4. y : y-axis coordinates in µm

5. z : z-axis coordinates in µm

6. r : Radius of dendrite at that point in µm

7. ParentID : SampleID of the parent node

The files “readSWC.m” and “getGraphStructure.m” provided by James

Rosado accept these files and creates adjacent matrix and provides various
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statistics such as average edge length. “makeMatlabMovCalcium.m” also takes

in “.swc” file to plot the neuron in three-dimensional geometry and then show

the wave progession over time.

The neuron geometries, named below, used in this study were also provided

by James Rosado. He obtained these geometries from “http://neuromorpho.org/”.

The geometries were coarse than the acceptable step size for CalciumSim PDE

evolution. Therefore, he created refinements by interpolations such that max-

imum distance between any two adjacent points was no more than 1µm which

is the acceptable spatial step size.

1. Cell 1: 228-16MG.CNG segLength=8 1d ref 1.swc

2. Cell 2: 0-2a.CNG segLength=8 1d ref 1.swc

3. Cell 3: 228-13MG.CNG segLength=8 1d ref 1.swc

4. Cell 4: M18-mPFC-4.CNG segLength=12 1d ref 2.swc

5. Cell 5: 194-4-17nj.CNG segLength=12 1d ref 2.swc

While “.swc” file provided radius of the dendrite, radius for ER is not

provided. From the ER/dendrite radius ratio experiment, a ratio of 0.375 was

selected to create a new vector of ER radius.

4.3 vl,e, vl,p calculator

The vl,e and vl,p are the velocities associated with the leakage flux jl,e and

jl,p respectively (See equations 1.7 and 1.8). The velocities are calculated

such that the net flow across Endoplasmic Reticulum membrane and Plasma

membrane is zero at equilibrium. That is, when co = 1 mM , cc = 0.05 µM

and ce = 250 µM

vl,e =
(jS − jR − jI)

(ce − cc)
(4.1)

vl,p =
(jN + jP )

(co − cc)
(4.2)
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Calculating the values we find that vl,e ≈ 3.78e− 11 and vl,p ≈ 4.49e− 12.

However, it was noted that the exact value for vl,e as calculated by Matlab is

vl,e,exact. In Matlab, due to limited precision, not all numbers are stored as

exact values. For instance, vl,e = 3.785e− 11 is stored as vl,e,approx in Matlab.

Therefore, if vl,e = 3.785e− 11 is used instead of vl,e,exact, a small leakage flux

is created causing ER Ca2+ to constantly leak into cytosol. This leakage can

be seen in figure 4.2 where vl,e,exact and vl,e,approx is used to compare. Although

the error vl,e,exact − vl,e,approx = ϵ = 2.1608671e− 15 is negligible, it still leads

to decrease in ER Ca2+ concentration which further leads to instability as the

simulation progress. In order to circumvent this issue, a “vlevlpCalculator.m”

file was created which returns exact values of vl,e and vl,p when provided with

desired equilibrium conditions. These can be loaded in “pumpsEquations.m”

directly while calculating leakage flux in order to avoid human error.

vl,e,exact = 3.78521608671366254486342512326204831

62971680712871602736413478851318359375e− 11

vl,e,approx = 3.784999999999999724951795416202167312

4305376489928676164709031581878662109375e− 11

ϵ = 2.1608671e− 15
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Figure 4.2: Constant ER Ca2+ concentration at 250µM is seen when vl,e,exact

is used. Using vl,e,approx leads to constant decrease in ER Ca2+ concentration

4.4 time complexity

While the test geometries consisted of 100 − 200 points, the real neuron

geometries contains more than 1000 points. This adds to run time for the

simulation. In order to understand how run time is affected by number of

points, neuron geometries with 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,

4096 points. A series 1000 milliseconds (simulation time) simulations were

performed with these geometries and run time was noted. The figure 4.3

shows that as the number of points increases, run time also increases linearly.

Specifically, the slope obtained was 0.25, meaning the run time in seconds was

0.25× number of points.
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Figure 4.3: Time taken for one second of simulation on 1D neuron geometry

made up of 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 points
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CHAPTER 5

Conclusion

“CalciumSim” is a user friendly Ca2+ dynamics simulator created to study

Ca2+ signalling in real neuron geometry. It is a Matlab implementation which

accepts “.swc” files and models calcium dynamics for that neuron geometry.

Having implemented the calcium dynamics, comparison studies were done with

existing literature to establish reliability of the implementation. Once con-

vinced, we used this implementation to model on real neuron geometry and

studied behavior of calcium wave. We derived important insights with respect

to wave behaviour which are used to provides suggestions and future study

directions here.

We identified the role of IP3 molecule in sustenance of the wave. The fact

that quick decay of IP3 molecule is extremely important for neuron to reach

equilibrium again can form a potential therapeutic target. Constant activation

of neurons without real triggers quickly leads to neuro-degeneration. In order

to avoid this, targeting IP3 molecule to decay it faster may save the neuron

from damage and eventual apoptosis.

In tau pathology associated (Alzheimer’s’ disease) neurodegeneration, the

synpases are blocked reducing the calcium signalling needed for transcribed

genes for protection and memory. With “CalciumSim” one can model this

behavior by first simulating conditions leading to weakening signal to soma

and then modulating other parameters such as RyR density to obtain original
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signal profile. This can help identify various therapeutic targets such as RyR

channels.

Another conclusion we draw is that stable Ca2+wave is highly dependent

on ER Ca2+ stores. A quick replenishment of ER Ca2+ is vital for any new

wave progression. Recent studies have shown certain pathways which connects

ER to extracellular Ca2+ reserves bypassing cytosol [29]. This mechanism

maybe involved in quick replenishment of ER and needs to be studies. Future

work would involved adding such component to “CalciumSim”. “CalciumSim”

allows easy integration of new components to current code base thereby allow

one to study wave propagation under various conditions.

Further work needs to be done to include multiple neuron structures to

study network of neurons. This would lead to a realistic model for study sig-

nalling in neurons. While calcium signalling is biochemical signalling pathway,

the primary mode of signally between neurons is electrical. Therefore, future

work would also focus on coupling Hodgkin-Huxley model for electric signal

to calcium signalling.

Although addition of more components makes model more realistic, it how-

ever adds to computation cost. As the PDE equations for calcium signalling

is a complex problem with multiple non-linear functions, developing a faster

ODE solver is still an active area of research. With many components involved

in the diffusion equations, an implicit-explicit scheme could be conceived to

make computation faster.

Overall, “CalciumSim” provides fast, reliable and accurate modelling of

calcium signalling which can be easily modified to suit a particular study

condition and derived biologically important insights.
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