
GESTURE RECOGNITION IN TENNIS BIOMECHANICS

__

A Thesis

Submitted to

the Temple University Graduate Board

__

In partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE OF ELECTRICAL ENGINEERING

__

by

Victor C. Espinoza Bernal

Diploma Date: August 2018

Thesis Approvals:

Iyad Obeid, PhD. Thesis Advisor, Temple University Department Electrical Engineering

Joseph Picone, PhD. Temple University Department of Electrical Engineering

Andrew Spence, PhD. Temple University Department of Bioengineering

 ii

Abstract

The purpose of this study is to create a gesture recognition system that interprets motion

capture data of a tennis player to determine which biomechanical aspects of a tennis swing best

correlate to a swing efficacy. For our learning set this work aimed to record 50 tennis athletes of

similar competency with the Microsoft Kinect performing standard tennis swings in the presence

of different targets. With the acquired data we extracted biomechanical features that

hypothetically correlated to ball trajectory using proper technique and tested them as sequential

inputs to our designed classifiers.

This work implements deep learning algorithms as variable-length sequence classifiers,

recurrent neural networks (RNN), to predict tennis ball trajectory. In attempt to learn temporal

dependencies within a tennis swing, we implemented gate-augmented RNNs. This study

compared the RNN to two gated models; gated recurrent units (GRU), and long short-term

memory (LSTM) units. We observed similar classification performance across models while the

gated-methods reached convergence twice as fast as the baseline RNN. The results displayed 1.4

entropy loss and 30 % classification accuracy indicating that the hypothesized biomechanical

features were loosely correlated to swing efficacy or that they were not accurately depicted by

the sensor.

 iii

Dedication

This project is dedicated the undocumented community, who has given so much more

than they’ve ever taken.

 iv

Acknowledgements

Thank you to my family. Thank you to Dr. Obeid and the members of the committee. I

would also like to thank the Neural Instrumentation Lab members.

 v

Table of Contents

Abstract ... ii
Dedication .. iii
Acknowledgements ...iv
Table of Contents .. v
List of Figures ...vi
List of Tables.. viii
1 Introduction.. 1
2 Motivation .. 3
3 Research Objectives ... 5
4 Background .. 6

4.1 KINECT V2 .. 6
4.2 TENNIS BACKGROUND .. 8
4.3 PATTERN RECOGNITION TECHNIQUES ... 11

4.3.1 Support Vector Machines .. 11
4.3.2 Random Forest Algorithm ... 13
4.3.3 Hidden Markov Model ... 16
4.3.4 Multi-layer Perceptron .. 18

4.4 DEEP LEARNING .. 20
4.4.1 Supervised Sequence Learning .. 22
4.4.2 Recurrent Neural Network... 22
4.4.3 Back Propagation Through Time .. 24
4.4.4 Gated Recurrent Unit .. 26
4.4.5 Long Short Term Memory.. 27
4.4.6 Algorithm Discussion .. 29

4.5 OPTIMIZATION .. 29
4.5.1 Regularizers ... 30
4.5.2 Batch Normalization .. 30
4.5.3 Dropout Regularization ... 31
4.5.4 Gradient Clipping .. 32
4.5.5 Momentum-Augmented SGD ... 33

5 Methods .. 35
5.1 PROTOCOL DESIGN ... 35
5.2 SIGNAL PROCESSING ... 37
5.3 FEATURE EXTRACTION ... 38
5.4 DATA AND SOFTWARE DEVELOPMENT ... 40

6 Discussion ... 43
7 Conclusion .. 51
References .. 52

 vi

List of Figures

Figure 1: Kinect skeletal tracking [3] ... 6

Figure 2: Kinect Cartesian Coordinate System [5] ... 8

Figure 3: Forehand down-the-line (blue) crosscourt (orange) for a right-handed player . 10

Figure 4: Backhand down-the-line (orange) crosscourt (blue) for a right-handed player 10

Figure 5: Deuce side serve down-the-T (blue) out-wide (orange) 10

Figure 6: Ad Side down-the-T (blue) out-wide (orange) .. 10

Figure 7: 1D Sample Data ... 13

Figure 8: 2D SVM Sample Data ... 13

Figure 9: Random Forest Data .. 14

Figure 10: Decision Tree Classifier .. 14

Figure 11: Decision Tree Workflow ... 15

Figure 12: HMM ... 17

Figure 13: Bakis Model .. 17

Figure 14: MLP ... 19

Figure 15: BPTT at t=3 ... 25

Figure 16: Gated Recurrent Unit... 26

Figure 17: Long Short-Term Memory Unit .. 27

Figure 18: Ground stroke portion of the study where the red triangles represent targets . 37

Figure 19: Serve portion of the study ... 37

Figure 20: Dominant Hand Y-Component ... 38

Figure 21: Angular Velocity ... 39

Figure 22: Joint Angle .. 40

 vii

Figure 23: Design cycle .. 42

Figure 24: Training set target distribution .. 43

Figure 25: Elbow Flexion for targets 0 and 4. .. 44

Figure 26: Axillary Angle for targets 0 and 4. .. 44

Figure 27: Shoulder Flexion for targets 0 and 4. .. 45

Figure 28: Swing Feature Distribution ... 45

Figure 29: Shoulder Rotation with respect to Kinect.. 46

Figure 30: Shoulder Displacement in 3D space throughout Swing 46

Figure 31: Wrist-to-Shoulder distance .. 46

Figure 32: Model Loss .. 47

Figure 33: Model Accuracy .. 47

 viii

List of Tables

Table 1: Joint Angle Features ... 40

Table 2: Target Classification ... 41

Table 3: One-hot Encoded targets... 42

Table 4: Random batch training vs. Single-target training Confusion Matrices Error!

Bookmark not defined.

 1

1 Introduction

The goal of this work is to use machine learning and computer vision to identify

which biomechanical movements are best correlated with effective tennis swings based

on motion-capture data of subjects playing tennis. In this work we aim to develop a set of

machine learning algorithms that will learn proper technique of the three standard tennis

swings; forehand, backhand, and serve. Within each of these three tennis swings, we will

aim for the algorithm to learn how to properly hit a tennis ball to the left and right side of

the tennis court.

In practice, these general directions, or ball trajectories, are referred to as hitting

the ball “down-the-line” and “cross-court” when speaking of forehands and backhands.

When speaking of the tennis serve, the two common ball trajectories are referred to as

“down-the-‘T’” or “out-wide”. These common ball trajectories will be explained more in

depth in the background section. As for the serve portion of the study, this work will

analyze the biomechanics of how to serve to two different general directions. Once we

collected and annotated skeletal tracking data of skilled tennis players performing these

swings, we can extract biomechanical features such as joint angles and distal landmarks

to develop a machine learning algorithm that will classify these swings and correlate

them to ball trajectories.

In order to obtain a proper learning data set, we chose highly skilled tennis

athletes to perform the mentioned tennis swings in the presence of different targets that

demonstrate good tennis practice. In this work, we utilized the Microsoft Kinect v2 as

the motion capturing tool and a custom designed software suite to record tennis athletes.

 2

Previous research and applications have shown the Kinect’s spatial measurement

limitations and how it compares to a laboratory grade motion capture system.

 3

2 Motivation

In recent years, a variety of new technologies have been introduced to tennis that

have changed the game. Technologies like “Hawk-Eye” which track the ball’s trajectory

and landing have started to diminish the need of official line judges during tennis matches

since it can determine whether the ball landed in or out. Not only has this made line-

calling more accurate and reliable, it has also opened up a field of more in-depth

statistical analysis of the sport. This multi-camera system uses triangulation to track the

tennis ball up to 2.6 mm accuracy [1] and has attracted research institutions and

companies like IBM and SAP to develop statistical analysis software on professional

match play. Ultimately, the work here aspired to develop a statistical model based on

biomechanical features of tennis players while drawing a bridge to the field of study that

focuses on the trajectory of the ball.

In addition, this work could also contribute to the development of tennis teaching

software. If the Kinect’s skeletal tracking algorithm is accurate enough, future work

could use this data to classify a subject’s swing technique as proper or poor. Private

tennis lessons, work towards to perfecting a customer’s swing technique. Furthermore, a

professional tennis instructor will provide tips and detailed adjustments to correct

technical mistakes, but not to the extent of instruction that requires precision down to the

millimeter. Consequently, we anticipated that the accuracy of the Kinect’s body tracking

would be sufficient for our purposes since millimeter precision is not vital to the

instruction or the learning of standard tennis swings.

 4

This work could also contribute to making tennis video games or simulators more

realistic. The value of our results will be significant to applications that refer to tennis and

that include motion capture. In addition, the skeletal tracking data collected of highly

skilled players will record the current biomechanical approach of advanced players as it

changes overtime as players and equipment technology evolve.

 5

3 Research Objectives

The overall objective of this work is to determine if a machine learning algorithm

can correlate biomechanics to swing efficacy based on the skeletal tracking data obtained

with the Kinect. More specifically, to determine if we are able to design a set of

algorithms that are capable of recognizing patterns of a proper forehand, backhand, and

serve with a desired target across multiple subjects. With this main objective in mind, we

can derive specific aims. The success of this study will require us to accomplish the

following set of goals:

A. Determine features of body movement that are correlated to a tennis player’s

swing

B. Design an algorithm that will be able to predict the tennis ball’s general

trajectory from body tracking data obtained from the Kinect v2.

We will exploit the Kinect’s skeletal tracking data with various discrete-time signals

processing techniques and pattern recognition techniques in order to meet these goals.

 6

4 Background

4.1 Kinect v2

The Microsoft Kinect v2 comprises of three different sensors; depth sensor,

infrared sensor, and an RGB camera, which do not match in resolution or physical

location. Microsoft has developed a proprietary machine learning algorithm to detect up

to six human bodies with the Kinect using these three layers of data streams [2]. This

algorithm is what makes this motion capture technology a markerless approach. The

skeletal tracking data is encapsulated in the “body frame” in which we can obtain 3-

dimensional data of 25 different body joint centers of each body at a frame rate of up to

30 fps. The joint data includes x, y, z components and. The Kinect-estimated joint centers

are demonstrated in Figure 1.

Figure 1: Kinect skeletal tracking [3]

 7

As previously mentioned in the introduction, section 1.0, it is important to be

mindful of the Kinect’s skeletal tracking’s accuracy, and how this accuracy will affect

our machine learning algorithm design. Studies show that the Kinect v2’s accuracy and

frame rate is outperformed by multi-camera laboratory grade motion capture systems, but

it is reliable enough to be considered a valid clinical measurement tool [4]. Although the

Kinect v2 is a low-grade motion capture system, displaying low accuracy especially in

ankle and feet detection [4], it is portable, low-cost, and does not require calibration or

the use of markers on subjects like a Vicon system of 2 mm accuracy at 100 fps. Without

the constraints of markers and a research lab setting, subjects that will partake in our

study will be able perform as freely as they would during match play as long as they stay

in the Kinect’s field of vision and within four meters of the sensor.

The Kinect v2 outputs 3-dimensional space coordinates for 25 joints of each body

tracked with reference to the actual device. In more detail, the origin (point 0,0,0) of the

3-dimensional coordinate system obtained by the Kinect is the actual location of the

Kinect as shown in Figure 2. The z component represents the orthogonal distance from a

joint to the Kinect. The y component represents the orthogonal distance from the joint to

the floor plane, and the x component entails the distance of the joint that extends to the

right or left of the sensor. With the discussion of the coordinate system, it also important

to note that the floor plane is also encapsulated within the Kinect’s body frame. This floor

detection is also a component of Microsoft’s proprietary skeletal tracking since the y

coordinates are dependent on it.

 8

Figure 2: Kinect Cartesian Coordinate System [5]

Since the position of the subject with respect to the Kinect will not be constant for

every swing across all subjects, we will have to measure distances and angles with

respect to the subject’s own body. Additionally, we can manipulate the data by removing

parts of the x and z components of the 3D coordinates in a way to relocate the body

coordinates of into a fixed position for each frame of the data collected.

4.2 Tennis Background

Generally speaking, an intermediate tennis player is able to hit the three standard

tennis swings; forehand, backhand, and serve. This level of player should also have

control over the general direction of the ball from all of these previously mentioned

swings. These directions refer to the ball’s trajectory with respect to the subject who hit

the ball. The forehand and backhand, often referred to as groundstrokes, can be struck

“down-the-line” or “cross-court”. The serve can also be struck in two general targets,

“down-the-T”, which refers to the center of the court, and “out-wide” which pertains to

aiming the serve at the singles side line that belongs to that service box. The clarification

of theses swings and associated directions are important since they can vary depending

 9

on the dominant hand of the subject and on which side of the court the subject who is

hitting the ball from. This set of tennis swings and general directions create a general

baseline for tennis knowledge and ability, as well as a better understanding of the

objective of this work.

 10

Figure 3: Forehand down-the-line (blue) crosscourt

(orange) for a right-handed player

Figure 4: Backhand down-the-line (orange) crosscourt

(blue) for a right-handed player

Figure 5: Deuce side serve down-the-T (blue) out-wide

(orange)

Figure 6: Ad Side down-the-T (blue) out-wide (orange)

 11

4.3 Pattern Recognition Techniques

In this section we will introduce the pattern recognition approaches that we

anticipated using in this work. We will consider two methods that are feature dependent,

support vector machines and hidden Markov models.

4.3.1 Support Vector Machines

Support vector machines are a supervised machine learning technique used to

classify data between two classes. SVMs are essentially the use of a decision hyperplane

of dimension (p -1) to classify p-dimensional data points in the feature space. This

decision hyperplane is designed based on a subset of the training data points referred to

as support vectors which lie close to estimated boundary between the two classes; the

remaining training data samples becomes essentially ignorable. The design procces of an

SVM classifier starts by considering the following basic classifier in slope intercept form

displayed by equation 1.

𝑓(𝑥) = 𝛽𝑥 + 𝑏 = 0 (1)

If we impose the constraints of equation 2 where 𝑦௝ = ±1 as the classification

variable, and 𝑥௝ denotes data points, we can define the decision hyperplane becomes by

finding the optimal value of β. The data points that are chosen as the support vectors

satisfy equation 3.

𝑦௝൫𝛽𝑥௝ + 𝑏൯ ≥ 1 (2)

𝑦௝𝑓൫𝑥௝൯ ≥ 1 (3)

𝑦௝൫𝛽𝑥௝ + 𝑏൯ = 1 (4)

 12

To optimize our classifier with the given constraints we solve for optimal β using

LaGrange multipliers. The form of our optimized classifier then becomes in form of

equation 5.

𝑓(𝑥) = ෍ 𝛼௝𝑦௝

ே

௝ୀଵ

𝑥௝ ∙ 𝑥௜ + 𝑏 (5)

If the classes are not linearly separable, the training data are transformed to a higher

dimension where the data can be separated by a linear surface. Kernel functions can be

used to avoid the need for explicitly mapping each data point into a higher dimensional

space. This use of a kernel function leads us to the final form of the classifier as shown in

equation 6.

𝑓(𝑥) = ෍ 𝑎௝𝑦௝𝐾൫𝑥௝ , 𝑥௜൯ + 𝑏

ே

௝ୀଵ

(6)

Commonly used kernel functions in practice are Linear, RBF, and Polynomial kernels

shown in equations 7, 8 and 9 respectively:

𝑘(𝑥, 𝑦) = 𝑥௜𝑥௝ + 𝑐 (7)

𝑘(𝑥, 𝑦) = 𝑒ିఊฮ௫೔ି௫ೕฮ
మ

(8)

𝑘(𝑥, 𝑦) = ൫𝑥௜𝑥௝ + 𝑐൯
ௗ

(9)

 13

Figure 7: 1D Sample Data

Figure 8: 2D SVM Sample Data

4.3.2 Random Forest Algorithm

In order to comprehend the random forest approach, we will briefly go over the

decision tree, which is the building block of the random forest algorithm. The decision

tree is a classification technique that consists of a set of questions and decides a path that

will ultimately lead to the classification of the data. The questions can be thought of as

nodes or visualized as a point where branches of the tree split. As data travels up a finite

number of nodes it will ultimately end up in a leaf, where the data is classified. An

example of a decision tree classifier is demonstrated in figure 10 of the given sample data

found in figure 9 Although this is a practical and computationally inexpensive approach it

-1

0

1

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

1D SVM Sample Data

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

2D SVM Sample Data

 14

is easy to overfit the data, meaning that complex trees will not classify non-training data

very well.

Figure 9: Random Forest Data

Figure 10: Decision Tree Classifier

In order to quantify for the efficacy of the trees we will implement ways to

measure the impurity in the classifications. Two common methods to quantify this

impurity in classification regions are by measuring entropy and the Gini index, shown in

Equation 10 and 11 respectively. In the worst scenario, the entropy measurement will

return a value of 1, indicating that the probability of the classes 𝑤௝ in that split or region

is equally likely. On the other hand, the Gini index takes the sum of the square of the

0

2

4

6

8

10

0 5 10 15 20

Y

X

Sample Data

class 1

class 2 class 4

class 3

is X less
than 10?

Is Y less
than 5?

class 1 class 2

is Y less
than 5?

class 3 class 4

YES NO

Root

 15

probability of each class in the region or split and subtracts this sum from 1. If two

classes are equally likely in a region or split, the Gini index would return a value of 0.5.

𝑖(𝑁) = − ෍ 𝑃൫𝑤௝൯ 𝑙𝑜𝑔௝ 𝑃൫𝑤௝൯

௝

(10)

𝑖(𝑁) = 1 − ෍ 𝑃ଶ൫𝑤௝൯

௝

(11)

As the number of features of the training data increases, the decision tree becomes

greater in depth, indicating more nodes and more classification leaves that will decrease

in variance. In order to account for these weaknesses in decision trees, it is common to

practice pruning. Pruning entails setting a predetermined maximum depth, or path from

root to leaf, for the decision tree, as well as setting a minimum number of samples of

training data per leaf, or class. In addition, we introduce the random forest algorithm as

an “ensemble” machine learning method in which we deploy various weak learners,

individual decision trees. This algorithm is essentially a set of multiple decision trees that

can be used for classification and regression. In use as a classification method, the data

sample will go through each of the decision trees while we keep count of the

classifications, leaves, that point to each class in the whole forest. The random forest will

ultimately classify the new data object based on the leaf with the most votes. The general

workflow of random forests is depicted in 11.

Figure 11: Decision Tree Workflow

 16

4.3.3 Hidden Markov Model

Hidden Markov models, HMMs, are a well-established technique in machine

learning with applications involving sequences of data like speech recognition and

handwriting recognition. HMMs are represented by a graph of finite number of states,

which are connected by transitions. At each of these states, there are two sets of

probabilities; transition probabilities and emission probabilities. Transition probabilities

represent the chances of transferring to the next state while the emission probabilities

represent the chance of emitting an output, or symbol, at the current state. Figure 6.2

demonstrates an example of a network of 3 hidden states denoted by 𝑤௜, with transition

probabilities 𝑎௜௝, and emission probabilities 𝑏௝௞ of emitting discrete symbol 𝑣௞. HMMs

are a double stochastic process, the red component of the figure indicates the visible, or

observable, portion of the model, while the black components of the model indicate the

hidden, non-observable part. These transition and emission probabilities create a

transition matrix and emission matrix respectively and are denoted in equations 12 and

13. Equation 14 displays the probabilities of starting at each state, which are referred to

as the initial probabilities. An HMM is considered ergodic if every element of matrix A is

a non-zero value. In other words, each state in the model is reachable from any other

states in a finite number of transitions.

 17

Figure 12: HMM

𝐴 = ൥

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

൩ (12)

𝐵 = ൥

𝑏ଵଵ 𝑏ଵଶ 𝑏ଵଷ 𝑏ଵସ

𝑏ଶଵ 𝑏ଶଶ 𝑏ଶଷ 𝑏ଶସ

𝑏ଷଵ 𝑏ଷଶ 𝑏ଷଷ 𝑏ଷସ

൩ (13)

𝛱 = [𝜋ଵ 𝜋ଶ 𝜋ଷ] (14)

HMMs are expressed in the form of equation 15.

𝜆 = (𝐴, 𝐵, 𝛱) (15)

If we apply this machine learning technique to sequential data in time, like speech

or motion capture data, we can focus on a subset of HMM’s that is non- ergodic. This

type of HMM, known as the Left-Right Model or Bakis model, is more suited for

sequential data. Since it is not possible to go back in time, the transition probability of

states become the option to stay at the current state or move on to the next one as

depicted in figure 13.

Figure 13: Bakis Model

 18

In this case, the transition matrix becomes in the formm of Eq. 16 while the initial state

probabilities become in the form in Eq. 17

𝐴 = ൥

𝑎ଵଵ 𝑎ଵଶ 0 0
0 𝑎ଶଶ 𝑎ଶଷ 0
0 0 0 𝑎ଷଷ

൩ (16)

𝛱 = [1 0 0] (17)

4.3.4 Multi-layer Perceptron

Since all previously mentioned machine learning algorithms take calculated

biomechanical features from Kinect based estimations as inputs, we heavily rely on the

limited accuracy of the sensor’s skeletal tracking. In this section we introduce a common

deep learning approach, the multilayer perceptron, which can take raw data as input. The

building block of the multilayer perceptron, commonly referred to as MLP or feed-

forward neural network, is the neuron displayed in orange in figure 14. The input layer

consists of all the 𝑥௠ nodes, the hidden layer is made up of the computational unit, and

output layer is comprised of 𝑦ො. Output 𝑦ො is computed with the use of an activation

function 𝜑. The activation function is typically designed to return a binary value based on

a threshold, or a probability value ranging from 0 and 1.

𝑦ො = 𝜑 ൭෍(𝑤௜𝑥௜) + 𝑏𝑖𝑎𝑠

௠

௜ୀଵ

൱ (18)

 19

Figure 14: MLP

The training process consists of two phases, the feedforward phase and the back-

propagation phase. In the feedforward mode, the weights are estimated or randomized,

and the input is introduced to the network and are computed in the forward direction. The

output 𝑦ො is produced and then compared to the true value of y and the error is calculated

between the two using a cost function 𝐽(𝑤). The backpropagation phase then takes this

computed error and adjust the weights across the network to minimize the error using

stochastic gradient descent. Stochastic gradient descent utilizes the partial derivative of

the loss function with respect to parameters, referred to as the gradient shown in equation

19.

𝛻௪𝐽(𝑤) =
𝑑൫𝐿(𝑦, 𝑦ො)൯

𝑑𝑤
(19)

After accumulating error over a batch of training samples, stochastic gradient descent

updates the set of weights w at a learning rate η as shown in equation 20. The ultimate

෍ 𝑤௜𝑥௜ + 𝑏𝑖𝑎𝑠

௠

௜ୀଵ

𝑥ଵ

activation
function

𝑥௠

𝑥ଶ

 20

goal of the training is to go through each training sample and solve for the optimal values

of each weight to minimize the error.

𝑤 = 𝑤 − 𝜂𝛻௪𝐽(𝑤) (20)

The output layer of neural network model consists of a densely connected layer,

where all the units in the last hidden layer are all connected to the units in the output

layer. For categorical classification models, the output layer contains the same number of

output units as there are categories, which are all activated by the SoftMax activation

function. In categorical prediction tasks, the loss function is defined by categorical cross

entropy show in 21. Where M is the number of classes, 𝑝௢,௖ is the predicted probability

observation o of class c, and y is a binary variable which indicates if classification c of

observation o is in fact a correct classification. Alternatively, for binary or decimal target

prediction, the output layer contains one single densely connected unit.

ℒ(𝑦ො, 𝑦) = − ෍ 𝑦଴,௖ 𝑙𝑜𝑔൫𝑝௢,௖൯

ெ

௖ୀଵ

(21)

4.4 Deep Learning

Further investigation led to the realization that the majority of the machine

learning algorithms mentioned in section 4.3 lose temporal information with the

exception of the HMM. In light of this realization we redirected our efforts towards deep

learning strategies. We further investigated more appropriate models that are capable of

classifying sequences of spatial-temporal data. More specifically, algorithms capable of

classifying sequences of variable length since the duration of tennis swings fluctuate. In

this section we describe what the development of a deep learning task entails.

 21

The objective of deep learning tasks, where one is given a pair of inputs and

targets to design an algorithm, is referred to as supervised learning task. “Unsupervised

learning, where no training signal exists at all, and the algorithm attempts to uncover the

structure of the data by inspection alone.”[6]. This scope of this study will be solely

focused on supervised sequence classification. A supervised learning task requires a

training set of input-target pairs (x,y) where x may be an element, vector, or matrix from

space X, and y is an element of the correct target space Y. Additionally, another input-

target disjoint set is created and referred to as the validation set. In practice, an additional

set is reserved separately from the training set and validation set, referred to as the test

set, and is tested on once optimization is finalized. The goal is to use the input-target

pairs in the training set to design an algorithm that will minimize the error function

between the algorithm output and the correct target in both training and validation sets. In

development the trained algorithm is tested on the validation set, input-target pairs

outside of the training. The algorithms considered in this work are deep recurrent

networks, which are parametric models that are fine-tuned in training to obtain a

specified value or target. The end goal is to optimize the training parameters in the

network to minimize the error across all three mentioned sets in uniform fashion.

In practice these parameters, or weights, are fine-tuned incrementally throughout

the whole training set and then tested in the validation. One iteration of training the

algorithm on every sample in the training set and testing it on the validation set is referred

to as an epoch. As one increases the number or epochs a common obstacle that arises is

overfitting. This means that the algorithm’s loss decreases over the number of epochs in

the training set, while the loss on the validation set increases or becomes stagnant. As a

 22

result of overfitting, the model learns very specific features that can be found the training

set, but these features are not as defined or evident in the validation set. In the deep

learning field there are a wide variety of model architectures which have shown to be

advantageous in classifications of specific types of data.

4.4.1 Supervised Sequence Learning

In this work we aim correlate biomechanical features over time with tennis ball

trajectory. More specifically, classify these features sampled at 30 Hz with the Microsoft

Kinect. In this section we will go more into detailed discussion of algorithms designed

for sequential data labeling which have shown to be efficient previous work.

Additionally, discuss the obstacles that arise in classifying a sequence of temporal

features. These deep learning models are; the recurrent neural network, the gated

recurrent network, and the Long-Short Term memory model.

4.4.2 Recurrent Neural Network

The recurrent neural network, RNN, does not deviate too far from the previously

mentioned model in section 4.3.4, the MLP. “A recurrent network is an extension of

conventional feed forward neural network, which is able to handle variable length

sequence input” [7]. The RNN and MLP differ in that the hidden units in an RNN have

an additional option to transition back into itself. In other words, a transition probability

from the hidden unit at time t back to itself at t+1 exists. At the beginning of the time

sequence, this transition probability is set to zero, but previous studies show that it can be

advantageous to initialize this as a non-zero value [8].

ℎ௧ = ൜
0, 𝑡 = 0

∅(ℎ௧ିଵ, 𝑥௧) 𝑡 ≠ 0
(22)

 23

The hidden state equation then becomes a function of the input x at time t, an input

weight, the recurrent weight, the previous hidden state and a bias as displayed in equation

23.

ℎ௧ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊௫𝑥௧ + 𝑊௥ℎ௧ିଵ + 𝑏௔) (23)

This generative model is used to generate a series of outputs based on input

sequences, and is commonly found in applications that generate sentences, or lyrics.

Using this approach, the probability of the input sequence of length T becomes

𝑝(𝑥ଵ, … , 𝑥்) = 𝑝(𝑥ଵ)𝑝(𝑥ଶ|𝑥ଵ)𝑝(𝑥ଷ|𝑥ଵ, 𝑥ଶ) … 𝑝(𝑥்|𝑥ଵ, … 𝑥்ିଵ) (24)

Using a special output symbol to represent the end of the sequence, this model is capable

of handling variable length sequences by modeling a conditional probability distribution

at each time step as show in Eq.25.

𝑝(𝑥௧|𝑥ଵ, … 𝑥௧ିଵ) = ℎ௧ (25)

Alternate to the generative model, the predictive RNN trains on a sequential data

to predict one singular target. The activation of a hidden unit in a predictive RNN

becomes and additive function over the length of the sequence, flattened by a

differentiable nonlinearity, or gate as shown in Eq. 26. This predictive model is

commonly applied to applications that predict a single specific target value like weather

or stock prices.

𝑦௧ = 𝑔 ൭෍ 𝑤௫𝑥௧

்

௧ୀଵ

+ ෍ 𝑤௥ℎ௧ିଵ

்

௧ୀଵ

൱ (26)

 24

4.4.3 Back Propagation Through Time

RNNs take in feature data as function of time, and classiffiy each sequence into a

single binary or categorical value. Despite the newly considered sequential data, we still

depend on a cost function to quantify the model’s error for the input sequence. Similarly,

we optimize our network using stochastic gradient decent, or the derivative of the cost

function with respect to the weight path. This process becomes more complex because

with every time step in the training sequence, the gradient may become much larger or

smaller.

Back propagation through time, or BPPT, can be thought out of as a traditional

stochastic gradient descent over an RNN that has been unrolled through time. Once we

define a loss function for a simple RNN, BPTT entails computing the gradient for every

time step in the training sequence. Ultimately, the loss or error for one training sequence

becomes the sum of the error over every time step.

𝑑𝐸

𝑑𝑊
= ෍

𝑑𝐸௧

𝑑𝑥௧
௜ழ௞ழ௧

(27)

In order to calculate the error at each time step, we are required to apply the chain rule

since each calculated output at t depends on the previous output at t-1. Figure 15

demonstrates how the error at the 4th step of a sequence of length 5, becomes a

composite function of previous activations ℎ௧.

 25

Figure 15: BPTT at t=3

This method begins at the highest value of t, T, and ends at the lowest value of t,

which is why it is referred to as backpopagation through time. If we consider the chain

rule formula (28) , we can take the product of all gradients in each time step across the

training time sequences.

𝑑

𝑑𝑥
ൣ𝑓൫𝑔(𝑥)൯൧ = 𝑓ᇱ൫𝑔(𝑥)൯𝑔ᇱ(𝑥) (28)

Therefore, the gradient at time t over a sequnce of length T, becomes a function of all

timesteps k, where k is less than t, as shown in equation 29.

𝑑𝐸௧

𝑑𝑊
= ෍

𝑑𝐸௧

𝑑𝑥௧
௜ழ௞ழ௧

𝑑𝑥௧

𝑑𝑥௞

𝑑𝑥௞

𝑑𝑊
(29)

Intuively, we can observe that by multiplying T many numbers together that are greater

than 1 can potentially leads to the exploding gradient problem. On the opposite hand, if

we multiply many number less than zero we are led to vanishing gradient that converges

to zero. These two obstatcles are two of the main reasons why RNNs are so difficult to

train [9].

 26

4.4.4 Gated Recurrent Unit

The gated recurrent unit is an apporach which augments the basic RNN with two

gating units, the update gate and the reset gate. Each of these two gates feature an

activation and a trainable parameter creating a small submodel at every node of the

hidden layers of the network. In back propagation, these parameters, or weights, are

trained to determine how to retain relevant information as well as to filter out irrelevant

data.

Figure 16: Gated Recurrent Unit

The update gate z controls how much information from the previous hidden state will

carry over to the current hidden state. [10]

𝑧௧ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊௭𝑥௧ + 𝑈௭ℎ௧ିଵ) (30)

Secondly, the reset gate 𝑟௧, also referred to as relevance gate, which can be aplied to the

hidden state before or after the matrix multiplication depicted in Equation 31. This gate

will advise the cell wether to update with new values or not. The candidate activation ℎ′௧,

is the new suggesed value that is trying to get through reset gate

𝑟௧ = 𝑡𝑎𝑛ℎ(𝑊௥𝑥௧ + 𝑈௥ℎ௧ିଵ) (31)

ℎᇱ
௧ = 𝑡𝑎𝑛ℎ൫𝑊𝑥௧ + 𝑈(𝑟௧ ⊙ ℎ௧ିଵ)൯ (32)

 27

Ultimately, the activation at time t combines the candidate activation and the previous

activation at t-1 using the current update gate value

ℎ௧ = 𝑧௧ ℎ௧
෡ + (1 − 𝑧௧)ℎ௧ିଵ (33)

4.4.5 Long Short Term Memory

Long-short term memory, LSTM, units are also closely related to the simple

RNN. Similar to GRU models, the LSTM architecture is comprised of units at each node

of the hidden layer as opposed to a single perceptron. In the LSTM approach, each unit

contains three gates; the input, output and forget gates. “The multiplicative gates allow

LSTM memory cells to store and access information over long periods of time, thereby

mitigating the vanishing gradient problem.” [6] Additionally, LSTM utilizes these gates

to retain a sufficiently large gradient in order to keep optimizing the network model

towards an error minimum. The LSTM gates shown in figure 17 are mathematically

defined as follows:

Figure 17: Long Short-Term Memory Unit

 28

The input gate, which informs the cell on what incoming data is useful while also

contributing to the cell state 𝑐௧.

𝑖௧ = 𝜎(𝑊௜ 𝑥௧ + 𝑈௜ℎ௧ିଵ + 𝑉௜𝑐௧ିଵ) (34)

The forget gate, which is utilized to help the cell let go of what information is irrelevant

𝑓௧ = 𝜎൫𝑊௙𝑥௧ + 𝑈ℎ௧ିଵ + 𝑉௙𝑐௧ିଵ ൯ (35)

At the core of the LSTM unit, one can find the constant error carousel, CEC,

which closely resembles a standard RNN. “By recirculating activation and error signals

indefinitely, the CEC provides short-term memory storage for extended time

periods.”[11] The output of the becomes cell’s memory which is then defined as a

function of the forget gate and input gate values shown in equation 36.

𝑐௧ = 𝑓௧𝑐௧ିଵ + 𝑖௧𝑐̂௧ (36)

where 𝑐̂௧ is the candidate new cell memory candidate at time t regularized by the value of

the input gate. 𝑐′௧is defined using 𝑥௧, the input at time t, and ℎ௧ିଵ, the activation at time t-

1 as shown Equation 37.

𝑐௧
ᇱ = 𝑡𝑎𝑛ℎ(𝑊௖𝑥௧ + 𝑈௖ℎ௧ିଵ) (37)

where the activation of the unit ℎ௧,is defined by the hyperbolic tangent of the cell

memory at time t element-wise multiplied by the output gate value as show in Equation

38

ℎ௧ = 𝑜௧ ∗ 𝑡𝑎𝑛ℎ(𝐶௧) (38)

where the output gate, 𝑜௧, whose purpose is to regulate the amount of memory content to

be visible by the rest of the network at time t is defined by 39

𝑜௧ = 𝜎(𝑊௢𝑥௧ + 𝑈௢ℎ௧ିଵ + 𝑉௢𝑐௧) (39)

 29

4.4.6 Algorithm Discussion

It is important to note that the GRU designed by Cho et all in 2004 has two gates;

the reset and update gate. More importantly to note, if we set the reset gate to 0 and

update gate to 1, we end up with the simple RNN model. On the other hand, the LSTM

architecture brought forth by Hochreiter and Schmidhuber in 1997, has 3 gates; input

gate, output gate and forget gate. In similar fashion, if the input gate and forget gate are

open, set to 1, then the CEC is updated with every new input and recurrent state just like

an RNN unit. In nature, gates are differentiable nonlinearities operating on trainable

parameters that transmit or receive information to or from the rest of the network, whose

task is to be more selective in accessing sequential data. The LSTM unit has a memory

cell and the GRU does not, but both have an additive component in their updating

features from t to t+1. The purpose of the LSTM memory cell is to overwrite part of

existing memory with incoming data. In similar fashion the GRU uses the update gate

value to add a factor of old and add new data. Since the GRU has less trainable

parameters than the LSTM, it is less computationally expensive to train and a faster

algorithm when implemented. Although the two mentioned augmented algorithms in 9.3

and 9.4 are more efficient in learning long temporal range approaches than the basic

RNN approach, there is very little evidence to support the idea that one consistently

outperforms the other.

4.5 Optimization

This section is dedicated to cover the techniques that were investigated and

implemented in training the recurrent network models covered in the background section.

 30

4.5.1 Regularizers

Regularizing is practice of normalizing the activations or parameters of a specific

hidden layer of n trainable parameters and apply penalties to the loss function of the

network model. The way regularization is applied to the model’s loss function is by

adding a regularization term to the loss function. In order to monitor the effect of the of

the regularization term on the loss function, we define a small regularization parameter,

λ.

𝐿௥ = 𝐿(𝑦, 𝑦ො) + 𝜆 ෍ 𝜃௝

௡

ଵ

(40)

Regularizers help in when the model learns too many features, and what it does is

decrease or regulate the magnitude of the learned parameters. In doing so, we tame the

learned parameters in the training set to not be as dominant or deterministic in the

model’s performance on the test set and ultimately attempt to prevent overfitting.

𝜂
𝑑𝐿௥

𝑑𝜃
= 𝜂

𝑑൫𝐿(𝑦, 𝑦ො) + 𝜆 ∑ 𝜃௝
௡
ଵ ൯

𝑑𝜃
=

𝑑𝐿(𝑦, 𝑦ො)

𝑑𝜃
 +

𝑑൫𝜆 ∑ 𝜃௝
௡
ଵ ൯

𝑑𝜃
(41)

4.5.2 Batch Normalization

In practice, a big setback in training a model is overfitting due to when there is a

shift in distribution between the training set and the validation set. In more detail, the

internal covariate shift is defined at the layer level where the distribution of the input of a

hidden layer and the distribution of its output differs or changes after the activation

function. As a model increases in hidden layers, the distributions after each layer might

differ, and may lead to complicating the optimization process. A way to mitigate this is to

whiten the output of each layer. Whitening entails linearly transforming the input matrix

 31

to have zero means, unit variances, and decorrelated. This entails computing the

covariance matrix along with its inverse square root.

Previous works shows that whitening between each hidden layer would result in

obtaining an input of fixed distribution for each hidden layer and ultimately remove the

effects of the internal covariate shift. Additionally, whitening transformation between

layers has also demonstrated to lead to faster model convergence.[12] However, this

transformation is computationally expensive, and would significantly slow down the

network in producing a prediction, even more so as the number of hidden layers

increases.

Instead of performing whitening transformations at every layer, previous work

suggests that batch normalization also helps mitigate the ill effect of the covariate

shift[13]. It is also important to note that batch normalization can be implemented before

or after applying the non-linearity of the hidden layer. In training we use the minibatch

computed mean and variance, 𝜇஻ and 𝜎஻
ଶ respectively and shown in Equation 42. During

inference, validation, the true value of the mean and variance of the population, E[x] and

var[x] respectively are used and demonstrated in Equation 43.

𝑥పෝ =
𝑥 − 𝜇஻

(𝜎஻
ଶ+∈)

ଵ
ଶ

(42)

𝑥పෝ =
𝑥 − 𝐸[𝑥]

(𝑉𝑎𝑟[𝑋]+∈)
ଵ
ଶ

(43)

4.5.3 Dropout Regularization

Dropout can be considered as another way of regularizing a neural network and

has shown to be effective in preventing overfitting in previous work[14]. Dropout

 32

disconnects certain connections to a subset of units within a hidden layer and refreshed

after every iteration of weight optimization. In practice, a subset of hidden units within a

hidden layer are given a probabilistic value to be omitted from the model. Deactivating

hidden units in training forces the model to generate various paths to obtain a desired

target and ultimately lead to better results in validation set. When testing the model’s

performance in the validation set, dropout is not used. This technique can be thought of

as training multiple models within one fixed-sized model. Ultimately, dropout

regularization tackles overfitting prevention as well as model combining, which is an

approach of training different models separately with different data and combing them

into one.

4.5.4 Gradient Clipping

When one encounters the exploding gradient problem, it is good practice to clip

the gradient in order to keep training the parameters toward a loss minimum. In practice,

once the gradient is calculated it is normalized by a threshold value and the L1 or L2

norm of the gradient

𝛻௪𝐽(𝑤) 𝑥
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛𝑜𝑟𝑚௅(𝛻௪𝐽(𝑤))
(44)

Equations 45 and 46 define the L1 and L2 norm of a vector x of size n.

𝐿1 𝑛𝑜𝑟𝑚 = ෍|𝑥௡|

௡

ଵ

(45)

𝐿2 𝑛𝑜𝑟𝑚 = ൭෍ 𝑥௡
ଶ

௡

ଵ

൱

଴.ହ

(46)

 33

4.5.5 Momentum-Augmented SGD

In this section we introduce augmented versions of stochastic gradient descent

that have shown to outperform the standard SGD approach in section 4.2.2 in sequential

data applications. More specifically, we review two first-order techniques that apply the

concept of momentum to SGD in order to accelerate through regions of low curvature in

the loss function. The concept of classical momentum, CM, can be described as

iteratively accumulating a directional vector towards a minimum of a given function that

requires optimization. For deep learning applications, the objective function becomes loss

function of the model. Equation 46 shows how CM is applied to gradient descent, where

𝜇 is a predefined momentum coefficient ranging from 0 to 1, and 𝑣௧ is the directional

vector. Next, we can use the directional vector, 𝑣௧ାଵ,to iteratively update the parameters

towards a local minimum as shown in Eq 47.

𝑣௧ାଵ = 𝜇𝑣௧ − 𝜂
𝑑𝐿(𝑦, 𝑦)

𝑑𝑊
(47)

𝜃௧ାଵ = 𝜃௧ + 𝑣௧ାଵ (48)

The Nesterov Accelerated Gradient, or NAG, is similar to classical momentum

approach, expect for the difference in the way that NAG calculates the gradient. This

technique computes the gradient by first adding the cost function to the momentum

coefficient 𝜇 multiplied by velocity vector 𝑣௧. The gradient then becomes the derivative

of this sum with respect to the model parameters, and it is used to update the parameters

identically to first approach, shown in Equation 49

𝑣௧ାଵ = 𝜇𝑣௧ − 𝜂
𝑑(𝐿(𝑦, 𝑦) + 𝜇𝑣௧)

𝑑𝑊
(49)

 34

Previous experiments show that momentum accelerated SGD, with a strong 𝜇 coefficient

had favorable effects in the optimization of RNN model [15].

 35

5 Methods

In this section we describe how we collected data from highly skilled athletes

performing the three standard tennis swings and managing the raw extracted motion

capture data.

5.1 Protocol Design

The protocol for this study will start off by setting the Kinect v2 on a tripod

located on the corner of the tennis court. This corner is defined by the baseline and the

outer edge of one of the two doubles alleys and will vary depending on which direction

the subject is facing while executing a tennis groundstroke. On the opposite side of the

net, we will set up a grid of 8.4x7.5 feet rectangles. A cone will be set in the center of one

these rectangles which will define the target rectangle. Once the target is set and the

subject has warmed up, we will give the subject 10 attempts try to hit the target while the

research team records the landing of each attempt in the defined grid. If a subject missed

by not making contact with the ball or by hitting the ball into the net, they will be granted

one supplementary attempt. Each attempt will consist of the co-investigator hitting a ball

at slow pace from the opposite side net to the subject who will be waiting for the ball at

the baseline. The ball will be fed to the subject in such a way that the subject will be able

to strike the ball while staying the Kinect’s field of vision while the Kinect is recording.

There will be six different targets set up for the forehand portion of the study, as well for

the backhand portion of the study. Similarly, the subject will be given 10 attempts for

each target.

 36

For the serve portion of the study, a different size grid will be set up consisting of

3.5x3.5 feet squares and will be set on a service box diagonally across from the subject.

A cone will then be placed at the center of one of the rectangles to define the target

rectangle. Starting from the “deuce side” of the court, the subject will stand 3 feet from

the center of the baseline and take 10 attempts at hitting the target while performing their

serve motion. For each side of serve position, “deuce” and “ad” side, the subject will be

required to hit two different targets from each of these serving sides. From each of the

two sides, one target will be located in the corner of the service box that is closest to the

center of the court, the second target will be located on the opposite corner of the box

close to one of the doubles alley. By placing targets in opposite sides of the courts we can

expect to be able to denote biomechanical features that correlate to the different

trajectories of the tennis ball. Figure 18 below displays the grid with reference to a

regulation size tennis court, the targets of the study, and the locations where the Kinect

would be placed for recording depicted by the blue dots.

 37

Figure 18: Ground stroke portion of the study where the

red triangles represent targets

Figure 19: Serve portion of the study

5.2 Signal Processing

The Kinect’s frame rate can fluctuate below the advertised 30 frames per seconds.

This variable frame rate is not controllable by the user and mainly relies on the hardware

components of the sensor and the user’s computer resources. In order to compensate for

fluctuation in frame rate, the Kinect raw data will be interpolated up to the advertised

frame rate of 30 frames per second. And then it will be passed through a 4th order

Butterworth filter. Once the data is interpolated and filtered, we will gather the data of the

actual swing. Taking into consideration different swing speed across subjects, we have

determined that the dominant side wrist of the participant has denotable maxima and

minima that indicate the start and end of each swing. More specifically, the Y component

of the wrist joint signal demonstrates that tennis athletes accelerate their dominant arm by

 38

swinging in a more vertical direction. These spatial-temporal landmarks were considered

in the annotative process of the data.

Since the position of the subject with respect to the Kinect will not be constant for

every swing across all subjects, we will have to measure distances and angles with

respect to the subject’s own body. Alternatively, we can manipulate the data by

removing part of the x component of the 3D coordinates in a way to relocate the body

coordinates into a fixed position for each frame of the data collected.

Figure 20: Dominant Hand Y-Component

5.3 Feature Extraction

In this section we describe how we extracted biomechanical features from the

acquired data from section 5.1 to the deep learning techniques mentioned in 4.4 and apply

them to a set hypothesized biomechanical features in order to meet our objectives. One of

the features were hypothesized to be indicative of the direction of the ball is the angular

 39

displacement of the subject’s dominant-side hip and shoulder. In other words, we predict

that the angular displacements of the two mentioned joints will have a correlation to the

amount of change in direction required to hit a present target. Figure 18 denotes the

rotation of the hips in the Kinect’s XZ plane where the blue denotes the frame after the

black frame. The midpoint between hips and between shoulders are defined by spine base

and spine shoulder points respectively.

𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑑𝜃

𝑑𝑡
(50)

Figure 21: Angular Velocity

We also predicted that the angles created by the subjects’ ulna and humerus

during the swing are correlated to the distance between the subject and the target as well

as the direction. More specifically, that the mentioned angle will become more obtuse

throughout the swing as the subject aims for a target that is further away from him or

herself. In order to create an input for this model we will take into consideration three

angles from the dominant side of the subject as a function of time. These three angles

were calculated using three joints from the skeletal data and Equation 51. For each

calculated angle, we will need the three joints with one common joint to create two

vectors.

𝑑𝜃

 40

Figure 22: Joint Angle

∅௜ = 𝑐𝑜𝑠ିଵ ቆ
𝑢 ∙ 𝑣

ห|𝑢|ห ห|𝑣|ห
 ቇ (51)

Table 1: Joint Angle Features

Angle Joint 1 Joint 2 Joint 3 Sequence

∅ Shoulder Elbow Wrist ∅ଵ, ∅ଶ, … . ∅்

𝜃 Elbow Shoulder Neck 𝜃ଵ, 𝜃ଶ, … 𝜃்

𝜔 Elbow Shoulder Hip 𝜔ଵ, 𝜔ଶ, … 𝜔்

5.4 Data and Software Development

In this work, data was gathered across 14 eligible participants using a Dell

Inspiron 17 7559 laptop with a dedicated GPU, the Microsoft Kinect and a custom

designed software suite. The motion capture data was recorded in a .csv file in the

presence of a single target at a time. In other words, each .csv file contained the ten

attempts of a subject swinging at one of the targets mentioned in 5.1. The data was

annotated using a custom designed software suite in MatLab based on the maxima and

minima features in 5.2. These minima and maxima were not as observable in the

backhand and serve swings due to the dominant hand not being in the sensor’s line of

sight during swing execution. Consequently, the remainder of the study focused on

forehand target prediction. In the annotation process, the full-body motion capture data

Joint 2
(Common
Joint)

Joint 1

Joint 3

 41

was visually inspected, before correlating every peak and valley to the start and end of a

swing. The ball landing location was then mapped to one of five categories across the

width of the tennis court shown in table Consequently, each annotated swing was stored

in its own .csv file. Along with it’s true target outcome.

Table 2: Target Classification

Court
reference

Cross-
Court

Left-of
center

Center
Right of
center

Down-the-
Line

Target
mapping

4 3 2 1 0

The feature extraction was developed in Matlab to export angles and distances

mentioned in the section 5.3, along with the swing’s trajectory classification. The features

were then imported into the scripts containing the models mentioned in the section 9.0

using python 3. This work features the RNN as the baseline model whose performance

was then compared to GRU and LSTM’s performance. All three models were

implemented using the Keras API with a TensorFlow backend. The constraints on each

model was a maximum of two hidden generative hidden layers, while maintaining the

number of trainable parameters in the same order of sequences gathered. Stacking hidden

generative layers has shown to be effective at the sub-model level to achieve predictive

tasks. Ultimately, the workflow of this study was defined as shown figure 23.

 42

Figure 23: Design cycle

This work considered a categorical output layer in attempting ball trajectory

prediction. This attempt featured an output layer of five units with the use of a SoftMax

activation function. These five units represent the five categories in the grid defined in

table across the width of a tennis court. The targets of the swing sequences were one-hot

encoded, mapped to a binary vector with length of the number of categories where the

only bit set to 1 corresponds to the correct target as shown in table. Using this approach,

the loss function implemented was categorical cross-entropy shown in equation 21.

Table 3: One-hot encoded targets

Decimal value One-hot encoded

0 [1 0 0 0 0]
1 [0 1 0 0 0]
2 [0 0 1 0 0]
3 [0 0 0 1 0]
4 [0 0 0 0 1]

 43

6 Results

In this section we visualize the hypothesized features in the training set data that

we expected to be correlated to ball trajectory as well as analyze the subject population

and the data target distribution. The participant population is analyzed in table 4

displaying binary variables that were permissible in the data gathering process. The target

outcome distribution is displayed in figure 27 across all targets and subjects.

Table 4: Participant Population

Gender
(Male/female)

Dominant Side
(Righty/Lefty)

Session Environment
(Indoor/Outdoor)

9/5 14/0 4/10

Figure 24: Training set target distribution

In chapter 3 we aimed to design an algorithm that would be able to classify

biomechanical feature sequential data into one of two general directions, cross-court and

down-the-line. We attempted to find visible depiction between the two, to test our

hypothesized features as well as answering for the reliability of the sensor. The features

 44

displayed were taken from the swings that resulted in target 0 and target 4 over a two-

second time window, demonstrated in blue and red respectively. The first three features

evaluated, were the ones mentioned in table 1; elbow flexion, shoulder flexion and

axillary, as shown in figures 24, 25 and 26. In addition, we evaluated how likely these

angles were over this twosecond window. This was done to visualize the classifier’s task

in selecting between the two opposing targets.

Figure 25: Elbow Flexion for targets 0 and 4.

Figure 26: Axillary Angle for targets 0 and 4.

 45

Figure 27: Shoulder Flexion for targets 0 and 4.

Figure 28: Swing Feature Distribution

We were not able to observe significant differences in any of the proposed

feature-target pairs, or across the feature distributions in figure 28. In attempt to find

more indicative features, we extracted more features shown in figures 29, 30, and 31.

 46

Figure 29: Shoulder Rotation with respect to Kinect

Figure 30: Shoulder Displacement in 3D space throughout Swing

Figure 31: Wrist-to-Shoulder Distance

 47

The training data was then time-aligned and randomly shuffled across the whole

set. We then trained and tested the model with the mentioned sequential feature data. The

models each individually comprised RNN, GRU, LSTM units. Our results in terms of

loss and categorical accuracy are shown in figures 32 and 33 respectively.

Figure 32: Model Loss

Figure 33: Model Accuracy

 48

7 Discussion

In figure 32 we demonstrate the loss of the three models over 30 epochs. Our

results indicate that the that regularization techniques successfully prevented the models

from overfitting. The plot also demonstrates that RNN converges after10 epochs, while

the gated-unit models converge at 5 epochs. Batch normalization and NAG did in fact

accelerate the learning process but ultimately led to convergence at 1.4 cross entropy

loss. We can deduct that from this loss convergence difference that the gated approaches

were beneficial in our application.

The progression of classification accuracy in each model over 30 epochs is

displayed in figure 26 with the training and validation results in individual sublots. We

can see that in training the accuracy subplot remained below 30%, but the LSTM

accuracy reached higher than 30% at epoch 25. In the validation process we see similar

pattern of 30%, but we noted that the GRU model converged the fastest out of the three

models. We also noticed that the stability of the GRU accuracy was more reliable after it

reach convergence at epoch 15. The 33% accuracy is predicted to be a result from the

training set containing targets 0, 2 and 4, close to equally likely in outcome as shown in

the distribution shown in figure 24.

In attempt to obtain better results we implemented a method in which we fed the

model a batch of sequences of similar target. In detail, we trained the models on batches

of singular target across randomized subjects. This was done in aim to force the model to

learn features correlated to target outcome across different subjects. All three models

were then evaluated twice; once with batches of random subjects swinging at random

 49

defined targets, and another with batches of random subjects swinging at one defined

target. We did not expect to see a big increase in classification accuracy for targets 1 and

3 since they’re probabilistic low as well as uneven in favor of 3. Our results showed

improvement not quantitatively in terms of entropy or accuracy a but in distance between

predicted and corrected target. We evaluated our results by analyzing the confusion

matrices of each model trained in both mentioned manners. The confusion matrix is a 2D

matrix used to visualize the predictions vs the correct outcome, where the correct

outcome is always the ith element of the ith row. We observed the most favorable results

from the RNN and LSTM models. The comparison in loss between target-batch training

and random batch training can be seen in appendix A.

 50

Table 5: Random batch training vs. Single-target training confusion matrices

Model Random Batch Single-Target Batch

RNN

0 0 0 0 43
0 0 0 0 6
0 0 0 0 43
0 0 0 0 18
0 0 0 0 26

12 0 7 0 24
3 0 1 0 2

11 0 6 0 26
5 0 5 0 8

10 0 2 0 14

GRU

43 0 0 0 0
6 0 0 0 0

43 0 0 0 0
18 0 0 0 0
26 0 0 0 0

0 0 0 0 43
0 0 0 0 6
0 0 0 0 43
0 0 0 0 18
0 0 0 0 26

LSTM

37 0 0 0 6
6 0 0 0 0

31 0 0 0 12
9 0 0 0 9

19 0 0 0 7

34 0 0 0 9
5 0 0 0 1

23 0 0 0 20
6 0 0 0 12

15 0 0 0 11

 51

8 Conclusion

The primary goal of this work to was to determine features of body movement

that correlated to tennis swing efficacy. In doing so, we would have been able to

artificially interpret a humanistic skill with a neural network model and an accessible

motion capture sensor. We tested our hypothesized features by applying them as inputs to

three established supervised sequence learning techniques. In this work we implemented

the RNN as the baseline model whose performance was then compared to the GRU and

the LSTM models developed by, Cho and, Hochreiter and Schmidhuber respectively.

These two gate-augmented models have shown to be advantageous in training as well as

recognizing longer range time dependencies better than RNN models.

Our results show that the gated-unit approaches did in fact converged faster than

the RNN model at similar loss values, but the gated-models did not outperform the RNN

in classification accuracy. In methodically generating batches in training, we observed

more favorable values which indicated that there was some correlation between the

features and swing efficacy. In analyzing the features, we can consider that the feature

selections are not indicative of swing-target pair, while also not being accurately depicted

by the Kinect sensor. From a deep learning perspective, we believe that the model could

benefit from a convolutional layer as feature-generating layer prior to the RNN units.

From a signal processing standpoint, we expect the model could benefit from

implementing adaptive filtering techniques that are used in pose estimation. Considering

that the GRU and LSTM units are adaptive to longer range time dependencies, and that

they converged faster than the RNN, we can infer that this temporal-memory feature is

beneficial in classifying variable length swing patterns to an extent.

 52

References Cited

[1] D. Whiteside and M. Reid, “Spatial Characteristics of Professional Tennis Serves with

Implications for Serving Aces: A Machine Learning Approach,” J. Sports Sci.,

vol. 35, no. 7, pp. 648–654, Apr. 2017.

[2] “BodyFrame Class.” [Online]. Available: https://msdn.microsoft.com/en-

us/library/windowspreview.kinect.bodyframe.aspx. [Accessed: 14-Dec-2017].

[3] “JointType Enumeration.” [Online]. Available: https://msdn.microsoft.com/en-

us/library/microsoft.kinect.jointtype.aspx. [Accessed: 14-Dec-2017].

[4] K. Otte et al., “Accuracy and Reliability of the Kinect Version 2 for Clinical

Measurement of Motor Function,” PLOS ONE, vol. 11, no. 11, p. e0166532, Nov.

2016.

[5] “Coordinate Spaces.” [Online]. Available: https://msdn.microsoft.com/en-

us/library/hh973078.aspx. [Accessed: 14-Dec-2017].

[6] A. Graves, “Supervised Sequence Labelling,” in Supervised Sequence labelling with

Recurrent Neural Networks, Springer, 2012, pp. 5–13.

[7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling,” ArXiv14123555 Cs, Dec.

2014.

[8] M. Zimmermann, J. C. Chappelier, and H. Bunke, “Offline Grammar-Based

Recognition of Handwritten Sentences,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 28, no. 5, pp. 818–821, May 2006.

 53

[9] R. Pascanu, T. Mikolov, and Y. Bengio, “On the Difficulty of Training Recurrent

Neural Networks,” in International Conference on Machine Learning, 2013, pp.

1310–1318.

[10] K. Cho et al., “Learning Phrase Representations Using RNN Encoder-Decoder for

statistical machine translation,” ArXiv Prepr. ArXiv14061078, 2014.

[11] F. Gers, N. Schraudolph, and J. Schmidhuber, “Learning Precise Timing with LSTM

Recurrent Networks,” J. Mach. Learn. Res., vol. 3, pp. 115–143, Jan. 2002.

[12] “A Convergence Analysis of Log-Linear Training - Semantic Scholar.” [Online].

Available: /paper/A-Convergence-Analysis-of-Log-Linear-Training-Wiesler-

Ney/24e4eed7a161769705dfcfa5b659c3dd428de6bf. [Accessed: 02-Jul-2018].

[13] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift,” ArXiv Prepr. ArXiv150203167, 2015.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A Simple Qay to Prevent Neural Networks from Overfitting,” J. Mach.

Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[15] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the Importance of Initialization

and Momentum in Deep Learning,” in International conference on machine

learning, 2013, pp. 1139–1147.

 54

APPENDIX A: RANDOM BATCH TRAINING VS SINGLE-

TARGET TRAINING LOSS ACROSS 3 MODELS

RNN

GRU

 55

LSTM

