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Abstract 

The purpose of this study is to create a gesture recognition system that interprets motion 

capture data of a tennis player to determine which biomechanical aspects of a tennis swing best 

correlate to a swing efficacy. For our learning set this work aimed to record 50 tennis athletes of 

similar competency with the Microsoft Kinect performing standard tennis swings in the presence 

of different targets. With the acquired data we extracted biomechanical features that 

hypothetically correlated to ball trajectory using proper technique and tested them as sequential 

inputs to our designed classifiers.  

This work implements deep learning algorithms as variable-length sequence classifiers, 

recurrent neural networks (RNN), to predict tennis ball trajectory. In attempt to learn temporal 

dependencies within a tennis swing, we implemented gate-augmented RNNs. This study 

compared the RNN to two gated models; gated recurrent units (GRU), and long short-term 

memory (LSTM) units. We observed similar classification performance across models while the 

gated-methods reached convergence twice as fast as the baseline RNN.  The results displayed 1.4 

entropy loss and 30 % classification accuracy indicating that the hypothesized biomechanical 

features were loosely correlated to swing efficacy or that they were not accurately depicted by 

the sensor. 
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1 Introduction 

The goal of this work is to use machine learning and computer vision to identify 

which biomechanical movements are best correlated with effective tennis swings based 

on motion-capture data of subjects playing tennis. In this work we aim to develop a set of 

machine learning algorithms that will learn proper technique of the three standard tennis 

swings; forehand, backhand, and serve. Within each of these three tennis swings, we will 

aim for the algorithm to learn how to properly hit a tennis ball to the left and right side of 

the tennis court.  

In practice, these general directions, or ball trajectories, are referred to as hitting 

the ball “down-the-line” and “cross-court” when speaking of forehands and backhands. 

When speaking of the tennis serve, the two common ball trajectories are referred to as 

“down-the-‘T’” or “out-wide”. These common ball trajectories will be explained more in 

depth in the background section. As for the serve portion of the study, this work will 

analyze the biomechanics of how to serve to two different general directions. Once we 

collected and annotated skeletal tracking data of skilled tennis players performing these 

swings, we can extract biomechanical features such as joint angles and distal landmarks 

to develop a machine learning algorithm that will classify these swings and correlate 

them to ball trajectories. 

In order to obtain a proper learning data set, we chose highly skilled tennis 

athletes to perform the mentioned tennis swings in the presence of different targets that 

demonstrate good tennis practice.  In this work, we utilized the Microsoft Kinect v2 as 

the motion capturing tool and a custom designed software suite to record tennis athletes. 
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Previous research and applications have shown the Kinect’s spatial measurement 

limitations and how it compares to a laboratory grade motion capture system. 
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2 Motivation 

In recent years, a variety of new technologies have been introduced to tennis that 

have changed the game. Technologies like “Hawk-Eye” which track the ball’s trajectory 

and landing have started to diminish the need of official line judges during tennis matches 

since it can determine whether the ball landed in or out. Not only has this made line-

calling more accurate and reliable, it has also opened up a field of more in-depth 

statistical analysis of the sport. This multi-camera system uses triangulation to track the 

tennis ball up to 2.6 mm accuracy [1] and has attracted research institutions and 

companies like IBM and SAP to develop statistical analysis software on professional 

match play. Ultimately, the work here aspired to develop a statistical model based on 

biomechanical features of tennis players while drawing a bridge to the field of study that 

focuses on the trajectory of the ball.   

In addition, this work could also contribute to the development of tennis teaching 

software. If the Kinect’s skeletal tracking algorithm is accurate enough, future work 

could use this data to classify a subject’s swing technique as proper or poor. Private 

tennis lessons, work towards to perfecting a customer’s swing technique. Furthermore, a 

professional tennis instructor will provide tips and detailed adjustments to correct 

technical mistakes, but not to the extent of instruction that requires precision down to the 

millimeter. Consequently, we anticipated that the accuracy of the Kinect’s body tracking 

would be sufficient for our purposes since millimeter precision is not vital to the 

instruction or the learning of standard tennis swings.  
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This work could also contribute to making tennis video games or simulators more 

realistic. The value of our results will be significant to applications that refer to tennis and 

that include motion capture. In addition, the skeletal tracking data collected of highly 

skilled players will record the current biomechanical approach of advanced players as it 

changes overtime as players and equipment technology evolve.  



  5

3 Research Objectives 

The overall objective of this work is to determine if a machine learning algorithm 

can correlate biomechanics to swing efficacy based on the skeletal tracking data obtained 

with the Kinect. More specifically, to determine if we are able to design a set of 

algorithms that are capable of recognizing patterns of a proper forehand, backhand, and 

serve with a desired target across multiple subjects.  With this main objective in mind, we 

can derive specific aims. The success of this study will require us to accomplish the 

following set of goals: 

A. Determine features of body movement that are correlated to a tennis player’s 

swing 

B. Design an algorithm that will be able to predict the tennis ball’s general 

trajectory from body tracking data obtained from the Kinect v2. 

We will exploit the Kinect’s skeletal tracking data with various discrete-time signals 

processing techniques and pattern recognition techniques in order to meet these goals. 
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4 Background 

4.1 Kinect v2 

The Microsoft Kinect v2 comprises of three different sensors; depth sensor, 

infrared sensor, and an RGB camera, which do not match in resolution or physical 

location. Microsoft has developed a proprietary machine learning algorithm to detect up 

to six human bodies with the Kinect using these three layers of data streams [2]. This 

algorithm is what makes this motion capture technology a markerless approach.  The 

skeletal tracking data is encapsulated in the “body frame” in which we can obtain 3-

dimensional data of 25 different body joint centers of each body at a frame rate of up to 

30 fps.  The joint data includes x, y, z components and. The Kinect-estimated joint centers 

are demonstrated in Figure 1. 

 

Figure 1: Kinect skeletal tracking [3] 
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As previously mentioned in the introduction, section 1.0, it is important to be 

mindful of the Kinect’s skeletal tracking’s accuracy, and how this accuracy will affect 

our machine learning algorithm design. Studies show that the Kinect v2’s accuracy and 

frame rate is outperformed by multi-camera laboratory grade motion capture systems, but 

it is reliable enough to be considered a valid clinical measurement tool [4]. Although the 

Kinect v2 is a low-grade motion capture system, displaying low accuracy especially in 

ankle and feet detection [4], it is portable, low-cost, and does not require calibration or 

the use of markers on subjects like a Vicon system of 2 mm accuracy at 100 fps. Without 

the constraints of markers and a research lab setting, subjects that will partake in our 

study will be able perform as freely as they would during match play as long as they stay 

in the Kinect’s field of vision and within four meters of the sensor.  

The Kinect v2 outputs 3-dimensional space coordinates for 25 joints of each body 

tracked with reference to the actual device. In more detail, the origin (point 0,0,0) of the 

3-dimensional coordinate system obtained by the Kinect is the actual location of the 

Kinect as shown in Figure 2. The z component represents the orthogonal distance from a 

joint to the Kinect. The y component represents the orthogonal distance from the joint to 

the floor plane, and the x component entails the distance of the joint that extends to the 

right or left of the sensor. With the discussion of the coordinate system, it also important 

to note that the floor plane is also encapsulated within the Kinect’s body frame. This floor 

detection is also a component of Microsoft’s proprietary skeletal tracking since the y 

coordinates are dependent on it. 
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Figure 2: Kinect Cartesian Coordinate System [5] 

Since the position of the subject with respect to the Kinect will not be constant for 

every swing across all subjects, we will have to measure distances and angles with 

respect to the subject’s own body.  Additionally, we can manipulate the data by removing 

parts of the x and z components of the 3D coordinates in a way to relocate the body 

coordinates of into a fixed position for each frame of the data collected. 

4.2 Tennis Background 

Generally speaking, an intermediate tennis player is able to hit the three standard 

tennis swings; forehand, backhand, and serve. This level of player should also have 

control over the general direction of the ball from all of these previously mentioned 

swings. These directions refer to the ball’s trajectory with respect to the subject who hit 

the ball. The forehand and backhand, often referred to as groundstrokes, can be struck 

“down-the-line” or “cross-court”. The serve can also be struck in two general targets, 

“down-the-T”, which refers to the center of the court, and “out-wide” which pertains to 

aiming the serve at the singles side line that belongs to that service box. The clarification 

of theses swings and associated directions are important since they can vary depending 
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on the dominant hand of the subject and on which side of the court the subject who is 

hitting the ball from. This set of tennis swings and general directions create a general 

baseline for tennis knowledge and ability, as well as a better understanding of the 

objective of this work. 
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Figure 3: Forehand down-the-line (blue) crosscourt 

(orange) for a right-handed player 

 
Figure 4: Backhand down-the-line (orange) crosscourt 

(blue) for a right-handed player 

 
Figure 5: Deuce side serve down-the-T (blue) out-wide 

(orange) 

 
Figure 6: Ad Side down-the-T (blue) out-wide (orange) 
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4.3 Pattern Recognition Techniques 

In this section we will introduce the pattern recognition approaches that we 

anticipated using in this work. We will consider two methods that are feature dependent, 

support vector machines and hidden Markov models. 

4.3.1 Support Vector Machines 

Support vector machines are a supervised machine learning technique used to 

classify data between two classes. SVMs are essentially the use of a decision hyperplane 

of dimension (p -1) to classify p-dimensional data points in the feature space.  This 

decision hyperplane is designed based on a subset of the training data points referred to 

as support vectors which lie close to estimated boundary between the two classes; the 

remaining training data samples becomes essentially ignorable. The design procces of an 

SVM classifier starts by considering the following basic classifier in slope intercept form 

displayed by equation 1. 

𝑓(𝑥) = 𝛽𝑥 + 𝑏 = 0 (1) 

If we impose the constraints of equation 2 where 𝑦௝ =  ±1 as the classification 

variable, and 𝑥௝ denotes data points, we can define the decision hyperplane becomes by 

finding the optimal value of β. The data points that are chosen as the support vectors 

satisfy equation 3. 

𝑦௝൫𝛽𝑥௝ + 𝑏൯ ≥ 1 (2) 

𝑦௝𝑓൫𝑥௝൯ ≥ 1 (3) 

𝑦௝൫𝛽𝑥௝ + 𝑏൯ = 1 (4) 
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To optimize our classifier with the given constraints we solve for optimal β using 

LaGrange multipliers. The form of our optimized classifier then becomes in form of 

equation 5. 

𝑓(𝑥) =  ෍ 𝛼௝𝑦௝

ே

௝ୀଵ

𝑥௝ ∙ 𝑥௜ + 𝑏 (5) 

If the classes are not linearly separable, the training data are transformed to a higher 

dimension where the data can be separated by a linear surface.  Kernel functions can be 

used to avoid the need for explicitly mapping each data point into a higher dimensional 

space. This use of a kernel function leads us to the final form of the classifier as shown in 

equation 6. 

𝑓(𝑥) =  ෍ 𝑎௝𝑦௝𝐾൫𝑥௝ , 𝑥௜൯ + 𝑏

ே

௝ୀଵ

(6) 

Commonly used kernel functions in practice are Linear, RBF, and Polynomial kernels 

shown in equations 7, 8 and 9 respectively: 

𝑘(𝑥, 𝑦) = 𝑥௜𝑥௝ + 𝑐 (7) 

𝑘(𝑥, 𝑦) = 𝑒ିఊฮ௫೔ି௫ೕฮ
మ

(8) 

𝑘(𝑥, 𝑦) = ൫𝑥௜𝑥௝ + 𝑐൯
ௗ

(9) 
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Figure 7: 1D Sample Data 

 

 
Figure 8: 2D SVM Sample Data 

4.3.2 Random Forest Algorithm 

In order to comprehend the random forest approach, we will briefly go over the 

decision tree, which is the building block of the random forest algorithm. The decision 

tree is a classification technique that consists of a set of questions and decides a path that 

will ultimately lead to the classification of the data. The questions can be thought of as 

nodes or visualized as a point where branches of the tree split. As data travels up a finite 

number of nodes it will ultimately end up in a leaf, where the data is classified.  An 

example of a decision tree classifier is demonstrated in figure 10 of the given sample data 

found in figure 9 Although this is a practical and computationally inexpensive approach it 
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is easy to overfit the data, meaning that complex trees will not classify non-training data 

very well. 

 
Figure 9: Random Forest Data 

 
Figure 10: Decision Tree Classifier 

In order to quantify for the efficacy of the trees we will implement ways to 

measure the impurity in the classifications. Two common methods to quantify this 

impurity in classification regions are by measuring entropy and the Gini index, shown in 

Equation 10 and 11 respectively. In the worst scenario, the entropy measurement will 

return a value of 1, indicating that the probability of the classes 𝑤௝  in that split or region 

is equally likely. On the other hand, the Gini index takes the sum of the square of the 
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probability of each class in the region or split and subtracts this sum from 1.  If two 

classes are equally likely in a region or split, the Gini index would return a value of 0.5. 

𝑖(𝑁) =  − ෍ 𝑃൫𝑤௝൯ 𝑙𝑜𝑔௝ 𝑃൫𝑤௝൯

௝

(10) 

𝑖(𝑁) = 1 − ෍ 𝑃ଶ൫𝑤௝൯

௝

(11) 

As the number of features of the training data increases, the decision tree becomes 

greater in depth, indicating more nodes and more classification leaves that will decrease 

in variance. In order to account for these weaknesses in decision trees, it is common to 

practice pruning. Pruning entails setting a predetermined maximum depth, or path from 

root to leaf, for the decision tree, as well as setting a minimum number of samples of 

training data per leaf, or class. In addition, we introduce the random forest algorithm as 

an “ensemble” machine learning method in which we deploy various weak learners, 

individual decision trees. This algorithm is essentially a set of multiple decision trees that 

can be used for classification and regression. In use as a classification method, the data 

sample will go through each of the decision trees while we keep count of the 

classifications, leaves, that point to each class in the whole forest. The random forest will 

ultimately classify the new data object based on the leaf with the most votes. The general 

workflow of random forests is depicted in 11. 

 

Figure 11: Decision Tree Workflow 
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4.3.3 Hidden Markov Model 

Hidden Markov models, HMMs, are a well-established technique in machine 

learning with applications involving sequences of data like speech recognition and 

handwriting recognition. HMMs are represented by a graph of finite number of states, 

which are connected by transitions. At each of these states, there are two sets of 

probabilities; transition probabilities and emission probabilities. Transition probabilities 

represent the chances of transferring to the next state while the emission probabilities 

represent the chance of emitting an output, or symbol, at the current state. Figure 6.2 

demonstrates an example of a network of 3 hidden states denoted by 𝑤௜, with transition 

probabilities 𝑎௜௝, and emission probabilities 𝑏௝௞ of emitting discrete symbol 𝑣௞. HMMs 

are a double stochastic process, the red component of the figure indicates the visible, or 

observable, portion of the model, while the black components of the model indicate the 

hidden, non-observable part.  These transition and emission probabilities create a 

transition matrix and emission matrix respectively and are denoted in equations 12 and 

13. Equation 14 displays the probabilities of starting at each state, which are referred to 

as the initial probabilities. An HMM is considered ergodic if every element of matrix A is 

a non-zero value. In other words, each state in the model is reachable from any other 

states in a finite number of transitions. 
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Figure 12: HMM 

𝐴 = ൥

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

൩ (12) 

𝐵 = ൥

𝑏ଵଵ 𝑏ଵଶ 𝑏ଵଷ 𝑏ଵସ

𝑏ଶଵ 𝑏ଶଶ 𝑏ଶଷ 𝑏ଶସ

𝑏ଷଵ 𝑏ଷଶ 𝑏ଷଷ 𝑏ଷସ

൩ (13) 

𝛱 = [𝜋ଵ 𝜋ଶ 𝜋ଷ] (14) 

HMMs are expressed in the form of equation 15. 

𝜆 = (𝐴, 𝐵, 𝛱) (15) 

If we apply this machine learning technique to sequential data in time, like speech 

or motion capture data, we can focus on a subset of HMM’s that is non- ergodic. This 

type of HMM, known as the Left-Right Model or Bakis model, is more suited for 

sequential data. Since it is not possible to go back in time, the transition probability of 

states become the option to stay at the current state or move on to the next one as 

depicted in figure 13. 

 
Figure 13: Bakis Model 
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In this case, the transition matrix becomes in the formm of Eq. 16 while the initial state 

probabilities become in the form in Eq. 17 

𝐴 = ൥

𝑎ଵଵ 𝑎ଵଶ 0 0
0 𝑎ଶଶ 𝑎ଶଷ 0
0 0 0 𝑎ଷଷ

൩ (16) 

𝛱 = [1 0 0] (17) 

4.3.4 Multi-layer Perceptron 

Since all previously mentioned machine learning algorithms take calculated 

biomechanical features from Kinect based estimations as inputs, we heavily rely on the 

limited accuracy of the sensor’s skeletal tracking.  In this section we introduce a common 

deep learning approach, the multilayer perceptron, which can take raw data as input. The 

building block of the multilayer perceptron, commonly referred to as MLP or feed-

forward neural network, is the neuron displayed in orange in figure 14. The input layer 

consists of all the 𝑥௠  nodes, the hidden layer is made up of the computational unit, and 

output layer is comprised of 𝑦ො. Output 𝑦ො is computed with the use of an activation 

function 𝜑. The activation function is typically designed to return a binary value based on 

a threshold, or a probability value ranging from 0 and 1. 

𝑦ො = 𝜑 ൭෍(𝑤௜𝑥௜) + 𝑏𝑖𝑎𝑠

௠

௜ୀଵ

൱ (18) 
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Figure 14: MLP 

The training process consists of two phases, the feedforward phase and the back-

propagation phase.  In the feedforward mode, the weights are estimated or randomized, 

and the input is introduced to the network and are computed in the forward direction. The 

output 𝑦ො is produced and then compared to the true value of y and the error is calculated 

between the two using a cost function 𝐽(𝑤). The backpropagation phase then takes this 

computed error and adjust the weights across the network to minimize the error using 

stochastic gradient descent. Stochastic gradient descent utilizes the partial derivative of 

the loss function with respect to parameters, referred to as the gradient shown in equation 

19. 

𝛻௪𝐽(𝑤)  =
𝑑൫𝐿(𝑦, 𝑦ො)൯

𝑑𝑤
(19) 

After accumulating error over a batch of training samples, stochastic gradient descent 

updates the set of weights w at a learning rate η as shown in equation 20. The ultimate 

෍ 𝑤௜𝑥௜ + 𝑏𝑖𝑎𝑠

௠

௜ୀଵ

𝑥ଵ

activation 
function 

𝑥௠

𝑥ଶ
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goal of the training is to go through each training sample and solve for the optimal values 

of each weight to minimize the error. 

𝑤 = 𝑤 − 𝜂𝛻௪𝐽(𝑤) (20) 

The output layer of neural network model consists of a densely connected layer, 

where all the units in the last hidden layer are all connected to the units in the output 

layer. For categorical classification models, the output layer contains the same number of 

output units as there are categories, which are all activated by the SoftMax activation 

function. In categorical prediction tasks, the loss function is defined by categorical cross 

entropy show in 21. Where M is the number of classes, 𝑝௢,௖ is the predicted probability 

observation o of class c, and  y is a binary variable which indicates if classification c of 

observation o is in fact a correct classification. Alternatively, for binary or decimal target 

prediction, the output layer contains one single densely connected unit. 

ℒ(𝑦ො, 𝑦) = − ෍ 𝑦଴,௖ 𝑙𝑜𝑔൫𝑝௢,௖൯

ெ

௖ୀଵ

(21) 

4.4 Deep Learning 

Further investigation led to the realization that the majority of the machine 

learning algorithms mentioned in section 4.3 lose temporal information with the 

exception of the HMM. In light of this realization we redirected our efforts towards deep 

learning strategies. We further investigated more appropriate models that are capable of 

classifying sequences of spatial-temporal data. More specifically, algorithms capable of 

classifying sequences of variable length since the duration of tennis swings fluctuate.  In 

this section we describe what the development of a deep learning task entails.  
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The objective of deep learning tasks, where one is given a pair of inputs and 

targets to design an algorithm, is referred to as supervised learning task.  “Unsupervised 

learning, where no training signal exists at all, and the algorithm attempts to uncover the 

structure of the data by inspection alone.”[6]. This scope of this study will be solely 

focused on supervised sequence classification. A supervised learning task requires a 

training set of input-target pairs (x,y) where x may be an element, vector, or matrix from 

space X, and y is an element of the correct target space Y. Additionally, another input-

target disjoint set is created and referred to as the validation set. In practice, an additional 

set is reserved separately from the training set and validation set, referred to as the test 

set, and is tested on once optimization is finalized. The goal is to use the input-target 

pairs in the training set to design an algorithm that will minimize the error function 

between the algorithm output and the correct target in both training and validation sets. In 

development the trained algorithm is tested on the validation set, input-target pairs 

outside of the training. The algorithms considered in this work are deep recurrent 

networks, which are parametric models that are fine-tuned in training to obtain a 

specified value or target. The end goal is to optimize the training parameters in the 

network to minimize the error across all three mentioned sets in uniform fashion.  

In practice these parameters, or weights, are fine-tuned incrementally throughout 

the whole training set and then tested in the validation. One iteration of training the 

algorithm on every sample in the training set and testing it on the validation set is referred 

to as an epoch. As one increases the number or epochs a common obstacle that arises is 

overfitting. This means that the algorithm’s loss decreases over the number of epochs in 

the training set, while the loss on the validation set increases or becomes stagnant. As a 
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result of overfitting, the model learns very specific features that can be found the training 

set, but these features are not as defined or evident in the validation set. In the deep 

learning field there are a wide variety of model architectures which have shown to be 

advantageous in classifications of specific types of data. 

4.4.1 Supervised Sequence Learning 

In this work we aim correlate biomechanical features over time with tennis ball 

trajectory. More specifically, classify these features sampled at 30 Hz with the Microsoft 

Kinect. In this section we will go more into detailed discussion of algorithms designed 

for sequential data labeling which have shown to be efficient previous work. 

Additionally, discuss the obstacles that arise in classifying a sequence of temporal 

features. These deep learning models are; the recurrent neural network, the gated 

recurrent network, and the Long-Short Term memory model. 

4.4.2 Recurrent Neural Network 

The recurrent neural network, RNN, does not deviate too far from the previously 

mentioned model in section 4.3.4, the MLP. “A recurrent network is an extension of 

conventional feed forward neural network, which is able to handle variable length 

sequence input” [7]. The RNN and MLP differ in that the hidden units in an RNN have 

an additional option to transition back into itself. In other words, a transition probability 

from the hidden unit at time t back to itself at t+1 exists. At the beginning of the time 

sequence, this transition probability is set to zero, but previous studies show that it can be 

advantageous to initialize this as a non-zero value [8]. 

ℎ௧ = ൜
0,    𝑡 = 0

∅(ℎ௧ିଵ, 𝑥௧) 𝑡 ≠ 0
(22) 
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The hidden state equation then becomes a function of the input x at time t, an input 

weight, the recurrent weight, the previous hidden state and a bias as displayed in equation 

23. 

ℎ௧ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊௫𝑥௧ + 𝑊௥ℎ௧ିଵ + 𝑏௔) (23) 

This generative model is used to generate a series of outputs based on input 

sequences, and is commonly found in applications that generate sentences, or lyrics. 

Using this approach, the probability of the input sequence of length T becomes 

𝑝(𝑥ଵ, … , 𝑥்) = 𝑝(𝑥ଵ)𝑝(𝑥ଶ|𝑥ଵ)𝑝(𝑥ଷ|𝑥ଵ, 𝑥ଶ) … 𝑝(𝑥்|𝑥ଵ, … 𝑥்ିଵ) (24) 

Using a special output symbol to represent the end of the sequence, this model is capable 

of handling variable length sequences by modeling a conditional probability distribution 

at each time step as show in Eq.25. 

𝑝(𝑥௧|𝑥ଵ, … 𝑥௧ିଵ) = ℎ௧ (25) 

Alternate to the generative model, the predictive RNN trains on a sequential data 

to predict one singular target. The activation of a hidden unit in a predictive RNN 

becomes and additive function over the length of the sequence, flattened by a 

differentiable nonlinearity, or gate as shown in Eq. 26. This predictive model is 

commonly applied to applications that predict a single specific target value like weather 

or stock prices. 

𝑦௧ =  𝑔 ൭෍ 𝑤௫𝑥௧

்

௧ୀଵ

+  ෍ 𝑤௥ℎ௧ିଵ

்

௧ୀଵ

൱ (26) 
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4.4.3 Back Propagation Through Time 

RNNs take in feature data as function of time, and classiffiy each sequence into a 

single binary or categorical value. Despite the newly considered sequential data, we still 

depend on a cost function to quantify the model’s error for the input sequence. Similarly, 

we optimize our network using stochastic gradient decent, or the derivative of the cost 

function with respect to the weight path. This process becomes more complex because 

with every time step in the training sequence,  the gradient may become much larger or 

smaller.  

Back propagation through time, or BPPT, can be thought out of as a traditional 

stochastic gradient descent over an RNN that has been unrolled through time. Once we 

define a loss function for a simple RNN, BPTT entails computing the gradient for every 

time step in the training sequence. Ultimately, the loss or error for one training sequence 

becomes the sum of the error over every time step. 

𝑑𝐸

𝑑𝑊
=  ෍

𝑑𝐸௧

𝑑𝑥௧
௜ழ௞ழ௧

(27) 

In order to calculate the error at each time step, we are required to apply the chain rule 

since each calculated output at t depends on the previous output at t-1. Figure 15 

demonstrates how the error at the  4th step of a sequence of length 5, becomes a 

composite function of previous activations ℎ௧. 
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Figure 15: BPTT at t=3 

This method begins at the highest value of t, T, and ends at the lowest value of t, 

which is why it is referred to as backpopagation through time. If we consider the chain 

rule formula (28) , we can take the product of all gradients in each time step across the 

training time sequences. 

𝑑

𝑑𝑥
ൣ𝑓൫𝑔(𝑥)൯൧ = 𝑓ᇱ൫𝑔(𝑥)൯𝑔ᇱ(𝑥) (28) 

Therefore, the gradient at time t over a sequnce of length T,  becomes a function of all 

timesteps k, where k is less than t, as shown in equation 29. 

𝑑𝐸௧

𝑑𝑊
=  ෍

𝑑𝐸௧

𝑑𝑥௧
௜ழ௞ழ௧

𝑑𝑥௧

𝑑𝑥௞

𝑑𝑥௞

𝑑𝑊
(29) 

Intuively, we can observe that by multiplying T many numbers together that are greater 

than 1 can potentially leads to the exploding gradient problem. On the opposite hand, if 

we multiply many number less than zero we are led to vanishing gradient that converges 

to zero. These two obstatcles are two of the main reasons why RNNs are so difficult to 

train [9]. 
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4.4.4 Gated Recurrent Unit 

The gated recurrent unit is an apporach which augments the basic RNN with  two 

gating units, the update gate and the reset gate. Each of these two gates feature an 

activation and a trainable parameter creating a small submodel at every node of the 

hidden layers of the network. In back propagation, these parameters, or weights, are 

trained to determine how to retain relevant information as well as to filter out irrelevant 

data. 

 
Figure 16: Gated Recurrent Unit 

The update gate z controls how much information from the previous hidden state will 

carry over to the current hidden state. [10] 

𝑧௧ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊௭𝑥௧ + 𝑈௭ℎ௧ିଵ) (30) 

Secondly, the reset gate 𝑟௧, also referred to as relevance gate, which can be aplied to the 

hidden state before or after the matrix multiplication depicted in Equation 31. This gate 

will advise the cell wether to update with new values or not. The candidate activation ℎ′௧, 

is the new suggesed value that is trying to get through reset gate 

𝑟௧  = 𝑡𝑎𝑛ℎ(𝑊௥𝑥௧ + 𝑈௥ℎ௧ିଵ) (31) 

ℎᇱ
௧ = 𝑡𝑎𝑛ℎ൫𝑊𝑥௧ + 𝑈(𝑟௧ ⊙ ℎ௧ିଵ)൯ (32) 
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Ultimately, the activation at time t combines the candidate activation and the previous 

activation at t-1 using the current update gate value 

ℎ௧ = 𝑧௧ ℎ௧
෡ + (1 − 𝑧௧)ℎ௧ିଵ (33) 

4.4.5 Long Short Term Memory 

Long-short term memory, LSTM, units are also closely related to the simple 

RNN. Similar to GRU models, the LSTM architecture is comprised of units at each node 

of the hidden layer as opposed to a single perceptron. In the LSTM approach, each unit 

contains three gates; the input, output and forget gates.  “The multiplicative gates allow 

LSTM memory cells to store and access information over long periods of time, thereby 

mitigating the vanishing gradient problem.” [6] Additionally, LSTM utilizes these gates 

to retain a sufficiently large gradient in order to keep optimizing the network model 

towards an error minimum. The LSTM gates shown in figure 17 are mathematically 

defined as follows: 

 
Figure 17: Long Short-Term Memory Unit 
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The input gate, which informs the cell on what incoming data is useful while also 

contributing to the cell state 𝑐௧. 

𝑖௧ =  𝜎(𝑊௜ 𝑥௧ + 𝑈௜ℎ௧ିଵ + 𝑉௜𝑐௧ିଵ) (34) 

The forget gate, which is utilized to help the cell let go of what information is irrelevant 

𝑓௧ =  𝜎൫𝑊௙𝑥௧ + 𝑈ℎ௧ିଵ + 𝑉௙𝑐௧ିଵ ൯ (35) 

At the core of the LSTM unit, one can find the constant error carousel, CEC, 

which closely resembles a standard RNN. “By recirculating activation and error signals 

indefinitely, the CEC provides short-term memory storage for extended time 

periods.”[11]  The output of the becomes cell’s memory which is then defined as a 

function of the forget gate and input gate values shown in equation 36. 

𝑐௧ = 𝑓௧𝑐௧ିଵ + 𝑖௧𝑐̂௧ (36) 

where 𝑐̂௧ is the candidate new cell memory candidate at time t regularized by the value of 

the input gate. 𝑐′௧is defined using 𝑥௧, the input at time t, and ℎ௧ିଵ, the activation at time t-

1 as shown Equation 37. 

𝑐௧
ᇱ = 𝑡𝑎𝑛ℎ(𝑊௖𝑥௧ + 𝑈௖ℎ௧ିଵ) (37) 

where the activation of the unit ℎ௧,is defined by the hyperbolic tangent of the cell 

memory at time t element-wise multiplied by the output gate value as show in Equation 

38 

ℎ௧ =  𝑜௧ ∗ 𝑡𝑎𝑛ℎ(𝐶௧) (38) 

where the output gate, 𝑜௧, whose purpose is to regulate the amount of memory content to 

be visible by the rest of the network at time t is defined by 39 

𝑜௧ =  𝜎(𝑊௢𝑥௧ + 𝑈௢ℎ௧ିଵ + 𝑉௢𝑐௧) (39) 
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4.4.6 Algorithm Discussion 

It is important to note that the GRU designed by Cho et all in 2004 has two gates; 

the reset and update gate. More importantly to note, if we set the reset gate to 0 and 

update gate to 1, we end up with the simple RNN model.  On the other hand, the LSTM 

architecture brought forth by Hochreiter and Schmidhuber in 1997, has 3 gates; input 

gate, output gate and forget gate. In similar fashion, if the input gate and forget gate are 

open, set to 1, then the CEC is updated with every new input and recurrent state just like 

an RNN unit. In nature, gates are differentiable nonlinearities operating on trainable 

parameters that transmit or receive information to or from the rest of the network, whose 

task is to be more selective in accessing sequential data. The LSTM unit has a memory 

cell and the GRU does not, but both have an additive component in their updating 

features from t to t+1. The purpose of the LSTM memory cell is to overwrite part of 

existing memory with incoming data. In similar fashion the GRU uses the update gate 

value to add a factor of old and add new data. Since the GRU has less trainable 

parameters than the LSTM, it is less computationally expensive to train and a faster 

algorithm when implemented. Although the two mentioned augmented algorithms in 9.3 

and 9.4 are more efficient in learning long temporal range approaches than the basic 

RNN approach, there is very little evidence to support the idea that one consistently 

outperforms the other.  

4.5 Optimization  

This section is dedicated to cover the techniques that were investigated and 

implemented in training the recurrent network models covered in the background section. 
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4.5.1 Regularizers 

Regularizing is practice of normalizing the activations or parameters of a specific 

hidden layer of n trainable parameters and apply penalties to the loss function of the 

network model.  The way regularization is applied to the model’s loss function is by 

adding a regularization term to the loss function. In order to monitor the effect of the of 

the regularization term on the loss function, we define a small regularization parameter, 

λ. 

𝐿௥ = 𝐿(𝑦, 𝑦ො) +  𝜆 ෍ 𝜃௝

௡

ଵ

(40) 

Regularizers help in when the model learns too many features, and what it does is 

decrease or regulate the magnitude of the learned parameters. In doing so, we tame the 

learned parameters in the training set to not be as dominant or deterministic in the 

model’s performance on the test set and ultimately attempt to prevent overfitting. 

𝜂
𝑑𝐿௥

𝑑𝜃
= 𝜂

𝑑൫𝐿(𝑦, 𝑦ො) +  𝜆 ∑ 𝜃௝
௡
ଵ ൯

𝑑𝜃
=

𝑑𝐿(𝑦, 𝑦ො)

𝑑𝜃
 +

𝑑൫𝜆 ∑ 𝜃௝
௡
ଵ ൯

𝑑𝜃
(41) 

4.5.2 Batch Normalization 

In practice, a big setback in training a model is overfitting due to when there is a 

shift in distribution between the training set and the validation set. In more detail, the 

internal covariate shift is defined at the layer level where the distribution of the input of a 

hidden layer and the distribution of its output differs or changes after the activation 

function.  As a model increases in hidden layers, the distributions after each layer might 

differ, and may lead to complicating the optimization process. A way to mitigate this is to 

whiten the output of each layer. Whitening entails linearly transforming the input matrix 
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to have zero means, unit variances, and decorrelated. This entails computing the 

covariance matrix along with its inverse square root. 

Previous works shows that whitening between each hidden layer would result in 

obtaining an input of fixed distribution for each hidden layer and ultimately remove the 

effects of the internal covariate shift. Additionally, whitening transformation between 

layers has also demonstrated to lead to faster model convergence.[12] However, this 

transformation is computationally expensive, and would significantly slow down the 

network in producing a prediction, even more so as the number of hidden layers 

increases.   

Instead of performing whitening transformations at every layer, previous work 

suggests that batch normalization also helps mitigate the ill effect of the covariate 

shift[13]. It is also important to note that batch normalization can be implemented before 

or after applying the non-linearity of the hidden layer. In training we use the minibatch 

computed mean and variance, 𝜇஻ and 𝜎஻
ଶ respectively and shown in Equation 42. During 

inference, validation, the true value of the mean and variance of the population, E[x] and 

var[x] respectively are used and demonstrated in Equation 43. 

𝑥పෝ =
𝑥 − 𝜇஻

(𝜎஻
ଶ+∈)

ଵ
ଶ

(42) 

𝑥పෝ =
𝑥 − 𝐸[𝑥]

(𝑉𝑎𝑟[𝑋]+∈)
ଵ
ଶ

(43) 

4.5.3 Dropout Regularization 

Dropout can be considered as another way of regularizing a neural network and 

has shown to be effective in preventing overfitting in previous work[14]. Dropout 
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disconnects certain connections to a subset of units within a hidden layer and refreshed 

after every iteration of weight optimization. In practice, a subset of hidden units within a 

hidden layer are given a probabilistic value to be omitted from the model. Deactivating 

hidden units in training forces the model to generate various paths to obtain a desired 

target and ultimately lead to better results in validation set. When testing the model’s 

performance in the validation set, dropout is not used.  This technique can be thought of 

as training multiple models within one fixed-sized model. Ultimately, dropout 

regularization tackles overfitting prevention as well as model combining, which is an 

approach of training different models separately with different data and combing them 

into one. 

4.5.4 Gradient Clipping 

When one encounters the exploding gradient problem, it is good practice to clip 

the gradient in order to keep training the parameters toward a loss minimum. In practice, 

once the gradient is calculated it is normalized by a threshold value and the L1 or L2 

norm of the gradient 

𝛻௪𝐽(𝑤)  𝑥
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛𝑜𝑟𝑚௅(𝛻௪𝐽(𝑤) )
(44) 

Equations 45 and 46 define the L1 and L2 norm of a vector x of size n. 

𝐿1 𝑛𝑜𝑟𝑚 =  ෍|𝑥௡|

௡

ଵ

(45) 

𝐿2 𝑛𝑜𝑟𝑚 = ൭෍ 𝑥௡
ଶ

௡

ଵ

൱

଴.ହ

(46) 
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4.5.5 Momentum-Augmented SGD 

In this section we introduce augmented versions of stochastic gradient descent 

that have shown to outperform the standard SGD approach in section 4.2.2 in sequential 

data applications. More specifically, we review two first-order techniques that apply the 

concept of momentum to SGD in order to accelerate through regions of low curvature in 

the loss function. The concept of classical momentum, CM, can be described as 

iteratively accumulating a directional vector towards a minimum of a given function that 

requires optimization. For deep learning applications, the objective function becomes loss 

function of the model. Equation 46 shows how CM is applied to gradient descent, where 

𝜇 is a predefined momentum coefficient ranging from 0 to 1, and 𝑣௧ is the directional 

vector. Next, we can use the directional vector, 𝑣௧ାଵ,to iteratively update the parameters 

towards a local minimum as shown in Eq 47. 

𝑣௧ାଵ = 𝜇𝑣௧ − 𝜂
𝑑𝐿(𝑦, 𝑦)

𝑑𝑊
(47) 

𝜃௧ାଵ =  𝜃௧ + 𝑣௧ାଵ (48) 

The Nesterov Accelerated Gradient, or NAG, is similar to classical momentum 

approach, expect for the difference in the way that NAG calculates the gradient. This 

technique computes the gradient by first adding the cost function to the momentum 

coefficient 𝜇 multiplied by velocity vector 𝑣௧. The gradient then becomes the derivative 

of this sum with respect to the model parameters, and it is used to update the parameters 

identically to first approach, shown in Equation 49 

𝑣௧ାଵ = 𝜇𝑣௧ − 𝜂
𝑑(𝐿(𝑦, 𝑦) + 𝜇𝑣௧)

𝑑𝑊
(49) 
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Previous experiments show that momentum accelerated SGD, with a strong 𝜇 coefficient 

had favorable effects in the optimization of RNN model [15]. 
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5 Methods 

In this section we describe how we collected data from highly skilled athletes 

performing the three standard tennis swings and managing the raw extracted motion 

capture data.  

5.1 Protocol Design  

The protocol for this study will start off by setting the Kinect v2 on a tripod 

located on the corner of the tennis court. This corner is defined by the baseline and the 

outer edge of one of the two doubles alleys and will vary depending on which direction 

the subject is facing while executing a tennis groundstroke.  On the opposite side of the 

net, we will set up a grid of 8.4x7.5 feet rectangles. A cone will be set in the center of one 

these rectangles which will define the target rectangle. Once the target is set and the 

subject has warmed up, we will give the subject 10 attempts try to hit the target while the 

research team records the landing of each attempt in the defined grid. If a subject missed 

by not making contact with the ball or by hitting the ball into the net, they will be granted 

one supplementary attempt. Each attempt will consist of the co-investigator hitting a ball 

at slow pace from the opposite side net to the subject who will be waiting for the ball at 

the baseline. The ball will be fed to the subject in such a way that the subject will be able 

to strike the ball while staying the Kinect’s field of vision while the Kinect is recording. 

There will be six different targets set up for the forehand portion of the study, as well for 

the backhand portion of the study. Similarly, the subject will be given 10 attempts for 

each target.  
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For the serve portion of the study, a different size grid will be set up consisting of 

3.5x3.5 feet squares and will be set on a service box diagonally across from the subject. 

A cone will then be placed at the center of one of the rectangles to define the target 

rectangle. Starting from the “deuce side” of the court, the subject will stand 3 feet from 

the center of the baseline and take 10 attempts at hitting the target while performing their 

serve motion.  For each side of serve position, “deuce” and “ad” side, the subject will be 

required to hit two different targets from each of these serving sides. From each of the 

two sides, one target will be located in the corner of the service box that is closest to the 

center of the court, the second target will be located on the opposite corner of the box 

close to one of the doubles alley. By placing targets in opposite sides of the courts we can 

expect to be able to denote biomechanical features that correlate to the different 

trajectories of the tennis ball. Figure 18 below displays the grid with reference to a 

regulation size tennis court, the targets of the study, and the locations where the Kinect 

would be placed for recording depicted by the blue dots. 



  37

 
Figure 18: Ground stroke portion of the study where the 

red triangles represent targets 

 
Figure 19: Serve portion of the study 

5.2 Signal Processing 

The Kinect’s frame rate can fluctuate below the advertised 30 frames per seconds. 

This variable frame rate is not controllable by the user and mainly relies on the hardware 

components of the sensor and the user’s computer resources. In order to compensate for 

fluctuation in frame rate, the Kinect raw data will be interpolated up to the advertised 

frame rate of 30 frames per second. And then it will be passed through a 4th order 

Butterworth filter. Once the data is interpolated and filtered, we will gather the data of the 

actual swing. Taking into consideration different swing speed across subjects, we have 

determined that the dominant side wrist of the participant has denotable maxima and 

minima that indicate the start and end of each swing. More specifically, the Y component 

of the wrist joint signal demonstrates that tennis athletes accelerate their dominant arm by 
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swinging in a more vertical direction. These spatial-temporal landmarks were considered 

in the annotative process of the data.  

Since the position of the subject with respect to the Kinect will not be constant for 

every swing across all subjects, we will have to measure distances and angles with 

respect to the subject’s own body.  Alternatively, we can manipulate the data by 

removing part of the x component of the 3D coordinates in a way to relocate the body 

coordinates into a fixed position for each frame of the data collected. 

 
Figure 20: Dominant Hand Y-Component 

5.3 Feature Extraction 

In this section we describe how we extracted biomechanical features from the 

acquired data from section 5.1 to the deep learning techniques mentioned in 4.4 and apply 

them to a set hypothesized biomechanical features in order to meet our objectives. One of 

the features were hypothesized to be indicative of the direction of the ball is the angular 
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displacement of the subject’s dominant-side hip and shoulder. In other words, we predict 

that the angular displacements of the two mentioned joints will have a correlation to the 

amount of change in direction required to hit a present target. Figure 18 denotes the 

rotation of the hips in the Kinect’s XZ plane where the blue denotes the frame after the 

black frame. The midpoint between hips and between shoulders are defined by spine base 

and spine shoulder points respectively. 

𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑑𝜃

𝑑𝑡
(50) 

 
 

 
Figure 21: Angular Velocity 

We also predicted that the angles created by the subjects’ ulna and humerus 

during the swing are correlated to the distance between the subject and the target as well 

as the direction. More specifically, that the mentioned angle will become more obtuse 

throughout the swing as the subject aims for a target that is further away from him or 

herself. In order to create an input for this model we will take into consideration three 

angles from the dominant side of the subject as a function of time. These three angles 

were calculated using three joints from the skeletal data and Equation 51. For each 

calculated angle, we will need the three joints with one common joint to create two 

vectors. 

𝑑𝜃 
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Figure 22: Joint Angle 

∅௜ = 𝑐𝑜𝑠ିଵ ቆ
𝑢 ∙ 𝑣

ห|𝑢|ห ห|𝑣|ห
 ቇ (51) 

 

Table 1: Joint Angle Features 

Angle Joint 1 Joint 2 Joint 3 Sequence 

∅ Shoulder Elbow Wrist ∅ଵ, ∅ଶ, … . ∅்  

𝜃 Elbow Shoulder Neck 𝜃ଵ, 𝜃ଶ, … 𝜃் 

𝜔 Elbow Shoulder Hip 𝜔ଵ, 𝜔ଶ, … 𝜔்  

 

5.4 Data and Software Development 

In this work, data was gathered across 14 eligible participants using a Dell 

Inspiron 17 7559 laptop with a dedicated GPU, the Microsoft Kinect and a custom 

designed software suite. The motion capture data was recorded in a .csv file in the 

presence of a single target at a time. In other words, each .csv file contained the ten 

attempts of a subject swinging at one of the targets mentioned in 5.1. The data was 

annotated using a custom designed software suite in MatLab based on the maxima and 

minima features in 5.2. These minima and maxima were not as observable in the 

backhand and serve swings due to the dominant hand not being in the sensor’s line of 

sight during swing execution. Consequently, the remainder of the study focused on 

forehand target prediction. In the annotation process, the full-body motion capture data 

Joint 2 
(Common 
Joint) 

Joint 1 

Joint 3 
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was visually inspected, before correlating every peak and valley to the start and end of a 

swing. The ball landing location was then mapped to one of five categories across the 

width of the tennis court shown in table Consequently, each annotated swing was stored 

in its own .csv file. Along with it’s true target outcome. 

Table 2: Target Classification 

Court 
reference 

Cross-
Court 

Left-of 
center 

Center 
Right of 
center 

Down-the-
Line 

Target 
mapping 

4 3 2 1 0 

 

The feature extraction was developed in Matlab to export angles and distances 

mentioned in the section 5.3, along with the swing’s trajectory classification. The features 

were then imported into the scripts containing the models mentioned in the section 9.0 

using python 3. This work features the RNN as the baseline model whose performance 

was then compared to GRU and LSTM’s performance. All three models were 

implemented using the Keras API with a TensorFlow backend. The constraints on each 

model was a maximum of two hidden generative hidden layers, while maintaining the 

number of trainable parameters in the same order of sequences gathered. Stacking hidden 

generative layers has shown to be effective at the sub-model level to achieve predictive 

tasks. Ultimately, the workflow of this study was defined as shown figure 23. 
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Figure 23: Design cycle 

This work considered a categorical output layer in attempting ball trajectory 

prediction.  This attempt featured an output layer of five units with the use of a SoftMax 

activation function. These five units represent the five categories in the grid defined in 

table across the width of a tennis court. The targets of the swing sequences were one-hot 

encoded, mapped to a binary vector with length of the number of categories where the 

only bit set to 1 corresponds to the correct target as shown in table. Using this approach, 

the loss function implemented was categorical cross-entropy shown in equation 21. 

Table 3: One-hot encoded targets 

Decimal value One-hot encoded 

0 [1 0 0 0 0] 
1 [0 1 0 0 0] 
2 [0 0 1 0 0] 
3 [0 0 0 1 0] 
4 [0 0 0 0 1] 
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6 Results 

In this section we visualize the hypothesized features in the training set data that 

we expected to be correlated to ball trajectory as well as analyze the subject population 

and the data target distribution. The participant population is analyzed in table 4 

displaying binary variables that were permissible in the data gathering process. The target 

outcome distribution is displayed in figure 27 across all targets and subjects.   

Table 4: Participant Population  

Gender 
(Male/female) 

Dominant Side 
(Righty/Lefty) 

Session Environment 
(Indoor/Outdoor) 

9/5 14/0 4/10 

 

 
Figure 24: Training set target distribution 

In chapter 3 we aimed to design an algorithm that would be able to classify 

biomechanical feature sequential data into one of two general directions, cross-court and 

down-the-line.  We attempted to find visible depiction between the two, to test our 

hypothesized features as well as answering for the reliability of the sensor. The features 
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displayed were taken from the swings that resulted in target 0 and target 4 over a two-

second time window, demonstrated in blue and red respectively. The first three features 

evaluated, were the ones mentioned in table 1; elbow flexion, shoulder flexion and 

axillary, as shown in figures 24, 25 and 26. In addition, we evaluated how likely these 

angles were over this twosecond window. This was done to visualize the classifier’s task 

in selecting between the two opposing targets.  

     
Figure 25: Elbow Flexion for targets 0 and 4. 

 

Figure 26: Axillary Angle for targets 0 and 4. 
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Figure 27: Shoulder Flexion for targets 0 and 4. 

 

Figure 28: Swing Feature Distribution 

We were not able to observe significant differences in any of the proposed 

feature-target pairs, or across the feature distributions in figure 28. In attempt to find 

more indicative features, we extracted more features shown in figures 29, 30, and 31. 
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Figure 29: Shoulder Rotation with respect to Kinect 

 

Figure 30: Shoulder Displacement in 3D space throughout Swing 

 

Figure 31: Wrist-to-Shoulder Distance 
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The training data was then time-aligned and randomly shuffled across the whole 

set. We then trained and tested the model with the mentioned sequential feature data. The 

models each individually comprised RNN, GRU, LSTM units.  Our results in terms of 

loss and categorical accuracy are shown in figures 32 and 33 respectively. 

 
Figure 32: Model Loss 

 
Figure 33: Model Accuracy 
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7 Discussion 

In figure 32 we demonstrate the loss of the three models over 30 epochs. Our 

results indicate that the that regularization techniques successfully prevented the models 

from overfitting. The plot also demonstrates that RNN converges after10 epochs, while 

the gated-unit models converge at 5 epochs. Batch normalization and NAG did in fact 

accelerate the learning process but ultimately led to convergence at 1.4 cross entropy 

loss. We can deduct that from this loss convergence difference that the gated approaches 

were beneficial in our application.  

The progression of classification accuracy in each model over 30 epochs is 

displayed in figure 26 with the training and validation results in individual sublots. We 

can see that in training the accuracy subplot remained below 30%, but the LSTM 

accuracy reached higher than 30% at epoch 25. In the validation process we see similar 

pattern of 30%, but we noted that the GRU model converged the fastest out of the three 

models. We also noticed that the stability of the GRU accuracy was more reliable after it 

reach convergence at epoch 15. The 33% accuracy is predicted to be a result from the 

training set containing targets 0, 2 and 4, close to equally likely in outcome as shown in 

the distribution shown in figure 24. 

 
In attempt to obtain better results we implemented a method in which we fed the 

model a batch of sequences of similar target. In detail, we trained the models on batches 

of singular target across randomized subjects. This was done in aim to force the model to 

learn features correlated to target outcome across different subjects. All three models 

were then evaluated twice; once with batches of random subjects swinging at random 
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defined targets, and another with batches of random subjects swinging at one defined 

target. We did not expect to see a big increase in classification accuracy for targets 1 and 

3 since they’re probabilistic low as well as uneven in favor of 3. Our results showed 

improvement not quantitatively in terms of entropy or accuracy a but in distance between 

predicted and corrected target. We evaluated our results by analyzing the confusion 

matrices of each model trained in both mentioned manners. The confusion matrix is a 2D 

matrix used to visualize the predictions vs the correct outcome, where the correct 

outcome is always the ith element of the ith row. We observed the most favorable results 

from the RNN and LSTM models. The comparison in loss between target-batch training 

and random batch training can be seen in appendix A. 
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Table 5: Random batch training vs. Single-target training confusion matrices 

Model Random Batch Single-Target Batch 

RNN 

 

0 0 0 0 43 
0 0 0 0 6 
0 0 0 0 43 
0 0 0 0 18 
0 0 0 0 26 

 

12 0 7 0 24 
3 0 1 0 2 

11 0 6 0 26 
5 0 5 0 8 

10 0 2 0 14 

GRU 

43 0 0 0 0 
6 0 0 0 0 

43 0 0 0 0 
18 0 0 0 0 
26 0 0 0 0 

 

 

0 0 0 0 43 
0 0 0 0 6 
0 0 0 0 43 
0 0 0 0 18 
0 0 0 0 26 

LSTM 

 

37 0 0 0 6 
6 0 0 0 0 

31 0 0 0 12 
9 0 0 0 9 

19 0 0 0 7 

 

34 0 0 0 9 
5 0 0 0 1 

23 0 0 0 20 
6 0 0 0 12 

15 0 0 0 11 
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8 Conclusion 

The primary goal of this work to was to determine features of body movement 

that correlated to tennis swing efficacy. In doing so, we would have been able to 

artificially interpret a humanistic skill with a neural network model and an accessible 

motion capture sensor. We tested our hypothesized features by applying them as inputs to 

three established supervised sequence learning techniques. In this work we implemented 

the RNN as the baseline model whose performance was then compared to the GRU and 

the LSTM models developed by, Cho and, Hochreiter and Schmidhuber respectively. 

These two gate-augmented models have shown to be advantageous in training as well as 

recognizing longer range time dependencies better than RNN models.  

Our results show that the gated-unit approaches did in fact converged faster than 

the RNN model at similar loss values, but the gated-models did not outperform the RNN 

in classification accuracy. In methodically generating batches in training, we observed 

more favorable values which indicated that there was some correlation between the 

features and swing efficacy. In analyzing the features, we can consider that the feature 

selections are not indicative of swing-target pair, while also not being accurately depicted 

by the Kinect sensor. From a deep learning perspective, we believe that the model could 

benefit from a convolutional layer as feature-generating layer prior to the RNN units.  

From a signal processing standpoint, we expect the model could benefit from 

implementing adaptive filtering techniques that are used in pose estimation. Considering 

that the GRU and LSTM units are adaptive to longer range time dependencies, and that 

they converged faster than the RNN, we can infer that this temporal-memory feature is 

beneficial in classifying variable length swing patterns to an extent.  
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APPENDIX A: RANDOM BATCH TRAINING VS SINGLE-

TARGET TRAINING LOSS ACROSS 3 MODELS 

RNN  

 

GRU 
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LSTM 

 

 


