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Abstract 

The purpose of this study is to create a gesture recognition system that interprets motion capture 

data of a tennis player to determine which biomechanical aspects of a tennis swing best correlate 

to a swing efficacy. For our learning set this work proposes recording 50 collegiate tennis 

athletes of similar competency with the Microsoft Kinect performing standard tennis swings in 

the presence of different targets. With the acquired data we anticipate extracting biomechanical 

features that correlate to ball trajectory with proper technique and test them as inputs to our 

designed classifiers. The proposed work implements two machine learning algorithms to classify 

ball trajectory that have shown reliability in previous gesture recognition applications, the 

Hidden Markov Model (HMM) and Support Vector Machine (SVM). 

In attempt to achieve results more independent of our selected sensor’s accuracy which dictates 

over extracted features, we implement a featureless deep learning approach with the use of a 

multi-layer perceptron (MLP). We expect our classifying results to favor feature driven machine 

learning algorithms over the MLP deep learning approach. If we implement initial conditions to 

the MLP derived from reliable features, we expect the MLP to come close in matching the 

performance of the feature dependent approaches and gradually outperform them as sample size 

increases. 

 

 

 

 

 

 

 



1.0 Introduction 

The goal of this work is to use machine learning and computer vision to identify which 

biomechanical movements are best correlated with effective tennis swings based on motion-

capture data of subjects playing tennis. In this work we aim to develop a set of machine learning 

algorithms that will learn proper technique of the three standard tennis swings; forehand, 

backhand, and serve. Within each of these three tennis swings, we will aim for the algorithm to 

learn how to properly hit a tennis ball to the left and right side of the tennis court.  

In practice, these general directions, or ball trajectories, are referred to as hitting the ball “down-

the-line” and “cross-court” when speaking of forehands and backhands. When speaking of the 

tennis serve, the two common ball trajectories are referred to as “down-the-‘T’” or “out-wide”. 

These common ball trajectories will be explained more in depth in the background section. As 

for the serve portion of the study, this work will analyze the biomechanics of how to serve to two 

different general directions. Once we have collected skeletal tracking data of skilled tennis 

players performing these swings, we can extract biomechanical features such as joint angles and 

distal landmarks  to develop a machine learning algorithm that will classify these swings and 

correlate them to ball trajectories. 

In order to obtain a proper learning data set, we will choose highly skilled tennis athletes to 

perform the mentioned tennis swings in the presence of different targets that demonstrate good 

tennis practice.  In this work, we propose using the Microsoft Kinect v2 as the motion capturing 

tool. Previous research and applications have shown the Kinect’s spatial measurement limitations 

and how it compares to a laboratory grade motion capture system. 

 



2.0 Motivation 

In recent years, a variety of new technologies have been introduced to tennis that have changed 

the game. Technologies like “Hawk-Eye” which track the ball’s trajectory and landing have 

started to diminish the need of official line judges during tennis matches since it can determine 

whether the ball landed in or out. Not only has this made line-calling more accurate and reliable, 

it has also opened up a field of more in-depth statistical analysis of the sport. This multi-camera 

system uses triangulation to track the tennis ball up to 2.6 mm accuracy [1] and has attracted 

research institutions and companies like IBM and SAP to develop statistical analysis software on 

professional match play. Ultimately, the work proposed here will develop a statistical model 

based on biomechanical features of tennis players while drawing a bridge to the field of study 

that focuses on the trajectory of the ball.   

In addition, this work could also contribute to the development of tennis teaching software. If the 

Kinect’s skeletal tracking algorithm is accurate enough, future work could use this data to 

classify a subject’s swing technique as proper or poor. Private tennis lessons, work towards to 

perfecting a customer’s swing technique. Furthermore, a professional tennis instructor will 

provide tips and detailed adjustments to correct technical mistakes, but not to the extent of 

instruction that requires precision down to the millimeter. Consequently, we anticipate that the 

accuracy of the Kinect’s body tracking will be sufficient for the proposed work since millimeter 

precision is not vital to the instruction or the learning of standard tennis swings.  

This work could also contribute to making tennis video games or simulators more realistic. The 

value of our results will be significant to applications that refer to tennis and that include motion 

capture. In addition, the skeletal tracking data collected of highly skilled players will record the 



current biomechanical approach of advanced players as it changes overtime as players and 

equipment technology evolve.  

3.0 Research Objectives  

The overall objective of the proposed work is to determine if a computer can correlate 

biomechanics to swing efficacy based on the skeletal tracking data obtained with the Kinect. 

More specifically, to determine if we are able to design a set of algorithms that are capable of 

learning the correct techniques of a proper forehand, backhand, and serve with a desired target.  

With this main objective in mind, we can derive specific aims. 

The success of this study will require us to accomplish the following set of goals: 

A. Determine features of body movement that are correlated to a tennis player’s swing 

B. Design an algorithm that will be able to predict the tennis ball’s general trajectory 

from body tracking data obtained from the Kinect v2. 

We will exploit the Kinect’s skeletal tracking data with various discrete-time signals processing 

techniques and pattern recognition techniques in order to meet these goals. 

4.0 Background 

4.1 Kinect v2 Background 

The Microsoft Kinect v2 comprises of three different sensors; depth sensor, infrared sensor, and 

an RGB camera, which do not match in resolution or physical location. Microsoft has developed 

a proprietary machine learning algorithm to detect up to six human bodies with the Kinect using 

these three layers of data streams [2]. This algorithm is what makes this motion capture 

technology a markerless approach.  The skeletal tracking data is encapsulated in the “body 



frame” in which we can obtain 3-dimensional data of 25 different body joint centers of each 

body at a frame rate of up to 30 fps.  The joint data includes x, y, z components and. In The 

Kinect-estimated joint centers are demonstrated in figure 4.1.0 

   fig. 4.1.0 [3] 

As previously mentioned in the introduction, section 1.0, it is important to be mindful of the  

Kinect’s skeletal tracking’s accuracy, and how this accuracy will affect our machine learning 

algorithm design.  

Studies show that the Kinect v2’s accuracy and frame rate is outperformed by multi-camera 

laboratory grade motion capture systems, but it is reliable enough to be considered a valid 

clinical measurement tool [4]. Although the Kinect v2 is a low grade motion capture system, 

displaying low accuracy especially in ankle and feet detection [4], it is portable, low-cost, and 

does not require calibration or the use of markers on subjects like a Vicon system of 2 mm 

accuracy at 100 fps. Without the constraints of markers and a research lab setting, subjects that 



will partake in our study will be able perform as freely as they would during match play as long 

as they stay in the Kinect’s field of vision and within four meters of the sensor.  

The Kinect v2 outputs 3-dimensional space coordinates for 25 joints of each body tracked with 

reference to the actual device. In more detail, the origin (point 0,0,0) of the 3 dimensional 

coordinate system obtained by the Kinect is the actual location of the Kinect as shown in figure 

4.1.1. The z component represents the orthogonal distance from a joint to the Kinect. The y 

component represents the orthogonal distance from the joint to the floor plane, and the x 

component entails the distance of the joint that extends to the right or left of the sensor. With the 

discussion of the coordinate system, it also important to note that the floor plane is also 

encapsulated within the Kinect’s body frame. This floor detection is also a component of 

Microsoft’s proprietary skeletal tracking since the y coordinates are dependent on it. 

Since the position of the subject with respect to the Kinect will not be constant for every swing 

across all subjects, we will have to measure distances and angles with respect to the subject’s 

own body.  Additionally, we can manipulate the data by removing parts of the x and z 

components of the 3D coordinates in a way to relocate the body coordinates of into a fixed 

position for each frame of the data collected. 

 fig. 4.1.1 [5] 



4.2 Tennis Background 

Generally speaking, an intermediate tennis player is able to hit the three standard tennis swings; 

forehand, backhand, and serve. This level of player should also have control over the general 

direction of the ball from all of these previously mentioned swings. These directions refer to the 

ball’s trajectory with respect to the subject who hit the ball. The forehand and backhand, often 

referred to as groundstrokes, can be struck “down-the-line” or “cross-court”. The serve can also 

be struck in two general targets, “down-the-T”, which refers to the center of the court, and “out-

wide” which pertains to aiming the serve at the singles side line that belongs to that service box. 

The clarification of theses swings and associated directions are important since they can vary 

depending on the dominant hand of the subject and on which side of the court the subject who is 

hitting the ball from. This set of tennis swings and general directions create a general baseline for 

tennis knowledge and ability, as well as a better understanding of the objective of this work.  

            

   Fig 4.2.0 Forehand down-the-line (blue) 
crosscourt (orange) for a right-handed player 

Fig 4.2.1 Backhand down-the-line (orange) 
crosscourt (blue) for a right-handed player 



      

 

4.3 Pattern Recognition Techniques 

In this section we will introduce the pattern recognition approaches that we anticipate using in 

the proposed work. We will consider two methods  that are feature dependent, support vector 

machines and hidden Markov models. The feature independent approach in this work is the 

multi-layer perceptron.  

4.3.0 Support Vector Machines 

Support vector machines are a supervised machine learning technique used to classify data 

between two classes. SVMs are essentially the use of a decision hyperplane of dimension (p -1) 

to classify p-dimensional data points in the feature space.  This decision hyperplane is designed 

based on a subset of the training data points referred to as support vectors which lie close to 

Fig 4.2.2 Deuce side serve down-the-T 
(blue) out-wide (orange)  

Fig 4.2.3 Ad Side down-the-T (blue) out-
wide (orange)  



estimated boundary between the two classes; the remaining training data samples becomes 

essentially ignorable. 

The design procces of an SVM classifier starts by considering the following basic classifier in 

slope intercept form. 

𝑓(𝑥) = 𝛽𝑥 + 𝑏 = 0 

If we impose the constraints of equation 4.3.0.2 where 𝑦௝ =  ±1 as the classification variable, 

and 𝑥௝ denotes data points, we can define the decision hyperplane becomes by finding the 

optimal value of β. The data points that are chosen as the support vectors satisfy equation 4.3.0.3 

𝑦௝൫β𝑥௝ + 𝑏൯ ≥ 1   

𝑦௝𝑓൫𝑥௝൯ ≥ 1  

𝑦௝൫β𝑥௝ + 𝑏൯ = 1 

To optimize our classifier with the given constraints we solve for optimal β using LaGrange 

multipliers. The form of our optimized classifier becomes  

𝑓(𝑥) =  ෍ 𝛼௝𝑦௝

ே

௝ୀଵ

𝑥௝ ∙ 𝑥௜ + 𝑏   

If the classes are not linearly separable, the training data are transformed to a higher dimension 

where the data can be separated by a linear surface.  Kernel functions can be used to avoid the 

need for explicitly mapping each data point into a higher dimensional space. This use of a kernel 

function leads us to the final form of the classifier shown in Eq. 4.3.0.6    

Eq. 4.3.0.1 

Eq. 4.3.0.2 

Eq. 4.3.0.5 

Eq. 4.3.0.4 for all support vectors 

Eq. 4.3.0.3 simplified form of 4.3.0.2 



𝑓(𝑥) =  ෍ 𝛼௝𝑦௝𝐾(

ே

௝ୀଵ

𝑥௝ , 𝑥௜) + 𝑏   

Commonly used kernel functions in practice are  

Eq. 4.3.0.7  Linear Kernel          𝑘(𝑥, 𝑦) =  x୧x୨ + 𝑐       

Eq. 4.3.0.8  RBF Kernel          𝑘(𝑥, 𝑦) =  𝑒
ିఊቚห௫೔ି௫ೕหቚ

మ

      

Eq. 4.3.0.9  Polynomial Kernel      𝑘(𝑥, 𝑦) =  (𝑥௜𝑥௝ + 𝑐)ௗ        

Fig. 4.3.0.0 

  

 Fig. 4.3.0.1 
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4.3.1 Random Forest Algorithm  

In order to comprehend the random forest approach we will briefly go over the decision tree, 

which is the building block of the random forest algorithm. The decision tree is a classification 

technique that consists of a set of questions, and decides a path that will ultimately lead to the 

classification of the data. The questions can be thought of as nodes or visualized as a point where 

branches of the tree split. As data travels up a finite number of nodes it will ultimately end up in 

a leaf, where the data is classified.  An example of a decision tree classifier is demonstrated in 

figure 4.3.1.1 of the given sample data found in figure 4.3.1.0 

  

Figure 4.3.1.0 Sample Data 

 Figure 4.3.1.1 
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Although this is a practical and computationally inexpensive approach it is easy to overfit the 

data, meaning that complex trees will not classify non-training data very well. 

 In order to quantify for the efficacy of the trees we will implement ways to measure the impurity 

in the classifications. Two common methods to quantify this impurity in classification regions 

are by measuring entropy and the Gini index, shown in eq. 4.3.1.0 and 4.3.1.1 respectively. In 

the worst scenario, the entropy measurement will return a value of 1, indicating that the 

probability of the classes 𝑤௝  in that split or region is equally likely. On the other hand, the Gini 

index takes the sum of the square of the probability of each class in the region or split and 

subtracts this sum from 1.  If two classes are equally likely in a region or split, the Gini index 

would return a value of 0.5.  

𝑖(𝑁) =  − ∑ 𝑃൫𝑤௝൯ log௝ 𝑃(𝑤௝)௝  

𝑖(𝑁) = 1 − ∑ 𝑃ଶ(𝑤௝)௝  

As the number of features of the training data increases, the decision tree becomes greater in 

depth, indicating more nodes and more classification leafs that will decrease in variance. In order 

to account for these weaknesses in decision trees, it is common to practice pruning. Pruning 

entails setting a predetermined maximum depth, or path from root to leaf, for the decision tree, as 

well as setting a minimum number of samples of training data per leaf, or class. In addition, we 

introduce the random forest algorithm as an “ensemble” machine learning method in which we 

deploy various weak learners, individual decision trees. This algorithm is essentially a set of 

multiple decision trees that can be used for classification and regression. In use as a classification 

method, the data sample will go through each of the decision trees while we keep count of the 

classifications, leafs, that point to each class in the whole forest. The random forest will 

Eq. 4.3.1.0 Entropy 

Eq. 4.3.1.1 Gini Index 



ultimately classify the new data object based on the leaf with the most votes. The general 

workflow of random forests is depicted in figure 4.3.1.2 

 

4.3.2 Hidden Markov Model  

Hidden Markov models, HMMs, are a well-established technique in machine learning with 

applications involving sequences of data like speech recognition and handwriting recognition. 

HMMs are represented by a graph of finite number of states, which are connected by transitions. 

At each of these states, there are two sets of probabilities; transition probabilities and emission 

probabilities. Transition probabilities represent the chances of transferring to the next state while 

the emission probabilities represent the chance of emitting an output, or symbol, at the current 

state. Figure 6.2 demonstrates an example of a network of 3 hidden states denoted by 𝑤௜, with 

transition probabilities 𝑎௜௝, and emission probabilities 𝑏௝௞ of emitting discrete symbol 𝑣௞. HMMs 

are a double stochastic process, the red component of the figure indicates the visible, or 

observable, portion of the model, while the black components of the model indicate the hidden, 

non-observable part.  These transition and emission probabilities create a transition matrix and 

emission matrix respectively and are denoted in equations 4.3.2.0 and 4.3.2.1. Equation 4.3.2.2 

displays the probabilities of starting at each state, which are referred to as the initial probabilities. 

An HMM is considered ergodic if every element of matrix A is a non-zero value. In other words, 

each state in the model is reachable from any other states in a finite number of transitions. 

Fig. 4.3.1.2  



figure 6.2.0 [6] 

Eq. 4.3.2.0     A = ൥
𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

൩           Eq. 4.3.2.1    B = ൥

𝑏ଵଵ 𝑏ଵଶ 𝑏ଵଷ 𝑏ଵସ

𝑏ଶଵ 𝑏ଶଶ 𝑏ଶଷ 𝑏ଶସ

𝑏ଷଵ 𝑏ଷଶ 𝑏ଷଷ 𝑏ଷସ

൩    

П = [𝜋ଵ 𝜋ଶ 𝜋ଷ]      Eq. 4.3.2.2 

HMMs are expressed in the form of equation 6.2.3 

λ = (A, B, П)      Eq. 4.3.2.3 

If we apply this machine learning technique to sequential data in time, like speech or motion 

capture data, we can focus on a subset of HMM’s that is non- ergodic. This type of HMM, 

known as the Left-Right Model or Bakis model, is more suited for sequential data. Since it is not 

possible to go back in time, the transition probability of states become the option to stay at the 

current state or move on to the next one as depicted in figure 4.2.1.   

   Fig. 4.3.2.3  

In this case, the transition matrix becomes  A = ൥
𝑎ଵଵ 𝑎ଵଶ 0 0
0 𝑎ଶଶ 𝑎ଶଷ 0
0 0 0 𝑎ଷଷ

൩   



While the initial state probabilities becomes     П =  [1 0 0] 

4.2.2 Multi-layer Perceptron 

Since all previously mentioned machine learning algorithms take calculated biomechanical 

features from Kinect based estimations as inputs, we heavily rely on the limited accuracy of the 

sensor’s skeletal tracking.  In this section we introduce a common deep learning approach, the 

multilayer perceptron, which can take raw data as input. The building block of the multilayer 

perceptron, commonly referred to as MLP or feed-forward neural network, is the neuron 

displayed in orange in figure 4.2.2.0. The input layer consists of all the 𝑥௠  nodes, the hidden 

layer is made up of the computational unit, and output layer is comprised of 𝑦ො. Output 𝑦ො is 

computed with the use of an activation function. The activation function is typically designed to 

return a binary value based on a threshold, or a probability value ranging from 0 and 1.  

𝑦ො = 𝜑 ൭෍(𝑤௜𝑥௜) + 𝑏𝑖𝑎𝑠

௠

௜ୀଵ

൱       Eq. 4.3.2.4  

 

෍ 𝑤௜𝑥௜ + 𝑏𝑖𝑎𝑠
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௜ୀଵ
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𝑥௠

𝑥ଶ
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Fig. 4.3.2.4 
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The training process consists of two phases, the feedforward phase and the back propagation 

phase.  In the feedforward mode, the weights are estimated or randomized and the input is 

introduced to the network and are computed in the forward direction. The output 𝑦ො is then 

compared to the true value of y and the error is calculated between the two using a cost function 

𝐽(𝑤). The backpropagation phase then takes this computed error and adjust the weights of the 

network based on gradient descent at a learning rate η as shown in equation 4.3.2.5. 

∆𝑤 =  −η
∂J(w)

𝜕𝑤
 

The ultimate goal of the training is to go through each training set, an epoch, and solve for the 

optimal values of each weight to minimize the error. 

5.0 Methods   

In this section we describe how we plan on collecting data from highly skilled athletes 

performing the three standard tennis swings and managing the raw extracted motion capture data.  

5. 1 Protocol Design  

The protocol for this study will start off by setting the Kinect v2 on a tripod located on the corner 

of the tennis court. This corner is defined by the baseline and the outer edge of one of the two 

doubles alleys, and will vary depending on which direction the subject is facing while executing 

a tennis groundstroke.  On the opposite side of the net, we will set up a grid of 8.4x7.5 feet 

rectangles. A cone will be set in the center of one these rectangles which will define the target 

rectangle. Once the target is set and the subject has warmed up, we will give the subject 10 

attempts try to hit the target while the research team records the landing of each attempt in the 

defined grid. If a subject misses by not making contact with the ball or by hitting the ball into the 

Eq. 4.3.2.5 



net, they will be granted one supplementary attempt. Each attempt will consist of the co-

investigator hitting a ball at slow pace from the opposite side net to the subject who will be 

waiting for the ball at the baseline. The ball will be fed to the subject in such a way that the 

subject will be able to strike the ball while staying the Kinect’s field of vision while the Kinect is 

recording. There will be six different targets set up for the forehand portion of the study, as well 

for the backhand portion of the study. Similarly, the subject will be given 10 attempts for each 

target.  

For the serve portion of the study, a different size grid will be set up consisting of 3.5x3.5 feet 

squares and will be set on a service box diagonally across from the subject. A cone will then be 

placed at the center of one of the rectangles to define the target rectangle. Starting from the 

“deuce side” of the court, the subject will stand 3 feet from the center of the baseline and take 10 

attempts at hitting the target while performing their serve motion.  For each side of serve 

position, “deuce” and “ad” side, the subject will be required to hit two different targets from each 

of these serving sides. From each of the two sides, one target will be located in the corner of the 

service box that is closest to the center of the court, the second target will be located on the 

opposite corner of the box close to one of the doubles alley. By placing targets in opposite sides 

of the courts we can expect to be able to denote biomechanical features that correlate to the 

different trajectories of the tennis ball. Figure 5.1.0 below displays the grid with reference to a 

regulation size tennis court, the targets of the study, and the locations where the Kinect would be 

placed for recording depicted by the blue dots.                                        



             

Fig. 5.1.0 Ground stroke portion of the study               Figure 5.1.1 Serve portion of the study  
where the red triangles represent targets 

 

5.2 Signal Processing 

The Kinect’s frame rate can fluctuate below the advertised 30 frames per seconds. This variable 

frame rate is not controllable by the user and mainly relies on the hardware components of the 

sensor and the user’s computer resources. In order to compensate for fluctuation in frame rate, 

the Kinect raw data will be interpolated up to the advertised frame rate of 30 frames per second. 

And then it will be passed through a 4th order Butterworth filter. Once the data is interpolated 

and filtered, we will gather the data of the actual swing. Taking into consideration different 

swing speed across subjects, we have determined that the dominant side wrist of the participant 

has denotable maxima and minima that indicate the start and end of the each swing. More 



specifically, the Y component of the wrist joint signal demonstrates that tennis athletes accelerate 

their dominant arm by swinging in a more vertical direction.  

Since the position of the subject with respect to the Kinect will not be constant for every swing 

across all subjects, we will have to measure distances and angles with respect to the subject’s 

own body.  Alternatively, we can manipulate the data by removing part of the x component of 

the 3D coordinates in a way to relocate the body coordinates into a fixed position for each frame 

of the data collected   

Fig 5.2.0 

5.3 Accuracy Monitoring  

In order to monitor the accuracy of the Kinect skeletal tracking, the research team will clinically 

derive each subject’s ulna, humerus, femur and tibia prior to running the protocol and compare 

with the calculated Kinect measurements. These segments lengths will be hand-measured by a 

single investigator using the following proximal and distal landmarks: acromion process to 



lateral humeral epicondyle (humerus); radial head to radial stylus (ulna); greater trochanter to 

lateral femoral condyle (femur); palpated lateral joint space to lateral malleolus (tibia). The 

Kinect derived measurements will be obtained by calculating the Euclidian distance between the 

mentioned joints. 

 

   
 

Equation 5.3.0 Euclidian Distance 

 

6.0 Implementation 

In this section we will describe how the proposed work will feed the acquired data from section 

5.0 to the machine learning techniques mentioned in 4.0 and apply them to a set hypothesized 

biomechanical features in order to meet our objectives. The features we hypothesize will 

determine the direction of the ball is the angular displacement of the subject’s dominant-side hip 

and shoulder. In other words, we predict that the angular displacements of the two mentioned 

joints will have a correlation to the amount of change in direction required to hit a present target. 

We also predict that the angles created by the subjects’ ulna and humerus during the swing are 

correlated to the distance between the subject and the target as well as the direction. More 

specifically, the mentioned angle will become more obtuse throughout the swing as the subject 

aims for a target that is further away from him or herself.   

6.1 Random Forest Implementation  

In this work, the random forest algorithm will be used to classify the window of skeletal tracking 

data into one of six swing classes; right-handed or left-handed forehand, backhand, or serve.  We 

propose making a set of weak learners, of maximum depth of five splitting nodes.  The ultimate 

 𝒅𝒇𝒓 = ඩ ෍ ቀ𝒋𝒐𝒊𝒏𝒕𝟏𝒅𝒊𝒎
(𝒇𝒓) − 𝒋𝒐𝒊𝒏𝒕𝟐𝒅𝒊𝒎

(𝒇𝒓൯ቁ
𝟐

𝟑

𝒅𝒊𝒎ୀ𝟏

  



goal of our random forest design is to reduce the entropy or Gini index on our training data to 

achieve optimal classification efficacy. 

6.2 SVM Implementation 

Once we have classified the input window as a forehand, backhand, or serve we will predict the 

trajectory of the swing.  In this work SVMs will be used to predict trajectory of the ball.  We 

anticipate that the biomechanics of the same swing in the presence of two different targets will 

display overlap in the feature space and will likely not be linearly separable. Moreover, if 

noticeable features exist to classify ball trajectory we anticipate these variances to be relatively 

small and will lead us to rely heavily on the accuracy of the Kinect Sensor. 

To quantify the angle between the ulna and humerus in to a single feature value, we will measure 

the average radial distance between the dominant side hip to the dominant side wrist throughout 

the swing by calculating the Euclidian distance, equation 5.3.0. This average distance return a 

single value that will correlate the angle since the distance will increase as the elbow angles 

increase. In order to compensate for variance in arm length across subjects, we plan on 

normalizing the mentioned distance by a factor of subject height. As for the quantification of the 

angular velocity of hips and shoulders we plan on calculating angle differential with respect to 

time along the Kinect’s y-axis.  This processes essentially simplifies to calculating the angle 

between each frame of the swing while dividing by the sampling rate of 1/30 seconds.  Figure 

7.2.0 denotes the rotation of the hips in the Kinect’s XZ plane where the blue denotes the frame 

after the black frame. The midpoint between hips and between shoulders will be defined by spine 

base and spine shoulder points respectively.  

𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
ௗఏ

ௗ௧
     Eq.6.2.0 



 

 

 

6.3 HMM Implementation 

Since HMMs are a double stochastic process, we can apply this to our application if consider the 

measurable stochastics process the human action, and the underlying stochastic process as the 

knowledge or strategy behind it  [7] . HMM implementation leads to 3 processes [8]: 

1.  Evaluation – given the feature observation sequence O = 𝑂ଵ 𝑂ଶ … 𝑂் and model λ = (A, 

B, П), we will compute the probability of the observation sequence given the model, P(O| 

λ), using  the forward algorithm. 

The forward algorithm is defined as: 

𝛼௝(𝑡) = 𝑃(𝑂ଵ 𝑂ଶ. . 𝑂்|λ)      Eq. 6.3.1 

𝛼௝(1) =  𝜋௝𝑏௝ைభ
     Eq. 6.3.2 

𝛼௝(𝑡 + 1) = [෍ 𝛼௜(𝑡)𝑎௜௝]

ே

௜ୀଵ

𝑏௝(𝑂௧ାଵ)      1 ≤ 𝑡 < 𝑇 − 1 & 1 ≤ 𝑗 ≤ 𝑁    Eq. 6.3.3 

𝑃(O| λ) =  ෍ 𝛼௜(𝑇)              Eq. 6.3.4

ே

௜ୀଵ

 

2. Training – Given a set of training sequences of a feature of T samples long O = 

𝑂ଵ 𝑂ଶ. . 𝑂், find matrix A and B. In this work we will use the Baum-Welch algorithm to 

estimate and adjust the A and B matrices to create our model and maximize P(O| λ). We 

will also experiment with number of states ranging from 3 to 10.  In order to understand 

𝑑𝜃 
Fig. 6.2.0 



the Baum-Welch algorithm, also referred to as the forward-backward algorithm, it is also 

necessary to introduce the backward algorithm shown in equation 6.3.5. 

𝛽௜(𝑡)  = [෍ 𝑎௜௝𝑏௝(𝑂௧ାଵ)]

ே

௝ୀଵ

 𝛽௧ାଵ(𝑗)      𝑡 = 𝑇 − 1, 𝑇 − 2, … ,1  & 1 ≤ 𝑗 ≤ 𝑁       Eq. 6.3.5 

Using the forward and backward variables we can derive the probability of being in state j at 

time t.  

𝛾௜௝(𝑡) =
𝛼௝(𝑡 − 1)𝑎௜௝𝑏௜௝𝛽௜(𝑡)

P(O| λ)
          Eq. 6.3.6 

Ultimately, we can estimate each individual component of the A and B matrix using     

equations 6.3.7 and 6.3.8 respectively. 

𝑎ො௜௝ =
∑ 𝛾௜௝(𝑡)்

௧ୀଵ

∑ ∑ 𝛾௜௞(𝑡)௖
௞ୀଵ

்
௧ୀଵ

         Eq.  6.3.7  

𝑏෠௜௝ =
∑ ∑ 𝛾௝௟(𝑡)௟

௧ୀଵ
்
௧ୀଵ

∑ ∑ 𝛾௝௟(𝑡)௟
௞ୀଵ

்
௧ୀଵ

          Eq.  6.3.8 

3. Decoding – To determine the most probable state path Q = 𝑄ଵ 𝑄ଶ. . 𝑄், given output 

sequence O = 𝑂ଵ 𝑂ଶ. . 𝑂் and model λ we will use Viterbi algorithm works best for Left 

Right bounded models [9]. This most likely single path of length T becomes 

𝛿௝(𝑡) = max(𝑄ଵ 𝑄ଶ. . 𝑄் = 𝑗, 𝑂ଵ 𝑂ଶ. . 𝑂்| λ)      Eq. 6.3.9 

In order to create an input for this model we will take into consideration three angles from the 

dominant side of the subject as a function of time. These three angles will be calculated using 

three joints from the skeletal data and equation 3.7.1. For each calculated angle, we will need the 

three joints with one common joint to create two vectors. 



 

  

Fig. 6.3.1 

 

∅௜ = cosିଵ(
௨∙௩

ห|௨|ห ||௩||
 )  eq. 6.3.10 

Angle  Joint 1 Joint 2 Joint 3 Sequence 

∅ Shoulder  Elbow  Wrist ∅ଵ, ∅ଶ, … . ∅் 

𝜃 Elbow Shoulder  Neck  𝜃1, 𝜃2, … 𝜃𝑇 

𝜔 Elbow Shoulder hip 𝜔ଵ, 𝜔ଶ, … 𝜔்  

 

With the calculated angle sequences we can create the following sequence input, V, for our 

model by concatenating the three sequences as shown in equation 6.3.11. 

𝑂 = [ ∅1, ∅2, … . ∅𝑇, 𝜃1, 𝜃2, … 𝜃𝑇, 𝜔1, 𝜔2, … 𝜔𝑇 ]  Eq. 6.3.11 

We will train the two different models per swing; one cross-court model and one down the line 

model for the ground strokes, and one out-wide and down-the-T model for the serve.   

6.4 MLP implementation 

The MLP does not require any feature extraction from our end so we plan on feeding all 25 joint 

center 3D data of a fixed swing window. We plan on allocating one neuron per joint in the 

hidden, such that each neuron will have 3 inputs. In addition we will use a sigmoid function 

Joint 2 
(Common 
Joint) 

Joint 1 

Joint 3 



(equation 6.4.0) as the activation function, but will also experiment hyperbolic tangent (equation 

6.4.1).  

𝜑(𝑥) =
1

1 + 𝑒ି௫
 

𝜑(𝑥) =
𝑒௫ − 𝑒ି௫

1 + 𝑒ି௫
 

 

7.0 Proposed Work Overview  

In this work we propose using the random forest algorithm to classify the skeletal tracking data 

of a tennis athlete as a forehand, backhand, or serve. Once the swing is classified into one of 

these three classes, we plan on using support vector machines in the biomechanical feature space 

to predict the general direction of the tennis ball. Since we expect to encounter overlap in data of 

the same swing that differs in ball trajectory, we plan on separating the two sub-classes using a 

෍ 𝑤௜𝑥௜ + 𝑏𝑖𝑎𝑠

௠

௜ୀଵ

𝑗𝑜𝑖𝑛𝑡௫

activation 
function 

𝑗𝑜𝑖𝑛𝑡௭

𝑗𝑜𝑖𝑛𝑡௬
𝑦ො 

 

Eq. 6.4.0 sigmoid activation 
function 

Eq. 6.4.1 hyperbolic tangent 
activation function 



maximum margin classifier and a kernel function. Previous research indicates that the linear 

kernel was more efficient in gesture classification than RBF (radial basis function) kernel [10] 

but we will investigate in other kernel functions if results are not satisfactory. Nevertheless, 

SVMs allow us to use an unlimited amount of dimensions in the feature space, so we expect to 

find one, or a pair of features that make the ball trajectory distinguishable with the Kinect and its 

limited accuracy. 

In addition, we are proposing the use of a hidden Markov model, a Bakis Model more 

specifically, an approach that will take into consideration a biomechanical feature as a function 

of time to develop a model for each of three tennis swings, in each general direction. In more 

detail, we will train 6 models, λ = (A, B, П), where П = [1 0 .. 0]. As our deep learning approach, 

we will develop a multilayer perceptron in which we will pass the interpolated skeletal data so 

that we will not have to rely on the accuracy of the Kinect since we will not be calculating any 

features.  
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Fig. 7.0 The design cycle of the proposed work. 

 

7.1 Proposed Work Timeline 

The data acquisition software that will record athletes with the sensor has been written and will 

be optimized to efficiently and reliably find “zero crossings” that indicate the start of each swing 

to facilitate the annotation process. This work will be allocated four weeks for data collection 

and annotating the data. The IRB has approved for a maximum of 50 participants in this project. 

Each individual session will last 30 minutes, which equals to a maximum amount of 25 hours of 

data collection excluding travel time and setup time.  Once the all the data has been collected, we 

will allocate 70% of the raw data to the training set and 30% to the evaluation set. Before starting 

the design of the mentioned machine learning algorithms, we will perform a principal component 

analysis on the hypothesized features as a baseline test to work efficiently. Seven weeks will be 

allocated to the design and optimization of classifying algorithms. Lastly five weeks will be 

allocated of analyzing results and defense preparation. 
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