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ABSTRACT 
 

Hyperspectral imaging is an emerging technology in the field of biomedical engineering which 

may be used as a non-invasive modality to characterize tumors. In this thesis, a hyperspectral 

imaging system was used to characterize canine mammary tumors of unknown histopathology 

(pre-surgery) and correlate the results with the post-surgical histopathology results. The system 

consisted of a charge coupled device (CCD) camera, a liquid crystal tunable filter in the near 

infrared range (650-1100 nm), and a controller. Spectral signatures of malignant and benign 

canine mammary tumors were extracted and analyzed. The reflectance intensities of malignant 

tumor spectra were generally lower than benign tumor spectra over the wavelength range 650-

1100nm. Previous studies have shown that cancerous tissues have a higher hemoglobin and water 

content, and lower lipid concentration with respect to benign tissues. The decreased reflectance 

intensity observed for malignant tumors is likely due to the increased microvasculature and, 

therefore, higher blood content of malignant tissue relative to benign tissue. Second derivative 

method was applied to the reflectance spectra. Peaks at 700, 840, 900 and 970 nm were observed 

in the second derivative reflectance spectra. These peaks were attributed to deoxy-hemoglobin, 

oxy-hemoglobin, lipid and water respectively. A Tissue Optical Index (TOI) was developed that 

enhances contrast between malignant and benign canine tumors. This index is based on the ratio 

of the reflectance intensity values corresponding to the wavelengths associated with the four 

chromophores. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) 

were also applied on the canine spectral dataset and the method was cross-validated. Preliminary 

results from 22 canine mammary tumors showed that the sensitivity and specificity of the PCA-

LDA is method is 86% and 86% respectively. The sensitivity and specificity of the TOI model is 

86% and 95% respectively. These results show promise in the non-invasive optical diagnosis of 

canine mammary cancer. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Hyperspectral imaging (HSI) in the near infrared region is a non-invasive modality used to extract 

spectral information from samples. This system is being used in the field of biomedical 

engineering and medical informatics. Hyperspectral imaging is capable of providing both the 

spectral and spatial information of tissues over a hundred or more spectral bands. The spectral 

information helps us identify the composition of the material. Hyperspectral imaging may aid a 

surgery and allow the assessment of tissue continuously without interrupting surgery. In this 

project, near infrared hyperspectral imaging will be used for canine cancer characterization. 

The incidence of mammary neoplasia varies widely across the mammalian class. For example, 

among domestic species, dogs have the highest prevalence of mammary neoplasia, which is 

approximately three times higher than that of women [1].  Mammary cancer in female dogs 

accounts for 70% of all cancer cases [2]. Once a tumor reaches the metastatic stage, the chances 

of successful treatment are low. Therefore, early detection of malignant tumors is necessary for a 

full recovery. Currently, a surgical biopsy is the gold standard for cancer diagnosis, in dogs with 

mammary tumors. The standard approach involves an excisional biopsy (removing the entire 

tumor) and the subsequent examination by a pathologist. It is an invasive, time-consuming, and 

expensive procedure that requires highly trained surgeons and pathologists. Moreover, in a 

biopsy, the whole tumor is typically not analyzed; only a few representative sections are 

evaluated, which may leave room for sampling error. To avoid these disadvantages, we 

investigated the use of a hyperspectral imaging system for the characterization of canine 

mammary tumors. 
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 HSI has been used to detect prostatic, gastric and tongue cancer [3] [4] [5]. HSI was also used by 

Medina and co-workers for the characterization of iris reflectance to non-invasively diagnose 

ocular diseases [6] and by Panasyuk and co-workers for the detection of tumor and normal breast 

tissues [7]. This imaging technology has also been used for the detection and analysis of intestinal 

ischemia [8], for detection and characterization of emphysema from healthy lung tissue [9] and 

for in-vivo detection and grading of cervical pre-cancers and of pigmented skin lesions [10]. All 

these experiments were conducted for research purposes. 

. 

 

Figure 1: Needle biopsy for breast cancer. The method is invasive and time-consuming [16]. 

 

1.2 Research Objectives 

The research objectives of this thesis are: 

a) Characterizing a hyperspectral imaging system and using it for malignant tumor 

identification.  

b) Normalize and preprocess the spectral data. 

c) Develop an algorithm to discern the malignant tumors from the benign tumors. 
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d) Design an experiment to acquire the hyperspectral images of the canine mammary 

tumors, and analyze the results. 

1.3   Organization of the Thesis 
 

This thesis is organized as follows. In Chapter 2, background and literature reviews on infrared 

hyperspectral imaging of tissues are given in order to lay the foundation for this work. Cancer 

detection using hyperspectral imaging is also introduced. The method of breast, canine mammary 

tumor, gastric, prostrate, skin and tongue cancer characterization using near-infrared 

hyperspectral imaging is described. In Chapter 3, the theoretical approach used to analyze the 

hyperspectral canine data is discussed. Also, various normalization and preprocessing methods 

that would be applied on the canine spectral data are detailed. Chapter 4 is broadly divided into 3 

parts. Section 4.1 describes the hyperspectral imaging system, Section 4.2 discusses the 

experiments performed to characterize the hyperspectral system, and the results obtained . Section 

4.2 details the canine mammary tumor acquisition followed by normalization and preprocessing 

of the spectral data and then application and validation of the TOI model and the PCA-LDA 

model on the canine spectral data. The sensitivity and specificity of the proposed model is also 

given. Chapter 5 consists of a discussion of various issues faced during the project, followed by 

the concluding remarks and a plan for future work. 

1.4   Contributions 
 

The contributions of this thesis are: 

a) Use of a hyperspectral imaging system to characterize malignant and benign canine 

mammary tumors. The method is non-invasive and less time-consuming. 

b) Identification of four wavelengths that characterize four important tissue chromophores; 

deoxyhemoglobin, oxyhemoglobin, lipid and water. Second derivative method was 

applied on the reflectance spectra to identify the characteristic wavelengths. This can 
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significantly decrease the time required for imaging the sample; since now images at 4 

wavelengths are required to be taken compared to conventional procedure of capturing 

hyperspectral images from 650 nm to 1100 nm at an increment of 10 nm. 

c) A Tissue Optical Indices (TOI) method was used to discern malignant and benign canine 

tumors. Preliminary results from 22 canine mammary tumors showed that the sensitivity 

and specificity of the TOI model is 86% and 95% respectively 

d) Principal Component Analysis method and Linear –Discriminant Method was used to 

discern malignant and benign tumors. Preliminary results from 22 canine mammary 

tumors showed that the sensitivity and specificity of the PCA-LDA is method is 86% and 

86% respectively. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

2.1   Infrared Hyperspectral Imaging 
 

Conventional color cameras acquire intensity information from the visible electromagnetic 

spectrum, that is, red, green and blue. Hyperspectral imaging measures and collects intensity 

information over more than one hundred spectral bands across the electromagnetic spectrum. 

Hyperspectral images are acquired by ‘hyperspectral sensors’ that have a variety of applications 

in the fields of agriculture, physics, remote sensing and surveillance. This technique was used 

originally for the purpose of remote sensing, a field pioneered by NASA [15]. But recently, 

hyperspectral imaging is also being used in the field of medicine, particularly cancer detection. 

This is because this kind of novel technology can quantify several biomarkers found in tissue, and 

thereby can be used for non-invasive tissue analysis. 

During hyperspectral imaging, the data produced by the sensor consists of a collection of images. 

The set of images can be represented by a three-dimensional cube of image (Figure 2), where the 

first two coordinates represent the spatial coordinate of a pixel and the third coordinate gives the 

wavelength of a particular spectral band. Thus it gives both the spectral and spatial information at 

the same time.  
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Figure 2: A hyperspectral three dimensional imaging cube where the three coordinates 

represent the horizontal axis, vertical axis and the wavelength respectively [17]. 

 

There are three different types of hyperspectral imaging techniques. The first type uses a prism or 

a grating as the dispersive medium in the optical system, the second type uses band pass filter, 

which can be tunable or fixed, and the third type implements a technique called the Fourier 

transform spectroscopy. In this technique, Fourier transform is applied to obtain the spectral 

decomposition of the light entering the hyperspectral sensor. In this project, the second class of 

hyperspectral imaging technique will be used. Our hyperspectral camera consists of a liquid 

crystal tunable filter, which scans the near-infrared spectrum (650-1100 nm) in increment of 10 

nm. 

In agriculture, hyperspectral imaging is used to monitor the health of crops and to detect chemical 

composition, nutrient and water status and disease outbreak for plants. Hyperspectral imaging is 

used for obtaining the spectral signatures of geological samples like feldspar, silica, calcite 

groups to differentiate the minerals of interest from the surrounding region. Some minerals like 

gold and diamond are also identified from hyperspectral airborne images. Hyperspectral 

surveillance is used for military purposes, and it is able to detect the presence of opposition even 

if countermeasures are taken to avoid airborne surveillance. Nowadays, hyperspectral cameras 
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that incorporate thermal infrared imaging are used for this purpose. Chemical Imaging is another 

application for which hyperspectral imaging is used. At war, soldiers are exposed to chemical 

agents and harmful plumes which are difficult to detect. But using hyperspectral imaging, 

detection and identification of such harmful chemicals have now become possible. This 

technology is also used in many countries for the continuous monitoring of oil drills. If oil leaks 

from an oil drill, it could cause extensive damage to the ecosystem. So hyperspectral sensors can 

be deployed to build detection and warning system for oil drills.  

In this project, we will focus on the use of hyperspectral imaging for non-invasive canine cancer 

detection. Near-infrared hyperspectral imaging has been used for the detection of various kinds of 

cancer; breast, gastric, prostate, tongue. In this project, we focus on the near-infrared region 

(NIR) that extends from 650 nm to 1100 nm. This is because NIR light is absorbed by certain 

chromophores that are biochemically significant, namely, hemoglobin, water and lipid. Thus 

using NIR spectroscopy, we can quantify the concentration of these important biomarkers. 

Literature shows that NIR light penetrates into tissue farther than light in any other spectrum, 

because tissue has low absorptivity in this region [12]. Thus weakly absorbed NIR light that can 

penetrate several centimeters is used for the hyperspectral imaging of thick tissue such as brain, 

breast and muscle [12]. Literature shows some favorable results in the detection of breast cancer 

using NIR spectroscopy [12]. Since a canine mammary tumor is physiologically similar to human 

breast tumor, we use NIR spectral range (650-1100 nm) as the light transmission range for our 

project. 

 

2.2   Mammary Tumor Detection using Infrared Hyperspectral Imaging 
 

In this section, breast cancer and canine cancer characterization using near-infrared spectroscopy 

are discussed. 
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2.2.1   Breast Cancer Detection 

Diffuse optical spectroscopy using the near-infrared light spectrum has been investigated for the 

detection and clinical management of breast cancer [11] [12]. In these papers, instrumentation 

consists of a broadband steady-state spectrometer system (650-1100 nm) and a six wavelength 

frequency domain instrument which consists of six laser diodes (661, 686, 786, 808, 822, and 852 

nm). A fiber optic cable delivers the laser light to the tissue. A hand held probe which consists of 

an avalanche photodiode detector, records the diffused light signals from the tissue. Although this 

system is different from the hyperspectral imaging system used in this thesis, the principle is the 

same; both investigate non-invasive tissue analysis using laser scanners and NIR light. 

Currently, the most common non-invasive procedure for breast cancer screening is 

mammography. However this method suffers from low sensitivity and specificity and does not 

work well for dense breast masses. Because of these disadvantages, many research groups have 

tried to use optical methods for breast cancer screening. Optical methods are non-invasive, less 

time-consuming, do not use ionizing radiation and is less expensive. In these papers, the authors 

have used NIR laser diodes to enhance physiological and biochemical contrast between the 

malignant and normal breast tissues.  

Paper by Cerussi [12] presents the clinical results from 58 malignant breast tumors. Physiological 

properties like hemoglobin, water and lipid content was significantly different between malignant 

and normal breast tumors. Malignant tumors showed higher concentration of deoxy-hemoglobin, 

oxy-hemoglobin and water and lower contents of tissue lipid compared to normal tissue. A tissue 

optical index was defined which increased the contrast between the malignant and normal tissue:-                                               

 2

2

[ ][ ]

[ ][ ]

H O HbT
TOI

Lipid StO
  (1) 
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Higher total hemoglobin content [HbT] indicates higher tissue blood volume and angiogenesis. 

Higher water content [H2O] suggests abnormal accumulation of interstitial fluid in the tissue. 

Decreased tissue oxygen saturation which is the ratio of oxygenated hemoglobin to total 

hemoglobin [StO2] indicats tissue hypoxia (a pathological condition in which tissue is deprived of 

adequate oxygen supply) and was caused by metabolically active tumor cells. A decreased lipid 

content [Lipid] suggests that the parenchymal adipose have been displaced. These changes can be 

grouped together to enhance contrast through the formation of the TOI, where elevated TOI 

values suggest high metabolic activity and malignancy [12]. Figure 3 shows the absorption 

spectra of normal and tumor tissue. 

 

Figure 3: The absorption spectra of tumor and normal tissue. Tumor tissue has increased 

absorption compared to normal tissue [12]. 
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Figure 4: The Diffuse Optical Spectroscopy System [12]. 

Also, an important application of diffuse optical spectroscopy is monitoring the response of 

patients to cancer therapies. One of the cancer therapy methods for women in advanced stages of 

breast cancer is pre-surgical chemotherapy, which can shrink tumors to a smaller size, so that 

they can be operated and surgically removed. In order to maximize the therapeutic effectiveness, 

the above proposed non-invasive optical method can be used to examine and assess the 

physiological properties of the tumor. Figure 4 shows the Diffuse Optical Spectroscopy System. 

2.2.2   Canine Mammary Tumor Detection 

In a paper by Gurfinkel [13], fluorescent dyes have been used to discern canine adenocarcinoma 

from normal tissue. Two fluorescent dyes: indocyanine green (ICG) and carotene-conjugated 2-

devinyl-2-(1-hexyloxyethyl) pyropheophorbide (HPPH-car) were administered intravenously in a 

canine patient. For illumination of the tissue, a 660 nm laser diode beam was used. The 
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fluorescence generated by the dyes upon propagating to the tissue surface, is captured by a CCD 

camera. The uptake and release rates of the dye were studied and they varied considerably in the 

diseased and normal tissue. A pharmacokinetic model was used to monitor the delivery of the 

dyes. The need to administer a fluorescent dye renders this procedure mildly invasive, whereas 

the experiment presented in this thesis was completely non-invasive. Figure 5 shows the 

instrumentation for the multipixel imaging device. 

 

Figure 5: Instrumentation for the multipixel imaging device [13]. 

2.3   Other Diseases Diagnosed By Infrared Hyperspectral Imaging 

Literature shows that there are various diseases that have been diagnosed non-invasively by near-

infrared hyperspectral imaging. In this section, detection of prostate, gastric, tongue and skin 

cancer, lung emphysema, and intestinal ischemia using NIR hyperpsectral imaging is discussed. 
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2.3.1   Prostate Cancer Detection 

A paper by Akbari et al. [4] describes a non-invasive detection method of prostate cancer cell in 

mice using hyperspectral image processing and machine learning techniques. Using least square 

support vector machines, the authors classify the hyperspectral images of the cancerous and 

normal tissue. They also indicate the differences of reflectance properties in cancer and normal 

tissue using spatially resolved images. The experiment was carried out on diseased mice (in-vivo) 

as well as on pathological slides (in-vitro).  Figure 7 shows the detection of prostate cancer tissue 

using the classification method with least square support vector machine. Figure 6 shows the in-

vivo spectral signature of benign and malignant lesions. 

        

 

 

 

To remove the spectral non-uniformity of the illumination device, the authors used a 

normalization technique. The technique minimized the influence of dark current. To solve the 

classification problem, the authors employed a least square support vector machine in which a 

linear equation is solved (instead of quadratic programming) in a high dimensional space or 

kernel space. In any least square method, the sum of the squared error is minimized. 

Figure 7: Detection of prostate cancer 

tissue (green area) using the 

classification method with least square 

support vector machine [4]. 

Figure 6: In-vivo spectral signature of 

benign and malignant lesion.  The 

dashed red lines represent the 

malignant lesion and the continuous 

line represents the benign regions [4]. 
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The authors evaluate the classification technique using two parameters: sensitivity and specificity. 

Sensitivity measures the percentage of correctly identified tumor tissue and specificity measures 

the percentage of healthy tissue correctly identified. The results show the specificity of the 

classification technique is 92.8% (with a margin of 2.0%) and sensitivity of 96.9 % (with a 

margin of 1.3%) for 11 mice [4].  

The method described above is superior to conventional methods like tissue biopsy because it 

measures spectra of tissue point by point. It also spectrally and spatially verifies the spectral 

variations of different types of tissue. Therefore, it is a continuous non-intervening evaluation 

technique for suspicious cancer tissues and can be used as a virtual biopsy [4]. 

2.3.2   Tongue Cancer Detection 

Liu [5] describes tongue cancer detection using hyperspectral imaging. The reflectance spectra 

dataset of 34 tongue tumors were collected using an acousto-optic tunable filter (AOTF) and a 

spectral adapter. For medical applications, most hyperspectral systems use tunable filters rather 

than spatial scanning, because they do not need mechanically moving parts and are faster. AOTF 

is a solid state tunable filter and is based on the principle of acoustic diffraction of light in an 

anisotropic medium. They are advantageous over other spectrometers, because they are not 

sensitive to mechanical shock or vibration. AOTF technology also provides a wider tuning range, 

more field of view, and can be easily programmed. For illumination purposes, the authors have 

used 500W halogen lamps. Noise is present in the tumor spectral data because of the saliva on the 

tongue and its instinctive squirming. For denoising, the authors used median filters. To remove 

the spectral non-uniformity, a normalization procedure has been used using standard reflectance 

boards. 

Sparse representation (SR) has been used as the classification algorithm to detect the cancerous 

tongue tumors. Sparse signal representation has been proven to be an extremely powerful 
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computer vision tool for representing high dimensional signals [5]. This is because some classes 

of signals have naturally occurring sparse properties. The authors have first shown the difference 

in the spectral properties of the tumor and normal tissue. The SR classifier was used to develop an 

algorithm to detect the cancerous pixels from the non-cancerous pixels. The authors achieved a 

recognition rate of 96.5%.  

To prove that the SR algorithm is computationally superior to traditional hyperspectral algorithms 

like support vector machine (SVM) or relevance vector machine (RVM), the authors have 

compared the performance of the SR algorithm to that of the SVM and RVM. The SR method 

worked better than the other two even when the tumors were more than 3mm deep and was 

covered with mucosa. The authors have also shown that the classification time for their method is 

less than SVM and RVM. The false negative rate (FNR) and the false positive rate (FPR) were 

calculated for each hyperspectral image. The SR method showed a FNR and FPR of 6.3% and 

8.7% respectively [5]. 

Thus this method shows promise in the detection of tongue cancer using hyperspectral imaging 

and sparse representation. This computer aided tool can help the doctors decide non-invasively as 

to whether a patient has tongue cancer. 

2.3.3   Gastric Cancer Detection 

 

A paper by Akbari [4] describes gastric cancer detection using infrared hyperspectral imaging. 

Gastric tumors were imaged from 10 human subjects and the results were correlated with the 

histopathology results. A total of 101 images were taken from 10 patients. Each sample was 

imaged 10 times, to ensure repeatability of the system. The NIR spectral range of 1000-2500 nm 

was used for this project. The hyperspectral imaging device was a tunable optical band pass filter, 

and the spectral resolution of the camera was 6.29 nm. The light source for illumination consisted 

of two 150W halogen lamps, with diffuse reflectors. In this experimental setup, the camera was 
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attached to a frame and the frame was fixed (Figure 8). The frame was controlled by a linear 

actuator. This made sure that the distance between the lens and the sample is constant. This is a 

very important factor that should be kept in mind while designing our canine experiment. 

                         

Figure 8: The hyperspectral imaging setup used by the authors for the gastric cancer 

experiment [4]. 

 

In this paper, the authors have normalized the data using standard reflectance boards. The noise 

was removed by median filtering. The differences in the spectral characteristics of the tumor and 

the normal tissue have been shown. The standard deviation of the spectral signature of the tumors 

is higher compared to the normal tissue. Four different classification methods were used to detect 

the cancerous tumors. The four classification methods were a support vector machine (SVM) 

based method, a standard deviation (SD) method, an integral method and the normalized 

difference cancer index (NDCI) method. Out of these four algorithms, NDCI gave the best 

results. Using this method, the authors obtained a sensitivity and specificity of 93% and 91% 

respectively [4].  
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The above proposed method shows potential in the non-invasive detection of gastric cancer. This 

method could detect tumors less than 0.5 mm in size [4]. Also, determining the tumor bed during 

surgery is also challenging for the doctors. Such imaging technology can be used to determine the 

tumor bed during surgery and also to ensure that the entire tumor has been removed after tumor 

resection. This it can help in the segmentation of tumors and remove ambiguity between the 

malignant and benign regions.  

2.3.4   Skin Cancer Detection 

Skin cancer is a common form of cancer, with more than a million people affected annually by 

this form of cancer in the United States. Dermatologists identify skin melanomas, but a biopsy is 

required for definitive evaluation. A biopsy is not feasible for a patient with a large number of 

melanomas. Therefore, a non-invasive method to detect skin cancer in place of the traditional 

biopsy is in great demand. 

Balas [10] describes a method of skin cancer detection using Raman spectroscopy. In this paper, 

the authors develop a clinical research prototype that can obtain Raman spectra from skin in vivo 

within 1 second. The imaging instrument consists of a diode laser (785 nm), a spectrograph, a 

CCD detector and Raman optical probe. The probe was designed in such a way that the collection 

of Raman signals is maximum. In order to process the raw spectral data, a polynomial fitting 

algorithm was used to remove the background fluorescence. Data from 274 skin lesion were 

analyzed which included cancers, precancerous tumors and benign lesions. Using Raman 

spectroscopy, the authors obtained sensitivity and specificity of 90% and 75% respectively.  

2.3.5   Intestinal Ischemia and Lung Emphysema Detection 

Hyperspectral imaging has also been used to detect diseases such as intestinal ischemia and lung 

emphysema [8] [9]. Paper by Akbari [8] describes the detection of intestinal ischemia using 

hyperspectral imaging both in the visible and the invisible wavelength range. Intestinal Ischemia 
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is caused by the insufficient flow of oxygenated blood to the intestine, which may result in 

bloody diarrhea, gangrene and other infection. The spectral signatures of the intestinal ischemic 

region of a pig’s intestine were extracted using two hyperspectral imagers (400-1000 nm and 900-

1700 nm). Two filters were designed as the classification algorithm and the results were 

compared with that of the traditional support vector machine (SVM) method. One of the filter 

classification methods could detect ischemic tissue from normal intestinal tissue and other organs 

with a FPR (False Positive Rate) and FNR (False Negative Rate) of 1% and 1% respectively. The 

SVM method gave a FPR and FNR of 5% and 6% respectively.  

A paper by Jong-Ha Lee [9] describes the characterization of emphysema from healthy tissue 

using hyperspectral imaging. The NIR spectral range of 650nm to 1100nm was used. Peak 

absorption intensity was observed at four wavelengths (760, 805, 915, and 970 nm), which is 

characteristic of the four tissue chromophores. Spectral signatures from the normal pig’s lung 

phantom and the smoker’s lung phantom were extracted and compared. The reflectance intensity 

of the smoker’s lung tissue was considerably higher than the normal lung tissue over the entire 

wavelength range (650-1100nm). This information could be useful for detecting lung emphysema 

from healthy lung tissue. 
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CHAPTER 3 

DIFFERENTIATION OF MALIGNANT AND BENIGN 

TUMORS 

3.1   Introduction 

In this chapter, we will be discussing the various algorithms that will be applied on the canine 

spectral data set in order to differentiate the malignant and benign spectra. Also, normalization 

and preprocessing techniques will also be described. 

3.2   Tissue Optical Indices 
 

Some tissue optical indices (TOI) have been established that correlate with the pathology of the 

breast tissue [11].To differentiate malignant and benign breast lesions, tissue optical indices have 

previously been defined as follows: 

2

2

[ ][ ]

[ ][ ]

H O HbT
TOI

Lipid StO
                                                                  (1) 

Higher total hemoglobin content [HbT] indicates higher tissue blood volume and angiogenesis; 

higher water content [H2O] suggests abnormal accumulation of interstitial fluid in the tissue; 

decreased tissue oxygen saturation, which is the ratio of oxygenated hemoglobin to total 

hemoglobin [StO2], indicated tissue hypoxia (a pathological condition in which tissue is deprived 

of adequate oxygen supply) and was caused by metabolically active tumor cells; decreased lipid 

content [Lipid] suggests that the parenchymal adipose have been displaced. These changes can be 

grouped together to enhance contrast through the formation of the TOI, where elevated TOI 

values suggest high metabolic activity and malignancy [12]. 
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In this project, we do not have the concentration information of the chromophores. So we will 

reframe equation 1 in terms of reflectance intensity. Here we will be establishing a relationship 

between the concentration of the tissue components and their corresponding reflectance intensity 

values. 

The dependence of the chromophore concentration, c, on the absorbance of light is, 

 [ ]A c l  (2)
 

where A is the absorption of NIR light,  is the molar extinction coefficient (mol /litre/cm), [c] is 

the concentration of chromophore  (mol/litre), and l is the photon path length (cm). Here the 

molar extinction coefficient is compound and wavelength dependent. So we are assuming it to be 

a constant for a particular chromophore and a particular wavelength. Also, the path length l is 

dependent on the scattering properties of the tissue and is not known a priori. So for this 

calculation, we assume it to be constant.Thus, we can say that, absorbance, A, is directly 

proportional to the concentration of the chromophore. 

 [ ]A c  (3) 

Absorbance, A, is related to reflectance intensity [arbitrary unit] as follows: 

 
10

1
logA

R
  (4) 

Now let us say there are two chromophores 1 and 2. The concentrations of the two chormophores 

are [c1] and [c2]. The absorption and the reflectance intensity values are A1, A2 and R1, R2 

respectively. The total concentration of the chromophore is the sum of the individual 

concentrations. Let the total concentration of the chromophore be ct and the total absorbance and 

the total reflectance intensity be At and Rt. respectively. 
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  1 2[ ] [ ] [ ]tc c c   (5)  

 Since, [ ]A c  , we can write that    

 1 2[ ] [ ] [ ]tA A A    (6)                                                                 
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log log log

tR R R
       (7) 
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tR R R
   (8) 

 
1 2

1 1

tR R R
   (9) 

 From the definition of Tissue Optical Indices from above we have, 

                                                    

.

2

.

2

A A
H O HbT

TOI
A A
lipid StO

  (10) 

 

Equation 11 was used to calculate the Tissue Optical Index value, which will be further discussed 

in Chapter 4.               

3.3   Principal Component Analysis 
 

Principal Component Analysis (PCA) is a well-known multivariate statistical technique, that 

converts a larger number of observed variables into a smaller number of variable (called principal 

components), that will take in account most of the variance in the observed variables. Number of 

2 210 10

10 10 10

log (1 )log (1 ( ))

log (1 )(log (1 )) log (1 ( ))

H O H O Hb

lipid HbO HbO HbO

R R R
TOI

R R R R
 (11) 
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original variables is more than or equal to the number of principal components. In this technique, 

the first principal component has the highest variance; the second principal component has the 

second highest variance and so on. But each principal component should be orthogonal to the one 

before that. 

PCA helps us to identify pattern in data and emphasize on the similarities and differences of the 

dataset. When the data had a large number of variables, patterns in the dataset are difficult to be 

recognized. So PCA is a useful tool for analyzing large dimensional data (Figure 9). In this 

project, we will use PCA on the raw canine data, and also the normalized data to see if we get 

separate clusters of the benign, malignant and normal Region of Interests (ROI).  The filter in our 

imaging system captures an image at an increment of 10 nm. So we have 46 images from 650 nm 

to 1100 nm at an interval of 10 nm. So our data has 46 dimensions. Thus it is difficult to visualize 

and classify the spectral data. Applying PCA would give a principal scores plot, which would be 

two dimensional. Clusters in the Principal Scores plot would indicate spectral similarity and 

would enable us to classify the tumors as malignant or benign. We will be using the PCA plot 

tool in the Unscrambler 10.1 for this purpose. 

           

(a)                                                 (b)                                              (c) 

Figure 9:  An illustration of PCA. a) A data set given as 3-dimensional points. b) The three 

orthogonal Principal Components (PCs) for the data, ordered by variance. c) The 

projection of the data set into the first two PCs, discarding the third one. [18]. 
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3.4   Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a classification method that provides a linear 

transformation of n-dimensional feature vectors into an m-dimensional space (m < n). LDA is a 

supervised classification method, as the categories to which objects are to be classified is known 

before the model is created. The objective of LDA is to determine the best fit parameters for 

classification of samples by developing a model. The model can then be used to classify unknown 

samples. 

LDA is a classification method that is based on Bayes’ formula. From Bayes’ rule one develops a 

classification model assuming the probability distribution within all groups is known, and that the 

prior probabilities for groups are given, and sum to 100% over all groups. It is based on the 

normal distribution assumption and the assumption that the covariance matrices of the two (or 

more) groups are identical. This means that the variability within each group has the same 

structure. The only difference between groups is that they have different centers. LDA considers 

both within-group variance and between-group variance. The estimated covariance matrix for  

LDA is obtained by pooling covariance matrices across groups. When the variability of each 

group does not have the same structure (unequal covariance matrix), the shape of the curve 

separating groups is not linear, and therefore quadratic discriminant analysis will provide a better 

classification model [19]. 

LDA is used for classifying objects (samples, people, foods, etc.) into groups based on features 

that can be used to describe the objects. This could include developing classifications models for 

a library of products, good vs. bad quality product, or healthy vs. cancerous cells. A typical 

example related to classifying objects or, more generally, recognizing patterns is not a simple task 

for automated procedures, particularly when the objects are of biological interest. For example, 

identifying species, predicting species distributions or finding gene expression patterns that 
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predict the risk of developing a particular type of tumor are generally difficult tasks. Data can be 

different analytical techniques related to chromatographic hyphenated techniques, like liquid 

chromatography with diode array detection (LC-DAD), where a set of UV-Vis spectra are used 

for classification. Data from any type of measurement, including spectroscopic data, imaging 

data, or generic data such as a table of physical properties of samples, can be used for 

classification, if those measurements have features which describe the objects. But for an LDA to 

be a well-posed problem, the number of objects in the calibration set should be larger than the 

number of variables 

In order to overcome the constraint of requiring more objects than features, we may use PCA-

LDA which reduces the data dimensionality using PCA prior to running LDA. The number of 

components would still need to be less than the number of objects in each class. PCA-LDA 

makes use of a common projection space for all the classes.  

To explain the concept of LDA from a more mathematical point of view, let us assume that we 

have a N dimensional sample {x1, x2, x3, ….., xN}, N1 of which belongs to class C1 and N2 of 

which belongs to class C2. . LDA seeks to reduce dimensionality while preserving as much class 

discriminatory information as possible. We obtain a scalar y by projecting the samples x onto a 

line 

 y = w
T
x (12) 

Of all the possible lines we would like to select the one that maximizes the separability of the 

scalars (Figure 10). 
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Figure 10: In LDA, the line that maximizes the separability of scalars is selected. 

In this thesis, we intend to use PCA-LDA model on the canine dataset. Since LDA is a supervised 

classifier, it requires that the input vectors are independent. So as input, we use the principal 

component scores. To build the model, we need to supply the information if the tumor is 

cancerous or not (this information we would get from histopathology results). Then we would use 

k- fold cross validation to test the PCA-LDA model.  

 

Figure 11: Flowchart showing PCA-LDA used for validation of model. Here 44-fold cross 

validation is used. 
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3.5   Normalization and Preprocessing  
 

This section describes the normalization and preprocessing techniques that will be investigated. 

In the first section, data normalization using standard reflectance boards will be described. This is 

the standard normalization procedure followed by most research groups working on near infrared 

hyperspectral imaging. However, these standards were not used during our canine experiment. 

There are a number of normalization techniques which are available in ‘The Unscrambler 

10.1’.These techniques are also widely used for normalizing NIR data. Taking first and second 

derivative of the spectral data is a way of preprocessing the data to correct the baseline effects. 

Derivative methods and their applications are also discussed in this section. 

3.5.1   Data Normalization by the Radiometric Reflection Calibration Process 

The captured data should be normalized to treat the spectral non-uniformity of the illumination 

device. The raw data changes due to several factors like illumination conditions, temperature and 

non-uniform contour of the subject. To minimize these varying conditions, spectral data has to be 

normalized. The radiometric reflectance normalization process involves a pixel-to-pixel 

normalization of the hyperspectral image data to percentage reflectance. This is the most common 

approach for radiometric calibration and has been widely used [3] [4] [5].  White reference and 

dark current are two data that should be captured for normalization. White reference is the 

spectrum acquired by the hyperspectral sensor by placing the white reference board in the field of 

view. For this purpose, Spectralon diffuse reflectance standard SRS-99 for an approximately 99% 

reflectance (Labsphere Inc., Sutton, NH) should be used. The dark current is measured by taking 

a dark image in the absence of light. For this purpose, Spectralon diffuse reflectance standard 

SRS-02 for an approximately 2% reflectance (Labsphere Inc., Sutton, NH) should be used [3]. 

White reflectance is used to show the maximum reflectance in each wavelength. Dark current is 

used to address the defects by calculating the peaks in the dark current spectrum with 

temperature. Then the raw data is corrected using the following equation:                                   
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
    (13)  

 

Where  ( )calculated reflectance value for each wavelength is,     ( )  is the reflectance 

intensity of the raw data, and      ( ) and       ( ) are the reflectance intensity of the 2% 

reflectance standard board and the 99% reflectance standard board, respectively. Figure 12 shows 

the Spectralon reflectance standards SRS-99 and SRS-02. 

                                                

 Figure 12: The Spectralon reflectance standards SRS-99 and SRS-02.  

 

3.5.2   Other Normalization Methods 

 

Normalization is a family of transformations that are computed sample-wise. Its purpose is to 

scale samples in order to get all data on approximately the same scale. The following 

normalization methods are also used in normalizing NIR spectral data [14]: 
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Area Normalization 

This transformation normalizes a spectrum by calculating the area under the curve for the 

observation. The area under the curve becomes the same for all samples. It attempts to correct the 

transmission spectra for indeterminate path length when there is no way of measuring it. Figure 

13 shows the area normalized spectra of the normal, benign and malignant ROIs of all canine 

patients. 

 

Figure 13: The smoothed area normalized spectra of normal, benign, and malignant ROIs 

of all canine patients. 
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Unit Vector Normalization 

This transformation normalizes sample-wise data to unit vectors. It is useful for pattern 

recognition applications. The normalized samples have a length (norm) of 1. Figure 14 shows the 

smoothed unit vector normalized spectra of the normal, benign and malignant ROIs of all canine 

patients. 

 

 

Figure 14: The smoothed unit vector normalized spectra of normal, benign, and malignant 

spectra of all canine patients. 

Mean Normalization 

This is the most classical case of normalization. It consists in dividing each row (each 

observation) of a data matrix by its average. This transformation is used in chromatography to 

express the results in the same units for all samples, no matter which volume was used for each of 



29 

them. Figure 15 shows the mean normalized spectra of the normal, benign and malignant ROIs of 

all canine patients. 

 

 

Figure 15: The smoothed mean normalized spectra of normal, benign, and malignant 

spectra of all canine patients. 

 

Maximum Normalization 

This is an alternative to classical normalization which divides each row by its maximum absolute 

value. If all values are positive the maximum value becomes +1. If all values are negative the 

minimum value becomes -1. If the sign of the values changes over the curve either the maximum 

value becomes +1 or the minimum value becomes -1. Figure 16 shows the maximum normalized 

spectra of the normal, benign and malignant ROIs of all canine patients. 
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Figure 16: The smoothed maximum normalized spectra of normal, benign, and malignant 

spectra of all canine patients. 

 

Range Normalization 

Here each row is divided by its range, i.e. “max value – min value”.  

In Chapter 4, we will investigate which normalization method works the best for the canine 

dataset. 

3.5.3   Smoothing and Differentiation 

Smoothing of the reflectance spectra is done to minimize random noise and improve the signal to 

noise ratio. Removal of noise should be done without unduly degrading the underlying 

information in the signal. Savitzky-Golay smoothing filter determines the smoothed value at each 

point, on a series of values which are equally spaced, by performing a local polynomial 

regression. 
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Savitzky-Golay smoothing process uses the method of least squares. A set of points are to be 

fitted to some curves, for example, the curve  

                                                
3 2

3 2 1 0a x a x a x a y                                                       (14) 

The a’s are to be selected such that when each  abscissa point is substituted into this equation, the 

square of the differences between the computed numbers and the observed numbers is a minimum 

for the total of the observations used in determining the coefficients. 

This main advantage of the Savitzky-Golay method has a good balance between smoothing the 

spectra and preserving the shape of the spectra 

Derivative method is a preprocessing tool and it is applied to the reflectance spectra. Derivatives 

are applied to correct the baseline effects in spectra for the purpose of removing nonchemical 

effects and creating robust calibration models. Derivatives may also aid in resolving overlapped 

bands. 

First derivative 

The first derivative of a spectrum is simply a measure of the slope of the spectral curve at every 

point. The slope of the curve is not affected by baseline offsets in the spectrum, and thus the first 

derivative is a very effective method for removing baseline offsets. However, peaks in raw 

spectra usually become zero-crossing points in first derivative spectra, which can be difficult to 

interpret. 

Second derivative 

The second derivative is a measure of the change in the slope of the curve. In addition to ignoring 

the offset, it is not affected by any linear “tilt” that may exist in the data, and is therefore a very 

effective method for removing both the baseline offset and slope from a spectrum. The second 

derivative can help resolve nearby peaks and sharpen spectral features. Peaks in raw spectra 

change sign and turn to negative peaks with lobes on either side in the second derivative. Also, 
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we can identify the wavelengths characteristic of deoxy-hemoglobin, oxy-hemoglobin, lipid and 

water respectively by applying second derivative method on the reflectance spectra of the canine 

spectral dataset. The negative peaks obtained in the second derivative curve would give the 

wavelengths corresponding to the chromophores. 
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CHAPTER 4 
 

EXPERIMENTS AND RESULTS 

In this chapter, the hyperspectral imaging system used in this project will be described. 

Experiments to characterize the hyperspectral system such as depth of penetration, repeatability 

of the hyperspectral system will be described and the experimental results will be discussed. Also, 

the method of acquiring hyperspectral images of the canine mammary tumors from the canine 

patients will be described. Method of analysis of those images and application of the TOI model 

and the PCA-LDA model will be detailed.  

4.1   Hyperspectral Imaging System Description 

To capture the hyperspectral imaging data, a portable hyperspectral tunable imaging system was 

used. It consists of digital imager (Qimaging Inc., Surrey, British Columbia), a Liquid Crystal 

Tunable Filter (LCTF Cambridge Research & Instrumentation Inc., Massachusetts), and LCTF 

controller. The digital imager was a 1.4 megapixel, mono-cooled CCD (charged coupled device) 

camera; with a cell size of 6.45 µm x 6.45µm and 12 bit output. The filter is placed in front of the 

digital imager and has a transmission wavelength range between 650 to 1100nm with a 10nm 

increment. Care should be taken that the light falls as uniformly as possible on the subject. 

The LCTF controller synchronizes between digital imager and LCTF. It also varies the 

programmed sequential bands of filter. The tuning speed of the filter is between 50 ms to 150 ms. 

During acquisition of the images, dual 500W quartz tungsten halogen lamps have been used for 

illumination. An Apple Macbook Pro laptop computer is used for the spectral image acquisition 

purposes. The image is visualized and the spectral signature is plotted using ENVI software (Ver. 

4.5, ITT Visual information solutions, Boulder, CO) and ‘The Unscrambler’ version 10.1 

(CAMO Software AS, Oslo, Norway) . Figure 17 shows the proposed HSI system setup. 
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Figure 17: Schematic view of the hyperspectral imaging acquisition system. The LCTF and 

the computer are connected by a firewire (1394) cable. The camera and the controller are 

connected by a USB cable. To connect the LCTF controller and the camera, a parallel port 

cable has been used. 

 

4.2   Experiments to Characterize the Hyperspectral Imaging System 
 

In this section, experiments for the purpose of characterizing the hyperspectral imaging system 

will be conducted. First, the repeatability of the hyperspectral system was tested. Then, an 

experiment was conducted to quantify the depth of penetration of NIR light into the chicken 

breast tissue. Third, an experiment was carried out to test whether the lens to sample distance has 

any effect on the reflectance spectra of neoprene rubber. 

4.2.1   Testing the Repeatability of the Hyperspectral Imaging System 

 

Objective: To investigate the repeatability of the hyperspectal imaging system 

 Materials Required:  

 The hyperspectral imaging system which consists of 1.4 megapixel, 12 bit digital 

imager (Qimaging Inc., Surrey, British Columbia), liquid crystal tunable filter 
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(LCTF, Cambridge Research and Instrumentation Inc., Woburn, Massachusetts), 

and LCTF controller. 

 Dual 500W white quartz tungsten halogen lamps for illumination 

 A laptop computer (Apple Macbook Pro, Cupertino, CA) 

 A firewire IEEE 1394 cable to connect the computer to the LCTF controller 

 A parallel port cable to connect the LCTF controller to the camera 

 A USB cable to connect the camera to the computer 

 Neoprene rubber sheet 

 Temperature and humidity meter 

Procedure: 

Repeatability of a hyperspectral imaging system should be assessed. Hyperspectral images 

captured over consecutive days of the same target should be identical or nearly identical. 

However, there might be differences in the spectral properties of the same target taken over 

consecutive days. These variations are due to: ambient temperature and humidity, lighting 

conditions and inherent instrumentation error. 

The hyperspectral image of a neoprene rubber sheet was captured for 5 consecutive days. The 

ambient temperature and the humidity were recorded. The distance between the lens and the 

sample was kept constant each time. External conditions such as lighting were kept as similar as 

possible. The reflectance spectra of the neoprene rubber captured over the 5 days were compared.  
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The following was the temperature and humidity measured over the 5 days: 

Table 1: Weather, Temperature and Humidity Measurement 

Day  Temperature  Humidity Weather 

conditions 

1 22.9 ˚C 28% Cloudy 

2 22.7 ˚C 29% Cloudy 

3 23.6 ˚C 26% Sunny 

4 23.8 ˚C 25% Sunny 

5 24.1˚C 25% Sunny 

 

Results and Discussion: 

 

Figure 18: Graph showing the raw spectral data (wavelength vs. reflectance intensity) 

measurement of neoprene rubber sheet over five days. 
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Figure 19: Graph showing the smoothed spectral data (wavelength vs. reflectance intensity) 

measurement of neoprene rubber sheet over five days. 

 

 

Figure 20: Second derivative reflectance spectra of smoothed spectral data of neoprene 

rubber. 
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For the repeatability experiment, the data was smoothed using Savitzky-Golay filter (Figure 19) 

and then the second derivative reflectance spectra was plotted (Figure 20). From the second 

derivative spectra, we can conclude that Day 3, Day 4, Day 4 spectra are repeatable, but Day 1 

and Day 2 spectra are different from Day 3, Day 4, Day 5 spectra. In the Day 1 and Day 2 spectra 

there are negative peaks at 875 nm and 950 nm. Most probably, that is because of the fact that the 

humidity was more in the first two days. Water gets absorbed at in the wavelength range 900-

1000nm [11]. 

4.2.2 Depth of Penetration of NIR Light into Chicken Breast Tissue 

 

Objective: To quantify the depth of penetration of near-infrared light (650-1100 nm) into chicken 

breast sample using hyperspectral imaging system.  

Materials and equipment required: 

 A hyperspectral imaging system which consists of 1.4 megapixel, 12 bit digital imager 

(Qimaging Inc., Surrey, British Columbia), liquid crystal tunable filter (LCTF, 

Cambridge Research and Instrumentation Inc., Woburn, Massachusetts), and LCTF 

controller. 

 Dual 500W white quartz tungsten halogen lamps for illumination. 

 A laptop computer (Apple Macbook Pro, Cupertino, CA). 

 A firewire IEEE 1394 cable to connect the computer to the LCTF controller. 

 A parallel port cable to connect the LCTF controller to the camera. 

 A USB cable to connect the camera to the computer. 

 Chicken Breast. 

 Neoprene Rubber Sheet. 

 

 



39 

Procedure: 

In this experiment, chicken breast tissue was cut into sections of various thicknesses. The 

neoprene rubber sheet was kept underneath the chicken slice, and then investigated at what 

minimum width of the chicken slice we were getting the spectral effect of neoprene rubber. Prior 

to this, the hyperspectral images of the chicken slice and the neoprene rubber were captured 

separately. 

 

While capturing the image, the distance between the lens and the subject should be constant. And 

care was taken that the light falls as uniformly as possible on the subject. The chicken breast was 

cut into pieces of the following width: 1.23 mm, 3 mm, 5 mm, 7.27 mm, 10.7 mm, 40mm and 60 

mm respectively. The neoprene rubber sheet was kept below the chicken slices and  hyperspectral 

images were captured. Hyperspectral image of only the neoprene sheet and the chicken breast (60 

mm width) was also captured. Then, we compared the reflectance spectra of neoprene rubber, 

chicken breast and different widths of chicken breast over the neoprene rubber. The logic behind 

this test is that, once the chicken breast is thick enough, the neoprene would not influence the 

spectra anymore, and the shape and of the resulting spectra would remain fairly constant. 
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Results and Discussion: 

 

 

The depth of penetration of NIR light into chicken breast can be quantified to be between 3 and 5 

mm. From figure 21, it is seen that the neoprene rubber sheet, which was black in color, has very 

low reflectance intensity compared to the chicken breast. However, the slices of chicken of 

different widths are placed on the neoprene sheet, it is observed that as the slice of the chicken 

width increases, the reflectance intensity also increases. From 1.23 mm to 3 mm there is a sharp 

increase of reflectance intensity of approximately 30 a.u. Also, there is a sharp increase in 

reflectance intensity from 3mm to 5mm. However, after 5 mm, the increase is not drastic. The 

shape of the curve also remains fairly uniform after 5 mm. So we can estimate the depth of 

penetration of NIR light into chicken breast to be between 3mm to 5mm. 
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Figure 21: Graph showing the reflectance intensity vs. the wavelength for neoprene rubber 

sheet, chicken slice and varying width of chicken slices on the neoprene sheet. 
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4.2.3   Experiment to Demonstrate Effect on Camera to Sample Distance on the 

Reflectance Spectra of Chicken Tissue 

 

Objective: 

To demonstrate the effect of the camera to sample distance on the reflectance spectra of chicken 

tissue. 

Materials Required:  

 The hyperspectral imaging system which consists of 1.4 megapixel, 12 bit digital imager 

(Qimaging Inc., Surrey, British Columbia), liquid crystal tunable filter (LCTF, 

Cambridge Research and Instrumentation Inc., Woburn, Massachusetts), and LCTF 

controller. 

 Dual 500W white quartz tungsten halogen lamps for illumination 

 A laptop computer (Apple Macbook Pro, Cupertino, CA) 

 A Firewire IEEE 1394 cable to connect the computer to the LCTF controller 

 A parallel port cable to connect the LCTF controller to the camera 

 A USB cable to connect the camera to the computer 

 Chicken Breast 

Procedure: 

The distance between the camera and the sample might affect the overall spectra of the sample. 

So, in this experiment,  the distance between the sample and the camera was variedneach time 

and  the hyperspectral image of the same target was captured. All other external conditions such 

as lighting, position of the camera were kept same for each time. Chicken breast was used as the 

sample. The distances between the camera and the sample were varied as follows: 23 cm, 26 cm, 

35 cm, 39 cm, and 47 cm. 
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From Figure 22, it is seen that the reflectance spectra remain fairly constant even if the distance 

between the camera and the sample are varied each time. So changing the camera to sample 

distance does not have much effect on the reflectance spectra. 

 

Figure 22: The reflectance spectra of the chicken sample with the distance between the 

camera and the sample varying each time. 

 

4.3   Canine Mammary Tumor Experiment 
 

In this section, the process of acquiring data from the canine patients is described. The reflectance 

spectra were extracted from the hyperspectral images. The spectra was smoothed and normalized. 

Four wavelengths were identified characteristic of four tissue chromophores, from the second 

derivative absorption spectra. Then the ‘Tissue Optical Index’ model and the PCA-LDA model 

were applied on the normalized and smoothed reflectance spectra.  

 

0

20

40

60

80

100

120

6
5

0

6
8

0

7
1

0

7
4

0

7
7

0

8
0

0

8
3

0

8
6

0

8
9

0

9
2

0

9
5

0

9
8

0

1
0

1
0

1
0

4
0

1
0

7
0

1
1

0
0

R
e

fl
e

ct
a

n
ce

 I
n

te
n

si
ty

 (
a

.u
.)

Wavelength in nm

23 cm

26 cm

35 cm

39 cm

47 cm



43 

4.3.1   Data Acquisition from Hospital 

 

The data was acquired in collaboration with the University of Pennsylvania Veterinary Hospital. 

These canine patients had multiple mammary tumors in their abdomen. The animal experiments 

were approved by the University of Pennsylvania IACUC Protocol #803829. In this study, the 

hyperspectral imaging experiment was performed on 9 dogs. Prior to image acquisition, the 

tumors were marked with a black marker, so that it would be easier to recognize the tumor during 

image analysis. During image acquisition, the dogs were held by the veterinary doctor. Each dog 

had to undergo biopsy to detect the malignancy of the tumors. The histopathology results were 

compared with our imaging analysis results. Figure 23 shows a canine patient with multiple 

mammary tumors. Figure 24 shows the hyperspectral image of the canine patient at 760 nm 

wavelength and figure 25 shows the digital image of the canine patient. 

     

                                 

Figure 23: The canine patient with multiple mammary tumors held by the doctor as images 

are being captured by the hyperspectral system. 
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4.3.2   Extracting the Reflectance Spectra of the Tumors  

 

In this section, the hyperspectral image was visualized and the spectral signature of the tumor and 

normal tissue regions were plotted using ENVI software (Ver. 4.5, ITT Visual information 

solutions, Boulder, CO). The Region of Interest was chosen as the size of the entire tumor.  There 

were 7 malignant tumors, 15 benign tumors and 22 normal region ROIs. 

Figure 25: The hyperspectral 

image of canine mammary 

tumors at 760nm wavelength 

Figure 24: The digital image of 

canine mammary tumors. 
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Figure 26: The reflectance spectra of one of the canine patients. The raw reflectance spectra 

have a low signal-to-noise ratio. To mitigate the effect of noise, we smoothen the signal. 

 

4.3.3 Smoothing and Normalization 

 

The raw reflectance spectra appeared to have random noise. To minimize the noise, the 

reflectance spectra were smoothed using Savitzky Golay Smoothing Process (second order 

polynomial and 70 nm window). The smoothed reflectance spectra were normalized using range 

normalization technique. For normalization and smoothing, ‘The Unscrambler’ version 10.1 

(CAMO Software AS, Oslo, Norway) was used. Figure 27 shows the smoothed reflectance tumor 

spectra of all canine patients. Figure 28 shows the normalized reflectance tumor spectra of all 

canine patients.  
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Figure 27: The smoothed reflectance spectra of the all canine patient tumors. 

 

Figure 28: The range normalized reflectance spectra of the all canine patient tumors. 
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4.3.4 The Reflectance Spectra of Canine Patients 

In this section, the smoothed reflectance spectra of malignant, benign, and normal ROIs of the 9 

canine patients are given. 

Canine Patient #1 

Name of canine patient: Maxine 

 

Figure 29: The ROI of the tumor tissue and the normal tissue of hyperspectral image of 

canine patient Maxine. 

Table 2: Clinical Results of Maxine 

Tumor 

Label 

Pathology Results 

  

R4 Malignant 

L3 Malignant 

L4a Benign 
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Figure 30: The spectral plot of the malignant, benign and normal tissue of canine patient 

Maxine. 

Canine Patient #2 

Name of Canine Patient: Chelsey 

 

 

Figure 31: The ROI of the tumor tissue and the normal tissue of hyperspectral image of 

canine patient Chelsey 

 

0

20

40

60

80

100

120

140

650 700 750 800 850 900 950 1000 1050 1100

R
e

fl
e

ct
a

n
ce

 i
n

te
n

si
ty

Wavelength in nm

L3 (malignant)

L4a (benign)

R4 (malignant)

Normal tissue 1

Normal tissue 2

Normal tissue 3

Normal tissue 4



49 

Table 3: Clinical result of Chelsey 

Tumor Label Pathology Results 

  

R2 Benign mixed tumor 

R5 Benign mixed and lobular hyperplasia 

   

 

 

 

Figure 32: The spectral plot of the benign and normal tissue of canine patient Chelsey. 
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Canine Patient #3 

Name of Canine Patient: Hanna 

 

Figure 33: The ROI of the tumor tissue and the normal tissue of hyperspectral image of 

canine patient Hanna. 

 

Table 4: Clinical result of Hanna 

Name of Tumor Type of tumor 

  

L5a Benign mixed tumor 

L5b Benign mixed tumor 
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Figure 34: The spectral plot of the benign and normal tissue of canine patient Hanna. 

 

Canine Patient #4 

Name of Canine Patient: Lady 

 

Figure 35: The ROI of the tumor tissue and the normal tissue of hyperspectral image of 

canine patient Lady. 
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Table 5: Clinical result of Lady 

Name of Tumor Type of tumor 

  

L3a Adenoma (benign) 

L3b Epitheliosis (malignant) 

L4 Papillary Adenoma(benign) 

L5a Intraductal Papillary Carcinoma(malignant) 

L5b Intraductal papillary Adenoma(benign) 

R5a Complex Adenoma(benign) 

 

 

 

Figure 36: The spectral plot of the benign and malignant lesion of canine patient Lady. 
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Canine Patient #5 

Name of Canine Patient: Suzanna 

 

Figure 37: The ROI of the tumor tissue and the normal tissue of hyperspectral image of 

canine patient Suzanna. 

 

Table 6: Clinical result of Suzanna 

Name of Tumor Type of tumor 

  

L3a Benign mixed tumor 

L3b Benign mixed tumor 

L4 Complex Adenoma (benign) 

R4 Benign mixed tumor 
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Figure 38: The spectral plot of the benign lesion and normal tissue of canine patient 

Suzanna. 

 

Canine Patient #6 

Name of Canine Patient: Queenie 

 

Table 7: Clinical result of Queenie 

 Tumor Label Pathology Results 

  

R4 Carcinoma arising in a benign mixed 

tumor (malignant) 
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Fig 39: The ROI of the tumor tissue and the normal tissue of hyperspectral image of canine 

patient Queenie. 

 

 

Fig 40: The spectral plot of the malignant lesion and normal tissue of canine patient 

Queenie. 
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Canine Patient #7 

Name of Canine Patient: Tinkerbell 

 

Table 8: Clinical result of TinkerBell 

Tumor Label Pathology Results 

  

L1 Adenocarcinoma (malignant) 

   

 

 

Fig 41: The ROI of the tumor tissue and the normal tissue of hyperspectral image of canine 

patient Tinkerbell. 
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Fig 42: The spectral plot of the malignant and normal tissue of Tinkerbell 

 

Canine Patient #8 

Name of Canine Patient: Gretchen 

 

 

Fig 43: The ROI of the tumor tissue and the normal tissue of hyperspectral image of canine 

patient Gretchen. 
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Table 9: Clinical result of Gretchen 

Tumor Label Pathology Results 

  

R4 Benign 

 

 

Figure 44: The spectral plot of the benign lesion and normal tissue of canine patient 

Gretchen  

 

Canine Patient #9 

Name of Canine Patient: Kiki 

Table 10: Clinical result of Kiki 

Tumor Label Pathology Results 

  

R1 Benign 

L3 Malignant 
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Figure 45: The ROI of the tumor tissue and the normal tissue of hyperspectral image of 

canine patient Kiki. 

 

 

Figure 46: The spectral plot of the malignant and normal tissue of canine patient Kiki 
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The spectra of malignant tumor tissue were clearly different from those of benign and normal 

tissue (Figure 36, 40, 42, 46). Within a single patient the reflectance intensities from 650 to 110 

nm of cancerous tissue were relatively low compared to the benign and normal tissue. Previous 

studies have shown that cancerous tissues have a higher hemoglobin and water content, and lower 

lipid concentration with respect to benign tissues. The decreased reflectance intensity observed 

for malignant tumors is likely due to the increased microvasculature and therefore higher blood 

content of malignant tissue relative to benign tissue.   

Table 11:  The reflectance intensity values all ROI at 700, 840, 900 and 970 nm. 

Tumor Label Type of Tumor 

Reflectance 

intensity at 

700 nm 

Reflectance 

intensity at 

840 nm 

Reflectance 

intensity at 

900 nm 

Reflectance 

intensity at 

970 nm 

Kiki R1 Benign 49.94 32.46 18.54 7.73 

Kiki L3 Malignant 35.01 21.80 11.59 4.73 

Kiki N1 Normal 57.76 35.18 19.62 8.13 

Kiki N2 Normal 46.32 25.62 13.95 6.09 

Kiki N3 Normal 60.09 43.01 24.71 10.11 

            

Tinkerbell N1 Normal 60.69 35.14 20.37 8.43 

Tinkerbell L1 Malignant 43.94 32.29 19.81 8.65 

Tinkerbell N2 Normal 74.90 43.41 24.88 10.03 

Tinkerbell N3 Normal 74.76 46.94 26.25 11.24 

            

Maxine L3 Malignant 99.76 57.16 31.15 12.76 

Maxine L4a Benign 88.60 53.82 29.44 12.34 

Maxine R4 Malignant 28.26 15.05 10.71 4.73 

Maxine N1 Normal 37.08 25.53 15.49 6.08 

Maxine N2 Normal 35.81 22.73 12.42 5.76 

Maxine N3 Normal 32.25 23.61 13.68 5.92 

            

Queenie R4 Malignant 41.66 32.05 19.95 8.59 

Queenie N1 Normal 42.78 34.63 22.02 9.91 
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4.3.5 Finding the wavelength characteristic of four chromophores 

 

Chromophore specific wavelengths were selected by applying second derivative reflectance 

spectra. Peaks at 700, 840, 900 and 970 nm were observed in the second derivative reflectance 

spectra, these peaks were attributed to deoxy-hemoglobin, oxy-hemoglobin, lipid and water 

respectively. These four wavelengths were chosen because based on literature, the absorption of 

oxy-hemoglobin and de-oxyhemoglobin dominates at wavelength ranging from 600-850 nm and 

Queenie N2 Normal 52.31 38.88 23.59 9.98 

            

Chelsea R2 Benign 51.53 34.99 20.41 9.00 

Chelsea R5 Benign 49.51 32.73 18.17 7.65 

Chelesa N1 Normal 25.34 18.69 10.96 4.91 

Chelsea N2 Normal 66.30 44.30 24.27 10.26 

Chelsea N3 Normal 49.37 31.90 17.16 7.62 

            

Gretchen R4 Benign 21.01 16.41 9.60 4.28 

Gretchen N1 Normal 8.34 8.99 5.06 2.80 

Gretchen N2 Normal 27.39 22.88 14.11 7.04 

Gretchen N3 Normal 43.38 31.93 19.11 8.90 

            

Hanna L5a Benign 71.81 43.46 25.51 9.70 

Hanna L5b Benign 45.11 23.11 12.00 5.18 

Hanna N1 Normal 51.61 32.27 17.70 7.78 

Hanna N2 Normal 57.32 44.62 27.90 11.05 

            

Suzzana L3a Benign 60.18 38.01 23.06 9.67 

Suzzana L3b Benign 61.69 41.17 25.11 11.00 

SuzzanaL4a Benign 52.90 30.04 16.79 7.61 

Suzzana R4 Benign 38.26 31.00 20.14 6.63 

Suzzana N1 Normal 20.28 24.51 16.73 5.63 

Suzzana N2 Normal 31.47 23.02 14.33 4.81 

Suzzana N3 Normal 11.02 10.19 6.07 2.40 
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the absorption of lipid and water is more at higher wavelengths (900-1000 nm) [4]. The second 

derivative spectra were plotted using ‘The Unscrambler’ version 10. Figure 47 shows the second 

derivative reflectance spectra of the reflectance data of all canine patients.  

 

Figure 47: The representative second derivative absorption spectra of the reflectance data 

of all canine patients. Four negative peaks were observed at the wavelengths of 700, 840, 

900 and 970 nm. 

 

4.3.6 Data analysis using TOI method and PCA-LDA method 

 

4.3.6.1 Tissue Optical Indices Method 

 

Computation of TOI using whole tumor as ROI 

While applying the TOI using the whole tumor as the ROI, the ROI (region of interest) of the 

malignant and benign tumors are taken as the size of the entire tumor (Figure 48). The ROI of the 

normal tissue is taken adjacent to the tumor tissue, in approximately the same pixel size as the 
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tumor tissue. The total reflectance intensity within the ROI is averaged to compute the reflectance 

intensity. The spectral information is then obtained using ‘ROI Tools’ in ENVI 4.5. The spectral 

information gives the plot of the reflectance intensity vs. the wavelength. These spectral files 

were then saved as ASCII files. 

To analyze the results and smoothen the data, the ASCII spectral files were opened in Excel. This 

procedure is as follows: Open text file in Excel select delimitedclick nextselect Tabthen 

click Finish. This will give experimental details (e.g. file name, date), band numbers, average 

reflectance intensity and standard deviation and reflectance intensities for the ROI. The average 

reflectance intensities for all tumors and normal tissue for all patients were copied into a single 

Excel file. The Excel file was then imported into ‘The Unscrambler’ version 10.1 (CAMO 

Software AS, Oslo, Norway) and Savitzky-Golay smoothing process was used (second order 

polynomial and 70 nm window) to smoothen the data. The Unscrambler software is a statistical 

program primarily designed for multivariate analyses. Using the Unscrambler software, data may 

be preprocessed (e.g. Savitzky-Golay smoothing) and analyzed using methods such as principal 

components analysis (PCA), multivariate regression and partial least squares. The smoothed data 

was copied and put back into an excel file so that it could be easily plotted and examined using 

any computer. Then equation 11 was used to calculate the values of the TOIs. 
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                            Figure 48: The whole tumor ROIs of one of the canine patients 

Results: 

A ‘Tissue Optical Index’ was developed as described in Section 3.1. The Tissue Optical Index 

values were calculated using equation 11. Malignant tumors had higher TOI values than benign 

tumors (Figure 49). Using a TOI threshold of 2.00 units (threshold was obtained by 44-fold cross 

validation), 6 out of 7 malignant tumors, 13 out of 15 benign tumors, and all of 22 normal tissue 

ROIs were correctly identified. So the sensitivity and specificity of the proposed method were 

86% and 95% respectively. 

Table 12:  Tissue Optical Indices value of the benign, normal and malignant ROIs as 

calculated from the reflectance spectra. For ease of visualization, malignant, benign, and 

normal ROIs are shaded in red, green and blue respectively 

 

         Name of Patient Label and Type of tumor TOI 

Kiki 

R1 (benign) 1.07 

L3 (malignant) 2.56 

N1 (normal) 1.12 

N2 (normal) 1.34 

N3 (normal) 0.99 



65 

Tinkerbell 

L1 (malignant) 2.52 

N1 (normal) 1.42 

N2 (normal) 1.22 

N3 (normal) 1.39 

Queenie 

R4 (malignant) 6.14 

N1 (normal) 1.52 

N2 (normal) 1.59 

Lady 

L3a (benign) 1.22 

L3b (malignant) 1.09 

L4 (benign) 1.45 

L5a (benign) 0.96 

L5b(malignant) 2.35 

R5a(benign) 1.78 

Chelsey 

R2 (benign) 1.81 

R5 (benign) 1.59 

N1 (normal) 1.29 

N2(normal) 1.72 

N3(normal) 1.44 

Gretchen 

R4 (benign) 1.96 

N1 (normal) 1.72 

N2(normal) 1.41 

N3(normal) 1.77 

Suzanna 

L3a (benign) 3.29 

L3b (benign) 4.74 

L4 (benign) 1.56 

R4 (benign) 1.90 

N1 (normal) 1.11 

N2(normal) 1.87 

N3(normal) 1.22 

Maxine 

L3 (malignant) 3.42 

L4a (benign) 1.86 

R4 (malignant) 4.26 

N1(normal) 1.66 

N2(normal) 1.98 

N3(normal) 1.78 

         Name of Patient Label and Type of tumor TOI 

Hanna 

L5a (benign) 1.72 

L5b(benign) 1.25 

N1(normal) 1.26 

N2(normal) 1.69 

. 
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Figure 49: Graph showing that the malignant tumors generally have a higher TOI than 

benign tumors. TOI threshold of 2 units was used. 

 

Computation of TOI by taking multiple ROIs in a tumor 

The number of ROIs obtained in the previous method is 44, out of which only 7 are malignant. So 

using the whole number as the ROI, we might not obtain enough ROIs to prove that the results 

are statistically significant. So in this method, we took 4 ROIs in each tumor, and also would take 

more number of normal ROIs (Figure 50). This would increase the overall number of ROIs, 

resulting in more number of test points. 
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 Figure 50: Multiple ROIs (4 in each tumor) taken to increase the overall number of ROIs. 

Results: 

Equation 11 was applied on the multiple ROI spectra. Again taking 2.00 as the threshold, the 

sensitivity and specificity in this case was 47% and 56% respectively. So applying Tissue Optical 

Index on multiple ROI data does not work as well as applied TOI model on whole tumor ROIs. 

4.3.6.2 PCA-LDA model and cross validation 

 

In this model, we applied Principal Component Analysis and Linear Discriminant Analysis on the 

smoothed and normalized reflectance canine spectral dataset. Then we used a k-fold validation 

method to validate the model. 

Validation of a model means testing the performance of the model according to an a priori given 

set of test result specifications. For example, in prediction model validation, validation testing is 

concerned with its prediction ability on a new data set, which has not been used in the 

development of the model.  
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In this case we have in all 44 Region of interests. So we do not have enough data points to 

construct separate training set and testing set. Because of that, we would use a k-fold cross 

validation. In k-fold cross-validation, we make as many sub-models as there are objects, each 

time leaving out just one of the objects and only using this for testing. In this case, there are 44 

ROIs, each sub-model will thus be made on 43 samples, and the remaining sample would be used 

for cross validation. In this case we would have a 44-fold cross validation.  

For cross validating the TOI model, we applied Principal Component Analysis on the smoothed 

and normalized reflectance spectra. Then Linear Discriminant Analysis was applied on the PC 

data. Since LDA is a supervised classifier, we supplied the information if the tumor is malignant 

or not. This information we obtained from the TOI model. We applied a 44 fold cross validation 

method on our dataset. The details of the procedure of cross validation using ‘Unscrambler 10.1’ 

are described in the Appendix A. 

Results: 

Table 13: Results of a 44-fold cross validation using PCA-LDA. 

  Name of Patient Label and Type of tumor Correctly predicted 

using Cross 

validation 

Kiki 

R1 (benign) Yes 

L3 (malignant) Yes 

N1 (normal) Yes 

N2 (normal) Yes 

N3 (normal) Yes 

Tinkerbell 

L1 (malignant) Yes 

N1 (normal) No 

N2 (normal) Yes 

N3 (normal) Yes 

Queenie 

R4 (malignant) Yes 

N1 (normal) No 

N2 (normal) No 

Lady 

L3a (benign) Yes 

L3b (malignant) No 

L4 (benign) Yes 
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L5a (benign) Yes 

L5b(malignant) Yes 

R5a(benign) Yes 

Chelsey 

R2 (benign) Yes 

R5 (benign) Yes 

N1 (normal) Yes 

N2(normal) Yes 

N3(normal) Yes 

Gretchen 

R4 (benign) Yes 

N1 (normal) Yes 

N2(normal) Yes 

N3(normal) Yes 

Suzanna 

L3a (benign) No 

L3b (benign) No 

L4 (benign) Yes 

R4 (benign) Yes 

N1 (normal) Yes 

N2(normal) Yes 

N3(normal) Yes 

Maxine 

L3 (malignant) Yes 

L4a (benign) Yes 

R4 (malignant) Yes 

N1(normal) Yes 

N2(normal) Yes 

N3(normal) Yes 

    Name of Patient Label and Type of tumor  

Hanna 

L5a (benign) Yes 

L5b(benign) Yes 

N1(normal) Yes 

N2(normal) Yes 

 

The sensitivity and specificity is 86% and 86 % respectively.  
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CHAPTER 5 

 CONCLUSIONS AND FUTURE WORK 

5.1   Discussion 

In this study, we have used a hyperspectral imaging system for canine mammary tumor 

characterization. Within a single canine patient, we were able to effectively differentiate the 

malignant and benign spectra based on the reflectance intensities. Spectra of tumors had lower 

reflectance intensities than benign spectra over the NIR spectral range of 650-1100 nm. 

Malignant tumors exhibit increased metabolic activity and thus the tissue concentration of oxy-

hemoglobin and deoxy-hemoglobin is greater in malignant tumors, which results in lower 

reflectance intensities values relative to benign tissue, especially in the 650-850 nm range.  

There are several issues to be resolved before routine hyperspectral imaging of the mammary 

tumors of canine patients is possible. The lighting of the sample should be as uniform as possible. 

In this study 500W white tungsten halogen lights were used (Figure 51). However, the 

temperature of these lights was very high and it was therefore uncomfortable for the patient to be 

under such lighting for the 4 to 5 minutes required to collect an image. In future experiments, we 

will investigate alternative lighting for example, the use of fiber optic cabling (Figure 52). By 

using fiber optic cabling to deliver light to the sample we should observe a reduction of the 

sample surface and have a more flexible experimental setup.  
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Figure 52: The 300W Sunbeam Xenon Lightsource to which a fiber optic cable can be 

attached.  

 

The TOI method was effective inspite of the non-uniform skin color of the dogs. The use of a 

ratio of the reflectance intesnity of certain wavelengths to calculate the TOI mitigates any effect 

skin color may have. 

Normalization of the data is also an important issue. Using the reflectance standards to normalize 

the data is the most common approach. The images of the reflectance standards should be taken 

under similar conditions and at the same time as the sample is imaged. However, during our data 

collection procedure, we did not use the standards. Therefore, we will investigate the best way to 

normalize the data using one of the software normalization methods. But in future experiments, 

we should definitely use the reflectance standards to normalize the data. 

Figure 51: The 500W quartz tungsten halogen lamp used in the canine experiment. 
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Taking the Region of Interest (ROI) as the whole tumor worked much better than taking multiple 

ROIs in the same tumor, as seen from the sensitivity and specificity results. This would mean that 

the reflectance spectra does not vary uniformly in the tumor. One of the resons of this might be 

non-uniform lighting. In future experiemnts, care should be taken to ensure that the lighting is as 

uniform on the sample as possible. 

This evolving imaging modality may have many potential applications in the medical field. Early 

diagnosis and treatment of cancer leads to a better prognosis and a much greater chance of full 

recovery. HSI can be used not only for diagnosis, but also to determine the tumor margin during 

surgery. 

Table 14: Sensitivity and specificity of TOI and PCA-LDA method applied for the canine 

spectral dataset compared to the results of other algorithms used for different types of 

cancer. 

 

Preliminary results with 22 canine mammary tumors showed that the sensitivity and specificity of 

the TOI method was 86 % and 95% respectively. The sensitivity and specificity of the TOI 

method was 86% and 86% respectively. This is comparable with the results obtained by 

researchers using the same technology, but for other types of cancer. However, their test set was 

independent. In case of prostate cancer, the authors used prostate tumors in mice. Mice is a 

Type of 

cancer 

Sensitivity and 

specificity 
Method Used 

Sample 

Size 

Is the test set    

independent? 
Invasive? 

Prostate 93% and 97% 
Support vector 

Machine 

251 ROIs 

from 11 

mice 

tumors 

Yes No 

Gastric 93% and 91% 

Normalized 

Difference 

Cancer Index 

101 ROIs 

from 10 

tumors 

Yes Yes 

Tongue 93% and 91% 
Sparse 

Representation 
34 tumors Yes No 

Canine 

Mammary 

Cancer 

86% and 95% 

(TOI) 

 86% and 86% 

(PCA-LDA) 

Tissue Optical 

Index PCA-LDA 

44 ROIs 

from 22 

tumors 

No (cross 

validation 

used) 

No 
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simpler model to test on than dogs. Also in case of gastric cancer, surgery was performed and 

then the stomach sample was imaged. So the sample did not have skin. Considering all these 

factors, we can say that the sensitivity and specificity obtained for identifying malignant and 

benign canine mammary tumors respectively, in this thesis , is comparable to that of results in 

literature [3][4][5]. 

5.2   Conclusion 
 

We used a hyperspectral imaging system to characterize malignant and benign canine mammary 

tumors. A ‘Tissue Optical Index’ was developed to classify canine cancer. Preliminary results 

with 22 canine mammary tumors showed that the sensitivity and specificity of the proposed 

method was 85.7% and 94.6% respectively. This method worked when we took the whole tumor 

as the Region of Interest (ROI). But when multiple ROIs were taken in a tumor, the method did 

not work as well. The sensitivity and specificity of the method was 47% and 56% respectively. 

We also applied PCA-LDA algorithm on the canine spectral dataset. After cross validation of the 

method the sensitivity and specificity came out to be 85.71% and 86.48 %. The hyperpsectral 

system that we used was found to be fairly repeatable. Also the depth of penetration of NIR light 

over chicken breast tissue was quantified to be between 3 to 5mm. We found out that varying the 

sample to camera distance does not affect the reflectance spectra using neoprene rubber as the 

sample. HSI offers a potential non-invasive tool that allows surgeons to inspect and assess a large 

area of tissue without having to take any tissue samples for pathology examinations. An 

advantage of this technique is its capability to spatially constrain the spectral variations of 

different tissue types. This study shows promise in the optical diagnosis of canine mammary 

cancer. 
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5.3   Future Work 
 

The current study can be used for early detection of the mammary cancerous tumor in canine 

population barring a few limitations faced with the representative quality of the dataset. Further 

work needs to be done to collect a much more comprehensive dataset spread across the canine 

breeds and distributed demographic to be able to generalize an application for the predictions put 

forward by the current study. Secondly, since the dataset being used currently is collected 

primarily for surface tumors, the reflectance value recorded by the hyperspectral imaging system 

is directly used as the reflectance value of the tumor without adjusting for any aberrations 

resulting from skin depth. These aberrations can possibly induce an error in the device recorded 

reflectance value in skin-deep tumor detection. We can use the image of the resected tumor cells 

after biopsy for an in-vitro spectral imaging study, measure the depth of the overlaying skin and 

the compare the difference in the reflectance value to study the role of skin depth and adjust for 

any possible aberrations.  

Standard reflectance should be used to normalize the raw data in future experiments. Also, in 

future we should design an algorithm that would give us the result in real-time. That would help 

surgeons during operations to identify the tumor margin. Also, the following tasks should be 

accomplished in future: 

1. For the depth of penetration experiment, a literature search is to be conducted on 

materials that would have a sharp peak between 650 – 1100 nm, and use that material 

instead of black neoprene rubber sheet. 

2. For depth of penetration experiment, use ‘no neoprene’ as a control mechanism. This 

means that when imaging the neoprene with the chicken sample, an image should be 

taken without the neoprene as well. 

3. Find out if there are any other chromophores that can be identified in the range 650 – 

1100 nm. (example calcification chromophore). 
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4. Investigate if we could differentiate between normal tissue regions and benign tumors. 

5.  Machine Learning and Pattern Recognition algorithms such as Random Forest should be 

investigated to see if it would work better than just using TOI. 
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APPENDIX A  

 

Steps to cross validate the data using LDA and PCA in Unscrambler 10.1 

1.  First we have to normalize the data. To do this 

Task>Transform>Normalize 

2. Select Maximum  normalization . We have to make sure the right column range is selected, i.e. 

650-1100.  

3. Now we need to work out how many PCs we are going to use in LDA model. To complete 

PCA go Tasks>Analzye>Principal Components Analysis 

4. The following is the display of PCA results. We have to use this to select the number of PCs to 

use. 

5. To calculate LDA model Tasks>transform>Linear Discriminant Analysis 

6. We have to make sure the right matrix is selected for descriptors and classification. Select the 

columns (i.e. the wavlengths) to be used to base the model on and the column with the class 

identify in it.  

7. Now for the cross validation aspect, we have to exclude one sample. To do this click on define 

and then put in spectrum number in rows of Keep Out. In the example below spectrum 1 should 

be excluded. 

8. In the options tab of LDA dialogue box make sure the right number of components is selected.    

9. Once we have calculated the LDA model we can use it to predict the class of the sample we 

left out. 
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10. Select the LDA model just calculated. Make sure the right matrix and columns are selected. 

11. We have to exclude all the samples used to calculate the model so click on define and in the 

keep out rows now enter all the samples used in the model. In this example spectrum 1 from 

excluded from the model calculation so keep out rows should read 2-44. If for example spectrum 

5 was excluded then the keep out rows for the prediction step would be 1-4, 6-44. 

12. Once we have run the prediction you will get the following results. Record what group the 

spectrum was assigned to. 

13. Need to go through this 44 times, excluding one sample at a time. By the end we should have 

predicted classes for each of the spectra in the data set. From this list calculate correctly 

sensitivity, specificity etc. 

 

 


