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ABSTRACT         

Nonparametric Bayesian models have become increasingly popular in speech recognition 

tasks such as language and acoustic modeling due to their ability to discover underlying structure 

in an iterative manner. These methods do not require a priori assumptions about the structure of 

the data, such as the number of mixture components, and can learn this structure directly. 

Dirichlet process mixtures (DPMs) are a widely used nonparametric Bayesian method which can 

be used as priors to determine an optimal number of mixture components and their respective 

weights in a Gaussian mixture model (GMM). Because DPMs potentially require an infinite 

number of parameters, inference algorithms are needed to make posterior calculations tractable. 

The focus of this work is an evaluation of three of these Bayesian variational inference algorithms 

which have only recently become computationally viable: Accelerated Variational Dirichlet 

Process Mixtures (AVDPM), Collapsed Variational Stick Breaking (CVSB), and Collapsed 

Dirichlet Priors (CDP). 

To eliminate other effects on performance such as language models, a phoneme 

classification task is chosen to more clearly assess the viability of these algorithms for acoustic 

modeling. Evaluations were conducted on the CALLHOME English and Mandarin corpora, 

consisting of two languages that, from a human perspective, are phonologically very different. It 

is shown in this work that these inference algorithms yield error rates comparable to a baseline 

Gaussian mixture model (GMM) but with a factor of up to 20 fewer mixture components. 

AVDPM is shown to be the most attractive choice because it delivers the most compact models 

and is computationally efficient, enabling its application to big data problems. 
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CHAPTER 1 

INTRODUCTION  

For the past three decades, parametric statistical models have dominated acoustic 

modeling in speech recognition. More specifically, hidden Markov models (HMMs) trained using 

Mel frequency cepstral coefficients (MFCCs) have proven to yield reasonable error rates at a 

relatively low computational complexity. However, these models make a priori assumptions 

about the structure of the data, e.g. the number of mixture components in a Gaussian mixture 

model (GMM), and typically use the same structure for each label’s model. A priori assumptions 

about the structure of the data are largely presumptuous, especially for complex data such as 

speech. It would be safer to assume that the underlying structure is unknown and that this 

structure can vary for each phoneme model. For this reason, researchers have increasingly 

explored nonparametric Bayesian methods that can automatically find this structure directly from 

the data. There is a wide array of applications of these methods including regression, density 

estimation, and survival analysis (Quintana & Muller, 2004), some of which are shown in Figure 

1. 

 The focus of this work is acoustic modeling in speech recognition, so Dirichlet 

distributions, and by extension Dirichlet processes (DP), are investigated. These models act as 

conjugate priors for multinomial distributions, i.e. they can be used as a prior for the number of 

mixture components and their corresponding weights in a Gaussian model. These models are 

therefore commonly used for density estimation tasks such as the acoustic modeling problem 

explored here.  

Dirichlet process mixtures (DPMs) refer to a model where a DP is used to find the 

structure of a GMM. DPMs have many advantages over standard GMM-based systems. Rigidly 

setting the structure of a GMM requires that, given a set of training data, a system’s structure is 

chosen by tuning a set of validation data. If new training data is provided the system would 
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require retuning. DPMs, however, can automatically find the underlying structure and grow as 

new data is introduced.  

 Parametric methods can also be interpreted as models that capture general acoustic 

features by averaging across a set number of distributions. A DPM’s potentially infinite number 

of distributions can simultaneously capture more unique acoustic traits of individual speakers 

along with the more general acoustic features used for phone identification (Harati et al., 2012). 

This high degree of complexity makes sampling from these distributions intractable, however, so 

approximations are made using inference algorithms. The focus of this work is an evaluation of 

three of these Bayesian variational inference algorithms which have only recently become 

computationally viable: Accelerated Variational Dirichlet Process Mixtures (AVDPM), Collapsed 

Variational Stick Breaking (CVSB), and Collapsed Dirichlet Priors (CDP). 

Rather than conducting a complete speech recognition experiment where classification is 

affected by several interdependent factors (e.g. language modeling and search), a simple phone 

recognition task is chosen to more clearly assess the efficacy of these algorithms for future 

applications in acoustic modeling. Furthermore, this evaluation is conducted using the 

CALLHOME English (Canavan et al., 1997) and Mandarin (Canavan & Zipperlen, 1996) 

corpora, two languages that, from a human perspective, are phonologically very different. This 

 

Figure 1 – A diagram that shows some of the fields where nonparametric Bayesian 
methods have been applied. 
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serves two purposes: (1) artifacts from either language that influence classification will be 

identified; (2) if no such artifacts exist, then these algorithms will have strongly supported their 

use for future multi-language recognition tasks.  

This chapter will focus first on a simple introduction to speech recognition followed by 

some of the statistical methods commonly used in speech recognition tasks. This includes 

generative models (e.g. HMMs), discriminative models, neural networks, and exemplar based 

approaches. Finally a brief overview of how nonparametric models have been integrated in 

speech research is also provided. 

1.1 Speech Recognition Overview  

   Although this work does not focus directly on improving the overall performance of a 

speech recognition system it is worth describing the general process, shown in Figure 2, since it 

will be employed in our experimental design. The acoustic front end converts input audio data 

 

Figure 2 – A typical speech recognition system first converts input audio data into feature 
vectors. The probability that these vectors were generated by the acoustic model is 
combined with a language model score to generate the probability of word labels. The 
search engine essentially implements Bayes Rule by finding the most probable word 
sequence. 



4 
 

into feature vectors. Mel frequency cepstral coefficients (MFCCs) (Mermelstein & Davis, 1980), 

very commonly used features (Young, 1996), are used in this work. The new feature vectors are 

then passed to the next stage of the speech recognizer where the probability that the acoustic 

models generated this data is computed. A wide variety of training methods can be used in this 

stage to train these acoustic models, and some of these are addressed in the following sections. 

These methods can include parametric or nonparametric methods using generative, 

discriminative, or exemplar-based models. The general training process typically begins by first 

training simple monophone models which in turn are used as a basis to train more complex 

triphone models. 

A language model is also trained independently of the acoustic models. N-grams, a 

simple and very common type of language model (Kneser & Ney, 1995), determine the 

probability of a word conditioned on the N previous words from the utterance, P(Wk | Wk-1, Wk-2, 

…, Wk-N). The language model's score is combined with the acoustic model's score to generate a 

maximum likelihood score. 

A search algorithm is used to implement Bayes Rule by maximizing the probability of a 

word sequence given the data (Jelinek, 1997). The space of potential hypotheses is large, and 

hence the search algorithm must efficiently search through this large space to find the most 

probable word sequence. The most popular approach for search is based on Viterbi beam search 

(Lee, 1989) but this topic is beyond the scope of this thesis. Either word lattices or one-best 

scores are typically used to determine the most likely output utterance(s). These newly created 

labels are compared to reference labels and a WER is determined for the system following an 

industry-standard scoring algorithm provided by NIST (NIST, 2010). 

Although the focus of this work is not to evaluate a complete speech recognition system's 

performance, we do train an acoustic model for portions of this work. A monophone acoustic 

model (Lee, 1989) is trained using an HMM with 16 Gaussian mixture components per state to 
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generate a Viterbi-based time alignment (Viterbi, 1967). Features corresponding to individual 

phonemes can then be extracted and used for this phoneme classification task. 

1.2 Previous Work  

The problem posed by acoustic modeling has been studied for several decades (Viterbi, 

1967; Rabiner, 1989; Halberstadt & Glass, 1998). Consequently, a multitude of potential 

solutions have been proposed ranging from exemplar models such as K nearest neighbors 

(Cover & Hart, 1967), which create predictions using a distance between individual samples, to 

generative models (Baum & Petrie, 1966) such as HMMs that attempt to fit distributions to 

training data and make predictions on maximum likelihood, to discriminative models 

(McCulloch & Pitts, 1943) such as neural networks that calculate posteriors directly. The 

following subsections outline some of the details of these algorithms and some of the benefits and 

disadvantages they offer for acoustic modeling. Finally, a brief overview of how nonparametric 

methods have been integrated in speech recognition and why they can be useful in acoustic 

modeling is provided.   

1.2.1 Common Paradigms for Acoustic Models  

A wide variety of statistical modeling methods have been proposed to improve speech 

recognition performance. HMMs, the most commonly used type of generative models 

(Baum & Petrie, 1966), were introduced to speech research in the 1980s and were widely 

acknowledged for their ability to model temporally changing data such as speech. These 

generative graphical models utilize GMMs to represent the probability density function (pdf) of a 

feature vector xt at a given time t: 

  
1

| ( ;  , )
K

t i ik t ik ik
k

p x N x 


    (1) 
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where { } { , , , , }i ij ik ik ki ia       are the HMM parameters, ϖ୧୩ represents the weights of K 

mixtures for cluster i such that ∑ ߸௜௞ = 1௞ , and ߤ௜௞ and Σ௜௞ represent the means and covariances 

of the mixtures. With a collection of feature vectors 1{ }T
t tX x  , the likelihood of the data is then: 

  
1 11 1,  

{ } 2

|   ( | )   ( | )
t t

t

T

s s t s t s
S s t

p X p x a p x 
 

 
    

 
   (2) 

where S = {st} is the set of state labels, π is the state probability such that 1ii  , and a 

represents the state transition probability such that 1iji a  . Equation (2) is trained using the 

expectation maximization (EM) algorithm (Dempster, 1977). In each iteration a new set of HMM 

parameters are generated such that: 

 

  

 k+1   argmax
 S

p(S | X ,  k  ) log(X , S |) . (3) 

Finally, with an acoustic score from the HMMs and a language model as a prior, final 

classification is done using Bayes Rule:  

    
 

( ; )
| ;    .

( ; )
W

P W P X
P W X

P W P X


 


 (4) 

Given labels, generative models like HMMs attempt to fit distributions to the data. 

Unlabeled data is then passed to the system and the output hypothesis is selected by choosing the 

most probable hypothesis generated from the trained distributions. This is not necessarily optimal 

since theoretically an infinitely large set of data is required to correctly model a distribution. At 

one extreme, huge corpora can make training systems computationally impractical, while at the 

other extreme, there may be insufficient amounts of training data leading to poorly estimated 

model parameters.  

Furthermore, system performance is often evaluated by measuring a misclassification 

error rate. Discriminative models attempt to do this by directly minimizing this error rate. One 

popular approach is to maximize the log of the posterior probability, log P(W|X), i.e. the 
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probability of a word (or phone) given the data. One very common discriminative model is the 

neural network (NN) (McCulloch & Pitts, 1943) shown in Figure 3. These models are defined by 

a three-level architecture, i.e. input, hidden, and output layers, such that features are mapped to 

subsequent layers using a non-linear transfer function. A very common choice is the sigmoid 

transfer function given by: 

 
1        

1 jj j j i ijx
i

y x b y w
e  +

+   (5) 

where y is the layer following x, yj is the new state in layer y, bj is the bias coefficient and wij are 

the weights for connections from layer i to layer j. It is important that these weights are initially 

given small random values to break symmetry and prevent identical gradients among different 

states (i.e. preventing all weights within a layer from being equal). A cost function, such as 

minimizing mean squared error, is used to train the model using a back propagation algorithm 

(Werbos, 1974; Rumelhart et al., 1986).  

This architecture makes neural networks ideally suited to modeling nonlinear speech data 

that is generated by a system containing a small number of degrees of freedom, i.e. the human 

vocal tract. These neural network models still require an extremely large number of parameters, 

especially when modeling triphones, often referred to as context-dependent (CD) phones. Tens of 

thousands of these units are required to model the English language, and languages such as 

 

Figure 3 – An example of a neural network architecture with 60 neurons in the hidden layer 
used in this work. The input 40x3 feature matrix is converted to a 120x1 feature vector and 
the output layer represents the 42 possible phoneme labels. 
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Chinese can easily require over one hundred thousand such units. Neural networks used for such 

applications often require an output layer of several thousand nodes.  

It was not until recent advances in hardware and training algorithms that manageable 

computation time was achieved (Hinton et al., 2012). New research has shown that deep belief 

networks (DBNs), consisting of multiple hidden layers, can avoid the endemic problem of 

overfitting and are able to outperform GMM-based HMM systems (Hinton et al., 2012; 

Larochelle et al., 2007). In this work, a simple neural network consisting of a single hidden layer 

is investigated rather than a DBN since the classification task being posed here is much simpler 

than that required for state of the art speech recognition.  

Many other discriminative models exist. Saon & Chen (2012) provide an excellent 

overview of some of these methods. These include techniques which incorporate objective 

functions that minimize classification error (MCE), minimize word or sentence error rates using 

maximum mutual information (MMI), or minimize phone error rates (MPE). All of these have 

shown to produce results that are significantly better than maximum likelihood (ML) approaches 

(Juang et al., 1997; Bahl et al., 1986; Povey & Woodland, 2002). However, while the previously 

discussed models estimate continuous distributions, these discriminative methods minimize 

discrete classification errors and require the use of smoothing techniques before gradient descent 

can be used to converge on an optimal solution. 

Another interesting approach is the ensemble technique proposed by Leo Breiman (2001) 

known as a random forest (RF). This method builds multiple classification trees which vote on 

the output label for a given test sample. If training samples consist of M variables, then m 

variables (such that m << M) are randomly selected to determine the best way to split a tree’s 

current node. Each tree in the forest is grown to the largest possible depth without pruning. Once 

trained, each tree selects an hypothesis and the mode is chosen as the final output. This technique 

is very robust to overfitting (Breiman, 2001) and is also able to identify the importance of training 
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features based on the voting success of each tree, i.e. individual trees whose voting records match 

true output labels indicate better partitions across features.   

All of the generative and discriminative methods mentioned in the above paragraphs 

build models by generalizing training data and are known as global data techniques (Sainath et 

al., 2012). On the opposite end of the spectrum are exemplar-based models which aim to classify 

data based on just a few examples or templates. While global data models can suffer if the 

amount of training data is limited, exemplar-based techniques can still yield high performance 

(Belkin & Niyogi, 2003). These systems typically follow three stages (Sainath et al., 2012): 

exemplar modeling, instance modeling, and decoding. In the first stage, the search space is 

reduced and the best exemplars for a given label are determined. In the next phase, a given test 

vector is compared to the exemplar and weights are assigned to each of them. Finally, an acoustic 

score is generated that ultimately determines the most probable utterance. 

K nearest neighbors (KNN) (Cover & Hart, 1967) is a good example of an 

exemplar-based model in which a distance metric is used to determine the K closest exemplars to 

a test vector. There are several methods to improve the computational efficiency of KNN (Samet, 

2008) but these are beyond the scope of this paper. In this work, a slightly simpler method is 

used. Rather than building an exemplar model, the Euclidean distance between each test point and 

all other training samples is calculated. This distance is measured for K neighbors and the mode 

of the closest labels is chosen as the prediction. If there are multiple modes, the label with the 

shortest average distance is chosen. Again, this simple KNN model was selected to serve as a 

baseline comparison for the variational inference algorithms. 

It is worth mentioning that for many practical purposes, hybrid systems have been 

developed that incorporate acoustic training phases that utilize multiple algorithms such as 

HMMs and NNs (Heigold et al., 2012). A DBN-HMM system, for example, resulted in a relative 

reduction of 33% in WER from the standard GMM-based HMM system’s performance on the 

SWITCHBOARD Corpus (i.e. WER dropped from 27.4% to 18.5%) (Seide, Li, & Yu, 2011).  
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1.2.2 Applications of Nonparametric Models  

The application of nonparametric Bayesian models to speech research has become 

increasingly popular although mostly in language modeling and speaker adaptation. In this 

section, some of these applications are described. 

N-grams are very simple and commonly used methods for language modeling where 

P(W) from (4) is determined by a conditional probability of a word given the previous N-1 words. 

This is a fast and efficient technique but is only able to capture local lexical information since N 

has to be manually set. N is typically a relatively small number due to data sparseness constraints. 

To help mitigate the sparsity problems, there have been several smoothing techniques have been 

developed such as Kneser-Ney language models (KNLM) which help eliminate cases where 

various N-grams don't exist within the training data (S. F. Chen & Goodman, 1999). More 

recently, nonparametric Bayesian techniques such as the Pitman-Yor language model (PYLM) 

have expanded KNLMs and allow N-gram parameters to grow as new data is introduced to the 

system (Renals, 2010). This helps to greatly reduce the risk of over-fitting or under-fitting test 

data. Other techniques such as the latent Dirichlet allocation language model (LDALM) (Tam & 

Schultz, 2005), have been used to capture non-local lexical information. Rather than model a 

word's probability strictly from its context (i.e. N-1 previous words), LDALMs map the word 

history into a topic class and base the probability of a word on the word history and the semantic 

content. 

Nonparametric methods like DPMs have also been recently applied to other speech 

recognition tasks such as acoustic unit detection and speaker adaptation (Harati et al., 2012). 

Speaker adaptation is used to complement acoustic training by adapting speaker independent (SI) 

models that are trained on large amounts of data. Speaker adaptation systems use parametric 

models to map SI models to higher-performing models by adjusting a parametric mapping on 

small amounts of adaptation data. Dirichlet processes can find the structure of this mapping 
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directly from the adaptation data. Harati et al. (2012) have shown that DPM-based speaker 

adaptation reduced WER by 10% from the more common maximum likelihood linear regression 

(MLLR) method. 

1.3 Thesis Overview 

A nonparametric model’s ability to discover the underlying structure of data makes it 

extremely attractive for speech recognition. The remainder of this thesis focuses on describing 

why Dirichlet processes in particular are ideally suited for this task and how the performance of 

nonparametric approaches compares to more standard parametric models such as NNs, RFs , 

KNNs, and GMMs. Furthermore, since inference algorithms are required to make posterior 

calculations of nonparametric models tractable, three variational methods will be evaluated: 

AVDPM, CVSB and CDP. 

The goal of this work is to select the best variational inference algorithm for speech 

recognition from these three algorithms. This evaluation is based on a static phoneme 

classification task using English and Mandarin corpora which will identify if the algorithms are 

prone to any language specific artifacts. Final evaluation is based on average misclassification 

error rate and also on computational complexity. It is hypothesized that the three variational 

inference algorithms will yield comparable error rates but the incorporation of the KD tree will 

allow AVPDM to train on larger data sets significantly faster than CVSB or CDP. Furthermore, 

one of the major aims of this research is to move towards a complete nonparametric Bayesian 

speech recognition system and the conclusions found in this work will dictate which variational 

method will be implemented in said system.   

The remainder of this thesis is organized into the following sections. In CHAPTER 2 an 

in-depth description of Dirichlet process mixture models is provided followed by explanations of 

the three variational inference algorithms. Experimental set-ups including data preparations are 

discussed in CHAPTER 3 along with a discussion of the major language differences between 
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English and Mandarin. CHAPTER 4 provides a detailed analysis of the results found from these 

experiments. Finally, CHAPTER 5 offers conclusions and proposes some viable directions for 

future research. 
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CHAPTER 2 

NONPARAMETRIC BAYESIAN MODELS 

AND VARIATIONAL INFERENCE 

Parameterized models have been widely popular for their efficiency, ease of use, and 

reasonable performance in various clustering and classification problems. They are of particular 

use when the underlying structure of the data is either previously known or can be easily 

approximated. However, this results in a significant limitation in application since clusters in real 

data often vary in shape and may follow their own individual distributions (Mallapragada, et. al., 

2010). Thus parametric methods can sometimes fail to produce successful models. Bayesian 

nonparametric models on the other hand are able to independently infer the underlying structure 

of data by determining an optimal number of clusters or latent variables during fitting. Moreover, 

the complexity and accuracy of the model evolves as more data is added to the system and 

retuning is unnecessary. One example of a nonparametric model is the Dirichlet process (DP) 

(Ferguson, 1973). A DP is a distribution over distributions that theoretically requires an infinite 

number of parameters.  

The purpose of a statistical model in a typical application of Bayes Rule to classification 

is to determine the posterior probability of an event given a model's parameters. For example, a 

speech recognition system attempts to train an acoustic model with parameters, θ, given a set of 

data such that word error rate is minimized during testing. However, because nonparametric 

models theoretically require an infinite number of parameters, it is often impossible to manipulate 

such distributions directly. Instead, inference algorithms are used to generate approximations. In 

the next few sections Dirichlet distributions and processes will be introduced along with the three 

variational inference algorithms that are the subject of this thesis. 
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2.1 Dirichlet Distributions and Processes  

Typical parameterized models make the assumption that the underlying structure of the 

data is known or easily approximated. For acoustic models this implies that the number of 

mixture components for a GMM is known and fixed for all phoneme models. This is largely 

presumptuous and it would be far more reasonable to assume each model is unique and that the 

number of mixture components is not known a priori. The problem of finding that a sample came 

from component i, where i = 1, 2, 3, ..., k is best characterized by a multinomial distribution. This 

however, requires some sort of prior knowledge about the likelihood that each component exists.  

Bayes Rule states that the probability that sample x came from mixture i, p(θi|x), is 

proportional to the likelihood, p(x|θi), multiplied by the prior, p(θi). Dirichlet distributions, and by 

extension Dirichlet processes, serve as this prior (in the case of multinomial distributions) and 

thus, despite the multitudes of other nonparametric models, make them particularly attractive for 

acoustic modeling. In the following sections a basic overview of the definitions and properties of 

Dirichlet distributions and processes are put forth which follow the explanations found in Frigyik 

et. al. (2010). 

2.1.1 Dirichlet Distributions 

A Dirichlet distribution in its most basic form is a distribution over probability mass 

functions (pmfs) (often referred to as a discrete probability distribution in engineering). 

Mathematically this can be represented by the following. First, let Q = | Q1, Q2, …, Qk | be a 

random pmf such that Qi ≥ 0 and 1 1k
ii Q  . Let qi be a realization from Q ~ Dir(α) where α 

represents an inverse variance. Furthermore, we can set the Dirichlet distribution’s 

hyperparameter, α = | α1, α2, …, αk |, such that αi > 0 and 0 1
k

ii  . A Dirichlet distribution is 

then given by: 
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For the case where k = 2, if Q = (X, 1-X), (6) reduces to a Beta distribution: 

    
      11  .; , 1f x x x  
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 (7) 

A real world example of this is offered by Frigyik et. al. (2010). In this application a bag 

full of one hundred 6-sided dice is given. A roll of each die therefore has the same set of possible 

outcomes as any other die (1, 2, 3, 4, 5, or 6) but might have slightly different probabilities of 

achieving them. This can be modeled with a Dirichlet distribution, Dir(α), consisting of pmfs q(i), 

where i = 1, 2, …, L and L=100 (dice in this example). Further, suppose that ni samples are drawn 

from the ith pmf. A large αi indicates that the ith dice is rolled more often and consequently has a 

greater effect on the overall distribution. This concept can be extended to the language modeling 

problem in speech recognition by replacing each die with an utterance and letting the observed 

rolls represent observed words (from a finite vocabulary). This can be written as follows: 
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The probability of a possible outcome x is then given by: 

  
1

| ( | )
L

i
i

p x p x 


  (8) 

where the probability that x is drawn from the ith pmf is: 
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|   ,   | 

   |  ,     | 

   |    |   .

i i
i i

i i i
i

i i i
i

p x p x q dq

p x q p q dq

p x q p q dq

 

 











  (9) 

Finally, it is shown that p(xi | q(i)) is given by the multinomial distribution (Frigyik et al., 2010): 
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where p(q(i) | α) follows a Dirichlet distribution and is given by: 
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When (10) and (11) are combined, (9) becomes: 
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

 
 (12) 

This can be used in (8) to find the likelihood of the data. To find the optimal α that maximizes the 

likelihood, the log of (12) is maximized using an optimization technique such as the EM 

algorithm (Baum & Petrie, 1966). 

A few of the more common representations of a Dirichlet distribution include the Polya 

urn and stick-breaking methods (Blackwell & MacQueen, 1973; Sethuraman, 1994). In the Polya 

urn method, αi balls of color I (where I = 1, 2… k) are placed in an urn. Each iteration consists of 

drawing a ball randomly from the urn and then replacing it along with an additional ball of the 

same color. After placing a set number of balls in the urn, the proportions of balls of each color I 

is found. As mentioned in the previous chapter, this can easily be applied to language modeling. 

The balls of different colors are replaced with cards that have a word written on them. Every time 

a word is drawn we replace it in the urn along with another card with the same word. After 

several iterations the probability of each word I can be found as the proportion of the total 

number of cards. These steps are outlined by Frigyik et al. (2010) in Figure 4. 

The stick breaking method depicts a Dirichlet distribution as a stick of length one broken 

into k different pieces. For an example, assume k = 3. A temporary variable, {vi}, is used and 

initially generated from a Beta distribution, v1=q1=Beta(α1, α2+ α3).. This represents the first 

break in the stick and therefore the remaining length of the stick is given by 1-v1. Next, 
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2
2 1

1
|

1
Qv Q

Q
 

    
 is generated from Beta (α2, α2) and set q2 = (1-v1) v2. For the case of k=3 the final 

vector is then qi = [v1, (1-v1)v2, (1 - v1) - (1-v1)v2]. Frigyik et al. (2010) summarizes these steps 

and generalizes them for any value of k in Figure 5. The stick breaking representation is 

particularly useful for acoustic modeling as one can imagine the initial, whole stick as a single 

Gaussian model. Additional sticks, or mixture components, are broken off until additional breaks 

no longer minimize a cost function and eventually the optimal structure of the model is found. 

Two interesting features of a Dirichlet distribution are the agglomerative and decimative 

properties (Teh, 2007). The agglomerative property indicates that two stick breaks can be 

collapsed into one piece if the two respective concentration parameters are also added together: 

 1 2 3 1 2 3( , ,..., ) ~ ( , ,..., ) .k kq q q q Dir    + +  (13) 

The decimative property, on the other hand describes that a given stick break can be further 

broken such that: 

 11 12 2 1 1 1 2 2

1 2

( , , ,..., ) ~ ( , , ,..., )
1 .

k kq q q q Dir      
 + 

 (14) 

 

Figure 4 – A diagram depicting the Polya urn method (Frigyik et.al., 2010). 
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2.1.2 Dirichlet Processes 

A Dirichlet process is a stochastic process parameterized using a base measure, H, which 

serves as the center of the nonparametric distribution (essentially the mean) (Antoniak, 1974), 

and a concentration, α (where α > 0). Unlike the Dirichlet distribution's αi, where i = 1, 2 … k and 

whose values are discrete, Dirichlet processes are parameterized by a continuous function across 

the sample space, α(χ). A Dirichlet process can be viewed as a Dirichlet distribution that has been 

decimated infinitely many times. Thus, drawing from a Dirichlet process yields a discrete random 

distribution. This can be seen in Figure 6 where initially Dir(α) ~ 1 and then it is decimated, or 

split, infinitely many times to generate discrete values. Notice that each split is done in such a 

way that the overall density remains unchanged. 

One way to interpret a Dirichlet process is to compare it to a dartboard (Frigyik et al., 

2010). If we assume the dartboard is the infinite sample space, and a realization from the 

  

“Step 1:  Simulate  1 1 2~ , k
iiv Beta    and set q1 = v1. This is the first piece of the stick. The 

remaining piece has length 1 - v1. 

Step 2:  For 2 ≤ j ≤ k-1, if j-1 pieces with lengths, v1, v2, …, vj-1, have been broken off, the length 
of the remaining stick is 1

1 (1 )j
ii v

  . We simulate  1~ , k
j j ii jv Beta   +  and set 

1
1 (1 )j

j j iiq v v
  . The length of the remaining part of the stick is:  

1 1
1 1 1(1 ) (1 ) (1 )j j j

i j i ii i iv v v v 
         .  

 
  Step 3:   The length of the remaining piece is qk.” 

Figure 5 – A diagram depicting the stick breaking representation of a Dirichlet process. 
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Dirichlet process is a distribution characterized by an infinite set of darts of various lengths, then 

the length of each dart represents the weight given to that distribution. These weights are 

constrained such that the sum of all weights must be equal to one. More formally: 

  
1

  ( )k yk
k

P B p B




  (15) 

where B represents a set of the infinite sample space, pk represents the darts' weights, δyk(B) 

indicates the location of the kth dart (δyk = 1 if yk ϵ B and δyk = 0 otherwise), and 1 1kk p
  . 

Another nice example is given by Frigyik et. al. (2010) where a Dirichlet Process is 

compared to polling a group of people several times for their favorite color. Depending on 

someone's mood, each person may give a different answer depending on the day. We can 

therefore treat each person as a separate pmf and model the probability of a given color being 

their favorite. The colors they can choose are not specified and could be anything from red to sky 

 

Figure 6 – A diagram showing how a Dirichlet distribution initially characterized by a 
uniform distribution can be decimated infinitely many times to yield discrete values. 
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blue to sea-foam green. Thus, an infinite sample space, i.e. colors, is modeled over another 

infinite sample space, people. If the Dirichlet process is not split infinitely many times, however, 

it can be modeled as a Dirichlet distribution, i.e. limit the selection of colors. In the example of 

modeling people's favorite colors, the range of all (infinite) possible responses can be categorized 

into M distinct choices.  

To generate samples from a Dirichlet process, the same procedures for a Dirichlet 

distribution are used with a few small changes. The first, described above, is the Polya urn 

method (also known as the Chinese restaurant process). The major difference from the above 

method is that there are now an infinite number of ball colors and the urn is initially empty. Or, in 

the case of the language model example mentioned above, the original set of words is unknown 

and there are infinitely many possibilities.  Frigyik et. al. (2010) describes the steps for generating 

samples below by first setting n=1 and then: 

“Step 1: Pick a new color with probability distribution α/α(χ) from the set of infinite ball colors. Paint a 
new ball that color and add it to the urn. 

  Step 2: With probability 
( )

n
n  +

 pick a ball out of the urn, put it back with another ball of the same 

color, and repeat Step 2. With probability ( )
( )n

 
 +

, go to Step 1.” 

Thus a random sequence of colors, or words, (X1, X2, …) is drawn from the set (y1, y2, …, yk, …, 

y∞). Frigyik et al. (2010) continues to explain that after the first n draws there are mk occurrences 

of K different colors, (y1, y2, … yk) then the next observation is: 

 
  
Xn+1 | X1, ¼, Xn ~

k1

n


mk

  + n
 yk

+
1

  + n
  .  (16) 

To generate samples from a Dirichlet process using the stick-breaking method, the 

distributions {pk, yk} must be characterized. To simplify matters though, {θk, yk} will be used 

instead (measure theory can be used to prove the relationship between {pk, yk} and {θk, yk} but is 

beyond the scope of this work). The following steps are followed: 

Step 1:  Let p1 = θ1. Thus the stick (originally of length 1), now has a length of 1- θ1. 
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Step 2:  Break off a fraction of the remaining stick, θ2. Now, p2 = θ2(1-θ1) and the length of the 
remaining stick is (1-θ1) (1-θ2). If this is repeated k times, then the remaining stick's length is 
given by  1

1 1k
ii 

   and  1
1 1k

k k iip  
  . 

Step 3:  Finally the probability distribution can be found by using (15). 

2.2 Variational Inference  

The process of making clustering or classification predictions using complex multivariate 

distributions is often intractable. Instead inference algorithms are used to analyze samples from 

distributions in order to generate an approximation which in turn can be used to make the 

necessary prediction. Markov chain Monte Carlo (MCMC) methods such as Gibbs sampling are 

extremely popular for their low mathematical complexity (Neal, 1991; Paisley, 2010; Rasmussen, 

2000). These methods approximate complex posteriors by sampling latent variables from a 

Markov chain that represents the distribution of interest (Blei & Jordan, 2005). Unfortunately, 

converging to optimal posterior approximations is often slow and these methods can become 

intractable for big data problems such as speech recognition (Paisley, 2012; Blei & Jordan, 2005). 

Consequently, newer variational inference algorithms have been introduced which do not require 

sampling latent variables but still yield comparable results with more reasonable computation 

times. 

The problem variational inference solves is simply described by Eisner (2011): the 

calculations to generate predictions using a posterior distribution p(y|x), where y represent outputs 

and x is an input, is intractable. The solution is to use a simpler distribution that makes more 

independence assumptions, q(y), to approximate p(y|x). This can be handled as an optimization 

problem, i.e. minimizing an objective function, where an optimal q is found from a set of 

distributions Q={q1, q2, …, qm). This inherently requires more complex computation but is still 

much faster than MCMC methods. 
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In the next few subsections, the three variational inference algorithms used in this work 

are described. Each is fairly similar. All have been shown to produce results comparable to Gibbs 

sampling but are significantly faster (Harati et al., 2012). 

2.2.1 Accelerated Variational Dirichlet Process Mixtures (AVDPM)  

Mean-field techniques (Blei & Jordan, 2006) are commonly used in variational inference. 

Mean-field approximation makes assumptions about a joint distribution's dependencies. For 

example, a joint distribution p(a,b,c,…), could be approximated as (Eisner, 2011): 

        , , ,    , , ,p a b c p a b p b c p a c¼    ¼  (17) 

The marginal log probability is found by either minimizing the Kullback-Leibler (KL) divergence 

or by maximizing the lower bound L(q) (Harati et al., 2012): 
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 (18) 

The EM algorithm is used for convergence to create the best set of T variational distributions (i.e. 

approximations), Q = {q1(y), q2(y), …, qT(y}), of the posterior, p(y|x).  

Following Kurihara et. al. (2006), a DPM makes the following assumptions: 

1. There are an infinite number of components (i.e. distributions),   1i iH  


 , that are taken 

independently from a prior with hyperparameter λ, pη(ηi|λ).  
2.   1i iV v 


  represents an infinite number of stick lengths that are drawn from another prior with 

hyperparameters α,  pv(vi|α). These represent mixing weights   1i i 


 for the mixtures

1
1( ) (1 )i

i i ijV v v 
    for i = 1, … , ∞. 

3. An observation model px(x|η) is used to generate a data point from distribution η.  

4. For dataset   1
N

n nX x


 , each xn is generated from px(xn|ηk)  by assigning a component label 

zn = k ϵ {1, …, ∞}  where p(zn=k | V) = πk(V). 
5. The DPM has a set of latent variables, W = {H, V, Z} and hyperparameters θ = {λ, α}. 
6. Class prediction relies on finding p(W|X, θ) which is intractable so a new set of variational 

distributions qAVDPM is defined as 
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v

AVDPM v i i i i z n
i n

q q v q q z
  
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In contrast to (Blei & Jordan, 2006), who truncate (19) with the stipulations that L=T, 

( 1) 1
iv Tq v   , and ( ) 0

nz nq z T  , AVDPMs allow L to approach infinity but set any variational 

distributions equal to their priors for any i > T.  

Furthermore, binary trees known as KD trees (Bentley, 1975), are used as a preprocessing 

step to split feature vectors along hyperplanes. These trees consist of a root node that contains all 

data points and child nodes that contain subsets of their parent's data points. Every training 

sample in a given leaf node shares the same variational distribution ( )
nz nq z , so the incorporation 

of the KD tree reduces the amount of computation from O(N) to O(A), where A is the number of 

leaf nodes in the tree. According to Kurihara (2006) ( )
nz nq z , which was originally proportional to 

[ ]
i

T
q i nE x

  without the KD tree, becomes proportional to [ ]

i

T
q i nE x

  where nx is the average of 

all data in node A. Nodes are then split such that (18) is minimized. This ensures that nodes are 

theoretically split correctly. The number of times a parent node is split can be adjusted which 

allows the user to control the tradeoff between computational resources and model accuracy 

(Kurihara et al., 2006). This is extremely beneficial for speech recognition tasks where large 

training corpora are both common and necessary and gives AVDPM a huge advantage over the 

other inference algorithms.  

2.2.2 Collapsed Variational Methods  

A truncated stick-breaking model is used in CVSB where the joint density is given by: 

      
1 1

, , ,  |     |  ( ) ( )  ( ;1,  )
n

N T

n z n t t
n t

P X z v p x p z v p B v    
 

   
    
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   (20) 

where B(vt; 1, α) is a Beta distribution for v. It is important to note that if cluster labels are 

changed in this model, the probability of (20) will also be altered. CDP, on the other hand, does 
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allow for interchangeable cluster labels by limiting the model to K clusters and by setting a 

symmetric prior D on the mixing weights, ~ , ,...,D
K K
   

 
 

. The equivalent joint density for CDP 

is then: 

      
1 1

, , ,  |     |  ( )  ;  ,  , 
n

N K

n z n t
n t

P X z p x p z p D
K K
 

     
 

      ¼         
   (21) 

In either CVSB or CDP, the mixing weights can be marginalized out to produce the collapsed 

density (Kurihara, Welling, & Teh, 2007): 

      
1 1

, ,  |    ( ) 
n

N K

n z t
n t

P X z p x p z p  
 

   
    
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   (22) 

where the distributions over cluster labels p(z) are different for the CVSB and CDP models due to 

the interchangeability (or lack thereof) of cluster labels. Finally, the lower bound used in 

variational inference is given by: 

        
( ,  ,  ) log

( )z d

P X zX Q z Q
Q z Q





  (23) 

where θ represents {η,v}, {η, π}, or {η}  depending on whether (20), (21), or (22) is used. The 

corresponding variational distributions are given by: 
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q z v q z q q v 
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CDP n k
n k

q z q z q q   
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   (25) 

where  q(vt) and q(π) are marginalized out of (24) and (25) respectively if using the collapsed 

density shown in (22). Equations (24) and (25) only differ by the replacement of q(v) by q(π). The 

ith stick break, vi, represents the fraction of the remaining stick length and is modeled with a Beta 

distribution while πi is the actual mixture weight (i.e. the fraction of the original, whole stick). 
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Since the length of each stick break is held constant for CDP, the effect from the stick lengths can 

be removed from the product in (24) and replaced by q(π). 

Although these three inference algorithms are very similar, there are a few key 

differences worth highlighting. First, unlike CVSB and CDP, AVDPM incorporates KD trees as a 

preprocessing step. This splits feature vectors across hyperplanes that theoretically should 

increase the rate of convergence during the optimization of the KL divergence (or lower bounds 

mentioned in the previous sections). Secondly, AVDPM allows for a potentially infinite number 

of stick breaks such that any split after T breaks are tied to their priors rather than estimated. 

Conversely CVSB and CDP both have rigid truncation levels where only a finite number of stick 

breaks are allowed. CVSB imposes no constraints on the lengths of each break while CDP uses a 

symmetric prior. This forces the length of each stick break to be equal, i.e. the mixture component 

weights are equal, and, in essence, reduces the problem of the Dirichlet process to a Dirichlet 

distribution.   
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CHAPTER 3 

DATA AND EXPERIMENTS  

One of the overarching goals of this work is to move towards developing a speech 

recognition system that is robust to variations in the acoustic channel and can be adapted for use 

with multiple languages. This chapter will highlight some of the key differences between 

Mandarin Chinese and English, explain why the TIMIT and CALLHOME corpora were selected 

for this work, and describe some of the relevant characteristics of these corpora. Following this is 

a detailed explanation of the experimental setup including a description of the baseline algorithms 

used as well as the variational inference algorithms discussed in Chapter 2. 

3.1 A Comparison of English and Mandarin  

With the advent of China's rapid economic development over the past few decades, 

Mandarin has become a language of growing interest in the speech recognition community. A 

study has shown that the world contains approximately 350 million native English speakers 

compared to Mandarin's one billion (Chen et al., 1994). Moreover, there are at least as many 

English language learners in China as there are native speakers in the world (Chien et al., 1995). 

Although these statistics are somewhat dated and the populations have since grown dramatically, 

they highlight the increasingly pressing demand for high performance Mandarin speech 

recognition systems.  

Unfortunately, there is often a large disparity between speech recognition performance 

for English and Mandarin datasets. This is particularly apparent for conversational telephone 

speech (CTS) data sets. One study has shown that two comparable CTS corpora yielded word 

error rates (WERs) of 42.7% for Mandarin and 17.5% for English (Schwartz et al., 2004). In the 

following paragraphs major differences between the two languages will be discussed to highlight 

some of the key difficulties in Mandarin speech recognition.  
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While words in English are created using a phonetic alphabet, Chinese words consist of 

one or more syllables represented by Chinese characters. Approximately 8,000 characters 

compose as many as 200,000 of the most common words in Mandarin. Furthermore, unlike 

English, whose words are segmented, i.e. separated by a space, words in Mandarin are often not 

delimited. Because of this, it is up to the user to determine which characters belong to a given 

word. Although this is not always the case, it can greatly affect our ability to train certain 

elements of a speech recognition system, such as the language model. 

Each Chinese character is a monosyllabic morpheme and is assigned a specific tone.  

While tone generally represents a speaker's emotion in English, Mandarin tones specify word 

meaning. Two characters with the same phonetic syllable but with different tones represent two 

different words. Four distinct tones and one neutral tone exist in Mandarin Chinese as shown in 

Table 1. 

Although each character has a set tone associated with it, Mandarin is highly susceptible 

to effects from coarticulation and thus a character's tone can change depending on the 

surrounding context. One common example of this is if a word consists of two consecutive 

characters that have the third tone in which case the first character's tone is changed to the second 

tone. Another such example occurs when the character used to negate meaning, "不" 

(phonetically written as"bu4" where “4” represents the character’s tone), precedes another 

Table 1 – A description of the different tones in Mandarin Chinese. Words in parentheses 
indicate examples of English words that share similar sounds with Mandarin tones. 

Tone Number Description 

1 High, constant pitch (“Do” i.e. Do Re Mi Fa So La Ti Do) 
2 Rising inflection (“Huh?”) 

3 Lower but slightly rising pitch (“Ugh”) 
4 Rapidly descending pitch (“No!”) 
5 Neutral - Short and without inflection 

 



28 
 

character with the fourth tone. In such an example the tone of "不" is changed to the second tone.  

Furthermore, Mandarin has just over 400 unique syllables ignoring tone (or about 1300 

with tones) compared to English's 10,000 syllables (Gu, et al., 2006). Consequently, Mandarin 

has an extremely large number of homophones compared to English. This creates the need for a 

more developed language model during the decoding phase to be able to discern characters 

correctly. 

Creating a strong language model is difficult since Mandarin has an extremely flexible 

grammatical structure. Long phrases are often interchangeable with shortened versions consisting 

of only one or two characters. For example, the phrase for Beijing University,  "北京大学" (Bei3 

jing1 da4 xue2) is often abbreviated to "北大" (bei3 da4). Another, more significant example is 

shown in Figure 7 (Lee, 2006). This depicts an example of how word order can easily be altered 

without affecting the overall sentence meaning. This can reduce the efficacy of N-gram type 

language models and therefore require incorporating more advanced techniques such as neural 

networks or random forests (Oparin et al., 2010). 

The possible lack of a segmented lexicon, the need to model tones as well as phonetic 

sounds, the high number of homophones, and the incredibly flexible grammatical structure of 

Mandarin make it extremely difficult for Mandarin speech recognizers to perform as well as their 

 

Figure 7 – An example showing several equivalent sentences using different word orders 
(Lee, 2006). 
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English counterparts. Many of these challenges directly affect a typical speech recognizer's 

decoding process, specifically the predictive power of the language model. By including at least 

one contrasting language in our evaluations, we are reducing the probability that our conclusions 

drawn are specific to artifacts present in any one language. 

3.2  Data 

Three corpora were utilized in this work – TIMIT, CH-E, and CH-M – to investigate the 

performance of the inference algorithms. This section describes some of the key characteristics of 

each corpus, lexicon information, and the partitioning of the data into training, development, and 

evaluation data sets. 

3.2.1 TIMIT  

Although this work will focus more on results collected from the CALLHOME corpora, 

it is important to ensure that the experimental setup is reasonable. To accomplish this task, the 

well-calibrated TIMIT Corpus (Lamel et al., 1986) was selected. This dataset was originally 

created by a collaboration between Texas Instruments (TI), the Massachusetts Institute of 

Technology (MIT), and the National Institute of Standards and Technology (NIST). The data 

consists of read speech for three sentence types as shown in Table 2. The dialect sentence type is 

used to highlight variations in speakers’ dialects while the compact and diverse types highlight 

phonetically comprehensive data. As is commonly practiced (Lee & Hon, 1988; Halberstadt & 

Glass, 1998; Ager et al., 2009), the 1260 dialect sentences are ignored for classification. The 

Table 2 – A description of the speakers and utterances found in the TIMIT Corpus. 

Sentence 
Type 

# of 
Sentences 

# of 
Speakers 

Total 
Sentences 

# Sent. / 
Speaker 

Dialect (SA) 2 630 1260 2 
Compact (SX) 450 7 3150 5 

Diverse (SI) 1890 1 1890 3 
Total 2342 NA 6300 10 
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corpus also comes with a manually generated phoneme alignment that is used for a baseline 

comparison. 

The data is divided into training, validation, and evaluation sets using the common 

partitioning shown in Table 3 (Halberstadt & Glass, 1998; Ager et al., 2009). It should be noted 

that for this study 3 utterances are missing from the training set due to corrupted files during the 

acquisition of the data so there are slightly fewer examples than noted above. The training set in 

this work actually contains 140,078 phoneme tokens (note that the number of tokens in each set 

listed above excludes the glottal stop, “q”, as will be mentioned in the following sections). 

3.2.2 The LDC’s CALLHOME Corpora    

A major goal of this project is to compare and contrast performance on phoneme 

classification for both non-tonal and tonal languages. For such a comparison, it is necessary to 

use data for both languages that was collected from comparable recording environments and 

contain similar content. For this reason, the CALLHOME English (CH-E) and CALLHOME 

Mandarin (CH-M) corpora were selected. Although conversational telephone speech is not 

normally used for phoneme recognition due to noisy backgrounds and overlapping speech, this 

choice of data will provide unique insight into the robustness of DPM classification methods to 

data from more difficult recording environments and from more casual spoken language. 

CH-E (Canavan et al., 1997) consists of 120 unscripted transoceanic telephone calls that 

last up to 30 minutes. Overall, 200 calls were recorded, 80 of which were assigned to the training 

set, 20 of which were assigned to the development set and 20 of which were assigned to the 

Table 3 – A description of the TIMIT training, validation, and evaluation (Core Test) sets 
used for this work. 

Set # of 
Sentences 

# of 
Utterances 

# of 
Hours 

# of 
Phonemes 

Train 462 3696 3.14 140,225 

Development 50 400 0.34 15,064 

Core Test 24 192 0.16 7,215 
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evaluation set. The remaining 80 calls were held by the LDC for future speech recognition 

benchmark tests. The audio was sampled at a rate of 8 kHz using a 2-channel µlaw format and 

encoded using Cambridge's SHORTEN format (Robinson, 1994). Ten-minute segments from 

calls from each of the training and development sets were chosen to be transcribed while 

five-minute segments were selected from calls from the evaluation set.  

CH-M was recorded under identical circumstances as CH-E and consists of unscripted 

conversations that last up to 30 minutes. All calls originated in North America and were made to 

people overseas. Again, 200 calls were recorded and transcribed but 80 were reserved for future 

benchmarks. The remaining calls are divided into training, development, and evaluation sets 

consisting of 80, 20, and 20 calls respectively. 

3.3 Data Preparation 

This section describes the steps taken to prepare the data for our classification 

experiments followed by detailed explanations of each individual experiment. At this point it 

should be noted that the experiments discussed below include both phone classification and 

recognition problems. Phone classification is defined as the use of manually aligned phone 

segmentations.  Phone recognition refers to the use of automatically generated phone alignments. 

While the TIMIT Corpus includes manual phone segmentations, the CH-E and CH-M corpora 

require that we perform recognition since they do not include reference segmentations. However, 

recognition is also performed on TIMIT to better illustrate the comparison between well 

calibrated data and the conversational telephone speech contained in the CALLHOME corpora. 

The general procedure used for these experiments is outlined below: 

1. Convert each utterance to MFCC features. 
2. Format dictionaries and transcripts to ensure all words are included. 
3. Remove features that pertain to simultaneous speakers or only noise.  
4. Train an acoustic model using an HMM with 16 Gaussian mixtures. 
5. Use a Viterbi alignment to generate phoneme alignments. 
6. Partition MFCC features from each utterance to pertain to individual instances of phonemes. 
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7. Use 3-4-3 averaging across all frames pertaining to each phoneme instance. Now feature vectors 
are all of equal length despite different durations and are phoneme based instead of frame based. 

8. Use classification algorithms to generate misclassification error on the phoneme-based feature 
vectors.  

The following sections describe this process in more detail for each of the corpora. 

3.3.1 TIMIT    

As mentioned earlier, the TIMIT Corpus was selected for having an abundance of 

published results for phone classification and recognition. While the lack of reference 

segmentations limit the use of the CALLHOME corpora to phone recognition experiments, the 

TIMIT Corpus is complemented with phone alignments that allow for a clear comparison of the 

experimental setup to other baseline classification systems. 

The manual phoneme alignments contain 61 labels that, as generally practiced (Lee & 

Hon, 1989; Halberstadt & Glass, 1998; Ager et al., 2009), are reduced to 48 labels for training. 

These classes are shown in Table 4 below (note that glottal stops, “q”, are simply removed). Final 

classification occurs after these 48 classes are further reduced to 39 labels by merging the 

following classes: {sil, cl, vcl, epi}, {el, l}, {en, n}, {sh, zh}, {ao, aa}, {ih, ix}, {ah, ax}.  

The raw audio was converted into 13 MFCCs and their first and second derivatives using 

the Hidden Markov Model Toolkit (HTK) (“HTK”, 2009) (generating the typical 39 feature 

format) with frame and window durations of 10 ms and 25 ms respectively. Each instance of a 

phoneme was represented as a concatenated feature vector formed by combining all feature 

vectors associated with that instance of the phoneme (using time alignment information). The 

dimension of this concatenated vector is ni x 39, where ni is the duration in frames of the phoneme 

instance. This process was completed using both the manual alignments provided with the TIMIT 

Corpus and also with alignments generated automatically.  

For the automatic alignments the 61 phoneme labels were collapsed into 40 classes. 

These 40 labels were identical to the collapsed set from the manual alignments with three 
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exceptions: all instances of epi, cl, and vcl were completely removed (and do not exist in the 

dictionary), dx was ignored since it does not exist in the dictionary, and finally {aa, ao} and {sh, 

zh} remained unmerged since they are prevalent in the dictionary. These changes were an artifact 

of the lexicon provided with the TIMIT Corpus (Ma, 2010). Finally, automatic alignments were 

obtained using an HMM-based speech recognition system with monophone acoustic models. 

Each state in these acoustic models used a GMM with 16 mixture components. This model was 

passed to a Viterbi-based time alignment algorithm to extract the start and stop times of 

individual phones from the audio data.  

Because it is difficult to classify phones that have different durations, every instance of 

every phone was broken into a 3x39 vector of features using a 3-4-3 averaging technique. This 

involved first converting a phone's start and stop time to a corresponding frame number, and then 

averaging the features from the first 30% of the frames, the middle 40%, and the final 30%. Each 

phone's frame duration was added as an additional feature such that our final feature vector had a 

dimension of 3x40. In this way, we formatted the data such that every instance of each phone had 

a consistent number of features for classification.  

Table 4 – A chart of TIMIT’s 61 phone labels after being folded into 48 classes for training. 

Phone Folded Phone Folded Phone Folded Phone Folded 
iy -- l -- g -- epi -- 
ih -- el -- p -- uw ux 
eh -- r -- t -- er axr 
ae -- y -- k -- m em 
ix -- w -- z -- n nx 
ax -- en -- zh -- ng eng 
ah -- ch -- v -- hh hv 
uh -- jh -- f -- cl pcl, tcl, kcl 
ao -- dh -- th -- vcl bcl, dcl, gcl 
aa -- b -- s -- sil #h, pau 
ey -- d -- sh --   
ay -- dx --     
oy --       
aw --       
ow --       
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3.3.2 CALLHOME English (CH-E)   

Each CH-E call was recorded as a sphere audio file and compressed using 

SHORTEN (Robinson, 1994). These files were uncompressed into a two-channel µ-law format 

using w_decode. Because each phone call encapsulates so much data (up to thirty minutes of 

conversation), the original audio files were divided into smaller audio clips corresponding to 

single utterances. This was accomplished using the time stamps from the CH-E transcripts. Start 

and stop times were extracted in order to parse each call and to determine the number of speakers 

within a given utterance's time frame. Every clip was given a new utterance ID (in the form of 

originalFileName_clip#). In several instances multiple speakers talked simultaneously which 

made phone recognition extremely difficult without filtering to separate the audio channels. Since 

there was plenty of data, we chose to avoid this additional step and instead selected only audio 

from single speakers during the training process. All other utterances from the newly created 

audio clips that had overlapping speakers were discarded. The amounts of data before and after 

this step are shown in Table 5. 

The original transcripts from the LDC were also reformatted. This is necessary to 

perform the forced alignment to obtain phone locations. The following actions were taken for this 

process: 

1. Time stamps and speaker ID's are removed from the original transcripts.   
2. Markers for proper names, non-lexemes (i.e. "uh", "um", "er", etc.), and utterance comments from 

transcribers are removed.  
3. In some cases, certain audio files are distorted such that transcribers were forced to guess at the 

actual words. Rather than attempting to correctly identify these instances, they were simply replaced 
by a generic word, "{garbled}", whose pronunciation is given by a garbage phone and treated as 
noise. 

4. When a speaker makes a noise such as a laugh, cough, sneeze, sigh, etc., it is replaced by a generic 
word, "{sound}", whose pronunciation is given by a garbage phone and treated as noise.  

5. If a speaker voices a partial, unfinished word it is replaced by the generic word "{partial}", whose 
pronunciation is given by a garbage phone and treated as noise. 

6. Markers are removed from a word spoken from a language other than English. Many of these words 
already exist in the dictionary (i.e. "hola", "c'est la vie", etc.) and do not require special attention.  

7. Any mispronounced words marked in the original files are transcribed as the intended word instead. 
8. Any utterances that contain only distortions, partial words, or sounds are removed. 
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By following these conventions we avoided emphasizing uninformative noise and focused on 

speech instead. With these formatting steps complete, utterances and their new IDs were saved in 

a .dot format (i.e. 'utterance (utteranceID)' ).  

The CMU7 dictionary (“The CMU Pronouncing Dictionary,” 2008) was used as the 

primary lexicon for this task. It was augmented with a few common words (typically proper 

nouns). A list was compiled of every unique word found in the transcripts and compared to those 

in the augmented dictionary. Any words that were not found in the dictionary were added and 

given a pronunciation using a garbage phone (i.e. equivalent to noise). Approximately 500 words 

consisting primarily of uncommon proper nouns and idiosyncratic words were assigned the 

garbage phone out of a total of the total 8,545 words in the compiled dictionary. These 

modifications to the lexicon are available at http://www.isip.piconepress.com/projects/ 

dpm_inference. Including the garbage phone, sil, and sp, this corpus contains a total of 42 unique 

phones. 

Once the lexicon was compiled and transcripts reformatted, all of the newly created audio 

clips were converted into MFCC features following the same procedure outlined for the TIMIT 

Corpus in the previous section. However, only audio clips that contain no speaker overlap were 

selected for feature extraction and training. Features for each phone instance were again obtained 

using the automatic phoneme alignment generated from HTK and averaged in a 3-4-3 manner to 

ensure that each sample had the same number of features for classification.  

Table 5 – A table showing the amount of CH-E data before and after filtering out 
segments of overlapping speakers. 

Set Data Before 
Filtering (min) 

Data After 
Filtering (min) 

Training 767 308 
Development 185 69 

Evaluation 94 43 
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3.3.3 CALLHOME Mandarin (CH-M) 

The LDC’s CALLHOME Mandarin (CH-M) Corpus was recorded and processed in an 

identical fashion to its English counterpart. The lengthy recordings were again divided into 

smaller audio clips corresponding to single utterances using the time stamps from the CH-M 

transcripts and given a new utterance ID (in the form of originalFileName_clip#). Again, any 

audio that contained simultaneous speech from multiple speakers was discarded. Finally, 

transcripts were reformatted following the same eight steps outlined above for CH-E. The amount 

of data before and after removing simultaneous speech is shown in Table 6. 

The Mandarin lexicon was augmented since the transcripts contained some English 

words that were not originally present in the dictionary. Any phonemes pertaining to vowel 

sounds from these English words were given the neutral tone for their pronunciations. 

Furthermore, popular names, idiosyncratic words and phrases, and any other missing Mandarin 

words were given pronunciations by a native Mandarin speaker following the same phoneme 

labeling methodology used in the original CH-M lexicon. Any unidentifiable words in the 

transcripts were assigned pronunciations given by a garbage phone. These modifications to the 

lexicon are available at http://www.isip.piconepress.com/projects/dpm_inference. The corpus in 

total contains 92 phoneme labels. The CH-M audio data was then converted to features using the 

same approach described above for TIMIT and CH-E.   

3.4 Baseline Algorithm Implementations  

Most published work that utilizes the CALLHOME corpora focuses on a wide variety of 

Table 6 – A table showing the amount of CALLHOME Mandarin data before and after 
filtering out segments of overlapping speakers. 

Set 
Data Before 

Filtering (min) 
Data After 

Filtering (min) 
Training 512 251 

Development 127 67 
Evaluation 69 31 
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tasks but does not directly involve phone recognition as presented in this work. Consequently, to 

ensure the validity of these baseline experiments, we also investigated algorithm performance on 

TIMIT. In this section, the general setups of the baseline experiments are described. All 

programming was completed in MATLAB in order to take advantage of its wide variety of 

built-in functions. It is worth noting here that for all algorithms the means and covariances of the 

training data were used to normalize the training, validation, and evaluation sets for each corpus 

such that they have zero mean and a standard deviation of one.  

The neural network algorithm was run using a single hidden layer as can be seen in the 

example architecture shown in Figure 3. The network consisted of an input layer of 120 features 

(corresponding to an unrolled version of the averaged MFCC features mentioned above), a hidden 

layer with a varying number of neurons, and an output layer whose size corresponded to the 

number of possible phonemes. MATLAB’s built-in “newff” function (Mathworks, 2013a) was 

used for this model. This neural network implementation used tangent sigmoid transfer functions 

between each layer and resilient back propagation to train the network (Bishop, 1995). The 

stopping criterion was set by 1000 maximum epochs or 20 consecutive epochs that failed to 

improve performance. For each network, the algorithm was run for 10 iterations and error rates 

were found for the number of neurons in the hidden layer ranging from 20 to 300.  

The random forest algorithm was implemented with MATLAB’s built-in “TreeBagger” 

(Mathworks, 2013b) function which simply required inputting the number of trees used in the 

ensemble. This parameter was varied to determine an optimal error rate for this algorithm. 

MATLAB’s implementation of the algorithm was computationally expensive (i.e. storing large 

ensembles requires very large amounts of memory) so error rates were averaged across only 5 

iterations. Error rates were found as the number of trees in the ensemble were varied from 10 to 

150. 

In K-nearest neighbors, MATLAB’s built-in “knnsearch” function (Mathworks, 2013c) 

was used to calculate the Euclidean distance for up to K=99 nearest neighbors. Output predictions 
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were made for a given phoneme segment by selecting the mode of the labels in the K nearest 

neighbors. If multiple modes existed, the label with the closest average distance was selected for 

the output prediction.  

The most important of the baseline algorithms used in this work was the GMM. Many 

HMM-based speech recognition systems are based on GMMs. Most GMM-based acoustic models 

specify a set number of mixture components to be used for every phoneme model. Therefore as a 

baseline experiment, the same method was applied here and error rates were found for different 

numbers of mixture components. A GMM was constructed using MATLAB’s built-in 

“gmdistribution.fit” (Mathworks, 2013d) function which takes the number of components as an 

argument along with a few other parameters that specify initialization and covariance structure. 

To prevent errors created by ill-conditioned covariance matrices (which is not uncommon when 

using features that include first and second order derivatives), the covariance matrix was limited 

to be diagonal and a small value (1E-15) was added to the diagonal to ensure that it was positive-

definite. The model parameters were then optimized using the EM algorithm. Output labels were 

generated by finding the model that yielded the maximum likelihood. Finally, the best error rates 

were taken from ten random initializations as the number of mixture components was swept from 

1 to 64 for TIMIT and 16 to 192 for CH-E and CH-M. 

3.5 Variational Inference Algorithm Implementations  

As mentioned in Chapter 2, the three variational inference algorithms used in this work 

make use of the stick-breaking representation of a DP. This implies that each algorithm initially 

begins by assigning one mixture component to a given model and estimating the means and 

covariances of the variational distributions shown in (19), (24), or (25). Pieces of the stick, or in 

this case new mixture components, are broken off if doing so minimizes the cost function shown 

in (18). In these experiments, the means and covariances of the new components were re-

estimated and this process continued until an optimal number of mixture components were found. 
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Thus, the models grew automatically to better fit the data. This process was repeated for each 

phoneme label and finally classification was conducted using maximum likelihood. Again, this is 

very different from the standard GMM where mixture components are fixed for each phoneme 

label. 

The number of discovered mixture components and the amount of CPU training time 

used by each algorithm were also recorded to better assess their viability in acoustic modeling 

using MATLAB’s built in profiler and tic and toc functions (Mathworks, 2013e) Each algorithm 

was randomly initialized ten times and average error rates, number of mixture components, and 

CPU training times were recorded. 

All data was normalized in the same method mentioned above for the baseline algorithms 

prior to training. The variational inference algorithms were implemented in MATLAB and were 

provided by Kurihara (2010). For all three algorithms, the default parameters were selected and 

set using the functions provided in the software package: mkopts_avdp, mkopts_csb, and 

mkopts_cdp for AVDPM, CVSB, and CDP respectively. Each algorithm had one additional 

parameter that was tuned. For AVDPM, this was the initial depth of the KD tree which can be 

used to control the balance between computational complexity and accuracy. CVSB and CDP, on 

the other hand, were investigated using a wide array of truncation levels that served as the 

maximum number of possible mixture components (i.e. stick breaks). 
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CHAPTER 4 

RESULTS AND DISCUSSION 

Chapter 4 focuses on the results found from the experiments using the baseline and 

variational inference algorithms described in Chapter 3. Optimal parameters for each system were 

found by tuning the system to minimize classification error (the proportion of phonemes labeled 

incorrectly to the total number of phonemes) on validation sets. We refer to this as the validation 

error. Since the depth of the KD tree affects the balance between computational resources and 

accuracy, and the truncation level for CVSB and CDP serves as a maximum number of mixture 

components, the computational complexity was investigated as these parameters were varied. 

This was evaluated by measuring the CPU time required to train models using each variational 

inference algorithm as the depth of the KD tree or truncation levels were changed. Optimal 

operating points were selected from these tuning experiments for each variational algorithm and 

the final misclassification error was tabulated (as shown in Table 7). 

4.1 Baseline Algorithm Tuning 

Having prepared the data following the steps outlined in Chapter 3, feature vectors and their 

corresponding labels were processed using a traditional pattern recognition paradigm in which 

each algorithm was trained on a designated set of data and then optimized on a held-out set of 

data. Sets of validation data for each corpus were used to select the optimal parameters.  

We first optimized the neural network, random forest, K nearest neighbor, and GMM 

algorithms to establish solid baselines for performance. In Figure 8, we show neural network 

performance as a function of the number of neurons used in the network. It was found that this 

model performed best with 140, 170 and 130 neurons in the hidden layer for TIMIT, CH-E, and 

CH-M respectively. It can be seen that 150 neurons in the hidden layer is a good general 

operating point for these speech recognition experiments since it results in less than 0.25% 
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degradation in performance for any of the corpora, and delivers good performance across the 

range of recording environments and languages. Furthermore, the noisier conversational 

telephone speech of CH-E and CH-M display a greater susceptibility to overfitting than TIMIT. 

This is not unexpected since all three corpora have comparable amounts of data but CH-E and 

CH-M are recorded on a much noisier acoustic channel. Thus the models are partially being fitted 

to more noise which degrades misclassification errors. 

Next, the random forest baseline system was optimized with respect to the number of 

trees, as shown in Figure 9. The error rate decreased monotonically with the number of trees 

used. Although there are more efficient implementations of this algorithm, the approach used 

here, based on MATLAB’s TreeBagger function, is computationally expensive. Configurations 

larger than 150 trees were beyond the computational capabilities of our computing infrastructure, 

both in terms of CPU time and disk space. Hence, we selected 150 trees as an operating point for 

these experiments. However, the trends shown in Figure 9 indicate that with additional resources, 

random forests could potentially yield the best error rates. Thus an optimal operating point for 

Figure 8 – The average misclassification error is shown for 10 iterations of the single hidden 
layer neural network model for TIMIT (left) and CH-E and CH-M (right). The optimal 
number of neurons was determined to be 150 for acoustic modeling tasks. 
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this algorithm depends heavily on the implementation used, the amount of computational 

resources available, and the importance of good generalization (avoiding over-fitting). 

The K Nearest neighbors algorithm showed significant variation in performance as a 

function of K. Results are summarized in Figure 10. Performance was optimal for K=15 on 

TIMIT, K=27 for CH-E, and K=28 for CH-M respectively. This again indicates that simpler 

models (i.e. fewer neighbors for KNN) can be used for studio recorded read speech than noisier 

conversational telephone speech. From these results it is shown that selecting K=20 for other 

speech recognition experiments would yield near optimal error rates since this results in less than 

0.5% absolute degradation in error rate for any of the corpora used in this work.  

GMMs were examined closely since they are commonly used in speech recognition (i.e. 

they are used to model states in HMMs). Moreover, since the variational inference algorithms are 

used to find the optimal number of mixture components and their respective parameters, a GMM 

serves as an important comparison point for nonparametric Bayesian models. Furthermore, while 

neural networks, random forests, and K nearest neighbors have operating points that are fairly 

Figure 9 – The average misclassification error is shown for 5 iterations of the random forest 
algorithm for TIMIT (left) and CH-E and CH-M (right). An operating point of 150 trees 
was selected due to computational considerations. 
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similar for each corpus, the optimal performance of a GMM varies significantly across the three 

corpora.  Results are summarized in Figure 11. We see that the optimal number of mixtures 

ranges from 8 for TIMIT to 64 for CH-M and 128 for CH-E. This emphasizes the importance of 

finding optimal numbers of mixture components for each phoneme label rather than assigning a 

set number for every class. 

To confirm that the experimental setup yielded reasonable performance, features 

extracted using TIMIT’s manual phoneme alignments were first used. It was found that this 

approach led to error rates between 30%-40% that were very similar to the range of values found 

in other published work (Ager et al., 2009).  However, as explained previously, this operating 

point is not a fair comparison point for the other corpora because we do not have manual 

segmentations for the data. Hence, in order to do a fair comparison across corpora, features were 

extracted from automatically generated segmentations. Performance for both the manual and 

automatic segmentations are shown in Figure 11.  

The optimal number of mixture components for TIMIT was found to be 4 for the manual 

Figure 10 – The misclassification error for KNN as a function of K, the number of nearest 
neighbors, is shown for TIMIT (left) and CH-E and CH-M (right). The optimal operating 
point selected for acoustic modeling was K = 20. 
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phoneme alignments, generating an error rate of 31.56%. The automatically generated alignments 

produced an optimum at 8 mixture components, generating an error rate of 38.02%. This 

indicates that despite some degradation in performance, the general trends remain unchanged. 

This suggests that the automatically generated alignments were suitable for this work. We have 

no alternative for large speech corpora since manual segmentations are not available. We often 

use a high performance speech recognition system operating in forced alignment mode to 

generate high quality segmentations for oracle-type studies that need segmentation information. 

As expected, the clean studio recorded data of TIMIT yielded significantly better results 

than the noisy, conversational telephone speech of the CH-E and CH-M corpora. The gap in 

performance between CH-E and CH-M was never greater than 7.08% for any baseline algorithm 

(i.e. KNN) and a minimum disparity of 4.24% was found using GMMs. This shows that although 

producing worse error rates than other baseline algorithms, GMMs are better suited to generalize 

across different languages. Furthermore, the discrepancies in error rates can easily be attributed to 

Figure 11 – The misclassification error for 10 iterations of a GMM is shown as a function of 
the number of mixture components. Results for TIMIT are shown on the left, and results 
for CH-E and CH-M are shown on the right. Though there is measurable degradation in 
performance when using automatically-generated alignments, the trends are consistent. 
Further, there are significant differences between the optimal settings for TIMIT and 
CALLHOME. 
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the number of phoneme labels (42 in CH-E and 92 in CH-M). Since both corpora have a similar 

amount of training, validation, and evaluation data, each phoneme model in CH-M is essentially 

trained on less than half the data of each phoneme model in CH-E. This in large part indicates 

that the general disparity in overall speech recognition performance is most likely due to a lack of 

accepted transcription segmentation or the flexible grammatical structure of Mandarin, not the 

acoustic models. The flexibility in sentence structure indicates that word order is more 

interchangeable than a language such as English, and that makes an N-gram language model 

significantly less effective. This is further exacerbated by the high number of homophones that 

would make it extremely difficult to determine more likely word orders. 

4.2 Variational Inference Algorithm Tuning  

The three variational inference algorithms were evaluated on the same three corpora. To 

tune these algorithms the initial depth of the KD tree was varied for AVDPM and the truncation 

level was varied for CVSB and CDP. These results are shown in Figure 12 and Figure 13. For 

AVDPM, a KD tree depth of 6 is optimum. For CVSB and CDP, a truncation level of 4 is 

optimum for TIMIT and 6 is optimum for the CALLHOME corpora. 

For AVDPM, CH-M displayed the expected trend of improved error rates as the initial 

depth of the KD tree was increased. However, TIMIT and CH-E displayed anomalous increases 

in error rates. CVSB and CDP also showed strange behavior at a truncation level of 2 for CH-E 

and CH-M. To further investigate these phenomena “ideal” data was simulated from four 

bivariate GMMs and used to evaluate the algorithms. The results did not indicate any spike in 

error at low truncation levels and mirrored the trend found for TIMIT. This led to a hypothesis 

that these algorithms have difficulty finding good covariance matrices for noisier data that can 

cause degradations in performance. 

Upon closer inspection it was found that when training on CH-E, some of the phones’ 

mixture components were so sparsely populated that the covariance could not be directly 
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calculated. Furthermore, using 3-4-3 averaging created feature vectors that were highly 

correlated, making direct covariance calculation difficult. Although these variational inference 

algorithms estimate covariances, they can produce bad approximations in such cases. To confirm 

that the spike in error was caused by this, all mixture components of a given phoneme were 

assigned a shared covariance matrix. As one would expect, general performance worsened but the 

spikes in error were removed, indicating that they were caused by poor estimations due to sparse 

mixture component populations. There are many techniques to avoid these problems, such as 

selecting only mixture components that are sufficiently populated or by independently calculating 

the covariance matrices using other methods, but this is beyond the scope of this work. 

4.3 Evaluation Set Performance 

A summary of results for all the algorithms studied in this thesis is shown in Table 7. 

With the exception of GMM, the baseline algorithms (NN, RF and KNN) yielded error rates that 

outperform the DPM-based approaches (AVDPM, CVSB, and CDP). NNs, for example, gave an 

error rate of 31% on TIMIT, while the DPM-based approaches delivered error rates in the range 

Figure 12 – The misclassification error rates are shown as the initial depth of the KD tree is 
varied for TIMIT (left), CH-E, and CH-M (right).   
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of 37% to 40%. AVDPM and GMM delivered comparable performance, while CVSB and CDP 

were slightly worse on TIMIT and comparable on CALLHOME. 

The baseline algorithms (NN, RF and KNN) are known to work well for static 

classification problems but can be less suitable for data that dynamically changes. GMMs are of 

particular interest since they are an integral part of an HMM. GMMs are known to perform well 

on time-varying data like speech when integrated into an HMM framework. Similarly, DPMs and 

the inference algorithms used in this work can be extended to hierarchical Dirichlet process 

HMMs (HDP-HMMs) (Harati & Picone, 2012; Harati & Picone, 2013) that use nonparametric 

Bayesian methods to automatically discover model structure. HDP-HMMs are currently limited 

to using MCMC methods and have not yet incorporated any of the variational inference 

algorithms proposed here (Harati et al., 2012). From Table 7 we conclude that the performance of 

AVDPM, CVSB and CDP are comparable when averaged across a wide range of conditions. 

One major distinction between the GMM and DPM models is the significant decrease in 

the number of mixture components found by the DPM models. This is shown in the “Notes” 

column of Table 7. AVDPM, for example, found approximately 5 mixture components per 

Figure 13 – The misclassification error rates for CVSB and CDP are shown as the 
truncation level is varied for TIMIT (left), CH-E, and CH-M (right). 
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phoneme label compared to GMM’s 128, a decrease of more than 2500%. Again, this is due to 

the nature of the stick breaking representation of the DPM. Instead of arbitrarily selecting the 

number of mixture components for every phone class as employed by the parametric GMM 

approach in this work, new stick breaks (or mixture components) are broken off only if the cost 

function in (18) is minimized. In this way DPMs find the underlying structure of the data. Ad hoc 

strategies can be employed to make the number of mixture components in GMM adapt to the 

data, but these techniques are not integral to the algorithm. 

4.4 Computational Complexity Analysis 

Though Table 7 shows that the variational inference algorithms produce comparable error 

rates to the baseline GMM system, they do so using far fewer numbers of mixture components. 

This is significant since it supports our hypothesis that DPM approaches can control the 

complexity of a system and adapt to the complexity of the data. To apply these methods to speech 

recognition, though, it is important that they not only produce low error rates but also be 

Table 7 – A comparison of misclassification error and number of mixture components for 
the evaluation sets of the TIMIT, CH-E, and CH-M corpora using automatically generated 
alignments. 

Model 
TIMIT CH-E CH-M 

Error 
% Notes Error 

% Notes Error 
% Notes 

NN 30.54% 140 neurons in 
hidden layer 47.62% 170 neurons in 

hidden layer 52.92% 130 neurons in 
hidden layer 

KNN 32.08% K = 15 51.16% K = 27 58.24% K = 28 

RF 32.04% 150 trees 48.95% 150 trees 55.72% 150 trees 

GMM 38.02% # Mixt. = 8 58.41% # Mixt. = 128 62.65% # Mixt. = 64 

AVDPM 37.14% Init. Depth = 4 
Avg. # Mixt. = 4.63 57.82% Init. Depth = 6 

Avg. # Mixt. = 5.14 63.53% Init. Depth = 8 
Avg. # Mixt. = 5.01 

CVSB 40.30% Trunc. Level = 4 
Avg. # Mixt. = 3.98 58.68% Trunc. Level = 6 

Avg. # Mixt. = 5.89 61.18% Trunc. Level = 6 
Avg. # Mixt. = 5.75 

CDP 40.24% Trunc. Level = 4 
Avg. # Mixt. = 3.97 57.69% Trunc. Level = 10 

Avg. # Mixt. = 9.67 60.93% Trunc. Level = 6 
Avg. # Mixt. = 5.75 
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computationally efficient. For this reason the TIMIT Corpus was used to further investigate the 

computational complexity of each algorithm as a function of key algorithm parameters, i.e. initial 

KD tree depth or truncation levels, and also as a function of the amount of training data used.  

AVDPM grows exponentially as the initial depth of the KD tree increases. Kurihara et al. 

(2006) states that the complexity of AVDPM is proportional to the number of outer nodes in the 

KD tree which is equivalent to O(2depth) where a depth=1 represents a single split of the data into 

two outer nodes. The cost of building the KD tree is an additional O(NlogN), though Kurihara et 

al. (2006) use optimization techniques to help mitigate this cost. Computational performance is 

summarized in the left plot in Figure 14. On first inspection AVDPM’s performance seems 

problematic since large initial depths require significantly longer training times. Fortunately, 

Figure 12 indicates that relatively low initial depths can provide good performance: initial 

depth = 4 (TIMIT), 6 (CH-E), or 8 (CH-M). Additionally, if an initial depth of 4 is used for 

training the CH-E and CH-M corpora, there is only a 1.32% and 1.14% absolute degradation in 

error respectively. Since TIMIT and CALLHOME corpora are from very different recording 

Figure 14 – The average amount of CPU training time is shown for 10 iterations of AVDPM 
(left), CVSB (right) and CDP (right) on TIMIT as a function of the KD tree depth and 
truncation level. AVDPM varies exponentially with the KD tree depth, while CVSB and 
CDP are linear with respect to the truncation level. 
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environments, and even different languages, it can be assumed that this is a good operating point 

for most acoustic model training regardless of the data. 

The complexity of CVSB and CDP are both O(TN) (Kurihara et al. 2007), which can be 

seen in Figure 14, where the average training time grows linearly but rapidly as the truncation 

level is increased. This is reasonable since both algorithms generally use the maximum number of 

mixture components when the truncation level is low (e.g. the average number of mixture 

components found by CVSB on CH-E is 5.89 when the truncation level is 6). Therefore, as the 

truncation level increases, so does the training time. Again, using an optimal truncation level for 

the TIMIT Corpus degraded error rates on CH-E and CH-M by less than 0.5%. 

The most significant finding in this work is shown in Figure 15 where the amount of 

average CPU training time for TIMIT’s 40 phone classes across 200 iterations is found as the 

amount of training data is varied between 10,000 and 120,000 samples (the automatic phoneme 

alignment for TIMIT found a maximum of ~128k phonemes). CDP and CVSB, as expected, 

  

Figure 15 – The average amounts of CPU training time vs. the number of training samples 
across 200 iterations at optimal operating points on the TMIIT Corpus are shown. Trends 
are extrapolated to show that AVDPM would outperform CVSB and CDP on much larger 
corpora such as Fisher.  
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depict an almost identical linear increase as additional training data is used since they are both 

characterized by a complexity of O(TN). AVDPM, however, requires significantly longer CPU 

times than CVSB and CDP for small amounts of data. This is due to the initial O(NlogN) cost of 

building the KD tree. This is a one-time cost though and it is apparent that once constructed the 

algorithm is able to train on larger amounts of data without significant computational cost.   

For this reason trend lines were used to extrapolate the amount of time these algorithms 

would theoretically require to train a much larger corpus of data such as Fisher (Cieri et al., 2004) 

which is almost one thousand times larger than TIMIT (~108 training samples). To verify this 

extrapolation, larger data sets were simulated by multiplying the number of samples from the 

TIMIT Corpus and then adding additional Gaussian noise. Due to limitations in computational 

resources a maximum corpus of 3 million samples was generated rather than something as large 

as the Fisher Corpus. These points are shown in Figure 15 and the extrapolated trend line was 

verified (though CVSB and CDP have such similar training times that the points are 

indistinguishable from each other). Thus, it is apparent in Figure 15 that although CVSB, CDP, 

and AVDPM require comparable training times for TIMIT, AVDPM is about 3 orders of 

magnitude faster for large corpora such as Fisher.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK   

One of the largest obstacles in the field of speech recognition is developing a system that 

is robust to significant variations in the acoustic channel and is able to generalize well for all data. 

The integration of nonparametric Bayesian methods in acoustic modeling is a step in this 

direction. The goal of this work was to introduce one such method, a Dirichlet process mixture 

(DPM), to a phone classification problem to show that these methods are computationally viable 

for big data problems such as speech recognition. However, due to the infinite number of 

parameters associated with nonparametric methods, the direct manipulation of target posteriors is 

intractable. Therefore inference algorithms are used to approximate these distributions and make 

calculations analytically solvable. Although there are many forms inference algorithms can take, 

three recent Bayesian variational inference algorithms – Accelerated Variational Dirichlet Process 

Mixtures (AVDPM), Collapsed Variational Stick Breaking (CVSB), and Collapsed Dirichlet 

Priors (CDP) – were assessed in this work. 

Parametric models, such as the standard GMM used in many acoustic models, require 

significant tuning and make many rigid assumptions about the structure of the data, e.g. fixing the 

number of mixture components for all phone models. This is largely presumptuous, and it is far 

safer to assume that each phoneme has its own unique structure. In this work nonparametric 

methods in conjunction with AVDPM, CVSB, and CDP were used to discover the optimal 

number of mixture components and their corresponding weights for each individual phoneme. 

Finding this structure is best represented by a multinomial distribution but priors are also 

necessary to choose these values in statistically meaningful ways. Dirichlet distributions, and by 

extension DPMs, are the conjugate prior for the multinomial distribution and were therefore 

selected as the nonparametric method for this classification task.  
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It was shown in this work that all three variational inference algorithms produce 

comparable error rates to the standard GMM approach but with as much as 25 times fewer 

mixture components. While the optimal operating points for AVDPM, CVSB, and CDP are 

slightly different for each corpus, it was shown that using an initial depth of 4 of the KD tree for 

AVDPM and a truncation level of 6 for CVSB and CDP are very reasonable selections for future 

acoustic modeling tasks. These choices resulted in less than 1.32% absolute degradation for 

AVDPM and less than 0.5% absolute degradation in error for CVSB and CDP. Furthermore, the 

training time for CVSB and CDP are near identical and grow linearly as the number of training 

samples or truncation level is increased. AVDPM requires exponentially more time to train as the 

initial depth of the KD tree increases but is mitigated by the relatively low operating point found 

in this work. Moreover, although AVDPM requires a substantial amount of CPU time to build the 

KD tree, the amount of training data has a much less significant impact on the required training 

time. This makes AVDPM far superior to CVSB and CDP in the context of speech recognition 

where most corpora are orders of magnitude larger than the ones used in this work. 

Nonparametric techniques such as the ones selected for this work have great potential in 

speech recognition. One obvious extension of these methods is the integration in HMM systems. 

In fact, Harati and Picone (2013) describe the use of hierarchical Dirichlet process HMM (HDP-

HMM) where DPMs are used to not only discover the underlying structure of each state’s 

distribution but to also model the structure of the HMM itself, i.e. transitions between a 

potentially infinite number of states. This work is currently limited to an MCMC-based block 

sampler which is significantly slower than the variational inference algorithms proposed here. 

Implementing variational methods with HDP-HMMs would be a huge step towards building a 

fully nonparametric speech recognition system that is computationally efficient. 

Recently, DBN (Hinton et al., 2012) have also been gaining popularity and are another 

model where nonparametric techniques can be applied. In these systems large neural networks 

with multiple hidden layers are constructed which successfully model the nonlinear data such as 
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speech. Similar to the use in HDP-HMMs, DPMs could be used to find the optimal number of 

hidden layers and also the number of neurons per layer. This would be a significant advance since 

the number of neurons in each layer is generally held constant since it would be overly tedious to 

tune this structure. 

Overall, nonparametric methods appear to be a promising method for automatically 

capturing the underlying structure of data and can be applied to a wide variety of problems. With 

the use of new and computationally efficient inference algorithms such as AVDPM, these new 

methods can be easily extended to other algorithms and applications. It was shown in this work 

that AVDPM in particular can yield comparable performance to a baseline GMM system with far 

fewer parameters while remaining computationally viable for much larger corpora such as Fisher. 
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