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In this work, nonlinear acoustic information is combined with traditional linear 

acoustic information to produce a noise-robust feature set for speech recognition. 

Classical acoustic modeling has relied on the assumption of linear acoustics where signal 

processing is performed in the signal's frequency domain. However, the performance of 

these systems suffers significant degradations when the acoustic data is contaminated 

with previously unseen noise. The objective of this thesis was to determine whether 

nonlinear dynamic invariants can boost speech recognition performance when combined 

with traditional acoustic features. Several experiments evaluate both clean and noisy 

speech data. The invariants resulted in a maximum relative increase of 11.1% for the 

clean evaluation set. However, an average relative decrease of 7.6% was observed for the 

noise-contaminated evaluation sets. The decrease in recognition performance with the use 



 
 
 

 
 
 

of dynamic invariants suggests that additional research is required for the filtering of 

phase spaces constructed from noisy time-series. 
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CHAPTER I  

INTRODUCTION 
 
 

For the past several decades, acoustic modeling for speech recognition has been 

based on the source-filter model and the assumption of one-dimensional wave 

propagation in the vocal tract [1]. The signal processing techniques used to parameterize 

acoustic speech data into features operate primarily in the signal's frequency domain. 

This approach models the vocal tract as a linear filter and captures the lower-order 

characteristics of the speech production process. Recent theoretical and experimental 

evidence has suggested the existence of nonlinear mechanisms in the production of 

speech [2]. It has also been suggested that the characteristics resulting from these 

mechanisms, which are called nonlinear dynamic invariants, contain a significant amount 

of discriminatory information between different types of speech [3]. While the traditional 

linear representation of speech has shown to be a reasonable means of acoustic modeling, 

it fails to capture this higher-order, nonlinear acoustic information. 

Acoustic modeling techniques that exploit the linear characteristics of speech 

have dominated the speech recognition community for the past 50 years, and the success 

of systems that employ these techniques has been well documented [4][5][6]. However, 

the performance of these systems degrades significantly when exposing these systems to 

conditions previously unseen in the training data. Furthermore, these techniques fail to
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 represent the underlying nonlinear properties the signal [7]. Since dynamic invariants 

contain nonlinear information not exploited by linear acoustic characteristics, they can be 

combined with traditional linear acoustic features to form a much more accurate 

acoustical representation. 

The remainder of this chapter provides a discussion of the nonlinear properties of 

speech and an overview of nonlinear dynamic invariants, as well as a discussion of some 

of the recent research involving the use of dynamic invariants for speech recognition. The 

overall thesis structure and contributions are also discussed. 

1.1 Nonlinearity of Speech 

The earliest studies of the vocal tract by Helmholtz in the late 1800's suggested 

that it was a passive, linear acoustic system. Evidence to the contrary of Helmholtz’s 

work was not introduced until the 1960's by Teager and his colleagues [2]. These findings 

were based on experiments which measured airflow rates in different parts of the mouth 

during sustained phonation [8]. The experiments revealed characteristics which violated 

the vocal tract’s assumed linear acoustic model. For instance, observations of the air jet, 

which is the air current expelled by the lungs through the vocal tract, showed that it was 

unstable, attaching and detaching itself from the vocal tract's walls. This unpredictable, 

oscillatory behavior changes the cross-sectional areas of the vocal tract resulting in 

modulations of the air-pressure and velocity fields [9]. This phenomenon is known as 

airflow separation.  

These experiments also measured the location and characteristics of 

vortices [2][8], which are turbulent, swirling flows of air. The generation and propagation 
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of airflow vortices, which have been experimentally found above the glottis in the vocal 

tract, can modulate the energy of the air jet. These airflow characteristics cause frequency 

and amplitude modulations in the speech signal and result in instantaneous variations of 

frequency and amplitude within the signal's pitch period [9]. Formants, which are the 

primary frequency components within a speech signal, are also affected by these 

variations. This evidence suggests that nonlinear mechanisms might be among the 

primary contributors to the speech production process, and could have a major impact on 

the signal. 

1.2 Nonlinear Dynamic Invariants 

The discovery of nonlinear speech production mechanisms in the vocal tract 

paved the way for new research into estimating and representing the nonlinear 

characteristics of speech [1][3][10][11][12]. While linear acoustic properties are 

computed from the signal's frequency domain, nonlinear dynamic properties are 

computed from the signal’s time domain. The speech production system, or vocal tract, is 

composed of many different dynamic mechanisms, each of which modifies the signal 

until the final speech signal exits the vocal tract. Dynamic properties of the speech 

production system are related to these individual vocal tract mechanisms.  

Unfortunately, detailed information about vocal tract mechanisms is not 

observable during speech production. The only available observable is the final speech 

signal. However, since the speech signal is dependent on each of the vocal tract 

mechanisms, the relevant properties of each of these mechanisms are embedded within 

the signal. It is possible to reconstruct some of this information from the final 
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speech [13][14], and dynamic properties of the system can then be estimated from this 

reconstructed information. 

Nonlinear systems can best be represented by their phase space which defines 

every possible state of the system [15]. The dimensions of the phase space correspond to 

the system's dynamic variables, and each point in the space corresponds to a unique state 

of the system. As the state of the system evolves over time, a path is created within the 

phase space. This path is called the trajectory of the system. After a long period of time, 

the system may settle down to a consistent set of states known as the system's attractor. 

Properties of the system's attractor are able to characterize the most important aspects of 

the system. These properties include shape [16], amount of chaos [9], and entropy [3].  

For a speech signal, the only observable is the sound pressure wave that exits the 

speech production apparatus – typically the speaker’s mouth or nose depending on the 

nature of the sound. This is transduced into a one-dimensional electrical signal – voltage 

as a function of time – using a microphone. We will not discuss the transduction process 

in this thesis, even though that further distorts and transforms the speech signal. 

The phase space is not immediately available. Using phase space reconstruction 

techniques, the time series can be embedded into a multidimensional phase space which 

retains the properties of the original phase space [15]. Figure 1 illustrates an example of a 

reconstructed phase space for the sustained phone /ah/ uttered by a single speaker. This 

figure clearly shows that there is structure within the attractor for this phone, and the 

structural properties are necessary to classify this attractor. Interestingly, some properties 

of the dynamic system are invariant between the original and reconstructed phase space. 
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These are the properties which will be most useful since the only available representation 

of the phase space is the reconstructed version.  

Three nonlinear dynamic invariants are explored in this work: 

• Fractal Dimension [16]: quantifies the geometrical complexity of the attractor; 

• Lyapunov Exponents [17]: measures the level of chaos in the attractor; 

• Kolmogorov-Sinai Entropy [3]: measures the average rate of information 
production in a system. 
 

These invariants are combined with the traditional MFCC features to produce new feature 

vectors that exploit both the traditional linear properties of the signal and the underlying 

nonlinear dynamic information. 

1.3 Recent Work With Dynamic Invariants 

Shortly after evidence was presented that suggested the presence of nonlinear 

speech production mechanisms in the vocal tract, a significant amount of new research 

emerged related to nonlinear analysis of speech [3][9][10]. The first of this research 

focused on bridging the gap between the physical observations mentioned in Section 1.1 

 

             Figure 1. Attractor for phoneme /ah/ 
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and the mathematical aspects of nonlinear dynamic systems. The fractal dimension of 

speech signals became the primary focus as it was necessary to establish a geometrical 

description of airflow in the vocal tract. Initial analysis of speech signals revealed that the 

fractal dimension values for fricative sounds were consistently higher than those 

computed from vowel sounds [16]. Further experiments showed that fractal dimension 

could be used to roughly distinguish between unvoiced fricatives, voiced fricatives, and 

vowels [19]. 

Soon, researchers investigated the chaotic nature of speech, and nonlinear analysis 

of speech was broadened to include Lyapunov spectra. Experiments suggested that 

speech signals had positive Lyapunov exponents indicating that the speech production 

system was chaotic [1][17]. As the algorithms used to compute Lyapunov spectra were 

improved, it was shown that Lyapunov exponents could distinguish between different 

types of phonemes [9]. Kolmogorov entropy, or metric entropy, was also explored as a 

means of quantifying the level of chaos in speech signals since it is able to determine how 

much new information is introduced as the attractor evolves. Entropy was also found to 

be able to distinguish between different phonemes [1][3]. 

The studies that followed the initial research shifted focus toward the 

classification of speech signals using dynamic invariants. Many of these studies explored 

the possibility of using dynamic invariants as features to classify speech segments as 

phonemes. Those which attempted this arrived at a similar conclusion: dynamic 

invariants could distinguish between different classes of phonemes, but by themselves, 

could not always classify phonemes of the same type [1][3][10]. It was then suggested 
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that combining the invariants with traditional linear acoustic features might result in 

better classification accuracy [20]. The first continuous speech recognition experiments 

using invariants combined MFCCs with the fractal dimension invariant resulted in 

improved recognition performance [21]. The work presented in this thesis extends this 

work and its application to continuous speech recognition problems of scale.  

1.4 Thesis Organization and Contribution 

The structure of this thesis is outlined below. The current chapter has introduced 

the primary motivation behind this work. The following chapters cover the theoretical 

concepts in more detail and discuss the experiments used to explore the application of 

these concepts to real-world speech recognition systems. 

Chapter II discusses the theory behind nonlinear dynamic invariants. This 

discussion includes the mathematical definition of these invariants, and how they are 

derived from the reconstructed phase space of the system.  This chapter also discusses 

which characteristics of the nonlinear system the different invariants exploit, and how 

these characteristics are applicable to speech. 

Chapter III discusses the initial set of experiments with nonlinear dynamic 

invariants which use feature sets consisting of traditional acoustic features combined with 

nonlinear dynamic invariants to classify signal frames as phonemes. These experiments 

were designed to provide an idea of what kind of effect the invariants will have on the 

performance of a speech recognition system. 

Chapter IV presents two sets of large vocabulary continuous speech recognition 

experiments which use the new features. These features are evaluated on the 
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Aurora 4 Corpus which contains speech recorded under quiet recording conditions mixed 

with a variety of digitally-added noise. The first set evaluates the data recorded in a clean 

environment and tests the recognition performance effects of adding the different 

invariants to the traditional acoustic features. The second set of experiments evaluates 

performance on noisy speech and tests the invariants' robustness to noisy acoustic 

environments. 

Chapter V summarizes experimental results presented in this thesis and briefly 

discusses potential future research directions to overcome the limitation of this work. 
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CHAPTER II  

COMPUTING NONLINEAR DYNAMIC INVARIANTS 
 
 

Unlike traditional acoustic modeling techniques which extract acoustic properties 

from the speech signal's frequency domain, dynamic invariants are estimated from the 

signal's time domain. This chapter describes the process of computing dynamic 

invariants, including reconstruction of the system's phase space, and estimating the 

individual invariants from this reconstructed phase space. 

2.1 Reconstructing the Phase Space 

Dynamic systems are best represented by their phase space. The dynamic system's 

phase space describes the behavior and relationship between the system's dynamic 

variables as time evolves. Each dimension of the phase space corresponds to one of the 

system's degrees of freedom, and the solutions of the system as it evolves over time form 

the system's trajectory. For many systems, the trajectory is drawn to a subset of the phase 

space after a long period of time. This subset is known as the attractor, and its 

characteristics are the basis for nonlinear dynamic invariants [1][15]. 

Dynamic systems can be defined by a set of first-order ordinary differential 

equations. Given a set of initial conditions, it is possible to numerically evaluate these 

equations. A discrete-time dynamic system can be defined as: 
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 ( ),1 nn xfx  =+
  (1) 

The offset of solutions to this equation can then be plotted in the system's phase 

space to form the trajectory. For example, the Lorenz [15] system is defined by the 

following set of equations: 

 ( )nnn xyx −=+ σ1     

 nnnnn zxyrxy −−=+1   (2) 

 nnnn yxbzz +−=+1   

The symbols σ, r and b are the system parameters and define different aspects of the 

shape of the attractor. These parameters are analogous to different physical characteristics 

of the vocal tract, such as vocal tract length, cross-sectional area, size of vocal cords, etc. 

One major difference, however, is that the vocal tract characteristics require much more 

than three parameters for an accurate model. 

Figure 3 shows the resulting Lorenz attractor in the system's phase space after 

numerically integrating the Lorenz system. Only the x and y components are plotted for 

visualization simplicity. The attractor of this system is clearly seen as the two spirals 

between which the trajectory alternates. Figure 2 shows the solutions for the Lorenz 

system’s x variable, and plotting these solutions versus time further illustrates the 

bimodal behavior of the system as the solutions alternate between an upper and lower 

range of values. 
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The equations in (2) provide a complete definition of the Lorenz dynamic system. 

In practice, however, this complete description is not accessible [15]. Natural systems, 

such as speech production, have many unobservable mechanisms [14]. For example, it is 

not practical to measure the dimensions of a speaker's vocal tract, air flow speeds and 

pressure near the vocal cords, and to account for all other mechanisms which impact the 

speech signal as it is being generated. Only the final speech signal is available for 

observation. However, since the speech signal was modified by each of the mechanisms 

in the vocal tract, it contains a certain amount of information about them. Before dynamic 

invariants can be computed, some of this hidden information needs to be estimated by 

reconstructing the attractor. This is achieved using phase space reconstruction methods. 

The reconstructed attractor must closely resemble the attractor of the original dynamic 

system in order for the dynamic invariants to accurately reflect the properties of the 

system. 

The simplest method of embedding is called time-delay embedding. In the 

 
Figure 3. Trajectory plot of x and y 

variables of the Lorenz 
system 

 

 
Figure 2. Solutions for a single 

variable, x, of the Lorenz 
system 
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reconstructed phase space achieved using this method, the phase space elements are 

composed of time-lagged versions of the original time-series. Each phase space element 

is defined as: 

 ( ),,...,, )1( ττ −++= mnnnn ssss  (3) 

where τ is the number of delay samples to use, and m is the number of embedding 

dimensions. In (3), sn is an observation of one of the system’s variables and is defined by: 

 ( )( ),)tnxssn ∆=  (4) 

where the observed variable is x. The collection of these elements composes the entire 

reconstructed phase space, which can be represented in matrix form by: 

 .
)1(222

)1(111

)1(0
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m
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m
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To illustrate this method, solutions to the x variable from the Lorenz system in (2) 

are used for observations as in (4). Using three embedding dimensions and a time delay 

 
Figure 4. Reconstructed Lorenz attractor from the x component 
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of five samples, the reconstructed phase space in Figure 4 is achieved. Only the x and y 

components are plotted for visualization simplicity. The overall, two-loop structure of the 

original attractor shown in Figure 3 is preserved. More importantly, the nonlinear 

dynamic invariants computed from this reconstructed attractor will be consistent with 

those computed from the original attractor, hence the name invariants [15][22]. 

For effective time-delay embedding, the choices for the time delay length, τ, and 

number embedding dimensions, m, are determined experimentally [23]. The choice for τ 

is based on the correlation between the original and the time-delayed sets of observations. 

If the time-delay is chosen too small, there will be a high correlation between the sets, 

and the resulting attractor will be distorted. On the other hand, if the chosen time-delay is 

too high, the correlation between the observation sets will be low, which will also result 

in a distorted reconstructed attractor [15][24]. 

These two cases are illustrated in Figure 6 and Figure 6 below. In the case where 

the time delay is too small, the high correlation between the original observation set and 

 
Figure 5. Reconstructed Lorenz 

attractor where time delay 
is too small  

 

 
Figure 6. Reconstructed Lorenz 

attractor where time delay 
is too large 
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the time-delayed set causes the reconstructed trajectory to cling to a line described by the 

equation x = y. In the other case, when the time-delay is too large, the low correlation 

between the different sets causes the reconstructed trajectory to become much more 

chaotic, distorting the attractor enough that the computed invariant properties will be 

inaccurate. In general, a good choice for τ is the first zero of the autocorrelation function 

of the observed samples [15][24].  

Choosing the correct number of embedding dimensions requires the detection of 

false nearest neighbors within the phase space [15]. If m is chosen to be large enough, 

neighboring states should still remain near to each other as their corresponding 

trajectories evolve over a short time period. For example, suppose a time series is 

embedded in m dimensions, and a point s is on a given trajectory in the reconstructed 

phase space as in Figure 7 where s is shown in red. The neighbors of s are points on 

neighboring trajectories which fall within a certain radius centered around s. In Figure 7, 

 
 

Figure 7. A point s in a reconstructed phase space and its nearest neighbors 
on neighboring trajectories 
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this radius is shown as a blue circle, and the nearest neighbors are shown as blue points. 

The set of points including s and its neighbors should remain relatively close as 

the trajectories evolve over a single time step. If any neighbors of s do not follow this 

trend, they are labeled false nearest neighbors, as illustrated in Figure 8.  

As the trajectories evolve over one time step, two of the points remain close to the 

original trajectory while two do not. The two that fall outside of the radius after the time 

evolution are labeled as false nearest neighbors, and this indicates that the chosen number 

of embedding dimensions is too low. In general, false nearest neighbors are the result of 

trajectories which appear to be close to each other in m dimensions, but are actually far 

from each other in m+1 dimensions. Choosing the correct number of embedding 

dimensions is a matter of minimizing the number of false nearest neighbors in a 

reconstructed phase space [15][23]. 

 
 

Figure 8. A point s in a reconstructed phase space and its neighboring 
trajectory positions after one time step 
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The choice of m is not as constrained as the choice of the time delay. It has been 

shown that if the chosen value of m is larger than necessary, the resulting invariant values 

will not be negatively affected [15][23]. This seems to suggest that overestimating m 

would be effective. However, the computational complexity of the invariants increases 

with a higher number of embedding dimensions, so this prevents the use of an 

excessively large number of embedding dimensions. Additional criteria for choosing 

values for these parameters exist for specific algorithms and are discussed in subsequent 

sections. 

Time-delay embedding is extremely effective when the observed time series is not 

contaminated with large amounts of noise [24]. However, this is hardly the case in actual 

voice applications which often involve noisy ambient environments. A more accurate 

phase space reconstruction can be achieved using singular value decomposition (SVD) 

embedding [1][22][24]. The SVD embedding method involves two steps, the first of 

which is similar to time-delay embedding. For the first step, the original time series is 

embedded into a high dimensional space with a time delay of one sample. The number of 

embedding dimensions in this step is referred to as the window size in the context of 

SVD embedding. The window size is generally chosen to be high in the presence of 

significant noise. Next, a projection based on the singular vectors of the embedded data is 

applied to the phase space. The dimensionality is then reduced by identifying components 

which correspond to noise and removing them.  

 Both methods accomplish the same task of reconstructing the phase space from a 

single observed time-series. However, the SVD embedding method results in a smoother 
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estimated attractor than time-delay embedding when reconstructing the phase space from 

noisy data. 

2.2 Lyapunov Exponents 

The dynamic behavior of the trajectories within a phase space is an important 

property of dynamic systems [1][15][17]. Lyapunov exponents are used to quantify this 

property by describing the relative behavior of neighboring trajectories within an 

attractor. More specifically, they help determine the level of predictability of the system 

by analyzing trajectories that are in close proximity to each other, and measuring the 

change in this proximity as time evolves. The separation between two trajectories with 

close initial points after N evolution steps can be represented by: 

 ,))0(()0()( 
dx

xfdxNx
N

∆≈∆  (6) 

where f defines the evolution function of the system. Lyapunov exponents provide a 

global analysis of this separation behavior between the trajectories within the attractor. 

 Figure 9 illustrates three basic behaviors that neighboring trajectories may exhibit. 

A group of trajectories may converge, moving closer together as time evolves. They may 

 

a)        b)     c)  
 

Figure 9. Neighboring trajectories with a) convergent, b) divergent, and c) steady 
relative behavior. 
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also diverge, separating from each other over time. They may also neither converge nor 

diverge, but maintain steady distance between each other in a stable limit cycle [15]. In 

general, Lyapunov exponents quantify the level of chaos, or sensitivity of the system to 

initial conditions, within an attractor. A dissipative attractor, completely composed of 

trajectories which converge to a fixed point will have a negative Lyapunov exponent. An 

attractor composed of trajectories which both exponentially converge and diverge over 

time with little predictability will have a positive Lyapunov exponent indicating chaotic 

behavior, and attractors with trajectories exhibiting stable relative behavior usually have a 

Lyapunov exponent close to zero. 

 The computation of a Lyapunov exponent that describes the global chaotic 

behavior of the attractor requires the averaging of many local behaviors. Trajectories are 

first examined locally as small subsets of the global attractor, and the behaviors for the 

local component are averaged to describe the behavior of the attractor as a whole. The 

following is a high-level description of the algorithm used to compute Lyapunov 

exponents. 

1. Reconstruct phase space from the original time-series data. 

2. Select a point 
ns  on the reconstructed attractor. 

3. Find a set of nearest neighbors to 
ns . 

4. Measure the separation between 
ns  and its neighbors after as time evolves. 

5. Compute the local Lyapunov exponent from separation measurements. 

6. Repeat 2 though 5 for each 
ns  of the reconstructed attractor. 

7. Compute average Lyapunov exponent from local exponents.  
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Mathematically, the Lyapunov exponent is represented by: 

 ),)J(eigln(1
lim

n

0p
i∏

=∞→
= s

nn
i

λ  (7) 

where J is the Jacobian of the system as the point s moves along the attractor. The value 

n is the number evolution steps, and i refers to an index in the Lyapunov spectrum which 

has a number of elements equal to the number of embedding dimensions [3]. Typically, 

values for all spectral elements are computed, and highest value is chosen to be the 

Lyapunov exponent [17]. 

 The parameters which must be chosen for this algorithm include the size of the 

neighborhood, the number of time evolution steps, and the number of embedding 

dimensions for SVD embedding. For the most part, the number of neighbors should be 

found experimentally. However, it has been shown that a good starting point is to use 

2m+1 neighbors where m is the number of embedding dimensions. In general, the 

neighborhood size should be large enough to capture local dynamics around a given point 

in the phase space, but constrained enough to maintain localization of the dynamics 

within the neighborhood [15][17]. 

 The choice of the number of evolution steps, n, is limited by computation time. 

Ideally, this value should be very large as seen in (7), but larger values increase 

computational complexity. Observing the Lyapunov exponents as a function of evolution 

steps, however, usually indicates that the value of the exponent begins to level off 



 
 

20 
 

 
 

Figure 10. A simple illustration of self-similarity using subdivisions of a square 

 

asymptotically for a relatively low number of evolution steps. As with the size of the 

neighborhood, the optimal value for this parameter should be tuned and chosen 

experimentally. 

The choice of embedding dimension is, again, based on experimentation. It is 

usually a good idea to choose an initial embedding dimension using techniques described 

in Section 2.1. By extracting Lyapunov exponents using this value and subsequently 

increasing values, the exponent should level off asymptotically. As mentioned 

previously, invariant computations are not adversely affected by an embedding 

dimension which is too high, but the computation time will increase significantly as the 

number of embedding dimensions increases. 

2.3 Fractal Dimension 

Some objects with geometric symmetry exhibit a property called self-similarity. 

An object is characterized as self-similar if it is composed of smaller versions of 

itself [15]. A simple example of such an object is a square in a two-dimensional plane, as 

illustrated in Figure 10. A square can be continuously subdivided into smaller squares 

where a close-up view of one of the smaller squares appears identical to the original. 

These special geometrical structures are called fractals. 
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The dimension of a fractal is used to quantify the degree to which it occupies a 

space. The term ‘fractal’ comes from the fact that these geometrical structures are not 

always described as having an integer number of dimensions, but rather a fractional 

dimension. It is a well known fact that the square in the Figure 10 is a two dimensional 

structure, but the derivation of this number may be less obvious. The first square in 

Figure 10 is subdivided into four smaller squares, each of which is a factor of two smaller 

than the original. In the second square, each smaller square is subdivided into four 

smaller squares where each of the new squares is, again, smaller than its preceding 

original by a factor of two. Subsequent divisions of the square follow this trend, and the 

subdivisions can continue indefinitely. The dimension of this object can be computed by 

the simple formula: 

 ,
log
log

N
MD =  (8) 

where M is the number of self-similar structures resulting from a division of the original 

structure, and N is the factor of size difference between the original structure and the 

smaller subdivided structures. For the square, these values are 4 and 2, respectively. 

Therefore from (8): 

 .2
2log
4log
==D  (9) 

As mentioned previously, many fractal structures have fractional dimensions. One simple 

example of such a structure is the Sierpinski triangle which is composed of copies of a 

simple equilateral triangle. This structure is illustrated in Figure 11. Each subdivision of a 
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Figure 11. Fractal structure of a Sierpinski triangle for several subdivisions. 

 
triangle results in three triangles, each smaller than the original by a factor of two. From 

(8), the fractal dimension of the Sierpinski triangle is: 

 .585.1
2log
3log
≈=D  (10) 

The explanation above illustrates the concept of fractal dimension for geometrical 

structures with self-similarity, and this dimension is simple to compute when the 

structures are simple. However, fractal structures observed in nature require more 

sophisticated calculation techniques since they are much more complex and can be 

contaminated with noise [16][19][21]. Also, the self-similarity of an object observed in 

nature is not always immediately apparent. In this thesis, the fractal dimension is 

estimated from a reconstructed attractor. In the specific case of attractor geometry, this 

estimated value is called correlation dimension and relies on an important measure of the 

attractor called the correlation integral [15].  

The correlation integral quantifies how completely the attractor fills the phase 

space by measuring the density of the points close to the attractor’s trajectory, and 

averaging this density over the entire attractor. The correlation integral of a reconstructed 

attractor is computed using the following steps: 
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1. Choose a neighborhood radius, ε, and center a hyper-sphere with this 

radius on the initial point of the attractor. 

2. Count the number of points within the hyper-sphere. 

3. Move the center of the hyper-sphere to the next point along the trajectory 

of the attractor and repeat Step 2. 

4. Take the average of the number of points falling within the hyper-sphere 

over the entire attractor. 

This average is the attractor’s correlation integral. Mathematically, this is 

expressed by: 

 ),(
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where ε is the neighborhood radius and N is the number of points composing the attractor.  

The step function, Θ, determines the number of points within the neighborhood 

radius [15]. The nmin parameter is a correction factor proposed by Theiler which reduces 

the negative effects of temporal correlations by skipping points which are temporally 

close to the center of the neighborhood [25]. This temporal correlation can result in 

significantly misleading correlation integral values. The value of this parameter should be 

large enough to minimize the temporal correlation distortions but small enough to prevent 

a significant number of points from being skipped in the summation. The neighborhood 

radius should be chosen small enough to capture only the local space filling properties 

along the attractor’s trajectory, but large enough to ensure the neighborhoods contain a 
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sufficient number of neighbors. Ultimately, both of these parameters should be chosen 

according to experimentation results. 

This correlation integral is used to compute the correlation dimension of the 

attractor. It is also used to compute the Kolmogorov entropy which will be discussed later 

in Section 2.4. Computing the correlation dimension can be accomplished by: 

 ,
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which captures the power-law relation between the correlation integral of the attractor 

and the neighborhood radius of the hyper-sphere as the number of points on the attractor 

approaches infinity and ε becomes very small [15]. 

2.4 Kolmogorov Entropy 

Another important measure of dynamic systems is the rate at which new 

information is being produced as a function of time [1]. Each new observation of a 

dynamic system potentially contributes new information to this system, and the average 

quantity of this new information is referred to as the metric, or Kolmogorov entropy 

[15][26]. For example, a system with an attractor which is limited to a single, periodic 

attractor would have an entropy of K=0, since the trajectory does not deviate from the 

limit cycle with each new observation. For complex attractors which exhibit some level 

of chaos, the entropy is expected to be greater than zero since each new observation 

contributes a significant amount of information about the system. 
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For reconstructed phase spaces, it is easier to compute the second-order metric 

entropy, K2, because it is related to the correlation integral discussed in Section 2.3. This 

relation is defined in (11) below: 

 ),exp(lim~)( 20
KmC D

m
m τεε

ε
−

∞→
→  (13) 

where D is the fractal dimension of the reconstructed attractor, and ε is the neighborhood 

radius. The parameters m and τ are the number of embedding dimensions and time delay, 

respectively, used for phase space reconstruction [26].  From this relation, an expression 

for K2 can be derived: 
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The criteria for choosing values for the parameters ε, m, and τ are the same as discussed 

in previous sections. The choice of these parameters is also restricted by the resolution of 

the attractor and the length of the time-series data used to reconstruct it [3]. 

This chapter has provided a detailed definition and explanation of the nonlinear dynamic 

invariants which are used in this work. Before they can be used for experiments in this 

work the various parameters discussed above must be tuned to values that are optimal for 

speech processing. The next chapter discusses this tuning procedure, as well as the set of 

pilot experiments used to determine how effective these invariants are at modeling 

speech. 
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CHAPTER III  

PILOT EXPERIMENTS 
 

Before using dynamic invariants for large-scale, continuous speech recognition, a 

set of low-level phoneme classifications were run in order to verify the effectiveness of 

the invariants for modeling speech. The results of these initial experiments also provided 

some expectations for the results of larger-scale experiments. This chapter begins with an 

overview of the parameters used for each of the invariant computation algorithms, and 

the methods used to tune these parameters. An overview of the Wall Street Journal 

(WSJ0) corpus is also presented. Finally, the experimental setup and classification results 

are discussed. 

3.1 Parameter Tuning 

Before using the methods discussed in Chapter II to compute dynamic invariants, 

the parameter values must be tuned so that the algorithms are effective for speech 

processing. Tuning is an experimental process in which a variety of parameter 

configurations are explored for various speech signals, and based on an analysis of the 

results, an optimal set of parameters is chosen. The parameters used in this work were 

tuned using a small database of phonemes articulated as isolated words (i.e., one 

phoneme is spoken per audio segment and sustained for several seconds) recorded from 

seven different speakers [3]. Though this type of data is not a good representation of the
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 continuous speech recognition problem, it is useful to gain some insight into some basic 

nonlinear modeling issues. We refer to this data as the Sustained Phoneme Corpus (SPC).  

The set of phonemes selected for this database provide a coverage of the major 

sustainable phoneme classes, including vowels (/aa/, /ae/, /eh/), nasals (/m/, /n/), and 

fricatives (/f/, /sh/, /z/). Figure 12 illustrates a reconstructed attractor for each of these 

phoneme utterances. For visualization purposes, each phoneme in the figure is time-delay 

embedded in two dimensions using a time delay of τ = 10.  

The embedding of the vowels produce reconstructed attractors for which the 

periodic nature is clearly visible in the overall loop structure. Neighboring trajectories 

within these attractors tend to flow together in a relatively stable manor, indicating that 

the Lyapunov exponents computed from these attractors will be in the lower range. The 

attractors for /ah/ and /ae/ are nearly symmetrical, demonstrating the self-similarity 

    
a) b) c) d) 

 

    
e) f) g) h) 

 

Figure 12. Reconstructed attractors for various phonemes, a) /ah/, b) /ae/, c) /eh/, d) 
/f/, e) /m/, f) /n/, g) /sh/, h) /z/ 
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principle. Self-similarity is also visible in the attractor for /eh/ where the angle at the top 

of the attractor has several smaller angles protruding off of it. The attractors for the two 

nasals also have a loop structure, but the self-similarity attribute is not as obvious. The 

reconstructed attractors for the two nasals appear to be very similar, suggesting that the 

estimated invariant values will also be similar.  

The reconstructed attractors for the three fricatives appear very different from 

those of the vowels and nasals. For the reconstructed attractor for the phoneme /sh/, there 

is very little visible structure. The trajectories do not seem to follow any logical path, and 

neighboring trajectories do not evolve in a stable manner as they did with the vowels and 

nasals. In fact, the attractor almost appears to have come from a stochastic process rather 

than speech. For the most part, the same can be said about the attractor for /f/, but the 

trajectories of this attractor appear much smoother and less jagged than those of the /sh/ 

attractor. This can be traced to the fact that the phoneme /sh/ has higher frequency 

components than /f/. Both of these fricatives are unvoiced, meaning that the vocal cords 

do not contribute to the generation of the sound, thus removing the periodic behavior 

seen in the reconstructed attractors of voiced phonemes. 

The Lyapunov exponents for unvoiced fricatives will be higher than those for 

voiced phonemes because of the chaotic behavior of neighboring trajectories. The values 

of correlation dimension and entropy for the unvoiced fricatives can be expected to be 

lower than those for voiced phonemes. An accurate prediction is difficult since, for 

fricatives, these values are highly dependent on the amount of data used for 
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computation [19]. For speech processing, the amount of data is usually determined by the 

window size.  

The reconstructed attractor for the voiced fricative /z/ contains some interesting 

visual attributes. Although the individual trajectories appear somewhat chaotic, 

neighboring trajectories appear to cluster around a periodic loop. This is due to that fact 

that voiced fricatives reintroduce the vocal cords into the speech production process. 

Since Lyapunov exponents are based on the long-term evolution behavior of neighboring 

trajectories, the exponent value will most likely be low for this attractor, despite the 

chaotic appearance of the individual trajectories. The value for correlation dimension for 

voiced fricatives is expected to be higher than that for unvoiced fricatives due to the 

existence of periodic behavior. Similarly, the value for voiced fricatives is expected to be 

lower than that for vowels and nasals since the localized behavior within the attractor 

resembles that of unvoiced fricatives. The value of the correlation entropy will most 

likely be closer to that of vowels and nasals than unvoiced fricatives since entropy is 

based on long-term, global behavior of the attractor instead of local trajectory 

characteristics. 

 Visual inspections of the attractor are helpful in understanding the high-level 

concepts of each of the dynamic invariants. However, tuning the invariant computation 

parameters requires a more systematic approach. A complete description of the process 

used to tune these invariants can be found in [3] where the parameters were tuned 

specifically for speech. The following paragraphs provide an overview of the parameter 

values found in [3].  



 
 

30 
 

 For all three invariants, an embedding dimension of m = 5 was used. This value 

was selected by minimizing the number of false nearest neighbors versus different 

embedding dimension values. Also, Lyapunov spectra were computed for each utterance 

for different embedding dimensions, and it was observed that most of the spectra 

converged around an embedding dimension of 5. For the time delay, a value of τ = 10 

was found to work best. This was based on the average of the first minimum of the auto-

mutual information [3] versus time-delay function over all phones. Finally, a 

neighborhood size of 25 is chosen since it was able to sufficiently capture local 

dynamics.  

 For correlation dimension, the number of embedding dimensions was also chosen 

to be m = 5.  The other two parameters of relevance are the neighborhood radius, ε, and 

the Theiler correction value. Through experimentation, the optimal neighborhood radius 

was found to be 2.3. This radius captures enough of the local dynamics to accurately 

compute the correlation integral, which is the major component of the correlation 

dimension algorithm. The optimal Theiler correction value was found to be 150 since the 

distortion-causing temporal correlation effects are minimal after this amount of time. The 

parameter values used for correlation entropy are the same as those for correlation 

dimension. This is primarily due to the fact that the parameters apply to the correlation 

integral computation, and both correlation entropy and correlation dimension are derived 

from the correlation integral. 

  The invariants in Table 1 were computed using the parameters discussed above 

using a window size of 10 ms. Invariants are computed for each window segment within 
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the utterance, and then averaged to achieve the values in Table 1.  As expected, the 

Lyapunov exponent values for vowels, nasals, and the voiced fricative /z/ are lower than 

those for the unvoiced fricatives. For correlation dimension, the values for fricatives are 

lower than those for vowels and nasals. The values for correlation entropy are less 

consistent. Entropy values for the two nasal phonemes are low and nearly equal. The low 

entropy value for the phonemes /m/ and /n/ can be attributed to the fact that the single, 

periodic loop of the reconstructed attractors contributes very little new information over 

time. The attractors for the other phonemes are more complex, resulting in higher entropy 

values. 

The set of experiments in the following section classify signal frames from the 

large vocabulary continuous speech recognition task WSJ0 from a set of 40 phonemes. 

The next section provides a description of the WSJ0 corpus as well as a description of the 

experimental setup. 

Table 1. Estimated invariant values for sustained phonemes  

 Lyapunov  
Exponent 

Correlation 
Dimension 

Correlation 
Entropy 

/aa/ -7.7138 0.8831 665.9765 
/ae/ 59.8887 0.8925 590.1999 
/eh/ 243.5497 1.0486 729.9142 
/f/ 566.1099 0.5952 964.4599 
/m/ -8.9635 0.8369 343.3732 
/n/ 39.8994 0.8944 343.5131 
/sh/ 795.3906 0.3282 622.7224 
/z/ 83.0456 0.6121 549.4435 
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3.2 Phoneme Classification Experimental Setup 

Before using dynamic invariants as new features for large scale continuous speech 

recognition experiments, it is necessary to first show that these invariants are able to 

distinguish between different phoneme types. In the previous section, a small set of 

sustained phonemes was used to tune invariant computation parameters for speech. The 

phoneme segments in continuous speech are much more dynamic than the sustained 

phones used previously, so it is also necessary to show that accurate invariant estimates 

can be computed from shorter, more dynamic time series. Overall, these experiments 

provide an idea of what kinds of improvements can be expected from a large-vocabulary 

speech recognition experiment using dynamic invariants as additional features. 

3.2.1 Corpus Overview 

As mentioned previously, the data used for this initial set of experiments is 

derived from the Wall Street Journal (WSJ0) Corpus. This corpus consists of high-quality 

recordings of speech read from newspaper articles appearing in the Wall Street Journal. 

The corpus is divided into a training set and an evaluation set. The training set is referred 

to as SI-84 [27] and consists of 7,138 utterances from 83 different speakers. Each 

utterance is sampled at 16 kHz and recorded using a Sennheiser close-talking 

microphone. The length of each utterance varies, and totals around 14 hours of speech 

data. The evaluation set consists of 330 utterances from eight different speakers. Both the 

training set and evaluation set are recorded in the same environmental conditions. 

The vocabulary size of this task is about 10,000 words, and all words contained in 

the evaluation set have been previously seen in the training set. This vocabulary size is 
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small compared to other large-vocabulary speech recognition tasks. However, its modest 

size and closed-set vocabulary eliminates most of the complex language modeling issues 

encountered in more complicated tasks. This makes WSJ0 ideal for research which 

focuses on acoustic modeling because it decouples the acoustic modeling problem from 

the language modeling problem. This makes the WSJ corpus ideal for this work since 

goal is determine whether the use of dynamic invariants results in a more robust acoustic 

model. 

3.2.2 Experimental Setup 

This set of experiments attempts to classify signal frames within the WSJ corpus 

as phonemes. The purpose is to gain a low-level understanding of how well dynamic 

invariants are able to represent speech signals. These experiments use automatic time-

alignments of the corpus to extract segments for specific phonemes within each utterance. 

This is illustrated in Figure 13 below.  

The time alignments were achieved using ISIP’s Prototype System, a public 

domain speech recognition system [33]. Traditional 13-dimensional MFCC acoustic 

features, consisting of 12 cepstral coefficients and absolute energy, were computed from 

each of the signal frames within the phoneme segments. Each of the three nonlinear 

 

Figure 13. Time alignment for utterance of “our guess is now” 
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dynamic invariants is computed from the signal frames as well. The 13 MFCCs are 

combined with the different invariants to create three new 14-dimensional feature 

vectors. A separate classification experiment is performed using each of the new feature 

vectors in order to understand the different effects of each invariant on speech 

representation.   

A total of 40 phonemes are used for these classification experiments. These 

phonemes are broken into several broad phonetic classes. A complete list and description 

of each class and associated phonemes can be seen in Table 2. A 16-mixture Gaussian 

Mixture Model (GMM) was estimated for each of the 40 phonemes.  These parameters 

Table 2. Broad phonetic classes used in our experimentation 

Stops   Glides   
b bee B iy l lay L ey 
d day D ey r ray R ey 
g gay G ey w way W ey 
p pea P iy y yatch Y aa t 
t tea T iy hh hay HH ey 
k key K iy Vowels   

Affricates   iy beet b IY t 
jh joke JH ow k ih bit b IH t 
ch choke CH ow k eh bet b EH t 

Fricatives   ey bait b EY t 
s sea S iy ae bat b AE t 
sh she SH iy aa bott b AA t 
z zone Z ow n aw bout b AW t 
zh azure ae ZH er ay bite b AY t 
f fin F ih n ah but b AH t 
th thin TH ih n ao bought b AO t 
v van V ae n oy boy b OY 
dh then DH e n ow boat b OW t 

Nasals   uh book b UH k 
m mom M ah M uw boot b UW t 
n noon N uw N er bird b ER d 
ng sing s ih NG    
      

 

 



 
 

35 
 

were estimated using frames from the phoneme segments extracted from the training data 

set. The same data was used for evaluation. This closed-loop experimental setup is 

acceptable since these experiments are more focused on determining whether the 

dynamic invariants can be used to accurately represent acoustics, as opposed to being 

designed to create generalized acoustic models (in which case closed-loop training cannot 

be done). 

3.3 Phoneme Classification Experimental Results 

The detailed classification results are shown in Figure 14 through Figure 17. 

These graphs show the relative classification improvement in accuracy for our nonlinear  

 

Figure 14. Relative classification accuracy improvement for stops and affricates 
 

 
Figure 15. Relative classification accuracy improvement for fricatives 
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dynamic model as compared to the standard MFCC approach. Results for each phoneme 

class are presented individually in Table 3. The relative differences in accuracy are not 

consistent among the phonemes. Some phonemes experience a dramatic improvement in 

 

 

Figure 16. Relative classification accuracy improvement for vowels. 

 

Figure 17. Relative classification accuracy improvement for nasals and glides 



 
 

37 
 

accuracy (e.g. /jh/, /ch/, /dh/, /ay/, /oy/, /uh/), some phonemes experience a decrease in 

accuracy (e.g., /f/, /ih/, /er/, /m/), and there is little change for others. 

In Table 3, it can be seen that the classification results for affricates, stops, and 

vowels benefit the most from the addition of dynamic invariants. Accuracy for nasals 

decreased for correlation dimension, but accuracy increased for Lyapunov exponents and 

correlation entropy. There was a small decrease in accuracy for glides for correlation 

dimension, but glides were more or less unaffected by the other invariants. The only 

phoneme class that showed a consistent decrease in accuracy for all invariants was 

fricatives, but these decreases were relatively small. Overall, after averaging the relative 

increases and decreases for each phoneme class, each dynamic invariant resulted in an 

increase in classification accuracy. 

 Based on these results, it is reasonable to expect a recognition accuracy increase 

for continuous speech recognition experiments. The next chapter discusses these larger-

scale experiments and also analyzes the invariants’ robustness to noise. 

 

Table 3. Average relative phoneme classification improvements using 
MFCC/invariant combinations 

 Correlation 
Dimension 

Lyapunov 
Exponent 

Correlation 
Entropy 

Affricates 10.3% 2.9% 3.9% 
Stops 3.6% 4.5% 4.2% 
Fricatives -2.2% -0.6% -1.1% 
Nasals -1.5% 1.9% 0.2% 
Glides -0.7% -0.1% 0.2% 
Vowels 0.4% 0.4% 1.1% 
Overall 1.7% 1.5% 1.4% 
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CHAPTER IV  

CONTINUOUS SPEECH RECOGNITION EXPERIMENTS 
 

The results of the initial phoneme classification experiments in the previous 

chapter provide the necessary motivation to extend a set of experiments to a large 

vocabulary, continuous speech recognition (LVCSR) corpus. The phoneme classification 

accuracy improvements suggest that dynamic invariants may improve the recognition 

accuracy for continuous speech recognition tasks. In this chapter, the WSJ-derived 

Aurora-4 Corpus is evaluated using the different MFCC/invariant feature combinations. 

Two sets of experiments are performed: evaluation of clean speech data using acoustic 

models trained on clean speech and an evaluation of speech data with different types of 

digitally added noise using the same models from the first set. The remainder of this 

chapter provides a corpus description as well as a description of the experimental setup 

used for these evaluations. The results of these experiments are then discussed, followed 

by an interpretation of these results. 

4.1 Aurora-4 Corpus Description 

The Aurora-4 Corpus (A4C) is derived directly from WSJ0 and consists of the 

original WSJ0 data with digitally-added noise [29]. A4C is divided into two training sets 

and 14 evaluation sets [30]. Training Set 1 (TS1) and Training Set 2 (TS2) include the 

complete WSJ0 training set known as SI-84 [31]. In TS2, however, a subset of the
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 training utterances contains various digitally-added noise conditions including six 

common ambient noise conditions. The 14 evaluation sets are derived from data defined 

by the November 1992 NIST evaluation set [32]. Each evaluation set consists of a 

different microphone or noise combination.  The experiments in this thesis use a subset of 

the overall A4C. The following discussion provides an overview of this subset.  

 In this work, only TS1 was used to train the acoustic models. This set consists of 

7,138 training utterances spoken by 83 speakers. All utterances were recorded with a 

Sennheiser HMD-414 close-talking microphone. The data comes from WSJ0, but has a 

P.341 filter applied to simulate the frequency characteristics of a 16 kHz sample rate. The 

set totals approximately 14 hours of speech data with an average utterance length of 7.6 

seconds and an average of 18 words per utterance. There are a total of 128,294 words 

spoken with 8,914 of these being unique words.  

 Only seven of the 14 evaluation sets were used in this work due to the limited 

computational facilities available for these experiments. These sets include the original, 

noise-free data recorded with the Sennheiser microphone mentioned previously and six 

versions with different types of digitally-added environmental noise at random levels 

between 5 and 15 dB. The environments include an airport, random babble, a car, 

restaurant, street, and a train. Each of the seven evaluation sets consist of 330 utterances 

spoken by a total of eight speakers, and each utterance was filtered with the P.341 filter 

mentioned previously. The data for each test set totals around 40 minutes with an average 

of 16.2 words per utterance.  
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The vocabulary size of A4C is around 9,000 words, which is smaller than 

standard LVCSR tasks by today’s standards. However, the corpus features a closed-set 

vocabulary, meaning that all words existing in the evaluation sets have been previously 

seen in the training set.  Like WSJ0, these properties make A4C ideal for acoustic 

modeling research since a small, closed-set vocabulary decouples the problem of 

language modeling from the acoustic modeling problem. For a more complete description 

of the entire A4C, including the portions which were not described in this work, see [27]. 

4.2 Experimental Setup 

The speech recognition experiments discussed in this chapter use a public domain 

speech recognition system developed at Mississippi State University [28]. This system is 

referred to as the Prototype System since it was the first conversational speech 

recognition system developed by this organization and has been used as a test bed for the 

development of speech recognition technology [28][33]. This system has achieved state-

of-the-art performance on many speech recognition tasks [34][35][36] and its modifiable 

architecture and intuitive interface make it ideal for researching new technology. A 

toolkit based on the prototype system was developed for Aurora in [27], and the 

experiments in this thesis are largely based on the experimental setup in this toolkit. 

The system uses HMMs with underlying GMMs for context-dependent acoustic 

modeling and an N-gram language model with back-off probabilities for language 

modeling. The Baum-Welch algorithm is used for model parameter estimation, and a 

Viterbi beam search is used for evaluation. For a more detailed description about this 
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system, see [27]. The rest of this section discusses the experimental setup for the baseline 

system and the set of evaluation systems which test the different dynamic invariants. 

4.2.1 Baseline System Setup 

Before testing the feature vectors which include the dynamic invariants, it is 

necessary to establish a set of baseline experiments. The baseline experiments in this 

work evaluate the seven A4C test sets using the traditional 39-dimension MFCC feature 

vector without dynamic invariants. The results of these experiments will be compared to 

the results of the experiments using dynamic invariants to measure the effect of invariants 

on recognition performance.  

A complex training process is used to estimate acoustic model parameters. This 

process is adapted from the training procedure in [27][30], and has been optimized and 

tuned for A4C. The explanation below describes the training procedure: 

1. Model Initialization: Initializes the GMMs of the initial monophone models 
with the global mean and variance computed from the training data. This step 
provides a starting point for model parameter estimation. 

 
2. Initial Monophone Training: Four iterations of Baum-Welch training are 

used to re-estimate monophone model parameters based on the training data. 
This step also allows the models to learn the silence at the beginning and end 
of the utterance. 

 
3. Short-Pause (Interword Silence) Model Training: Four additional iterations 

of Baum-Welch are used to further re-estimate model parameters. This step 
also trains the short-pause (‘sp’) model which models the silence between 
words.  

 
4. Forced Alignment: The training data transcriptions are aligned to the training 

acoustic data and the most likely pronunciation for each word in the 
transcription is chosen. A new set of phonetic transcriptions are generated from 
this process and this set is used throughout the remainder of the training 
process. 
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5. Final Monophone Training: Five final iterations of Baum-Welch are used to 

further re-estimate the model parameters using the new transcriptions 
generated in the forced alignment step. 

 
6. Cross-Word Triphone Training: Context-dependent, cross-word triphone 

models are generated and initialized from the trained monophone models. Only 
triphones existing in the training data are created. Four iterations of Baum-
Welch are used to re-estimate the triphone model parameters. 

 
7. State-Tying: To reduce the parameter count and to provide sufficient training 

data to undertrained states, states that are statistically similar to one another are 
tied into a single state, and the training data previously attributed to each state 
is now shared in the single tied state. Four passes of Baum-Welch are then 
used to re-estimate the parameters of the new state-tied models. 

 
8. Mixture Training: The single mixture models are successively split until 4 

mixtures are generated using incremental stages of 1, 2, and 4 mixtures. At 
each stage, four iterations of Baum-Welch are used to re-estimate the 
parameters of the multi-mixture models. 

 
The acoustic models are trained using TS1 described in Section 4.1. These 

acoustic models are used to evaluate the clean test set as well as the six noisy test sets. 

The training data does not contain any instances of the six noise conditions since the goal 

of this work is to determine whether dynamic invariants can be used to generalize 

acoustic models to unseen conditions in the training data. 

The experiments were designed to balance recognition performance and speed. 

Due to limited computational resources, acoustic models are not split beyond four 

Gaussian mixtures. Although better recognition performance could be achieved using a 

higher number of mixtures, the required CPU time increases as the number of mixtures 

increases. Since this work requires running a large volume of experiments, the time 

required to run these experiments must be as short as possible. Using 4-mixture GMMs 

provides a reasonable balance of computation time and recognition performance [27][30]. 
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4.2.2 Evaluation Setup 

The evaluation experiments are used to test the effects of dynamic invariants on 

speech recognition performance. In this work, four sets of experiments are used to 

evaluate the A4C data. Each set uses a different combination of MFCCs and dynamic 

invariants. These feature vectors are described in Table 4 below. 

The traditional MFCC feature vector consists of 12 Cepstral coefficients, absolute 

energy, and the first and second derivatives of these values, which results in a base 

feature vector totaling 39 dimensions. The three dynamic invariants are extracted from all 

utterances of both the training and testing sets using the methods discussed in Chapter II. 

The four new feature vectors are constructed by simply appending the invariants to the 

existing MFCC features. This results in four new training sets, and 28 new evaluation sets 

(seven sets per each of the four new feature sets). Each of the seven test sets are evaluated 

using the four new feature vectors. As mentioned previously, each evaluation uses 

Table 4. Description of the different feature sets used for evaluation 

Feature Set 1 (FS1)  Feature Set 2 (FS2) 
MFCCs (39)  MFCCs (39) 
Correlation Dimension (1) 
 

 Lyapunov Exponent (1) 
 

40 Dimensions Total  40 Dimensions Total 
   

Feature Set 3 (FS3)  Feature Set 4 (FS4) 
MFCCs (39)  MFCCs (39) 
Correlation Entropy (1)  Correlation Dimension (1) 

 Lyapunov Exponent (1) 
 Correlation Entropy (1) 

 
40 Dimensions Total  42 Dimensions Total 
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acoustic models trained with the data from TS1. The experimental parameters, including 

beam pruning and language model parameters, were tuned in [27][30] using the Aurora 

development set. 

4.3 Evaluation Results 

This section presents the evaluation results described in the previous section. The 

word error rate (WER) results were obtained using the standard NIST scoring software. 

This software quantifies the number of errors within the recognition hypotheses and 

provides a means of performance comparison between the evaluations of a common test 

set by two different systems. These errors consist of misrecognized, inserted, and deleted 

words. The overall WER is the ratio of word recognition errors to the total number of 

words within the reference data transcriptions. 

4.3.1 Significance Testing 

Although WER provides a reasonable performance comparison, it is not the best 

way to determine whether one recognition system performs better than another. In this 

work, the size of the test sets is 330 utterances, and such a small evaluation set can 

introduce noise in the experimental design in the form of statistical fluctuations which do 

not truly represent the recognition performance of the system [30]. For example, suppose 

a first system results in a WER which seems significantly lower than a second system. It 

would be tempting to label the first system “better” than the second competing system. 

However, it is possible that a small subset of test utterances evaluated by the second 

system encountered problematic evaluation issues such as corrupt acoustic data, hardware 

failures, software failures, etc. Although the resulting hypothesis errors damage the WER 
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for the second system, the errors are not representative of the performance of the system 

on the entire evaluation set since the errors are not statistically uniform across the entire 

set of recognition hypotheses [30]. 

The statistical significance testing method provides a measure of the extent to 

which one system outperforms another by measuring the distribution of errors within the 

entire evaluation set. In this work, significance testing was performed using NIST’s 

Matched Pairs Sentence-Segment Word Error (MAPSSWE) method [37]. This method 

selects random segments of sentences from within the recognition hypotheses of each 

system and performs a pairwise comparison of the number of errors within these 

selections. The result of this test is the significance level value, p, which is the probability 

that the distribution of errors for both systems is the same. If this probability is high, the 

distributions for both systems are similar which means that the difference in WER is not 

necessarily a significant indicator of superior performance of one of the systems. A low 

value of p suggests that the errors for both systems did not likely come from the same 

distribution, and therefore, the difference in WER is an indicator of significant 

performance difference. 

4.3.2 Evaluation Results for Noise-Free Data 

The recognition results for the noise-free evaluation set are presented in Table 5. 

For easy visualization, these results are also presented graphically in Figure 18. Table 5 

provides the WER for each feature set, as well as the relative improvement over the 

baseline system and the significance level of the results of each system. 
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All four feature sets with dynamic invariants resulted in a decreased WER 

compared to the baseline MFCC features. This reinforces the pilot experiment results in 

Section 3.3 where an increase in phoneme classification accuracy was seen for each 

feature set. The most significant WER improvement was seen for FS3 which contains the 

correlation entropy invariant as an added feature. The relative improvement in this case 

Table 5. Recognition performance for different feature sets 

Dynamic Invariant WER (%) Improvement (%) Significance Level (p) 
Baseline (FS0) 13.5 -- -- 
Feature Set 1 (FS1) 12.2 9.6 0.030 
Feature Set 2 (FS2) 12.5 7.4 0.075 
Feature Set 3 (FS3) 12.0 11.1 0.001 
Feature Set 4 (FS4) 12.8 5.2 0.267 

 

 

Figure 18. Graph of recognition performance for different feature sets 
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was 11.1% with a significance level of 0.1%.  The results for FS4 which contains all  

three invariants shows a slight WER improvement, but this improvement is small and 

insignificant compared to the improvements seen by feature sets containing a single 

invariant. This suggests that the invariants contribute a certain level of overlapping 

information about the nonlinear properties of the acoustics. The next section discusses the 

results for the noisy evaluation sets. 

4.3.3 Evaluation Results for Noisy Data 

The evaluation results for the six noisy evaluation sets are presented in Table 6 

and Table 7, and are also shown graphically in Figure 19. The results for the noisy data 

are much less encouraging than those for the noise-free data. Most of the evaluations 

resulted in a higher WER than the baseline. The correlation dimension and Lyapunov  

Table 6. WER results for noisy evaluation data using different feature sets 

 WER (%) 
Airport Babble Car Restaurant Street Train 

Baseline 53.0 55.9 57.3 53.4 61.5 66.1 
FS1 57.1 59.1 65.8 55.7 66.3 69.6 
FS2 56.8 60.8 60.5 58.0 66.7 69.0 
FS3 52.8 56.8 58.8 52.7 63.1 65.7 
FS4 58.6 63.3 72.5 60.6 70.8 72.5 

 

Table 7. Relative WER improvements over baseline for noisy evaluation data 

 Relative Improvements (%) 
Airport Babble Car Restaurant Street Train 

FS1 -7.7 -5.7 -14.8 -4.4 -7.8 -5.3 
FS2 -7.2 -8.8 -5.6 -8.6 -8.5 -4.4 
FS3 0.4 -1.6 -2.6 1.3 -2.6 0.6 
FS4 -10.6 -13.2 -26.5 -13.5 -15.1 -9.7 
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a) b)  

c) d)  

e) f)  
 
 

Figure 19. Graphs of recognition performance for the six noisy evaluation sets: a) 
airplane, b) babble, c) car, d) restaurant, e) street, and f) train. 
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exponent invariants caused an average WER increase of around 7%. The only invariant 

that appears somewhat promising is correlation entropy in FS3. Three of the evaluation 

sets resulted in a slight WER decrease (shaded in gray in Tables 6 and 7), while the other 

three resulted in increases. The WER increases for FS3, however, were significantly 

lower than the increases for the other feature sets. Although three sets saw slight 

improvements for correlation entropy, these improvements were not statistically 

significant. The use of all three invariants in FS4 had the most damaging effect on 

performance with an average WER increase of around 14%. 

4.3.4 Analysis 

The recognition performance improvements for the noise-free data suggest that 

nonlinear dynamic invariants have a significant contribution to traditional acoustic 

information and can be used to better model speech. Although the improvements for 

clean speech data are encouraging, one of the primary purposes of this work was to 

determine whether nonlinear features can improve recognition accuracy for speech 

recorded in unseen environments. According to the results of the experiments presented 

in the previous section, the dynamic invariants used in this work are unable to achieve an 

improvement.  

One reason for this may be that the dynamic invariant computation methods are 

not conducive to accurate estimation from noisy data. Since frame-based feature 

extraction estimates features from small segments of the speech signal, the length of the 

segment may not be long enough to estimate accurate dynamic invariant values when the 

signal in contaminated with noise [17]. Since noise distorts the phase space, a longer time 
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series is required in order to sufficiently capture the true dynamics of the system. 

Unfortunately, the dynamic nature of speech signals places a limit on the extent to which 

the frame length can be extended since an excessively large frame will capture the 

dynamics of more than one phoneme.  

The opportunities for the improvement of nonlinear dynamic invariant techniques 

lie within the filtering of the reconstructed attractor. While the use of SVD embedding for 

phase space reconstruction can reduce the effects of noise, this work suggests that it is not 

an effective method of noise filtering when used alone.  Additional filtering techniques 

are required in order to better reduce the effects of noise on the dynamics of the attractor.
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CHAPTER V  

CONCLUSIONS AND FUTURE DIRECTIONS 
 

This thesis explored a technique for using nonlinear dynamic invariants as 

features for continuous speech recognition. When combined with traditional MFCC 

features, dynamic invariants exploit the underlying nonlinear properties of the speech 

signal resulting in a more accurate acoustic model. The purpose of this work was to 

determine whether dynamic invariants could improve recognition performance for a 

large-vocabulary, continuous speech recognition task. Additionally, the question of 

whether or not these nonlinear features could produce an acoustic model which is more 

robust to unseen environmental conditions was explored.  

For noise-free evaluation data, it was shown that the addition of dynamic 

invariants to traditional MFCCs could significantly boost recognition performance and 

result in a lower WER. However, dynamic invariants were not able to improve the 

performance of recognition for noisy evaluation sets. The use of dynamic invariants had a 

negative effect on the recognition performance for noisy data. 

5.1 Thesis Contribution 

In this thesis, a variety of experiments were run in order to determine whether 

nonlinear dynamic invariants can be used to create a better acoustic model for speech 

recognition. The first contribution involved a set of pilot experiments which classified
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 frames within utterances from the WSJ corpus as phonemes. Traditional MFCC features 

were combined with dynamic invariants, and a set of GMMs were trained for each 

feature combination. The purpose of these initial experiments was to gain a low-level 

understanding of the effect these invariants have on speech modeling. It was found that 

the addition of dynamic invariants was able to improve phoneme classification accuracy. 

For correlation dimension, an overall relative improvement of 1.7% was observed. 

Lyapunov exponents and correlation entropy saw similar improvements at around 1.5% 

and 1.4%, respectively. These results suggest that dynamic invariants will be able to 

improve recognition performance for large-scale continuous speech recognition 

experiments. 

The second contribution of this thesis was the evaluation of the MFCC/invariant 

feature combinations on the Aurora 4 Corpus (A4C). The data sets evaluated included 

one noise-free set, and six sets with various noise conditions. For the noise-free data, 

dynamic invariants were able to significantly improve recognition accuracy. The relative 

WER improvements seen were: 9.6% for correlation dimension, 7.4% for Lyapunov 

exponents, and 11.1% for correlation entropy. Combining MFCCs with all three 

invariants also improved performance, but at 5.2%, the relative improvement was not as 

significant as those using individual invariants. Overall, these results suggest that 

nonlinear dynamic invariants can be used to better model acoustics and can improve 

speech recognition performance when evaluation and training conditions match. 

Using the models trained from A4C’s clean training set, evaluations were also 

performed on six noisy data sets. These data sets contain digitally added noise conditions 
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which vary significantly from the training conditions. Unfortunately, the dynamic 

invariants did not improve recognition performance. A few slight improvements were 

seen using the correlation entropy invariant, but these improvements were not statistically 

significant. The negative results suggest that the dynamic invariant computation methods 

explored in this thesis are not effective for noisy data. This is most likely due to the frame 

length used for computation results in a time-series which is too short to get an accurate 

representation of system dynamics. Further research is required to develop advanced 

phase space filtering techniques. 

5.2 Future Work 

Although the negative results seen in the evaluation of the noisy data sets were 

disappointing, they provide some motivation for further research in filtering techniques. 

In this thesis, the only method of phase space noise reduction was the use of SVD phase 

space reconstruction. While this method has been shown to reduce the effects of noise, it 

is not very effective for speech since the time-series used for phase space reconstruction 

is limited by the short frame length. Therefore, more research is required for the 

development of advanced phase space filtering techniques which can be used to post-

process a reconstructed phase space and reduce the effects of noise on phase space 

dynamics.   

Nonlinear methods for speech recognition provide many new potential research 

areas. For example, instead of computing values which describe the global behavior of 

the attractor, such as dynamic invariants, it may be beneficial to model the attractor itself. 
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This would require a new type of statistical model and would provide a more complete 

description of the local dynamics within the attractor. 
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