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Over the past few years, speech recognition technology performance on tasks
ranging from isolated digit recognition to conversational speech has dramatically
improved. Performance on limited recognition tasks in noise-free environments is
comparable to that achieved by human transcribers. This advancement in automatic
speech recognition technology along with an increase in the compute power of mobile
devices, standardization of communication protocols, and the explosion in the popularity
of the mobile devices, has created an interest in flexible voice interfaces for mobile
devices. However, speech recognition performance degrades dramatically in mobile
environments which are inherently noisy. In the recent past, a great amount of effort has
been spent on the development of front ends based on advanced noise robust approaches.

The primary objective of this thesis was to analyze the performance of two
advanced front ends, referred to as the QIO and MFA front ends, on a speech recognition
task based on the Wall Street Journal database. Though the advanced front ends are shown

to achieve a significant improvement over an industry-standard baseline front end, this



improvement is not operationally significant. Further, we show that the results of this
evaluation were not significantly impacted by suboptimal recognition system parameter
settings. Without any front end-specific tuning, the MFA front end outperforms the QIO

front end by 9.6% relative. With tuning, the relative performance gap increases to 15.8%.
Finally, we also show that mismatched microphone and additive noise evaluation

conditions resulted in a significant degradation in performance for both front ends.
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CHAPTER |

INTRODUCTION

Over the past few years, speech recognition technology performance on tasks
ranging from isolated digit recognition [1] to conversational speech [2,3,4] has
dramatically improved. Performance on limited recognition tasks in noise-free
environments is comparable to that achieved by human transcribers [5]. This advancement
in automatic speech recognition (ASR) technology along with an increase in the compute
power of mobile devices, standardization of communication protocols, and the explosion
in the popularity of the mobile devices, has created an interest in flexible voice interfaces
on mobile devices. Because mobile devices have limited space for text input (e.g., no
keyboard) and output space (e.g., a cellular telephone display), voice interfaces are ideal.

One class of approaches for this application involves the use of a client/server
architecture as shown in Figure 1. A variety of client/server architectures have been
explored in recent years [6]. However, to implement complex applications such as speech
recognition and spoken information retrieval, there is a need for a pervasive standard.
Hence, standards activity has accelerated in recent years. The standardization of a
common architecture is extremely critical to ensure compatibility among various hardware
and software platforms. The Aurora Distributed Speech Recognition (DSR) group, a

working group under the auspices of the European Telecommunications Standard



Ambient Noise
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\_ Microprtne Noise

Channel Noise

Output

Figure 1. A typical client/server architecture for a mobile computing application. Ambient
noise as well as convolutional noise (microphone and channel) are serious problems in this

type of application.

Institute (ETSI), has been promoting standards activity for third generation cellular

telephony applications [7,8]. Evaluations conducted by the Aurora DSR group were

designed to promote standardization of an advanced front end (AFE) for mobile terminal

devices as a part of the overall goal of standardization of a DSR architecture.

A speech recognition system cen

be decomposed into four main compone
as shown in Figure 2: an acoustic fro
end, acoustic models, language mode
and search. The process

parameterization of a speech signal int
sequence of feature vectors is perform
by the acoustic front end, and is referred
as feature extraction. The acoustic frc

end is a software module that incorpora

Input
Speech
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Acoustic
Front-End

Statistical Acoustic Model
P(A/W)

Language Mode Search
()

O

Recognized Utterance

Figure 2. The four main components in a
typical speech recognition system.



a set of signal modelling techniques [9] to convert a digital speech signal to a sequence of
vectors. Modern speech recognition systems typically produce a feature vector every
10 msec. The design of this component is described in greater detail in chapter 2.

In real applications, front ends must incorporate advanced features, such as
guantization and compression, in order for systems to operate at acceptable levels of
performance and efficiency. The Aurora working group has been developing a reference
client/server architecture shown in Figure 3 for speech recognition applications. The goal
of the ETSI Aurora large vocabulary (ALV) evaluation was to standardize front end
processing within this architecture for large vocabulary speech recognition applications. A
large vocabulary speech recognition system is generally considered to be a system that
uses some form of sub-word acoustic modeling [10] and is capable of recognizing tens of
thousands of words spoken continuously [11,12,13].

The ALV evaluation was the second in a series of evaluations designed to promote

the development of the AFE. The objective of the first Aurora evaluation was to calibrate

Terminal DSR Front-end

Speech
Feature Compressign Error
M PR y Split VQ 4’@11

Wireless Data Channel - 4.8 kbps

Server DSR Back-end
Error o ”
Detection & Decompressio =gl
K Mitigation —> > Decoder

Figure 3. The Aurora standard for a DSR architecture includes provisions for compression
and error protection along with feature extraction.




the performance of Mel Frequency Cepstral Coefficients (MFCC) based front
ends [14,15] on small vocabulary tasks that use word models. The results of this
evaluation showed that the performance of both the ETSI WI007 and HTK front ends
degraded heavily under simulated noisy environment. The details of these evaluations are
discussed in section 1.2. First, let us review three popular client/server architectures for

automatic speech recognition in a mobile environment.
1.1. Architectures for Mobile Speech Recognition Applications

There are three popular architectures for speech recognition applications [6].
These three architectures are classified on the basis of the distribution of the
computational resources between the client and the server — terminal-only, server-only,
and terminal/server. A terminal-only architecture implements speech recognition on a
user’s terminal device, often referred to as the client. This is depicted in Figure 4. Because
the complete process of recognition is performed on the terminal device with no
transmission of recognition-related data involved, this architecture is robust to various
artifacts of the communication channel such as transmission errors, channel errors,
interference noise and compression. However, applications for this architecture are
typically limited to small recognition tasks such as isolated words or phrases because of
the limited computational power and memory availability on a portable terminal device.
Voice dialing on cellular phones is a popular example of an application on such an

architecture.



A server-only architecture involves transmission of speech over a noisy
communication channel to a back-end speech recognition server, as shown in Figure 5.
The complete process of speech recognition including feature extraction and recognition
is performed on the server. Because of the availability of ample computation power and
memory resources on the server, complex voice interfaces, such as spoken information
retrieval [16], can be implemented. Such applications are popular in large-scale telephony
applications, but are not popular in mobile applications because of the great demand for
communications bandwidth between the server and terminal device. Typically the speech
signal is compressed (coded) before the transmission over the wireless channel to
conserve bandwidth. Compression and other characteristics of noisy communication
channels (e.g., interference noise and packet loss) result in a significant degradation in
speech recognition performance [1,6,17,18,19]. Various channel correction algorithms,
such as error detection, packet reconstruction and channel adaptation, are used to reduce
the influence of channel artifacts. However, the degradation in recognition performance is

not completely alleviated.

f Terminal Device (Client) ‘ Terminal Device (Client)

Speech = Speech
> eature _
M" Extraction M' =1 \/Oice-Code| —‘

Analog \Voice Channel

Server
I_. Recognition =
o \oice-Decode || Recogn|t|o|

Decoder Decoder
\ DN

Figure 4. Terminal-only architecture. Figure 5. Server-only architecture.




The third architecture, which is the subject of investigation in the Aurora
evaluations and the primary focus of this work, distributes processing to both the terminal
and server sides. We refer to this architecture as Distributed Speech Recognition (DSR).
This architecture combines the advantages of both the terminal-only and server-only
architectures by distributing the computational resources between the two devices. The
features are extracted on the terminal which are transmitted over the channel. Because
these features, and not the speech samples, are digitally transmitted over the noisy
channel, the influence of the artifacts of the noisy channel is minimal on recognition
performance.

In a typical DSR architecture, such as the Aurora standard shown in Figure 3,
features are extracted from the speech signal on the terminal device. This process is often
coupled with noise enhancement schemes [20] that require a minimal amount of
processing power. Unlike the server-only architecture, the noise enhanced features are
then compressed and transmitted digitally over the error-protected channel, resulting in a
significant reduction of channel-induced errors. Sophisticated model compensation and
natural language modules can be employed on the server to improve speech recognition

performance.

1.2. An Overview of the Aurora Evaluations

A major challenge for DSR architectures is the standardization of the
front end [21]. Such a standard is required to be robust to the demanding conditions

encountered in practical applications such as cellular telephony. It also needs to be robust



to variations in languages. The DSR group of ETSI has been actively involved in an effort
to standardize an advanced front end for cellular telephony [7,8]. To achieve this objective,
the DSR working group has conducted a series of evaluations of noisy speech constructed
using simulated as well as actual noisy environments. The objective of the first Aurora
evaluation was to calibrate the most popular speech recognition front ends for small
vocabulary speech recognition applications. Two front ends were evaluated on the Aurora-
2 database [22,14], which is simply a noisy version of the small vocabulary TIDigits
task [23].

The original 16 kHz studio quality TIDigits database was downsampled to 8 kHz
and filtered through G.712 characteristic [24] to simulate the Global System for Mobile
Communications (GSM) terminal characteristic. Eight different noise types (suburban
train, babble, car, exhibition hall, restaurant, street, airport and train station) were added in
a controlled fashion to cover a range of signal to noise ratios (SNRs). The range included a
no noise condition, referred to as the “clean” condition, and the following SNRs: 20, 15,
10, 5, 0, and -5 dB.

Two training sets, referred to as clean and multi-condition, were defined. The clean
training set does not contain any additive noise. The multi-condition training set is
representative of four noise types (suburban train, babble, car, and exhibition hall)
covering all seven SNR ratios. Three test sets, denoted Test Sets A, B and C, were also
defined. Test Set A is representative of all four noise types seen in the multi-condition

training set. Test Set B is representative of four noise types not represented in the multi-



Table 1. In the first Aurora evaluation, the performance of the ETSI WI0O07 front end was
shown to be comparable to the HTK front end on all test conditions.

Front end Training Set Test Set A| TestSetB| TestSet(C
Clean 39.9% 45.0% 36.0%
wioo7 Multi-condition 12.2% 14.2% 17.4%
Clean 38.9% 44.4% 33.3%
HTK Multi-condition 12.7% 14.5% 16.9%

condition training set. Test Set C is filtered through M-IRS filtering [107] to introduce
convolutional noise. It contains two noise types (suburban street and train).

For the first evaluation on Aurora-2 database, word-based models were employed.
The results of this evaluation for two training conditions is summarized in Table 1. It is
evident from the results presented in Table 1 that there was no significant difference in the
performance between the two front ends. However, even on the multi-condition training
set, which contains ample samples of noisy speech encountered during decoding (Test
Set A), the performance is approximately 13.0% WER. State of the art on studio-quality
TIDigits is approximately 0.2% [25]. Hence, the performance of these popular front ends
degrades by an order of magnitude. For many practical applications, such as cellular
telephony, this degradation due to noise is unacceptable. This observation motivated the
development of an advanced noise robust front end and a second Aurora evaluation.

The second Aurora evaluation was conducted with a goal to improve performance
in noisy environments. The performance of the advanced front end (AFE) was required to

be no worse than the ETSI WI007 front end [15,22] and significantly better in demanding
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shown in Figure 6. Other general
requirements for this evaluation were:
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SpeechDat-Car [26] subsets it
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German and Dannish);

WER
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Mel-Cepstrum
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Figure 6. Target performance for second

« coverage of a range of )
Aurora evaluation.

background noise types typica.
of the cellular telephony
environment;

» compatibility with HMM-based back-end recognizers (word and sub-word
based).

More specific requirements are described in [27].

Two databases were defined to cover these requirements — Aurora-3 and Aurora-
4. The Aurora-3 database was designed to calibrate the AFE performance in real noisy
environments. It included five European languages to calibrate robustness to variation in
language. This database was a small vocabulary task selected from a larger SpeechDat-Car
database [26] that is recorded in automobiles in motion. Each of the language sets consists
of three training sets and corresponding test sets designed to calibrate the following
conditions:

* Well-matched condition: Both the training and test sets are recorded with the

same hands-free microphone over the similar range of vehicle speeds to cover
the same noise conditions;
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* Moderate mismatch condition: The training set consists of a subset of the
range of noise types seen in the test set;

* High mismatch condition: The training set is recorded with a close-talking
microphone while the test set is recorded with a hands-free microphone.

The Aurora-4 database was designed to study performance on a large vocabulary
task, namely the WSJO subset [28] of the Wall Street Journal Corpus. Seven additive noise
conditions (clean, street traffic, train station, car, babble, restaurant and airport) randomly
chosen from a range of SNRs and two filtering schemes were employed to simulate the
noisy terminal characteristics. This database is the subject of this thesis. The experimental
design of the ALV evaluation using this database is discussed in detail in chapter 3.

The ALV evaluation formed a significant portion of the second Aurora evaluations.
The goal for the ALV evaluation was to achieve a 25% relative improvement in word error
rate (WER) across a variety of noise conditions compared to the MFCC WI007 front end.
Two consortia submitted proposals on speech recognition front ends for the ALV
evaluation: (1) Qualcomm, ICSI, and OGI (QIO) [29], and (2) Motorola, France Telecom,
and Alcatel (MFA) [30]. These advanced front ends used a variety of noise reduction and
channel normalization techniques including discriminative transforms, spectral
subtraction, feature normalization, voice activity detection, and blind equalization. These

noise robust algorithms are discussed in detail in chapter 2.

1.3. Comparison to Previous Speech in Noise Evaluations

The Spoke tasks in 1994 DARPA Continuous Speech Recognition (CSR)

evaluations [31] were designed to test a number of challenging conditions involving
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adaptation and compensation. These evaluations represented an important milestone in
CSR research. In particular, the evaluations referred to as Spoke 5 and Spoke 10 were
designed to benchmark algorithms that compensate for channel mismatch and additive

noise conditions. Both of these evaluations were derivatives of the same WSJO 5K task

used in the Aurora evaluation. A common language model, identical to the one used in this

thesis, was used for these evaluations.

Spoke 5 involved the use of unsupervised channel compensation for a variety of
microphones. The baseline microphone condition was a close-talking Sennheiser
microphone and the channel mismatch condition consisted of 10 different microphone
types. These microphones included four tie-clip microphones, three stand-mounted
microphones, two desktop microphones, and one hand-held microphone. Only Carnegie
Mellon University (CMU) participated in this evaluation. Two different channel
compensation algorithms [32] were evaluated. Without any compensation, the baseline
CMU system achieved a WER of 12.4%. The best CMU system with compensation
enabled achieved a WER of 9.7% which is about a 20% relative improvement over the
no-compensation case. However, this is still 45% worse than the Sennheiser microphone
condition, which had a WER of 6.7%.

While Spoke 5 was designed to benchmark channel-mismatch compensation
algorithms, Spoke 10 involved the compensation of “clean” data (recorded on close-
talking Sennheiser microphone) corrupted with additive noise. Three SNR levels were
included: 22 dB, 16 dB, and 10 dB. Three sites participated in Spoke 10 evaluation:

Cambridge University (CU), IBM, and SRI International. These groups used model-based
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Table 2. A summary of performance on the Spoke 10 task in the DARPA 1994 CSR
evaluation.

Condition CuU IBM SRI
Baseline (clean) 7.2% 7.2% 6.7%
Without compensation (10 dB SNR) 84.7% 77.4% 35.4%
With compensation (10 dB SNR) 19.8% 12.8% 12.2%

approaches for noise compensation [31,33]. From the results shown in Table 2, it is
evident that the best system from SRI achieved a WER of 12.2%, and shows an
improvement of 66% relative to the no-compensation case for the worst SNR
condition (10 dB). However, this system suffered from a 83% relative degradation when
compared to the “clean” baseline condition.

The most important difference from an experimental design point of view between
the ALV evaluation and the DARPA 1995 CSR evaluations (Spoke 5 and 10) was the
desire to use a fixed recognizer in the ALV Evaluation. The goal of the ALV evaluation
was to benchmark signal enhancement approaches in the front end component of a speech
recognition system, while the 1995 CSR evaluations allowed model-based approaches for
noise compensation within the recognizer. An important design constraint for the ALV
evaluation was the fact that the participating advanced front ends were required to meet
the ETSI latency requirements [15]. Other significant differences are tabulated in Table 3.

As we will observe in chapter 5, the advanced front end with the best performance
on the ALV evaluation achieved a WER of 34.5% (averaged across all conditions). This

advanced front end performance represents a 130% relative degradation when compared



Table 3. A comparison of the experimental setup between the DARPA 1995 CSR
evaluations (Spoke 5 and 10) and the ALV evaluation.

Condition DARPA 1995 CSR Spoke ALV
Additive One condition: Seven Conditions:
Noise Condi- car clean, street traffic, train station,
tions car, babble, restaurant, and airpprt
SNR Levels Three levels: Randomly chosen between:
22 dB,16 dB,10 dB 10-20 dB for training sets;
5-15 dB for test sets
Evaluation Two Tests: Mixed microphone mismatch and
Tests Spoke 5 for mic. mismatch; noise conditions.

Spoke 10 for additive noise Terminal filtering of the data.

to the performance on the matched microphone (Sennheiser microphone) and
clean (without noise) conditions. On the CSR evaluation, an 83% degradation for the noise
conditions was observed. The range of noise and microphone conditions on the CSR
evaluation was limited compared to Aurora. Hence, the slightly larger degradation in the

Aurora evaluation is not unexpected.

1.4. Thesis Scope and Contributions

The primary goal of this thesis is to analyze and evaluate the noise robustness
algorithms employed in the QIO and MFA advanced front ends. Though these advanced
algorithms improve recognition performance significantly over the MFCC baseline front
end, this improvement is not operationally significant. It has been shown in several studies

that human performance is stable for SNRs as low as 10 dB [34,35,36]. Machine

13
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performance degrades rapidly below 15 dB SNR. Despite the progress made recently in

the development of noise robust front ends, there are still significant challenges ahead in

closing the gap between machine and human performance.

The key contributions of this thesis are:

Development of the Aurora baseline systemThis system was designed to
minimize computation time without significantly compromising the overall
system performance or the ability of the evaluation to rank front end
algorithms. The baseline system achieved a WER of 14.0% on the standard 5K
WSJO0 task, and required 4 xRT for training and 15 xRT for decoding (on an
800 MHz Pentium processor).

Analysis of the WIO07 (MFCC) front end: The performance of the WI007
front end on six focus conditions is calibrated and analyzed. These six focus
conditions are: sampling frequency reduction (16 kHz and 8 kHz), utterance
detection (influence of endpointing), compression (a vector quantization-based
compression scheme), model mismatch (mismatched training and testing
conditions), microphone variation (two microphone conditions available in the
WSJO task [28]), and additive noise (six noise types collected from street
traffic, train stations, cars, babble, restaurants and airports at varying signal-to-
noise ratios).

Analysis of noise robustness algorithmsA theoretical analysis of techniques
that reduce degradations due to convolutional and additive noise is provided
for the QIO and MFA front ends. The performance of these front ends is also
evaluated on the Aurora 4 task and compared to a baseline MFCC front end. It
is shown that the performance of these AFEs is significantly (statistical sense)
better than the MFCC front end.

Parameter Tuning: The influence of front end-specific parameter tuning on
performance is calibrated and analyzed. It is shown that the front end-specific
tuning does not significantly influence recognition performance for the ALV
evaluations described in this thesis.

The Aurora baseline system allows users to calibrate the performance of AFEs

through extensive experimentation in a reasonable amount of time without the need for a

large cluster of compute servers. The large gap between the performance of the AFEs and
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humans establishes the need for further research towards the development of better noise
robust algorithms. Because the experimentation was performed without any
front end-specific parameter tuning, it can be argued that the performance obtained by
these AFEs is suboptimal. Optimizing well-known recognition system parameters [37]
such as the language model scale and word insertion penalty often improves performance.
This thesis establishes that front end-specific parameter tuning does not result in a

significant improvement in recognition performance for the algorithms analyzed.

1.5. Structure of the Thesis

Chapter 2 discusses the need for perceptually-motivated signal parametrization
and reviews an industry-standard feature extraction algorithm used in the baseline system
and the Aurora WI007 standard. It also presents an analysis of the advanced noise robust
algorithms used in the QualComm-ICSI-OGI (QlO) and Motorola-FranceTelecom-
Alcatel (MFA) front ends. Chapter 3 describes the experimental framework used in the
ALV evaluations. A detailed discussion is presented on the development of the short
training and test sets that were used to facilitate large scale evaluations. Chapter 4 presents
the design and development of the ALV baseline LVCSR system that was used a common
testbed to benchmark the performance of the front ends. Chapter 5 presents the
experimental results in the ALV evaluation, and an analysis of attempts to optimize the
performance of these front ends with the baseline system. It is shown that the performance

of both QIO and MFA front ends is significantly better than the baseline MFCC front end,
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but this improvement is not operationally significant. Chapter 6 summarizes the key

contributions of this work and suggests some directions for future research.



CHAPTER Il

FRONT END ALGORITHMS

The term “front end” in the speech recognition literature is commonly used to
describe a collection of signal modeling techniques [9] that transform an audio signal into
a sequence of feature vectors as shown in Figure 7. These features capture the spectral and
temporal variations of the speech signal. Many signal modeling techniques are designed to
approximate human auditory phenomena known to be an integral part of the human

speech recognition apparatus.

Front end design has been an ai

Input

Speech I" . I"'

century. The two dominant front en Acoustic
Front-End

of active research for the past quart

approaches in speech recognition ¢ G
based on the mel frequency cepsti Cs.tatistical Acoustic Mod%
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coefficient (MFCC) representation [3€

and perceptual linear predictio Language Mode E:
Search
p(W)

(PLP) [39]. The popularity of these tw:

. . . - R ized Utt
front ends is attributed to their ability t \ eeognized THerance

Figure 7. A front end converts a speech
deliver good performance whil signal to a sequence of feature vectors that

serve as input to the acoustic modeling
maintaining a fairly simple anc component of a speech recognizer.
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computationally efficient implementation in a real-time framework. The PLP front end has
been reported to perform marginally better than the MFCC front end in demanding
environments though it has been shown that after a few passes of adaptation, the
performance of both front ends is comparable [40].

This chapter presents overviews of the three approaches studied in this thesis: an
industry-standard MFCC front end and two advanced front ends featuring algorithms
intended to improve robustness to noise. It also describes the differences between a
standard MFCC front end (ISIP) [41] and the WI007 front end [15] that was used as a

baseline for the ALV evaluation.

2.1. The Mel-Scaled Cepstral Coefficient Front End

A detailed discussion of various signal modeling techniques used in modern
speech recognition systems can be found in [9,42,43]. The most popular approach for
transforming the input signal into a sequence of feature vectors uses the mel-scale
frequency cepstral coefficient (MFCC) representation [41] shown in Figure 8. In the

following sections, we briefly describe each component in this block diagram.

2.1.1. Zero-mean

The first step in conversion of the speech signal to a feature vector is to remove the
the DC offset, a process referred to as debiasing of the signal. A mean value is computed
every 10 msec using an overlapping 25 msec window. This analysis window begins at the

same time as the 10 msec frame, and extends 15 msec after the end of the frame. This is
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often referred to as a left-aligned window. The mean value computed over this window is
subtracted from the signal:

xq[n] = x[n] —u, , 1)
wherep, is the mean of the speech sample values within a wingiavy, represents the

input speech samplegy[n]  represents the debiased speech samplds,2, ..., N

andN is the total number of speech samples in the window.
2.1.2. Preemphasis

The next step is to shape the spectrum of the debiased signal using a first-order
finite impulse response (FIR) filter given by:

-1
Hpe(2) = 1+a,,.z .

2)
This filter amplifies portions of the spectrum above 1 kHz at approximately 20 db/decade.
Because the human auditory system is more sensitive to frequencies above 1 kHz,

preemphasis tends to increase the contribution of the high frequency portion of the
spectrum in the overall recognition process [44]. A typical rangea‘[% in speech
recognition applications is [-0.4,-1.0]. The value of this filter coefficient used in the
ETSI WIO07 front end is 0.97. The computation of the first output sample at time zero,

y[0], at each frame varies from one front end implementation to the other. For example,
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reference implementations at Mississippi State University [41] and Cambridge
University [50] computey[0] at every frame by assumxfigl] = x[0]

On the other hand, the ETSI WI007 front end does not make any assumption and
computes the/[0] using a circular buffer implementation. Hemgel] needed for the
computation of the first sample at each frame is retrieved from the previous frame in the
circular buffer. The value ok[-1] needed of the computationyfid] corresponding to

the first output sample for the first frame is assumed to be zero.

2.1.3. Fourier Transform Analysis

The next two processing steps, frequency domain analysis and an absolute energy
computation (described in section 2.1.8), are performed in parallel. The signal is
transformed from the time domain to the frequency domain using a Fourier
Transform (FT). A 25 msec Hamming window is used which corresponds to a spectral
resolution of 40 Hz. This choice of a window duration captures the short-term spectral
envelope of the speech signal, which is related to the vocal tract shape, while ignoring the
spectral harmonics corresponding to the fundamental frequency of the speech
waveform [9,43]. A feature vector that represents the time-varying vocal tract shape is
critical to achieving high performance speaker independent speech recognition. In
practice, a Fast Fourier Transform (FFT) is used to compute the transform because of its
computational efficiency [45]. The 25 msec window is zero-padded to the nearest power

of two (e.qg., for an 8 kHz sample frequency, we use a 256 point FFT).
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This spectral estimate of the speech signal is computed every 10 msec. Due to the
limited velocity of the articulators in the human speech production apparatus, the speech
signal can be regarded as relatively stationary when analyzed over a 5to 10 msec
interval [44]. A 10 msec frame duration has been historically used in speech recognition
systems [9] as a compromise between computational efficiency and the temporal

resolution necessary to assume the speech signal is stationary.
2.1.4. Mel-scale Filter Bank Analysis

The Fourier Transform (FT) of the signal is then transformed using a mel-scale
filter bank analysis. The human auditory system is known to be sensitive to frequency and
amplitude on a logarithmic basis. This behavior can be approximated by transforming the
signal using a nonlinear frequency scale. Though there are techniques to perform such a
scaling in the time domain [46,47], it is more convenient to simply implement this as a
table-lookup in the frequency domain. The mel scale [47] is a popular approximation for
this non-linear mapping, and is given by:

fmer = 2595009 1( 1+ f/700.0 . 3)

A logarithmic filter bank analysis is used to approximate the sensitivity of the
basilar membrane of the human ear to discrete frequencies [48]. Instead of perceiving
individual frequencies on a continuous scale along the basilar membrane, there is evidence
that hair cells along this membrane are tuned to specific frequencies. A bank of 24
bandpass overlapping filters arranged linearly along the mel scale represents a crude, but

adequate approximation to the frequency resolution of the human ear. The output of each
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of the overlapping filters is computed as the weighted sum of the FT coefficients that fall

within its bandwidth:

Ns
1
SaveM) = 2 3. Wea(MISCH, (4)
n=0
whereN represents the number of coefficients within the filter wiah,(n) represents

the weighting function (filter gain), an8( f) represents the frequency response given by
the FT. A triangular weighting function is the most common form gy (n) [38].

Figure 9 depicts a mel-scale triangular filter bank implementation which is used in most

MFCC front ends.

2.1.5. Cepstrum Analysis

After the mel-scale filter bank analysis, a cepstrum analysis is performed on the
filter bank outputs. Cepstrum analysis is a homomorphic process [48] that is applied to
deconvolve the excitation and the vocal tract shape. Speech production can be

approximated as the convolution of two impulse responses:

s(n) = g(n) O v(n) , (5)

S(f)

AN

Figure 9. Mel-frequency spaced triangular filter banks for an MFCC front end.

Frequency
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wheres(n) represents the speech sigrin) represents the excitation(and
represents the vocal tract shape. Only the vocal tract shape information is exploited for
speaker independent recognition.

The corresponding frequency domain representation is given by the product of two
components:

S(f) = G(f) v(f) . (6)
This product can be represented as a sum in log domain:

log{ S(f)} = log{G(f)} +log{V(f)} . (7)
The spectrum of the excitation signal and the vocal tract shape can be separated using
conventional digital signal processing techniques in the log-frequency domain. The vocal
tract shape is represented by the low-order cepstral coefficients, while the high-order
coefficients contain the spectral information corresponding to the excitation signal.
Typically, for most speaker independent speech recognition applications, only the first 13
coefficients (low-order) are retained for further processing.

The classical cepstrum is defined as the inverse Discrete Fourier Transform (IDFT)
of the log magnitude spectrum [43]. In a typical MFCC front end, the cepstrum is
implemented using a Discrete Cosine Transform (DCT) because the log magnitude

spectrum is a real symmetric function [43,50]:

C[K] = [ Z Savg(n)coS[TEn(Zk+ 1)} , (8)
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whereN represents the total number of filter banks; 0,1,...,.N c, = 1/.J2 when

n = 0,andc, = 1 elsewhere. The resulting coefficients are an approximation to the

classical cepstrum, and compactly represent the log magnitude spectrum of the speech
signal. The first thirteen cepstral coefficients are typically adequate to describe the vocal

tract shape for most speech recognition applications.
2.1.6. Liftering

The thirteen cepstral coefficients are then weighted using a process known as
liftering [38]. While the low-order cepstral coefficients represent the vocal tract
shape (e.g., spectral slope and glottal pulse shape), the high order cepstral coefficients are
sensitive to the analysis window, fundamental frequency and other artifacts [51]. Hence,
for speaker independent recognition, it is advantageous to reduce these speaker-dependent
variations. The low-order coefficients are enhanced though a raised-sine weighing
function given by:

0 i 0
w(n) = G[ 1+ hsin((nm)/L) l<ns<lL a. )
0o elsewhere[]

Typical values for the paramete®& L, ,ahd in an industry-standard MFCC front end
are 1, 22 and 11, respectively.
The zeroth cepstral coefficierd[0] , represents the average value of the spectrum

or the root mean square value of the signal [9]. Historically, this term is excluded from the
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set of cepstral coefficients. Instead, an absolute energy term, described below in

section 2.1.8, is explicitly computed.
2.1.7. Cepstral Mean Subtraction

A simple technique to reduce the influence of convolutional noise due to channel
and/or microphone distortion is cepstral mean subtraction (CMS) [52]. CMS is performed

on the 12 cepstral coefficients:

Coms Kl = €K —H[K] , (10)

where u[k] represents the mean of th8 cepstral coefficient, 1, 2, ..., 12 ,

n=12...,N,andN is the total number of frames in the speech utterance. The mean of
each cepstral coefficient is computed over an entire utterance (e.g., speech file) or a

conversation side [53] depending on the nature of the application.
2.1.8. Absolute Energy and Energy Normalization

The log of the absolute energy term is explicitly computed once per frame using

the 25 msec analysis window of the input speech prior to the preemphasis step:

-t , O
E = IogeDZ x“(n)J, (11)
0= U

whereN represents the total number of samples in the 25 msec window.
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The logarithm of the absolute energy is then normalized on an utterance basis to
reduce the variations in energy levels that may arise due to variation in loudness levels of
different speakers:

EnormlN] = E[N]-E (12)

max ?

whereE, ., represents the logarithm of maximum energy, 1, 2, ..., N dnd is the

X
total number of frames in the speech utterance. The term representing the normalized
log-energy and the twelve CMS-transformed cepstral coefficients are concatenated to

form a 13-dimensional absolute feature vector.
2.1.9. Time Derivatives

The final step in the MFCC front end is the computation of the first and
second-order time derivatives of the 13-dimensional feature vectors. These time
derivatives improve our ability to discriminate between certain classes of sounds, and
capture some of the temporal characteristics of the speech signal [54,55]. Linear

regression analysis is used to generate these derivatives [56,57]:

dw

S Wiy 4 WKL _ WKIE:
d k] - W=L i
n

: (13)
dw 2

ZZW
w=1

where dn[k] Is a scalar value representing the derivative ofkkRe feature vector

coefficient at framen Cn+ W[k] antxtn _ W[k] represent past and future values of this
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coefficient in time andlw is the number of frames used in the computation. Two adjacent
frames on each side of the current frame are sufficient to capture the velocity of the
cepstral coefficients. Hencdw  is setto 2. As shown in Figure 10, a five-frame window is
needed for the first-order derivative computation.

The second-order derivatives are computed by applying Equation 13 to the output
of the first differentiation, withdw set to 2. Hence, the acceleration of the cepstral
coefficients is computed by a differentiation of the first-order derivatives. The total extent
of the data involved in the second derivative calculation is nine frames of data, or 90 msec.
Thus, the overall feature vector for the MFCC front end contains 13 absolute features
(energy plus 12 cepstral coefficients), 13 first-order derivatives (velocity) of these absolute
features, and 13 second-order derivatives (acceleration), resulting in a feature vector with

a dimension of 39.

delta: a4 ox/dt a4

delta-delta: k\\Y GZX/ dtZ ggggg aZX/ d'[Z N
P PN PR PR PN P

\

Figure 10. Each temporal derivative is computed using a five frame window (at 10 msec
per frame). Hence, the second derivative computation, which requires five frames of first
derivative data, involves data extending over nine frames of the input signal.




29

2.2. The ETSI WIO07 Front End Specification

The WI007 MFCC front end [15], shown in Figure 11, is a scaled down version of
the standard MFCC front end described in the previous section. Liftering of cepstral
coefficients is not implemented in the WI007 front end. Also, no energy normalization or
cepstral mean subtraction is incorporated in this front end. However, the ETSI standard
split-vector quantization compression algorithm and framing algorithm [15] is
implemented in the WI007 front end. Only the 13 absolute features (energy plus
12 cepstral coefficients) are transmitted to the back end server though the channel. At the
back end server, the bit-stream is decoded, error-detected, error-corrected, and
decompressed to form the final features. The delta and acceleration coefficients are

computed from the base features at the back end to form 39-dimensional feature vectors.

2.3. The QIO Advanced Front end

A collaboration between the CDMA Technologies Group at Qualcomm, the
Speech Group at International Computer Science Institute (ICSI), and the Antropic Signal
Processing Group at Oregon Health and Science University (OGI) produced a front end
design referred to as the QIO front end [58]. It features three key components: a
15-dimensional MFCC-based feature vector generated using data-driven LDA-derived
filters, on-line mean and variance normalization, and a multilayer perceptron-based voice
activity detector (VAD).

A block diagram of the QIO front end is shown in Figure 12. The speech signal is

analyzed using a 10 msec frame and a 25 msec window. For each frame of speech data, a
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mel-scaled triangular-weighted filter bank analysis, similar to the standard MFCC front
end, is performed. However, the QIO front end uses 23 bins in its filter bank, compared to
24 for the standard MFCC front end. A natural logarithm of the output of each of the
23 bins is performed. Time trajectories of the 23 logarithmic filter bank energies are
filtered though linear discriminant analysis (LDA) derived RASTA-like filters. In parallel,

a VAD detector detects the speech and non-speech frames. The DCT of the speech frames
is then computed and only the lower 15 cepstral coefficients are retained for further
processing. An online mean and variance normalization of these 15 cepstral coefficients is
performed.

These coefficients are processed through compression, framing, bit-stream
formatting and error protection algorithms [15] on the terminal side. These processed
frames are then transmitted over a digital channel. On the server side, the frames are
processed though the ETSI standard bit-decoding, error mitigation and feature
decompression algorithms. Delta and acceleration coefficients are computed on the server
side using the 15 reconstructed cepstral coefficients. Thus, the overall dimension of the
output feature vector is 45. The three key noise reduction techniques implemented in the

QIO front end are described in the following sections.

2.3.1. LDA-derived RASTA-like Temporal Filtering

RASTA filtering is known to compensate for slowly varying convolutional noise
introduced due to channel and/or microphone mismatch [59]. RASTA filtering involves

temporal filtering of time trajectories of the log mel-frequency filter bank energies. The



33

overall influence of this filtering process is that it attenuates the frequencies of the filter
bank energies below 1 Hz and above 12 Hz. Typically, the frequency response of the
RASTA filter is optimized on a series of ASR experiments on a noisy database [59,60].
Because these optimizations are expensive and do not guarantee generalization, the filters
used in the QIO front end were derived using a data-driven LDA analysis [60]. The
frequency response of these LDA-derived filters match closely to the frequency response
of the RASTA filter, and hence, the LDA-derived filters are referred as RASTA-like filters.

The LDA-derived filters are typically computed using a noisy training database
and applied on a test database [60]. For the QIO front end, a noisy version of the
OGI Stories database [59] was used to compute these filters. This OGI Stories database
was corrupted by adding restaurant noise to achieve a 10 dB SNR.

The LDA-derived RASTA-like filters can potentially be derived for each of the log
mel-frequency filter bank bins. For each bin, coefficients corresponding to a one-second
time duration (e.g., 100 frames) are concatenated to form a sequence of feature vectors. A
typical feature vector is formed every frame by using the value of a specific mel-frequency
filter bank bin corresponding to the current frame plus the value of the same mel-
frequency filter bank bin corresponding to 100 adjacent frames (50 past and 50 future
frames). Each of these feature vectors can be interpreted as a center aligned overlapping

window (current frame plus 50 past plus 50 future frames). An overlapping window

corresponding to thdiframe is shown in Figure 13. A sequence of these feature vectors
is constructed by sliding the overlapping window by one frame over all the frames in the

training database. The class of each of the feature vector is labeled by the phoneme
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Figure 13. Feature-vector generation for LDA-derived RASTA-like filters.

corresponding to the current frame. LDA analysis is then applied to these 101 dimensional
feature vectors that correspond to a specific bin. The transformation vector computed
through this LDA analysis represents the coefficients of the RASTA-like filters for that
specific bin.

Though each mel-frequency filter bank bin could potentially be filtered using a
unique filter corresponding to this bin, only two filters are actually used in the QIO front
end. Both of these filters are approximated as a 41-tap symmetric FIR to meet the ETSI

latency requirement [8]. The filter corresponding to the second bin was selected and used



to filter the time trajectories of first and second filter bank bins. The remaining 21 bins

were filtered though the filter corresponding to the fourth bin.

2.3.2. Voice Activity Detection

A multilayer perceptron (MLP) based voice activity detector (VAD) eliminates
non-speech segments [61]. For extremely noisy speech, this reduces insertion errors by
reducing the opportunity for noisy speech to be misinterpreted as speech. The input to this
MLP consists of three frames of features. Two adjacent frames are used to incorporate
contextual information during the decision-making process. The MLP consists of 6 input
units, 15 hidden units and one output unit. A threshold is applied to the output posterior
probability from the MLP to create a binary-valued output. This output is then smoothed
using an 11-point median filter. The MLP was trained on multiple databases, representing

both clean and noisy conditions.

2.3.3. Online Mean/Variance Normalization

Online mean and variance normalization is known to reduce the influence of the
convolutional noise [52,62] such as channel distortion. The initial estimates of the mean
and variance are computed using the first four frames of the training utterances. These

initial estimates are then updated for each frame using the following equations:

uit] = ult-1]+a(x[t-1] -p[t-1]) , (14)

35
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2 2 2 2
o°[t] = o"[t—1] +a((x[t] —pu[t])" -0 [t-1]) , (15)
= XU -plt]
where x[t] is a scalar representing a cepstral coefficient, andxiig is the
corresponding normalized cepstral coefficient at frame . The terjhls c%[’u}i are
the estimated mean and variancexff] . The congtant  is an adaptation constant needed

to guarantee a positive estimate of the variance. The s@alar is an empirically-derived

variance floor. For the ALV evaluation, these two parameters were setlto  1dnhd ,

respectively.

2.4. The MFA Advanced Front end

The second advanced front end studied in this thesis resulted from a collaboration
between the Human Interface Lab at Motorola Labs, France Telecom R&D, and Alcatel
SEL AG (Germany). The front end produced by this collaboration is referred to as the
MFA front end [63,64]. It is based on a 12-dimensional MFCC feature vector plus a
weighted average of log-energy and the zeroth cepstral coefficient.

The input speech signal is first processed through a noise reduction block that uses
a time domain two-stage Wiener filter, as shown in Figure 14. This analysis is performed
on a frame basis with a frame duration of 10 msec, and uses a 25 msec Hanning window.
The SNR of the resultant signal is then enhanced using a process referred to as “Waveform
Reduction” that weights the speech segments of the speech signal higher than the non-

speech segments through the use of Teagor energy operator. Thirteen cepstral coefficients
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Figure 14. A block diagram of the Motorola-France Telecom-Alcatel (MFA) front end.
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and energy are computed using the methodology described in section 2.1. A least mean
square error-based blind equalization is applied to these coefficients to produce the final
feature vector.

The resulting feature vectors are then processed though the ETSI standard feature
compression, framing, bit-stream formatting, and error protection algorithms [64], and
digitally transmitted over the channel. The received bit stream is decoded and error
corrected at the server. The resulting frames are then decompressed and processed though
the Feature Processing block that performs three operations — a weighted log-energy
computation, delta and acceleration computations, and voice activity detection. The output
frames from this block are 13-dimensional (weighted energy plus 12 cepstral coefficients).
These 13-dimensional feature vectors are differentiated to generate coefficients
representing the first and second-order derivatives. The novel individual components of

this front end are discussed in the following sections.

2.4.1. Noise Reduction

The noise reduction process consists of a two-stage time domain mel-warped
Wiener filtering process [63,64] that uses a frame-based noise reduction approach. The
first stage is a mel-warped classical Wiener filter that reduces noise but introduces a white
residual noise [65]. This white residual noise is removed using a second stage of the mel-
warped classical Wiener filtering.

The frequency responses of the two Wiener filters are derived using estimates of

the noise and speech spectra. In the first stage, the noise spectrum is estimated using only
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the non-speech frames. A log energy-based voice activity detector (VADNest) [63] is used
to detect the speech frames. The spectrum of the clean speech signal is estimated by
subtracting the estimate of the noise spectrum from the estimate of the spectrum of the
input signal. However, in the second stage, the noise spectrum is estimated every
frame (speech and non-speech). The estimate of the clean speech from the first stage is
improved by applying the first-stage Wiener filter. This improved estimate of the clean
speech, along with the estimate of the noise spectrum, is used for computation of the
second-stage Wiener filter. The frequency response of the two Wiener filters are smoothed
and time-warped using a filter bank that incorporates 23 mel-scale bins. The impulse
response of these filters is then computed by applying an inverse DCT transform to the
frequency response.

The second stage uses an additional gain factorization stage that operates on the
noise-reduced signal at the input of this stage to accomplish a dynamic noise reduction.
Frames are classified as speech or non-speech based on the SNR. For speech frames, the
gain of the Wiener filter’s frequency response is set to 0.1 whereas for the non-speech
frames, the gain is set to 0.8. The overall influence of this processing is that more

aggressive noise reduction is applied to non-speech frames than speech frames.

2.4.2. Waveform Processing

The waveform processing block improves the SNR of the signal by emphasizing
voiced speech segments and deemphasizing the non-speech segments of the signal. A

smoothed instant energy contour computed though a Teagor energy operator [66] is used
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to detect the speech and non-speech segments. The voiced segments of speech signal
display guasi-periodic maxima and minima [67]. The smoothed instant energy value
corresponding to the voiced segments exhibit a quasi-periodic property and have a period
corresponding to the fundamental frequency. The contour corresponding to the unvoiced
and silence/noise segments is relatively flat or random. The maxima in the energy contour
correspond to the high SNR portions of the signal and hence, are classified as speech

segments. The speech segments are then given more weight than the non-speech segments.

2.4.3. Blind Equalization

Blind equalization is applied to reduce the influence of convolutional noise. It is
known that the response of the Wiener filter compensates for variations in the channel/
microphone response [68]. The Wiener filter accomplishes this deconvolution by reducing
the mean square error between the reference and the recovered signal. In the cepstral
domain, it has been shown that the adaptive filter that minimizes the mean square error
between the current (recovered) cepstrum and a reference cepstrum [69] compensates for

convolutional noise.

2.4.4. Feature Processing

The block named Feature Processing has three main functions — a weighted log-
energy computation, delta and acceleration computations, and voice activity detection.
The weighted energy is computed using the weighted sum of the zeroth cepstral

coefficient and a logarithm of the absolute energy:
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E,[n] = 0. 6(C[O]) +0.4(nE[N]) . (17)

The first and second derivatives of these coefficients are computed and appended
to the 13-dimensional base features (weighted energy plus 12 cepstral coefficients) using
techniques previously described in section 2.1.9. The non-speech frames are dropped
using a two-stage voice activity detector (VAD). In the first stage, three measures of
speech activity are computed. Each measure generates a binary decision whether the input
frame is speech or non-speech. In the second stage, a heuristic VAD logic combines these
three complementary decisions to make a final decision.

The first measure is an acceleration (second derivative) of the energy that is
computed across the entire spectrum. The energy is computed by summing the square of
the coefficients of the mel-warped Wiener filter corresponding to the first stage of the
Noise Reduction block. This filter is described in section 2.4.1. A thresholding mechanism
based on the acceleration of the energy is used to make a binary decision. Because this
decision is based on the entire spectrum, this measure accurately detects plosive and
unvoiced sounds.

The second measure is an acceleration of an energy-based measure that is
measured over a group of sub-bands of the spectrum likely to contain the fundamental
frequency. An energy-based measure is computed by averaging the coefficients of the first
stage mel-warped Wiener filter corresponding to the second, third and fourth bins. Similar
to the first measure, a thresholding mechanism is used to make a binary decision. The

advantage of this measure is that the high SNR in these three sub-bands makes it highly
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robust to noise. On the other hand, it is susceptible to microphone characteristics (low-
pass), speaker characteristics and band-pass noise that can significantly alter the energy
content of these three sub-bands.

The third measure uses the acceleration of the variance of the Wiener filter [63]
coefficients computed over the lower half of the frequency band. Note that the Wiener
filter coefficients for this computation are selected before they are mel-warped. Similar to
the first and second measures, a thresholding mechanism is used to make a binary
decision. This measure accurately detects voiced sounds because it is computed using the
portion of the spectrum (e.g., the lower half of the spectrum) that is likely to contain most
of the harmonics of the fundamental frequency.

In this chapter, we reviewed the signal modelling techniques employed in three
front ends: WI007, MFA and QIO. We also presented a comparison between the WI007
front end and an industry-standard MFCC front end. In the next chapter, we describe the

experimental framework used to evaluate these front ends.



CHAPTER IlI

EXPERIMENTAL DESIGN

This chapter presents the design and development of the WSJO-derived Aurora-4
database used to evaluate these advanced front ends. The construction of the lexicon and
language models is also discussed. The final selection of the Aurora-4 database was a
balance between the need to train on large amounts of data and the desire for participants
to be able to run experiments quickly. This chapter reviews the experiments that guided

the selection of the final subset of the WSJO0 data.

3.1. Corpus Design

The first step in the ALV evaluation was to define an evaluation paradigm. The
Aurora Working Group decided to build on a standard evaluation paradigm based on the
DARPA Wall Street Journal Corpus (WSJ) [28], and to evaluate noise conditions by
postprocessing the clean data using digitally added noise [70]. WSJ is a large vocabulary
continuous speech recognition corpus consisting of high-quality recordings of read
speech. Two-channel recordings of the same utterances were made at 16 kHz. The first
channel consisted of the same microphone for all speakers — a Sennheiser HMD-414
close-talking microphone that was extremely popular at the time. The second channel

included a sampling of 18 different types of microphones. The text material for this corpus

43
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was drawn from newspaper articles appearing in the Wall Street Journal. A portion of the
data included utterances containing verbalized punctuation (“*John COMMA who came
home early COMMA decided to read the newspaper PERIOD”).

The data is divided into a sequence of training (train), development (dev test) and
evaluation (eval) sets. Further, the Aurora Working Group decided to focus on the
5,000 word evaluation task, popularly known as WSJO0. This is an interesting task in that
the evaluation set is defined in such a way that a 5,000 word vocabulary, which is
distributed with the corpus, is sufficient to give complete coverage of the evaluation set.
This means there are no out of vocabulary words (OOVSs) in the evaluation set. This task is
often referred to as the 5k closed vocabulary task. It is a popular approach when one wants
to focus on acoustic modeling problems, and remove language modeling issues from the
evaluation.

A standard bigram backoff language model (LM) [71] is also distributed with the
corpus as a reference language model. It consists of 826,002 bigrams and 4,988 unigrams
with corresponding backoff weights. This bigram language model yields a perplexity [43]
of 147.

The standard training set for the WSJO is defined as SI-84. This set contains
7,138 utterances from 83 speakers, totaling 14 hours of speech data. The SI-84 set
contains a mixture of utterances with and without verbalized punctuation. A typographic
error in the training transcriptions, “EXISITING” instead of “EXISTING”, was fixed.
While the dev test set consists 1206 utterances from 10 speakers, the eval set is defined by

the November 92 NIST evaluation set [72] consisting of 330 utterances from 8 speakers.
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For the ALV evaluation, processed versions [73] of the training, dev test, and
evaluation utterances were generated at 8 kHz and 16 kHz. G.712 filtering [24] was used
to simulate the frequency characteristics at an 8 kHz sample frequency and
P.341 filtering [74] was used for simulation at 16 kHz. The filtering was applied to the
noisy data as well. As shown in Figure 15, Training Set 1 consisted of the filtered version
of the complete SI-84 training set (7138 utterances) recorded with the Sennheiser
microphone.

Training Set 2 was used to study the effects of variation in microphone and noise.
Its data distribution is also shown in Figure 15. The filtered 7,138 training utterances are
divided into two blocks: 3569 utterances (half) recorded with the Sennheiser microphone,
and the remaining half recorded with a different microphone (18 different microphone
types were used). No noise is added to one-fourth (893 utterances) of each of these
subsets. To the remaining three-fourths (2,676 utterances) of each of these subsets, 6
different noise types (car, babble, restaurant, street, airport, and train) were added at
randomly selected SNRs between 10 and 20 dB. The goal was to attain an equal
distribution of noise types and SNRs. Thus, we had one clean set (893 utterances) and 6
noisy subsets (446 utterances each) for both the microphone conditions.

There is one irregularity in Training Set 2. The speech file 4080303.wv1, recorded
with the Sennheiser microphone exists, but the file 4080303.wv2, recorded with a second
microphone, did not exist on the original WSJO CDs. To keep the number of files constant
across both the training sets, the file 4080302.wv2 was selected instead of 4080303.wv2.

Thus both files 4080302.wv1 and 4080302.wv2 were used in Training Set 2.
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Training Set 1 Training Set 2
(SI-84) (7138 utt.)

Sennheiser Mic.

Training Set 3 Second Mic.
(3569 utt.) (3569 utt.)
. 1 out of 6 noises . 1 out of 6 noises
No noise added between 10 & No noise added between10 &
(893 utt.) 20 dB (2676 utt.) (893 utt.) 20 dB (2676 utt.)

Figure 15. Definition of Training Set 1 (Clean Training) and Training Set 2 (Multi-
condition Training).

Training Set 3 was defined to study the impact of using utterances recorded only
with the Sennheiser microphone for training. The Sennheiser microphone block of the
Training Set 2 was referred to as Training Set 3. We will see chapter 4 that the results on
this set were poor because of the reduction in the number of training utterances.
Consequently, this training set was not considered for further experimentation in the ALV

evaluation.
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Fourteen evaluation sets were defined in order to study the degradations in speech
recognition performance due to microphone conditions, filtering and noisy environments.
Each of the filtered versions of the evaluation set recorded with the Sennheiser
microphone and the secondary microphone were selected to form two evaluation sets. The
remaining 12 subsets were defined by randomly adding each of the 6 noise types at
randomly chosen SNRs between 5 and 15 dB for each of the microphone types as shown
in Figure 16. The goal was to have an equal distribution of each of the 6 noise types and

the SNR with an average SNR of 10 dB. Following the same process that was used for the

Test Set 1
Sennheiser Mic.

Test Set 2
Sennheiser Mic.
Car noise added
between 5 & 15 dB
(330 utt.)

Test Set 3
Sennheiser Mic.
Babble noise added
between 5 & 15 dB
(330 utt.)

Test Set 4
Sennheiser Mic.
Rest. noise added
between 5 & 15 dB
(330 utt.)

No noise added
Filtered SI-84
(330 utt.)

Test Set 5
Sennheiser Mic.
Street noise added
between 5 & 15 dB
(330 utt.)

Test Set 6
Sennheiser Mic.
Airport noise added
between 5 & 15 dB
(330 utt.)

Test Set 7
Sennheiser Mic.

Train noise added
between 5 & 15 dB

Test Set 8
Second Mic.

Test Set 9
Second Mic.
Car noise added
between 5 & 15 dB
(330 utt.)

Test Set 10
Second Mic.

Test Set 11
Second Mic.
Rest. noise added
between 5 & 15 dB
(330 utt.)

No noise added
Filtered SI-84
(330 utt.)

between 5 & 15 dB
(330 utt.)

Test Set 12
Second Mic.
Street noise added
between 5 & 15 dB
(330 utt.)

Test Set 13
Second Mic.
Airport noise added
between 5 & 15 dB
(330 utt.)

Test Set 14
Second Mic.
Train noise added
between 5 & 15 dB
(330 utt.)

Figure 16. Definitions of 14 Test Sets that include 6 noise types and different mic types.
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definition of the 14 evaluation sets, 14 dev test sets, each consisting of 1206 utterances,

were also created to allow for future research.

3.2. Language Model and Lexicon

The pronunciations contained in the lexicon were prepared using the publicly
available CMU dictionary (v0.6) [75] with some local additions made to give full
coverage of the training set. The additions needed for the training lexicon are shown in
Table 4. All stress markers in the CMU dictionary were removed and the words
“ISENT_START” and “ISENT_END” were added to follow the ISIP prototype system
lexicon format. Each pronunciation was replicated twice in the lexicon (one ending with
the sil phoneme and one with sp) to model both long and short inter-word silences (a
requirement for the technology being used in the baseline system). Similarly, an
evaluation lexicon was prepared from the CMU dictionary with local additions as shown

in Table 5.

Table 4. Local additions to the CMU Table 5. Local additions to the CMU
lexicon needed for coverage of the SI-84lexicon needed for coverage of the

training set. November 92 eval set.
Word Pronunciation Word Pronunciation
PHILIPPINES|FIHLIHPIYNZ PURCHASING| P ER CH AH S IH NG
PHILIPS|FIHLAHP S ROUTES| RAWTS
PURCHASING| P ER CH AH S IH NG RUWTS
ROUTEIR AW T ROUTINELY RUWTIYNLIY
RUWT ROVING| R OW V IH NG
ROUTINE|RUW TIY N
ROVER|R OW V ER
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The 5K bigram LM and associated lexicon do not give complete coverage of the
dev test set. Since our goal was to conduct all experiments with no OOVs, we decided to
augment the LM with the missing words. There are several ways this can be done. We
chose a static linear interpolation technique supported in the SRI Language Modeling
Toolkit (SRILM) [76]. We constructed an interpolated bigram LM by generating an LM
on the test set, and interpolating it with the existing bigram such that the overall perplexity
of the modified LM was comparable to the original LM. The original LM had a perplexity
of 147. The interpolated LM was constructed by setting the interpolation factor such that
the final perplexity was the same. The resulting value of this interpolation factor was

0.998. This interpolated LM was only used for tuning experiments on the dev test set.

3.3. Aurora-4 Database Development and Definitions

LVCSR experiments are computationally expensive and require a fairly large
amount of infrastructure. Most of the sites participating in ALV evaluation did not have
such a large infrastructure but they wanted a rapid turnover of experiments while
developing their front ends. Hence, a goal was established to define a small subset that
would provide results comparable to a full evaluation and yet run in a single day’s worth
of CPU time on an 800 MHz Intel CPU.

Though such short sets are notoriously misleading, it was considered a priority to
provide such sets to the working group. Below we describe the development of various
short sets, and other modifications made to the standard evaluation data set to meet the
needs of the Aurora evaluation. For the ALV evaluation, only training set and eval set

definitions were required and hence, these sets were defined as Aurora-4a database. The
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development-test set definitions were later included in the Aurora-4 database as Aurora-4b
for future experimental purposes. We will show that these reduced sets represented a good

compromise between computation time and the integrity of the experimental results.

3.3.1. Training Subset Selection

The WSJO SI-84 training set consists of 7,138 utterances, 83 speakers and over
14 hours of data. There are more than 129,000 word tokens and about 10,000 unique
words. The average number of words per utterance is 17.8, and the average utterance
duration is 7.6 secs. The average speaking rate is about 2.4 words per second. The training
set includes utterances with verbalized punctuation. The distribution of the number of
words per utterance for the entire training set is shown in Figure 17. Figure 18 summarizes
the distribution of the utterance durations.

One major design decision in the construction of the short set was to preserve all
83 speakers since we are concentrating on speaker independent recognition. A major
constraint for the evaluation was that a complete experiment should be able to be run in
one day using a single 800 MHz Pentium cpu. We decided to select 415 training
utterances and 30 dev test set utterances to meet this constraint. Since training on the full
SI-84 set up to 16 mixture cross-word models requires about 10 days (275 hours), the
training time required for 415 utterances was 275 x 415/7138 = 16 hours. Similarly, the
decoding time of 50 hours for 330 utterances was approximately 50 x 330/30 = 5 hours
for 30 utterances. These compromises reduced the compute time for one complete

experiment to approximately one day.



51

This, in turn, motivated a second major design decision: uniformly sample each
speaker, resulting in 5 utterances per speaker. Since the average number of words per
utterance was 18, we decided to throw out utterances that were extremely short (less than
eight words) and long (greater than 24 words) with respect to the average utterance length.
This reduced SI-84 to 4,944 utterances. We then randomly sampled the remaining
utterances from each speaker to obtain a total of 415
utterances (83 speakex 5 utterances per speaker). We will refer to this set as
short-415 [77]. Its word count and duration statistics are compared to the full training set
in Figures 19 and 20, respectively. Both distributions for the short-415 set are peaky
compared to the distributions for the SI-84 training set because extremely short and long
utterances with respect to average length were not included in the short-415 set.

Unfortunately, performance of system trained on 415 utterances even for the (1-
mixture cross-word models) was poor — 44% WER as shown in Table 6. This system was
tested on a short development set consisting of 30 utterances. Hence, we followed a
similar paradigm but doubled the training set size to 830 utterances (short-830). The

performance on short-830 for 1-mixti

Table 6. Performance as a function of the
training set for the baseline system (with
ISIP’s standard front end and unfiltered
audio data).

cross-word models was also pool

36.0% WER. We then decided to incre

the training set size to a quarter of
Acoustic Models| Training Set | Devtest-30

total training utterances in SI-84. T ClI-Mono-1-mix 415 46.0%
CD-Tri-1-mix 415 44.1%
yielded short-1785 with an error rate Cl-Mono-1-mix 830 16.6%
CD-Tri-1-mix 830 36.0%

25.5%.

CD-Tri-1-mix 1785 25.5%
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Figure 17. A histogram of the word counts Figure 18. A histogram of the utterance
for the full training set (SI-84).
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Figure 20. Comparison of the histograms
of the utterance durations for SI-84 and
short-415.

Figure 19. Comparison of the histograms
of the word counts for the full training
set (S1-84) and the short-415 training set.

Since the training subset has to be consistent for both the Training Set 1 (clean)
and Training Set 2 (multi condition data), we decided to sample one-fourth of each of the
clean and noisy utterances from both the Sennheiser as well as the second microphone
conditions. The distribution of data in Training Set 2 is shown in Figure 15. We alternately
picked 112 utterances from each of the 12 noisy blocks and 224 utterances from each of

the two clean blocks to obtain 1,792 utterances. We refer to this set as short-1792. This is
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what was used for acoustic training in the evaluations. A summary of the word count and
duration statistics are shown in Figures 21 and 22, respectively. Note that the word count
distribution as well as the utterance duration distribution for the short-1792 is very similar
to the respective distributions for the SI-84 training set.

Key statistics for all short training sets are provided in Table 7. Although the
average duration and speaking rate is almost constant across all the training sets, the total
number of unique words drastically reduce as the number of utterances decreases. This

often results in undertrained acoustic models since there are an insufficient number of
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Figure 21. Comparison of the histograms Figure 22. Comparison of the histograms
of the word counts for SI-84 and of the utterance durations for SI-84 and
short-1792. short-1792.

Table 7. A comparison of some vital statistics for various training subsets.

Training Total Average No. Number Average Average
Set Number Words/ of Duration | Speaking Rate
Size of Words Utterance Unique Words (secs) (words/sec)

415 6,797 16.4 2,242 6.85 24
830 14,996 18.1 3,626 7.67 2.4
1785 32,085 18.0 5,481 7.59 24
1792 32,012 17.9 5,444 7.63 24
SI-84 128,294 18.0 8,914 7.62 24
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instances of each phonetic context to support reliable training. Hence, all 7,138 utterances
were included in each of the two training sets (Training Set 1 and Training Set 2) defined

in the Aurora-4a database [78].

3.3.2. Devtest Subset Selection

The Nov’92 development test set consisted of 1,206 utterances, and included
10 unique speakers, and totals over 134 minutes of data. Similarly, the Nov’'92 evaluation
set consists of 330 utterances, 8 speakers, and about 40 minutes of data. Our goal was to
produce a short set that was a reasonable match to the statistics of both of these sets.
Following the same strategy described in section 3.3.1, we selected 3 utterances per
speaker for a total of 30 utterances.

Due to time constraints and the large number of experiments that needed to be run
to effectively tune a system, we decided to reduce the 1206 utterance dev test set to a
330 utterance set which was comparable in size to the evaluation set. To do this, we
decided to preserve all 10 speakers represented in the dev test, and select 33 utterances per
speaker. These utterances were selected such that the duration profile of the 330 utterance
subset was a good model of the entire 1206 utterance set (measured in words per
utterance). The 14 noisy subsets corresponding to these 330 utterances were defined. Each
of these 14 subsets corresponds to the 14 noisy sets defined in section 3.1, and these
14 subsets are collectively defined as Aurora-4b database [78].

In the previous paragraph, we described the definition of devtest-330 by sampling

the 1206 utterance Nov’92 dev test set. We decided to create devtest-30, a subset of
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devtest-330. More importantly, we decided not to throw out long or short utterances this
time, because we wanted this subset to be representative of the devtest-330. Hence, we
attempted to sample the entire distribution. In Figures 23 and 24, we compare the word
counts and duration statistics for these short sets to the full Nov’'92 dev test set.

In Table 8, we analyze the statistics of these three sets. Most of the important

statistics such as the number of speakers, average utterance duration and average speaking
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Figure 23. Comparison of the histogramsFigure 24. Comparison of the histograms
of the number of words per utterance for theof the utterance durations for the full dev
full dev test set and two dev test subsets. test set and two dev test subsets.

Table 8. A comparison of the complexity of several subsets of the eval and devtest data.

Description Ng\\;ﬁz eval-166 (Ij\le?/\;fszt devtest-330 | devtest-30
No. of Speakers 8 8 10 10 10
No. of Utterances 330 166 1206 330 30
Amount of Data (mins.) 40.19 20.69 134.42 38.33 3.35
No. of Word Tokens 5,353 2,715 19,254 5,468 493
No. of Unique Words 1,270 936 2,404 1,444 290
Avg. No. of Wd per Utt. 16.2 16.3 16.0 16.6 16.1
Avg. Utt. Duration (secs) 7.3 7.5 6.7 7.0 6.7
Avg. Spk. Rate (wd/sec) 2.2 2.3 2.4 2.4 2.4
Test Set Perplexity 134.9 139.0 146.8 143.7 151.5
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rate for these three sets are comparable. Although the number of unique word tokens
reduces as the size of the test set decreases, the perplexities [43] of the dev test sets are

comparable.

3.3.3. Eval Subset Selection

In order to reduce the computing requirements for the evaluations, we decided to
reduce the size of the evaluation set by 50%. To obtain this shortened version of the
evaluation set, we began by sampling in such a way that every speaker in the eval set was
represented in the shortened set. This is shown in Table 9. We randomly sampled
utterances from each of the speakers. This random sampling process was repeated four
times to get four different eval short lists (A, B, C, D). Next, we computed the WER for
these short sets based on results for the complete evaluation set for a series of experiments
on various noise conditions. These results are shown in Table 10.

We then analyzed each set using a humber of statistical distance measures to
determine the set that is closest to the original eval set. These results are shown in
Table 11. We chose subset “A” since this was closest to the results for the full evaluation
set for the normalized statistical measures 3 and 4. The word count and duration statistics
are compared to the full evaluation sets in Figures 25 and 26, respectively. Both the word
count distribution and utterance duration distribution for eval-166 match closely to the
respective distributions for Nov'92-eval set. Fourteen noisy versions corresponding to this

166 utterance eval-166 set are defined as the 14 eval sets in the Aurora-4a database [78].
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Table 9. Distribution of the number of utterances for each speaker in the eval set.

Speaker Number of Number of
Identity Utterances (full eval) Utterances (eval-166)
440 40 20
441 42 21
442 42 21
443 40 20
444 41 21
445 42 21
446 40 20
447 43 22
Total 330 166

Table 10. WER on various noisy conditions for the complete November 92 eval set and its
four subsets (A, B, C, and D).

Training
Test Set Set Eval Set A B cC D
1 1 10.1% 10.2% 10.4% 9.7% 9.4%
2 1 55.4% 56.1% 54.9% 56.2% 58.0%
3 1 64.6% 64.8% 63.2% 66.1% 66.9%
4 1 58.4% 59.2% 59.5% 62.0% 58.8%
6 1 61.0% 61.7% 60.4% 63.5% 62.4%
8 1 53.7% 54.6% 52.5% 54.6% 55.5%
9 1 71.6% 72.5% 71.5% 72.8% 73.2%
10 1 76.2% 77.5% 75.5% 77.4% 79.5%
11 1 76.7% 78.5% 74.0% 77.5% 77.5%
13 1 74.5% 77.1% 74.1% 75.8% 76.9%
1 2 27.2% 27.9% 28.0% 28.0% 26.9%
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Figure 25. Comparison of the histogram.Figure 26. Comparison of the histograms
of number of words per utterance for theof the utterance durations for the full
full November 92 eval set and eval-166. November 92 eval set and eval-166.

These 14 eval sets are subsets of the fourteen 330 utterance noisy eval sets defined in

section 3.1.

3.3.4. Endpointing the Aurora-4a Database

When speech recognition systems are subjected to severe amounts of noise, the
non-speech data preceding and following the utterance tends to cause insertion errors. The
insertion errors can often be the dominant reason for an increased WER. It was decided to
generate an endpointed version of the Aurora-4a database by removing these non-speech
segments to evaluate the influence of endpointing on the recognition performance of the
baseline ETSI MFCC front end.

To remove the effects of this noise, it was decided to endpoint all speech data, so
that complete experiments (training and evaluation) could be performed on endpointed
data. We generated endpoint information using our best WSJO baseline recognition

system, described in section 4 using a forced-alignment mode [79]. The endpoints were
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then extended by 200 msec on each side of an utterance. Table 12 summarizes the amount
of silence in WSJ data. The first row represents the average number of seconds of audio
data removed from each file (amount of data removed per utterance averaged across all
utterances). The second row represents the amount of silence removed as a percentage of
the total available audio data. The third row represents the total amount of data discarded
as a percentage of the total audio data. Note that the eval data tended to have more silence
than the training data.

In this chapter, we presented the process for the development of the Aurora-4
database. CPU constraints played a primary role in our decisions to reduce the amount of
data. In the next chapter, we will describe the development of a speech recognition system
that served as the baseline system for the Aurora evaluations. This system was carefully
designed to produce statistically significant results on these evaluations while minimizing

the CPU requirements for the evaluation.

Table 11. Results of several distance meastiase 12. A summary of the amount of
applied to select a subset of the full eval setsilence detected in the WSJ Corpus.

Distance Measure A B C D SI- | dev-

Data Set 84 | 330 eval

Zabs( X— X)) | 10.70| 9.80 | 15.00| 17.60 Average Silence/

Utt. (secs)

Z(X_Xi)z 15.47 | 13.90| 28.92| 37.84 Average Silence/
Utt. (%)

X_Xi)D Total Silence (%) | 10.8| 13.9| 18.8
D ab 0
Xi

0.82| 097 1.37

11.2| 16.4| 25.3

0.18 | 0.19 | 0.28 | 0.33

X=X f
ZDTD 0.22 | 0.23 | 0.48 | 0.60




CHAPTER IV

WSJO BASELINE SYSTEM

The WSJO0 baseline system was developed as a primary step towards achieving the
final goal of developing the ALV baseline system. The WSJO baseline system provided a
comparison point to insure that the future results on ALV baseline system were credible.
This system demonstrated performance that is sufficiently close to start-of-the-art on the
WSJO0 task. In this chapter, we describe the WSJO baseline system and the results of the

tuning experiments on this system.

4.1. System Description

The baseline system to be used for the Aurora evaluations is based on a public
domain speech recognition system that has been under development at the Institute for
Signal and Information Processing (ISIP) at Mississippi State University for several years.
This system is referred to as the prototype system [79] since it was the first recognition
system developed in ISIP and served as a test bed for developing ideas for implementing
conversational speech recognition systems. This system is implemented entirely in C++
and is fairly modular and easy to modify. It has been used on several evaluations

conducted by NIST [80,81] and the Naval Research Laboratory [82].
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The prototype system uses hidden Markov model-based context-dependent
acoustic models [42], lexical trees [83] for cross-word acoustic modeling, N-gram
language models with backoff probabilities [13,42] for language modeling (finite state
networks are also supported), and a tree-based lexicon for pronunciation modeling [84].
The core of the system is a hierarchical dynamic programming-based time synchronous
network search engine [85,86] that implements a standard beam-pruning approach for
maximizing search accuracy while minimizing memory requirements.

The signal processing component of the prototype system is the industry standard
MFCC front end described in section 2.1. To adjust to varying channel and speaker
conditions, cepstral mean subtraction [61] was performed on the 12 cepstral features with
the mean being computed and subtracted separately for each utterance. Other
normalization techniques, such as vocal tract length normalization [87] and variance
normalization [88], were not used for the WSJO baseline system. Further, adaptation
techniques, such as Maximum Likelihood Linear Regression (MLLR) [89] and Linear
Discriminant Analysis (LDA) [90], were not employed.

Using the feature data, a set of context-dependent cross-word triphone models
were trained. Each triphone model was a 3-state left-to-right model with self-loops with
the exception of two models as shown in Figure 27. The silence msijdias a forward
and backward skip transition to account for long stretches of silence containing transitory
noises. The short, inter-word silence modsd, contains a forward skip transition that

allows it to consume no data when there is no silence between consecutive words. Each
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Figure 27. Typical HMM topologies used for acoustic modeling: (a) typical triphone,
(b) short pause, and (c) silence. The shaded states denote the start and stop states for each
model.

state in the models contains a Gaussian mixture model where the number of mixtures is
initially set to one and is trained up to sixteen mixtures.

The triphone models were trained using a standard Baum-Welch Expectation
Maximization (EM) training algorithm [12,91,43]. A typical training schedule is
summarized in Table 13. However, for the baseline system, we modified the forced
alignment step. Instead of aligning the word transcription using monophone models to get
the monophone transcriptions, we produced cross-word triphone transcriptions by
aligning the word transcription with cross-word triphone models. These triphone models
were previously generated from the best performing system tuned on the eval set. These
aligned triphone transcriptions were then converted to monophone transcriptions by
removing the left and right context for each central phone. Models for all possible triphone
contexts were generated using the decision trees produced during the state-tying phase of
the training process — one of the distinct advantages of the decision tree based state-tying
approach. The trained models were then used in conjunction with a bigram language

model to perform recognition on the evaluation data.
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Table 13. An overview of the training paradigm for a typical cross-word
context-dependent large vocabulary speech recognition system.

1.

Flat-start models: Initialize a set of single-mixture Gaussian monophone
models. Seed the mean and variance of each Gaussian to be equal to the global
mean and variance computed across a small set of the training data. This provides
a reasonable starting point for the model optimization. Random initialization
would also work but would converge less quickly.

. Monophone training: Train monophone models on the entire training set using

four iterations of Baum-Welch reestimation. In this phase, the ‘sp’ model is not
trained and it is assumed that ‘sil’ only occurs at the beginnings and ends of
utterances. This gives the ‘sil’ model a chance to learn the parameters of silence
before we attempt to force it to learn interword silence.

. ‘sp’ model training: The single state of the ‘sp’ model is tied to the central state

of the ‘sil’ model. The monophone models are then trained for four more
iterations. In this phase, it is assumed that the ‘sp’ model occurs between every
pair of sequential words while ‘sil’ only occurs at the beginnings and ends of
utterances. This allows the ‘sp’ model to learn the parameters of interword
silence.

. Forced alignment: The transcriptions are force aligned to the acoustic data and

the aligner is allowed to choose the most likely pronunciation for each word in
the transcription. New phonetic transcriptions are generated from this forced
alignment process and are used throughout the remainder of the training regime.

. Final monophone training: The monophone models are trained using the new

phonetic transcriptions and five iterations of Baum-Welch reestimation.

. Cross-word triphone training: Cross-word triphone models are seeded from the

monophone models. Only triphones seen in the training data are created. Four
iterations of Baum-Welch reestimation are used to get initial estimates of the
triphone models.

. State-tying: To reduce the parameter count and to provide sufficient training

data to undertrained states, we employ a maximum likelihood decision tree-based
state tying procedure [93]. Those states that are statistically similar to one another
are tied into a single state and the training data previously attributed to each is
now shared in the single tied state. The state-tied models are trained for four more
iterations of Baum-Welch reestimation.

. Mixture training: The single mixture models are successively split until

16 mixtures are generated using incremental stages of 1, 2, 4, 8 and 16 mixtures.
At each stage, four iterations of Baum-Welch reestimation are used on the multi-
mixture models.
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4.2. WSJO Baseline System Tuning Experiments

Most HMM-based recognition systems provide a set of parameters that can be
used to tune performance for a given application. These parameters include thresholds for
state-tying and beam pruning, and scaling factors for the language model and word
insertions. The first parameter we tuned is the state-tying threshold [92,93]. A problem
often associated with training context-dependent models in a speech recognition system is
the lack of sufficient training data for the large number of free parameters in the system.
To avoid this problem the prototype system employs a maximum likelihood phonetic
decision tree-based state-tying procedure [93] to pool HMM states. Each node of the
phonetic decision tree is associated with a set of states. These states are iteratively
separated into child nodes using phonetic questions. When the tree is trained, the states in
a single leaf node of the tree represent acoustically similar states that can be tied together.
This leads to better parameter estimates. The parameters governing the state-tying process
are the thresholds for splitting and merging a node [93].

All the experiments for baseline system were conducted on SI-84 training set and
Nov’'92 eval set. Table 14 shows the performance improvement due to varying the number
of states after tying. Normally this parameter has a much more dramatic effect on
performance. In this case, the improvements in performance were marginal. The number
of tied states found to give best performance was 3,215. The number of initial states was
46,346, which implies that less than one out of every 10 states were preserved in the final

models.



65

The second parameter we optimized is the language model scaling factor. During
the decoding process, the language model probability (as determined by the bigram
language model) is computed for each bigram pair. This probability is multiplied by a
language model scale factor that weights the relative contribution of the language model to
the overall path score. Increasing this scale value tends to cause the language model to
dominate the ranking of search paths — essentially boosting the importance of the
language model relative to the acoustic model. Decreasing the scale causes the language
model to play a lesser role. A word insertion penalty is added to the scaled language
model score. This penalty is used to help inhibit the insertion of common, poorly
articulated words such as “the”, “a”, and “uh”. Decreasing the value of this parameter will
tend to decrease the number of words hypothesized. For the experiments presented in
Table 14, the language model scale factor [92] was set to 12 and the word insertion

penalty [92] set to -10.

Table 14. A comparison of experimental results obtained by tuning the number of tied
states retained after the state-tying process (language model scale = 12.0, word insertion
penalty = -10 and pruning thresholds set to 300, 250 and 250).

Number of State-Tying Thresholds

Tied-States Split Merge Occup. XRT WER Sub. Del. Ins.
1,157 1250 1250 2400 171 9.4% 7.1% 1.6% 0.7%
1,882 650 650 1400 151 11.0% | 8.0% 1.7% 1.2%
3,024 150 150 900 149 10.7% | 8.0% 1.6% 1.1%
3,215 165 165 840 138 8.6% 6.8% 1.1% 0.7%
3,580 125 125 750 123 8.9% 6.7% 1.4% | 0.8%
3,983 110 110 660 120 8.7% 6.6% 1.0% 1.1%
4,330 100 100 600 116 9.1% 6.5% 1.4% 1.2%
5,371 75 75 450 106 9.0% 6.7% 1.0% 1.3%
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In Table 15, we present results from varying the language model scale factor. The
first six experiments were run with the number of tied states set to 3,215, the word
insertion penalty set to -10, and the pruning thresholds set to 300, 250 and 250. The last
two experiments were run with a word insertion penalty of 10, and gave slightly better
performance. An LM scale of 18 was chosen because insertions and deletions are balanced
in addition to achieving the lowest overall WER. A 0.6% absolute reduction in error rate
was observed by adjusting this parameter. This is probably a result of the fact that the
language model has some predictive power for the WSJ data (more so than in a
conversational speech application), and hence can be relied upon to a greater degree.
Tuning the scale factor also reduced xXRT by approximately 30%, which is advantageous.

The next parameter to be tuned was the word insertion penalty. An interesting bit
of folklore in speech research is that optimal performance is almost always achieved when
one balances insertions, and deletions. In Table 16, we summarize some experiments in
which we optimized the value of this parameter. These experiments were run with the

number of tied states set to 3,215, the LM scale factor set to 16, and the pruning thresholds

Table 15. A comparison of experimental results for tuning the language model scale
factor. The best error rate that was achieved was 8.0%.

sléme P\é\fgﬂy xRT | WER | Sub. Del. Ins.
12 10 138 | 86% | 68% | 1.1% | 0.7%
14 110 108 | 82% | 63% | 12% | 0.7%
16 110 103 | 80% | 6.1% | 14% | 0.6%
18 -10 85 81% | 6.1% | 15% | 05%
18 10 85 80% | 62% | 09% | 0.9%
20 10 85 80% | 62% | 1.0% | 0.9%
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Table 16. A comparison of experimental results for tuning the word insertion penalty.

Word
Ins. XRT WER Sub. Del. Ins.
Penalty
-20 98 8.4% 6.3% 1.7% 0.4%
-10 103 8.0% 6.1% 1.4% 0.6%
0 107 8.1% 6.3% 1.0% 0.7%
10 117 8.2% 6.3% 0.9% 1.0%

set to 300, 250 and 250. Though the best performance on this isolated experiment was
obtained with a setting of -10, a word insertion penalty of 10 was selected because it
produced near optimal results and balanced insertions and deletions. The fact that this was
the optimum point was verified when these results were combined with other parameter
settings.

Once these basic parameters were adjusted, we turned our attention to beam
pruning [92], which allows users to trade off search errors and real-time performance.
Tight beams result in fast decoding times but less accuracy. Beam pruning is a heuristic
technique that removes low scoring hypotheses early in the search process so the
computational resources associated with those hypotheses can be used for more promising
paths. The decoder allows the user to specify a beam at each level in the search
hierarchy (typically state, phoneme, and word-level). A higher beam threshold will allow
more paths to be considered during the search process. Using too low of a threshold can
result in search errors (i.e. where the correct hypothesis is pruned).

A summary of some basic experiments on the impact of the beam pruning

thresholds are shown in Table 17. For these experiments, we trained on the SI-84 training
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Table 17. A summary of beam pruning experiments on the SI-84 training set and the
Nov’'92 dev test set.

Beam Pruning

XRT WER Sub. Del. Ins.
State | Model | Word
200 150 150 14 8.6% 6.7% 0.9% 1.1%
300 250 250 85 8.0% 6.2% 0.9% 0.9%
400 350 350 230 8.0% 6.2% 0.9% 0.9%

set, and evaluated on the 330-utterance Nov’'92 dev test set. As can be seen in Table 17,
there is a substantial impact on real-time rates by reducing the beam pruning thresholds.
For the WSJ task, we find the combination of 300, 250, and 250 gives near-optimal
performance at a reasonable real-time rate. Many other systems implemented in ISIP use
these same beam pruning values [86]. Since CPU requirements are an issue in the ALV
evaluation due to the large number of experiments needed to be run, it is important to find
ways to reduce computations without significantly impacting performance.

In Table 18, we compare the results of our tuned system to state of the art. Our
overall best system, as shown in Table 17, achieves a WER of 8.0% on the dev test set, and
8.3% on the evaluation set. The best published results for comparable technology,
highlighted in Table 18, are in the range of 6.8% WER. By directly tuning the WSJO
baseline system on the evaluation set, we have achieved error rates of 7.7%. However,
tuning on the evaluation set is not reasonable.

We believe that the primary difference that accounts for the discrepancy in the
error rates is the lexicon used by the respective systems. When WSJ research was at its
peak, most sites were using proprietary lexicons that had been tuned to optimize

performance, normally by implementing some basic form of pronunciation modeling. We
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Table 18. A comparison of performance reported in the literature on the WSJO
S1-84 Nov’'92 evaluation task.

Site M'?)((:jc()alljs'i:[;/%e Lal\r)lgc;)téz?e Adaptation WER
ISIP xwrd/gi bigram none 8.3%
CU [94] wint/gi bigram none 8.1%
UT [95] wint/gd bigram none 7.1%
CU [94] xwrd/gi bigram none 6.9%
LT [96] xwrd/gi bigram none 6.8%
CU [94] xwrd/gd bigram none 6.6%
UT [97] xwrd/gd bigram none 6.4%
UT [97] xwrd/gd bigram VTLN 6.2%
LT [98] xwrd/gi trigram none 5.0%
LT [98] xwrd/gd trigram none 4.8%
LT [98] xwrd/gd/tag trigram none 4.4%

do not, however, believe that the lexicon is solely responsible for this large
difference (18% relative). Diagnosing the reasons there is a performance gap will take
more time since we need to conduct additional experiments which are outside the scope of
this work. The difference in performance is a fairly consistent bias that should not mask
algorithm differences in the front end processing. Possible reasons for this gap include a
difference in the results of the state-tying process, and issues in silence/noise modeling.
We have not seen such a large difference with state-of-the-art systems for other tasks we

have run (Resource Management and OGI Alphadigits) [1].

4.3. ALV System Design

As described in section 1.2, the goal for the ALV evaluation was to achieve a 25%

relative improvement in word error rate (WER) across a variety of noise conditions
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compared to the MFCC WI007 front end. Hence, the ALV system was developed to
benchmark the advanced front ends (QIO and MFA) relative to the baseline ETSI WIO07
front end [15] in a reasonable amount of time. These three front ends have been described
extensively in chapter 2 of this work.

The system used in the ALV evaluation was modeled after a 16-mixture
WSJO0 system described in the previous section that attained a WER of 8.3%. Training this
16-mixture cross-word context-dependent phone HMM system involves 36 passes of
Baum-Welch training. Training on Training Set 1, shown in Figure 15, requires
approximately 275 hours, or 10 days, on an 800 MHz Pentium processor. Decoding the
330 utterances that constitute Test Set 1, described in Figure 16, requires about
50 CPU hours. Considering the increase in the decoding time on noisy test sets because of
the poor acoustic match between the models and the data to be approximately three times,
the total decoding time for 14 test sets was estimate as 150 x 14 hours = 84 days. For the
11 training conditions required for the ALV baseline system, mentioned in Table 19, the
total CPU time required would have been 94 x 11 = 1034 days. This computational load
was not feasible for most of the sites involved in the Aurora evaluations. Hence, we
explored three ways to reduce this time without compromising the integrity of the system
or the results:

» Evaluation set size:In section 3.3.3 we described the selection process used
to reduce the evaluation set from 330 utterances to 166 utterances. This
resulted in a 50% reduction in runtime requirements.

 Number of mixtures: Mixture generation and training is another time

consuming process, since it involves multiple passes through the data. For
example, reducing the number of mixtures from 16 to 4 would reduce the



Table 19. Training conditions that were evaluated for the ALV baseline system.

Traiping Compression Training Sampling Utterance
Conditions Set Frequency Detection

1 16 kHz No

2 1 16 kHz Yes

3 8 kHz Yes

4 no 16 kHz No

5 2 16 kHz Yes

6 8 kHz Yes

7 3 16 kHz No

8 16 kHz Yes

9 ! 8 kHz Yes

10 yes 16 kHz Yes

11 2 8 kHz Yes

number of training passes from 36 to 28. Hence, the computation time during
training by a factor of 7/9, and result in minimal degradations in performance.
An analysis of performance as a function of the number of mixtures is given in

71

Table 20. We decided to select 4 mixtures for the final baseline system.

« Beam pruning: Decreasing beam widths in the search process is a
straightforward way to reduce computational complexity. In Table 17, we
evaluated performance as a function of a selected number of combinations of
beam pruning parameters. We selected the settings “200 150 150" because it
was observed that these settings reduced runtime by a factor of 6 with minimal

degradations in performance.

Table 20. A summary of performance on the Nov’'92 dev test set using the SI-84 training

set as a function of the number of mixtures.

Number of

Mixtures XRT WER
2 115 11.8%
4 113 9.5%
8 116 8.7%
16 114 8.0%
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Hence, after incorporating these optimizations, we were able to reduce the
expected total computation time required to generate Table 19 from 1,034 days to
163 days. The impact of these changes on performance is summarized below in Table 21.

This chapter described the design and development of a baseline LVCSR system
which was used in the ALV evaluations. We also presented results on how this system was
tuned to improve its speed and to allow rapid evaluation of advanced front ends in a
reasonable amount of time. In the next chapter, we will present the results and analysis of
the baseline MFCC (ETSI WI007) and two advanced front ends (QIO, and MFA) that
were included in the ALV evaluation. The next chapter also describes the front-end
specific tuning experiments that were designed to evaluate the influence of the sub-optimal

parameter tuning on the performance of the advanced front ends.

Table 21. Relative degradation in WER due to the three-step approach used to reduce
computational requirements.

Factor WER Dezer)zlia(;;ieon
WSJO0 Baseline system (ISIP front end) | 8.3% N/A
Terminal filtering (ISIP front end) 8.4% 1%
ETSI WIO07 front end 9.6% 14%
Beam adjustments (15 xRT) 11.8% 23%
Reduce 16 to 4 mixtures 14.1% 20%
50% reduction of eval set 14.9% 6%
Endpointing silences 14.0% -6%




CHAPTER V

EXPERIMENTS, RESULTS, AND ANALYSIS

The first two chapters provided an overview of the ALV evaluation and a
theoretical overview of the front ends included in this study. The third chapter presented
the design and development of the Aurora-4 database. In chapter 4, we described the
design and development of the baseline system used in the ALV evaluation. In this
chapter, we show that the performance of the advanced front ends on the ALV evaluation
is significantly better than the baseline MFCC front end, but that these improvements are
not operationally significant. It is also shown that front end-specific parameter tuning for
the baseline recognition system did not result in a change in ranking of the advanced front

ends.
5.1. Performance of the Baseline MFCC Front End

The stated goal for the ALV evaluation was to achieve a 25% relative improvement
over the baseline system. This improvement was measured by averaging WER across a
variety of evaluation conditions [14], including additive noise, sample frequency
reduction, microphone variation, compression, model mismatch and utterance detection.
Summaries of this experimentation are provided in Tables 22 and 23. Table 22 contains

results for experiments conducted without any feature value compression, and Table 23
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provides results with compression. Each row in these tables consists of seven different test
conditions: clean data plus six noise conditions. As described in chapter 3, the original
audio data for test conditions 1-7 was recorded with a Sennheiser microphone while test
conditions 8-14 were recorded using a second microphone that was randomly selected
from a set of 18 different microphones. Noise was digitally added to this audio data to
simulate operational environments.

The impact of using endpointed speech, described in previous section, was also
evaluated as an independent variable. For the “no compression” case, the seven test
conditions were then evaluated for several combinations of these conditions, resulting in a
total of 98 conditions: 7 noise conditions x 2 microphone types x (3 training conditions
for Training Set 1 + 3 conditions for Training S2# 1 candition for Training Set 3). For
the “with compression” case, the seven test conditions were then evaluated using only
endpointed speech, resulting in a total of 56 conditions: 7 noise conditions x 2 microphone
types x (2 training conditions for Training Skt+ 2 conditions for Training Set 2). Hence,

a total of 154 test conditions were evaluated. These tables constitute a total of 4,580 hours
(191 days) of CPU time on a 800 MHz Pentium processor. Note that the actual CPU time
for 191 days is little higher than the estimated CPU time of 163 days, described in
chapter 3. The real time rate for decoding on mismatched conditions was higher than
anticipated.

In the following sections, we analyze the results for specific contrastive conditions.
All results were generated using the standard NIST scoring software [99], and the NIST

MAPPSWE significance test [100], which is included in the scoring software package.
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Table 22. A summary of results (in terms of WER) obtained by the ALV baseline
system (ETSI MFCC WI007 front end) on Aurora-4a task. Training Set 2 with endpointed
data and 16 kHz sampling frequency is the overall best condition.

Performance Summary (Without Compression)
Training Set Test Set
S | Freq | ut
ell . 1l 2 34| 4 51| 6| 7| 81 9| 10| 11| 12| 13| 14
¢ in ||Det
kHz
16 || N [[14.9|65.2| 69.2| 63.1| 72.3| 69.4| 73.2| 61.3| 81.7| 82.5| 75.4| 83.8| 81.0| 84.1
1|| 16 || Y [|14.0|56.6| 57.2| 54.3| 60.0| 55.7| 62.9| 52.7| 74.3| 74.3| 67.5| 75.6| 71.9| 74.7
8 Y ||16.2| 49.6| 62.2| 58.7( 58.2| 61.5| 61.7| 37.4| 59.7| 69.8| 67.7| 72.2| 68.3| 67.9
16 || N [[23.5]21.9|29.2| 34.9| 33.7| 33.0| 35.3| 49.3| 45.2| 49.2| 48.8| 51.7| 49.9| 49.0
2|| 16 || Y |[19.2| 22.4| 28.5| 34.0| 34.0| 30.0| 33.9| 45.0| 43.9| 47.2| 46.3| 51.2| 46.6| 50.0
8 Y ||18.4| 24.9| 37.6| 39.3( 38.8| 38.2| 40.4| 29.7| 37.3| 48.3| 46.1| 50.6| 44.9| 49.3
3[| 16 || N |{20.6|23.2| 34.4| 40.1| 38.2| 34.7| 41.3| 46.8| 49.1| 53.5| 53.4| 57.2| 53.2| 56.1

Table 23. A summary of results for the ALV baseline system with feature value
compression. Training Set 2 with endpointed data and 16 kHz sampling frequency is the
overall best condition.

Performance Summary (With Compression)

Training Set Test Set
S| Frea|
ell . 1 2 3 4 5 6 7 8 9 || 10| 11| 12 || 13 || 14
t in ||Det
kHz
16 || Y [|14.5|58.4| 58.8| 53.8| 62.5| 56.9| 65.5| 53.3| 75.1| 76.3| 68.5| 77.8| 73.5| 75.9
! 8 Y [|15.4| 49.4| 60.6| 59.0| 57.4| 61.9| 62.0| 36.6| 59.9| 71.6| 67.8| 72.5| 70.2| 69.5
16 || Y [|19.1]| 23.4| 31.7| 35.5| 35.3| 33.1| 36.4| 40.9| 47.4| 50.3| 48.9| 54.7| 49.3| 51.8
2 8 Y [|20.7| 26.4| 38.6| 41.6| 43.8| 41.1| 43.4| 30.9| 38.7| 47.1| 50.1| 53.6| 47.3| 50.7
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5.1.1. Sample Frequency Reduction

Most telephony applications use a sample frequency of 8 kHz even though state-
of-the-art ASR systems use speech data digitized at a sample frequency of 16 kHz.
Spectral information above 4 kHz can be exploited to provide modest improvements in
performance. For example, the third formant for several speech sounds, such as the
consonant “s”, has significant energy above 4 kHz. In state-of-the-art systems, a sample
frequency of 16 kHz is often used in conjunction with a Sennheiser close-talking
microphone to achieve better performance. Hence, we measured performance at both
8 kHz and 16 kHz to analyze whether trends in recognition performance were consistent
at both sample frequencies.

A comparison of performance for Training Sets 1 and 2 is shown in Figure 28 for
the “no compression” case. A similar comparison for the compression condition is shown
in Figure 29. For Training Set 1, degradations due to a reduction in sampling frequency
did not follow any trend. However, for Training Set 2, statistically significant degradations
in performance were observed on the Sennheiser microphone conditions (Test Sets 3-7) in
both the “no compression” and “compression” cases. The Sennheiser HMD-414 is an
expensive close-talking microphone which does a good job of maintaining a relatively flat
frequency response from DC to 8 kHz. The spectrogram of a typical utterance (e.g.,
441c020b) recorded with the Sennheiser microphone, shown in Figure 30, demonstrates
that this microphone preserves high frequency information better than the microphones

used for the second channel condition. This observation is supported by Figure 31, which
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=1 Training Set 1, 16 kHz, utterance detection, no compression

=1 Training Set 1, 8 kHz, utterance detection, no compression
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Figure 28(a). A comparison of the WER fa6 kHzand 8 kHz sample frequencies for
Training Set1 without feature vector compression. Test set conditions which are
statistically significant at a 0.1% significance level are indicated in bold.

&1 Training Set 2, 16 kHz, utterance detection, no compression
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Figure 28(b). A comparison of the WER f@6 kHzand 8 kHz sample frequencies for
Training Set 2 without feature vector compression. Test set conditions which are
statistically significant at a 0.1% significance level are indicated in bold.
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= Training Set 116 kHz utterance detection, compression
= Training Set 1, 8 kHz utterance detection, compression
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Figure 29(a). A comparison of the WER f@a6 kHzand 8 kHz sample frequencies for
Training Set 1 with feature vector compression. Test set conditions which are statistically
significant at a 0.1% significance level are indicated in bold.

= Training Set 216 kHz utterance detection, compression

=1 Training Set 2, 8 kHz utterance detection, compression
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Figure 29(b). Acomparison of the WER fd6 kHzand 8 kHz sample frequencies for
Training Set 2 with feature vector compression. Test set conditions which are statistically
significant at a 0.1% significance level are indicated in bold.
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Figure 30(a). Spectrogram for utterandd1c020bthat was recorded on Sennheiser
microphone, digitized at 16 kHz and filtered using the ETSI P.341 standard.

Figure 30(b). Spectrogram for utteranee1c020b that is recorded on a second
microphone, digitized at 16 kHz and filtered using the ETSI P.341 standard.
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Figure 31(a). Comparison of the magnitude of the frequency response of the Sennheiser
microphone and the second microphone derived from the speech segments from the
utterance idi41c020bBoth the utterances were digitized at 16 kHz and filtered using the
P.341 standard. The Sennheiser microphone preserves frequencies above 3.5 kHz.
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Figure 31(b). Comparison of the magnitude of the frequency response of the Sennheiser
microphone and second microphone derived from the non-speech segments from the
utterance idt41c020bBoth the two utterances were digitized at 16 kHz and filtered using
P.341 standard. The Sennheiser microphone preserves frequencies above 3.5 kHz.
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provides the overall frequency response of the microphones on speech and non-speech
data, respectively.

However, no significant improvement is observed when the sampling frequency is
increased from 8 kHz to 16 kHz on matched conditions — training on Training Set 1 and
decoding on Test Set 1, as shown in Figure 28 and Figure 29. These sets are matched since
both consist of clean utterances recorded on Sennheiser microphone. The additional
information provided by high frequencies (between 4 kHz and 8 kHz) does not result in an
improvement in performance. The spectral information provided by low

frequencies (below 4 kHz) is sufficient to reach the upper bound on performance.

5.1.2. Utterance Detection

In addition to the investigation whether the trends in the recognition performance
were consistent at both sampling frequencies, we also investigated whether the recognition
performance improved due to utterance detection. The non-speech segments of a signal
recorded in noisy environments often result in an increase in insertion errors. These non-
speech segments were removed from the audio data using the methodology known as
endpointing, described in section 3.3.4, with an expectation that the insertion errors would
reduce in noisy environments.

As expected, utterance detection resulted in a significant improvement in
performance on Test Sets 2-14 when the system was trained on Training Set 1, as shown in
Figure 32. Table 24 shows that the reduction in insertion errors is primarily responsible for

improvement in the performance. In this case, the “silence” model learned only pure
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= Training Set 1, 16 kHzo utterance detectigmo compression
= Training Set 1, 16 kHajtterance detectigmo compression
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Figure 32(a). Comparison of the WER betwerithoutandwith utterance detectiofor
Training Set 1 at 16 kHz with no feature vector compression. Test set conditions which are
statistically significant at a 0.1% significance level are indicated in bold.

= Training Set 2, 16 kHzo utterance detectiomo compression

=1 Training Set 2, 16 kHajtterance detectigmo compression
60

50

40

30

WER (%)

20

10

Test Set 1
Test Set 2
Test Set 3
Test Set 4
Test Set 5
Test Set 6
Test Set 7
Test Set 8
Test Set 9
Test Set 10
Test Set 11
Test Set 12
Test Set 13
Test Set 14

Figure 32(b). Comparison of the WER betweeithoutandwith utterance detectiofor
Training Set 2 at 16 kHz with no feature vector compression. Test set conditions which are
statistically significant at a 0.1% significance level are indicated in bold.
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Table 24. A comparison of experimental results for endpointed data for Training Set 1 at
16 kHz with no feature vector compression. Test set conditions which are statistically
significant at a 0.1% significance level are indicated by shaded cells.

Training Set 1
TSe:tt Without Utterance Detection With Utterance Detection
WER Sub. Del. Ins. WER Sub. Del. Ins
1 14.9% 8.8% 1.0% 5.1% 14.0% 9.0% 0.8% 4.1%
2 65.2% 41.4% 3.6% 20.1% 56.6% | 40.0% 3.6% 13.0%
3 69.2% 46.0% 6.5% 16.7% 57.2% | 40.7% 6.2% 10.2%
4 63.1% 40.5% 12.0% 10.6% 54.3% 36.7% 10.8% 6.9%
5 72.3% 47.0% 11.2% 14.1% 60.0% 39.2% 13.8% 7.1%
6 69.4% 44.6% 7.8% 17.0% 55.7% 37.9% 8.2% 9.6%
7 73.2% 46.6% 14.1% 12.5% 62.9% | 42.1% 13.7% 7.1%
8 61.3% 34.7% 14.6% 12.1% 52.7% 36.7% 8.7% 7.3%
9 81.7% 54.4% 12.3% 15.1% 74.3% | 49.1% 15.1% 10.1%
10 82.5% 57.0% 12.2% 13.3% 74.3% 53.1% 13.0% 8.1%
11 75.4% 48.1% 17.9% 9.4% 67.5% | 44.9% 17.5% 5.1%
12 83.8% 48.4% 26.7% 8.8% 75.6% | 41.3% 30.5% 3.8%
13 81.0% 52.3% 15.5% 13.1% 71.9% | 46.0% 18.4% 7.4%
14 84.1% 47.6% 26.2% 10.2% 74.7% | 41.4% 28.5% 4.9%

silence during training because Training Set 1 consists of only clean data, and hence did
not represent a good model of the actual background noise. Without endpointing, the noisy
silences were interpreted as the non-silence words instead of silences, resulting in
insertion errors. Endpointing reduced the amount of non-speech data and hence reduced
insertion errors.

In contrast to Training Set 1, for Training Set 2, a significant improvement in
performance was detected only for Test Set 8. A reduction in the number of deletions,
rather than insertions, was primarily responsible for this improvement in performance. In

other words, because the training conditions contained ample samples of the noise
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conditions, the non-speech segments were modeled adequately by the silence model and

hence the insertion error rate did not increase significantly on the noisy test conditions.

5.1.3. Compression

Continuing our investigation into the six focus conditions, we investigated the
effects of compression on the features. It is desirable to compress feature values before
transmission over a communications channel to conserve bandwidth. The compression
algorithm employed in the DSR client-server application is a lossy split vector
guantization (VQ) algorithm [15] that allows the quantized features to be transmitted at
4800 bps. Since this compression algorithm is lossy, the recovered features are a distorted
version of the original features, and will result in a degradation in recognition
performance. This degradation in performance was calibrated through a series of
experiments described in Figures 33 and 34.

No significant degradation in performance due to compression was detected for
Training Set 1 for both the 8 kHz and 16 kHz sampling frequencies. Since there was no
significant degradation for Test Set 1, which was a matched condition, it is natural to draw
a conclusion that the split VQ algorithm will not significantly degrade the performance of
the system. However, Figure 34 shows that there was a significant degradation in
performance for four noisy conditions at a 16 kHz sampling frequency and two noisy
conditions at an 8 kHz sampling frequency on Training Set 2. We have not found a

consistent explanation as to why these particular noise conditions were adversely affected.
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= Training Set 1, 16 kHz, utterance detectiom,compression

= Training Set 1, 16 kHz, utterance detecticompression
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Figure 33(a). Comparison of the WER betwesithoutand withcompressiorof feature

values on Training Set 1 at 16 kHz. Test set conditions which are statistically significant at
a 0.1% significance level are indicated in bold.

= Training Set 1, 8 kHz, utterance detectioo,compression
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Figure 33(b). Comparison of the WER betweeithoutandwith compressiomf feature

values on Training Set 1 at 8 kHz. Test set conditions which are statistically significant at
a 0.1% significance level are indicated in bold.
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= Training Set 2, 16 kHz, utterance detectiom,compression

= Training Set 2, 16 kHz, utterance detecticompression
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Figure 34(a). Comparison of the WER betweareithoutandwith compressiomf feature

values on Training Set 2 at 16 kHz. Test set conditions which are statistically significant at
a 0.1% significance level are indicated in bold.
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Figure 34(b). Comparison of the WER betweeithoutandwith compressiomnf feature

values on Training Set 2 at 8 kHz. Test set conditions which are statistically significant at
a 0.1% significance level are indicated in bold.
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5.1.4. Model Mismatch

In addition to investigating the trends in recognition performance due to reduction
in sampling frequency, utterance detection, and compression of feature values, we also
investigated the effects of model mismatch on the recognition performance. One would
expect to attain high recognition performance on matched conditions, defined as an
experimental condition in which both the training and the test data were recorded under
identical conditions. Since training is based on a maximum likelihood parameter
estimation process [13,42,43], high performance recognition can only be achieved when
the test conditions generate feature vectors that are similar in terms of means, variances,
etc. If there are consistent differences in SNR, background noise, or microphone, there
will be a significant degradation in performance if some form of adaptation is not used. In
these evaluations, it was decided not to consider adaptation within the recognition system.
We calibrated the degradation in performance using a series of experiments summarized in
Figures 35 and 36.

As expected, the best recognition performance was observed on matched training
and testing conditions (Training Set 1 and Test Set 1) in which all utterances were
recorded with a Sennheiser microphone. For all other conditions involving Training Set 1,
recognition performance degraded significantly. Systems trained on Training Set 2
performed significantly better than those trained on Training Set 1 across all noise
conditions. These trends were consistent for both sampling frequencies and both
compression conditions. Reducing this degradation from mismatched conditions through

front end processing was a major goal in this evaluation.
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= Training Set 116 kHz, utterance detection, no compression

= Training Set 216 kHz, utterance detection, no compression
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Figure 35(a). Comparison of the WER betwéEaining Set land Training Set 2at 16

kHz with no feature value compression. Test set conditions which are statistically
significant at a 0.1% significance level are indicated in bold.

= Training Set 18 kHz, utterance detection, no compression

= Training Set 28 kHz, utterance detection, no compression
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Figure 35(b). Comparison of the WER betwé@aaining Set landTraining Set 2at 8 kHz

with no feature value compression. Test set conditions which are statistically significant at
a 0.1% significance level are indicated in bold.
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= Training Set 116 kHz, utterance detection, compression

= Training Set 216 kHz, utterance detection, compression
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. Comparison of the WER betw@eaining Set JandTraining Set 2at 16 kHz

with feature value compression. Test set conditions which are statistically significant at a
0.1% significance level are indicated in bold.
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Figure 36(b).

Comparison of the WER betwédgaining Set landTraining Set 2at 8 kHz

with feature value compression. Test set conditions which are statistically significant at a
0.1% significance level are indicated in bold.
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We tried to isolate the model mismatch due to additive noise from the mismatch
due to microphone by training the models on Training Set 3 which consists of half of
utterances from Training Set 2 recorded on Sennheiser microphone only. But as shown in
Table 22, the performance was worst than the Training Set 2, even on matched
microphone conditions (Test Sets 1-7), because of the reduction in training data by half.

Hence, it was decided not to continue any experimentation on Training Set 3.

5.1.5. Microphone Variation

Next, we investigated the effects of microphone variation on speech recognition
performance. In general, the Sennheiser microphone performed significantly better than
the second microphone condition for all conditions, as shown in Table 25. The first cell in
this table corresponds to Training Set 1, which consists of clean utterances recorded with a
Sennheiser microphone, and Test Set 1, which consists of similar data. The second cell in
the first row represents a mismatched condition in which the test set contained a different

microphone. There was a significant increase in the word error rate, from 16.2% to 37.4%.

Table 25. A significant performance degradation occurs for the second microphone
condition on both training sets. No compression of feature values is employed.

Performance (Without Compression)
Training Set Test Set
Samplin Utterance 1 £ z 5
Set Fre upenc? Detection (Sennheiser, (Second, (Sennheiser, (Second,
q y Clean) Clean) Car) Car)
8 kHz Yes 16.2 37.4 49.6 59.7
8 kHz Yes 18.4 29.7 24.9 37.3




90

The same argument of model-mismatch discussed in the previous section can be extended
to explain the degradation in the performance. The same trend is observed on the car noise
condition (Test Sets 2 and 9).

While Training Set 1 consists of utterances recorded with a Sennheiser
microphone, Training Set 2 has half of the utterances recorded on the same Sennheiser
microphone and the other half on any one of the 18 microphone types described in
chapter 3. With the Baum-Welch training algorithm, which is a maximum
likelihood-based parameter estimation method, this fact implies that models trained on
Training Set 2 quickly converge towards the Sennheiser microphone in terms of their
means and the covariances [101]. Hence, both the clean and car test conditions for the
second microphone result in significant degradation in recognition performance, as shown
in the second row of the Table 25. Note also that the last three cells in the second row,
which correspond to various noise conditions, show less of a degradation in performance
than the corresponding conditions in the first row. So there is some value in exposing the
models to noise during the training process, but not as much as had been hoped for in the

initial design.

5.1.6. Additive Noise

In addition to calibrating the effects on recognition performance of many signal
processing issues such as sampling frequency reduction and utterance detection, we also
calibrated recognition performance in presence of various background additive noise

conditions. Figure 37 demonstrates the effect of these six noise conditions for two sample
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Figure 37(a). Comparison of the WER for Figure 37(b). Comparison of the WER at

selected noise conditions B kHzwith no 8 kHzwith no feature value compression
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frequencies — 8 kHz and 16 kHz. As expected, severe degradation is observed at both
sample frequencies.

However, the severity of this degradation can be limited by exposing the models to
noise conditions during training. In Figures 37(c) and (d), we demonstrate that the severity
of the degradation in the noisy conditions is reduced by training the models on Training
Set 2, which contains samples of the noise conditions. An important point to note is that
these degradations are still significant compared to the clean condition. Similar trends

were observed when the feature vectors were compressed.

5.2. ALV Evaluation Results

A summary of the results presented at the post evaluation ALV Workshop held in
Stuttgart, Germany in February 2002 are shown in Table 26. The overall performance
measure for a system was computed as an average of several WERSs. First, an average
WER was computed across the 14 test sets used in the evaluation for each training
condition. Next, the WER for each training condition was averaged. Since the evaluation
was conducted at two sample frequencies (8 and 16 kHz), the final WER was the average
across both sample frequencies. This number is denoted Overall WER in Table 26. The
detailed ALV results for QIO and MFA front ends are tabulated in Table 27 and Table 28,
respectively.

It is obvious from results in Table 26 that the overall performance of MFA front
end was slightly better than the performance of QIO front end. Both the advanced front

ends achieved the overall goal of the ALV evaluation of at least 25% relative improvement
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Table 26. A summary of results of the ALV evaluation using a generic baseline speech
recognition system (presented at the Feb. 2002 Aurora post-evaluation meeting).

Baseline MFCC: Overall WER — 50.3%

8 kHz — 49.6% 16 kHz — 51.0%
TS1 TS2 TS1 TS2
58.1% 41.0% 62.2% 39.8%
QIO: Overall WER — 37.5%

8 kHz — 38.4% 16 kHz — 36.5%
TS1 TS2 TS1 TS2
43.2% 33.6% 40.7% 32.4%
MFA: Overall WER — 34.5%

8 kHz — 34.5% 16 kHz — 34.4.%
TS1 TS2 TS1 TS2
37.5% 31.4% 37.2% 31.5%

Table 27. Results of the QIO front end submitted to the ALV evaluation.

QIO Front End Performance Summary in ALV Evaluation

Training Set Test Set

set|[SAMP Il g |l 2|l a3l a5 6 7 8 ol 10 12 121 13] 14
Freq.

. |26 kHz[|13.5[ 22.7] 35.9] 41.8] 37.2] 40.3] 39.6] 33.8] 40.1| 51.1] 52,6 5.6 52.4[ 53.7
8 KkHz |[16.5| 27.7| 45.0] 47.9] 43.8] 46.3] 44.4] 28.7] 39.3] 50.3] 54.3] 55.2| 52.2[ 52.7
16 kHz|[16.7| 17.7 25.3| 31.5] 29.3| 26.9| 27.9| 31.5| 33.4| 42.2| 43.6| 43.6| 41.3] 42.0

2 "8 khz ||20.8| 22.4] 33.0] 37.2| 35.0| 33.3| 35.3| 23.6| 27.6| 37.9| 43.5| 42.1| 37.1] 41.3

Table 28. Results of the MFA front end submitted to the ALV evaluation.

MFA Front End Performance Summary in ALV Evaluation

Training Set Test Set

SetsF"’:emq?'1 2l 3|l 4| s 6| 7| 8| 9 20| 22| 121 23] 14

. |26 KHz[|13.6] 23.0[ 31.8] 39.0[ 34.1] 33.3 34.1] 32.3 30.7] 45.9 49 5 49.8] 47 8] 46.2
8 KkHz |[15.0| 21.1| 36.3| 43.9] 36.6] 42.9] 37.4| 23.1] 29.5] 44.7| 52.1] 49.2| 48.1[ 45.2
16 kHz|| 15.4| 18.7| 24.8| 32.5] 27.8| 26.6| 27.8| 29.7| 32.6| 38.3| 43.5| 42.2| 40.4| 40.4

2 |8 khz [17.2 19.0] 29.9] 38.5| 31.5| 33.8| 30.9| 22.7| 24.8| 34.7| 43.7| 39.8| 36.4] 36.9
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over the baseline MFCC front end. However, the overall performance of the MFA front
end at 34.5% WER is almost ten times worse than human performance reported on a
similar task — human transcription of broadcast news speech [34,31]. Hence, the
performance of the advanced front ends is far from what is needed in practical
applications. Further research is needed to develop noise robust algorithms that close this

gap in performance.

5.3. Analysis of the ALV Evaluation

To do further analysis of the ALV evaluation, we acquired the code used to
produce the results previously discussed, and re-ran the evaluations within our laboratory.
Due to bug fixes and other changes made by the algorithm developers, the results
fluctuated slightly. A summary of the results of these new experiments at a sampling
frequency of 8 kHz are shown in Table 29. The changes in performance were not
statistically significant.

Table 30 and Table 31 present the detailed results for QIO front end and MFA front
end, respectively. Significance tests [100] on the 14 test conditions for Training Set 1
showed that the performance of the MFA front end was significantly better than the QIO
front end performance on all 14 test conditions. However, on Training Set 2, the MFA
front end was significantly better for only Test Sets 5 and 14. Training Set 2 is
representative of all noise conditions and includes microphone mismatches. Hence,
Training Set 1 is a good measure for front-end robustness, and perhaps more informative

than the matched conditions (Training Set 2). For the ALV evaluations, WERSs on the two
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Table 29. A summary of results of the experiments that represented the replication of the
ALV evaluation using a generic baseline speech recognition system.

Baseline MFCC
8 kHz — 49.6%
TS1 TS2
58.1% 41.0%
QIO
8 kHz — 38.4%
TS1 TS2
43.1% 33.6%
MFA
8 kHz — 34.7%
TS1 TS2
37.5% 31.8%

Table 30. Results of the experiments that represented the replication of the QIO front end
results submitted to the ALV evaluation.

QIO Front End Performance Summary in ALV Evaluation

Training Set Test Set
set/|S2MP- N 3l 2|l 3| a5 6l 71| 8l of 10 22| 12 13]| 14
Freq.

8 KkHz (|17.1| 27.2| 44.1| 47.0| 43.1| 48.9| 44.6| 27.5| 39.5| 49.8| 54.9| 55.9| 52.1| 52.0
8 kHz (|20.9| 22.1| 32.8| 37.4| 35.4| 33.6| 35.2| 24.2| 27.4| 37.5| 42.7| 42.2| 37.3| 41.1

Table 31. Results of the experiments that represented the replication of the MFA front end
results submitted to the ALV evaluation.

MFA Front End Performance Summary in ALV Evaluation

Training Set Test Set
set|[S2MP-ll g | 2l 3| al 5| 6| 7| 8| of 10| 12| 12| 13| 14
Freq.

8 kHz (|14.5|22.1| 37.0| 43.2| 36.6| 43.3| 38.2| 24.3| 29.8| 43.4| 50.6| 48.7| 48.6| 44.9
8 kHz |{18.1| 20.6| 30.9| 36.8| 31.6( 33.8| 31.7| 24.3| 24.8| 34.7| 43.3| 40.3| 38.1| 35.7
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training sets were weighted equally, thereby decreasing the gap between the two front
ends.

In Table 32, we calibrate the degradation in the performance of the three front ends
due to the microphone mismatch. Training Set 1 consisted of clean data recorded with a
Sennheiser microphone. Test Set 1 also represents clean data recorded through the same
microphone. Test Set 8 represents a mismatched condition since it consists of clean data
recorded through the second microphone condition. Though both front ends degraded
significantly due to microphone mismatch, this degradation is less severe than the MFCC-
based baseline system. The baseline system did not employ any channel normalization
techniques such as cepstral mean subtraction.

As shown in Figures 38 and 39, the presence of additive noise resulted in a
significant degradation in performance for both the QIO and MFA front ends. The bold
labels in these figures represent differences which are statistically significant. This trend is
similar to the tend observed on the Aurora MFCC front end-based baseline system as
discussed in section 5.1 though the degradations are less severe. The degradation is also
less severe when the systems are exposed to noise during training. Performance on the
same noisy test sets was much better when training on Training Set 2 because Training

Set 2 contains examples of all noise and microphone types.

Table 32. A performance comparison for a mismatched microphone condition.

Trai WI007 MFCC Baseline QIO MFA
rain
Set Test Set 1 Test Set 8 Test Set 1 Test Set 8 Test Set 1 Test Set 8
(Senn Mic.) | (Sec. Mic.) | (Senn. Mic.) | (Sec. Mic.) | (Senn. Mic.) | (Sec. Mic.)
1 15.4% 36.6% 17.1% 27.5% 14.5% 24.3%
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Figure 38(a). Comparison of the WER for Figure 38(b). Comparison of the WER for
selected noise conditions 8tkHz on the selected noise conditions 8tkHz on the
QIO front end.Training Set Iwas used for QIO front end.Training Set 2vas used for
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Figure 39(a). Comparison of the WER for Figure 39(b). Comparison of the WER for
selected noise conditions 8tkHz on the selected noise conditions 8tkHz on the
MFA front end.Training Set was used for MFA front end.Training Set 2vas used for
training. training.
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5.4. Front End-specific Tuning Experiments

There are four classes of parameters that are most relevant to the tuning performed
for this evaluation. Two of these relate to language model and acoustic scores. The
language model scale factor controls the relative weight of the language model
probabilities compared to the acoustic model probabilities. The word insertion penalty is
applied to every word hypothesis and is used to balance insertion and deletion errors. The
language model scale factor typically ranges from 5 on tasks such as DARPA's Resource
Management corpus [102] to 20 on tasks such as WSJ [28]. The word insertion penalty
usually ranges from -10 on Resource Management to +10 on WSJ.

The second class of parameters, which have perhaps the most significant impact on
performance, relate to the state tying process. The number of tied states can normally be
adjusted to improve performance. This parameter balances sparsity and generalization of
the data in the phonetic decision tree state tying process. We typically reduce the number
of states by an order of magnitude. We can also control the degree to which states are
merged or split by adjusting parameters related to the likelihood of the state.

In Table 33 and Table 34, we show the difference in performance between the
baseline system and the tuned system for the QIO and MFA front ends, respectively. The
tuning process is described in more detail in section 4.2. Parameter tuning was performed
on the matched training condition at 8 kHz (Training Set 1) using the 330-utterance short
development test set. The beam pruning parameters (state, model and word) were opened
during the tuning process to reduce the influence of pruning. As shown in Table 33 and

Table 34, parameter tuning resulted in a small overall improvement — about 1% absolute
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Table 33. A comparison of the optimized system parameters to the baseline system
parameters for the QIO front end. Beam pruning parameters were set to 300 (state),
250 (model), and 250 (word).

State Tying Thresholds
IO Num. i ying LM Scale Word Ins. WER
States Split Merge Occu. Penalty
Baseline| 3209 165 165 840 18 10 16.1%
Tuned 3512 125 125 750 20 10 14.9%

Table 34. A comparison of the optimized system parameters to the baseline system

parameters for the MFA front end.

State Tying Thresholds
Q0 Num. i ying LM Scale Word Ins. WER
States Split Merge Occu. Penalty
Baseline| 3208 165 165 840 18 10 13.8%
Tuned 4254 100 100 600 18 05 12.5%

and 8% relative. The amount of improvement was about the same for both
systems — 7.5% relative for QIO and 9.4% relative for MFA. Hence, the ranking of the
systems remained the same.

The tuned systems were then benchmarked on the Aurora-4 database. A summary
of the results on these benchmark experiments is shown in Table 35, and the detailed
results are provided in Table 36 and Table 37. The pruning beams were scaled back to the
values used in the ALV baseline system: 200 (state), 150 (model), and 150 (word). It was
observed that the overall relative ranking of the two competitive front ends is not
influenced by the tuning process. The average performance of the MFA front end without
tuning was better than QIO by 9.6% relative. Front end-specific tuning resulted in an
increase in the relative performance gap between the two front ends from 9.6% to 15.8%.

While the average performance of the MFA front end remained relatively constant (34.7%
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Table 35. A summary of the performance of the QIO and MFA front ends after front
end-specific system tuning.

Baseline MFCC
8 kHz — 49.6%
TS1 TS2
58.1% 41.0%
QIO
8 kHz — 40.5%
TS1 TS2
45.7% 35.3%
MFA
8 kHz — 34.1%
TS1 TS2
37.0% 31.1%

Table 36. Performance of the QIO front end after front end-specific system tuning.

QIO Front End Performance Summary in ALV Evaluation

Training Set Test Set

Samp.
Freq.

8 kHz (|19.1| 31.7| 46.8| 49.2| 45.7| 51.1| 46.6| 30.0| 42.2| 52.9| 55.5| 58.3| 54.8| 55.8
8 kHz ||22.5| 23.8| 33.6| 38.1| 36.4| 36.2| 37.7| 25.0( 29.5| 39.1| 44.5| 45.0| 40.5| 41.8

1 2 3 4 5 6 7 8 9 || 10| 11 12| 13| 14

Set

Table 37. Performance of the MFA front end after front end-specific system tuning.

MFA Front End Performance Summary in ALV Evaluation

Training Set Test Set

Samp.
Freq.

8 kHz (|14.4| 21.5| 36.8| 42.1| 36.5| 44.1| 36.4| 23.3| 30.2| 43.0| 50.2| 48.9| 47.0| 43.6
8 kHz |{16.8| 20.7| 29.7| 36.0| 31.0| 33.3| 32.0| 22.5( 24.6| 34.1| 42.3| 39.4| 37.1| 36.1

Set 1 2 3 4 5 6 7 8 9 10 || 11 || 12 || 13 || 14
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to 34.1%), the average performance of the QIO front end dropped by 5.5% relative (38.4%
to 40.5%). One possible reason for this drop can be attributed to overfitting of the system
parameters on the specific database employed for the tuning process (matched conditions:
Training Set 1 and short devtest set 1).

All these results provide sufficient evidence to conclude that the front end-specific
tuning process did not result in a change in the ranking of the advanced front ends. We
also showed that though the advanced front end achieved significant improvement (greater
than 25% relative) in performance over the baseline MFCC front end, the performance of
these advanced front ends is very high (~35%) compared to human performance (~1%) in
noisy environments. Hence, we conclude that the noise robust technology implemented in

the advanced front ends is not operationally significant in practical applications.



CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis analyzed the performance of advanced front ends and demonstrated
that the performance of the advanced front ends is significantly better than the baseline
industry standard MFCC front end, but is not operationally significantly. It was also shown
that front end-specific tuning of a recognition system did not significantly change the

results of the ALV evaluation.

6.1. Thesis Contributions

There are three major contributions in this thesis. These are described in detail

below.

Development of the Aurora Baseline System

A baseline large vocabulary continuous speech recognition system was developed.
This system design was tuned to reduce computation time without significantly degrading
the overall system performance. The real time performance of the baseline system was
4 xRT for training and 15 XRT for decoding on an 800 MHz Pentium processor. On the

standard 5K WSJO task, the ALV baseline system WER performance was 14.0%.

102
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Analysis of Performance

An extensive analysis of the performance of the ETSI WI007 MFCC baseline front
end and two advanced front ends (QIO and MFA) was presented. For the baseline front
end, it was shown that increasing the sampling frequency from 8 kHz to 16 kHz results in
a significant performance improvement only for the noisy test conditions. Utterance
detection resulted in significant improvements only on the noisy conditions for the
mismatched training case. The DSR standard VQ-based compression algorithm did not
result in a significant degradation in performance. A mismatch between training and
testing conditions resulted in a 300% relative increase in WER whereas the mismatches in
microphones resulted in a 200% relative increase in WER.

Both the QIO and MFA advanced front ends did not degrade as dramatically as the
baseline MFCC front end on mismatched microphone and additive noise conditions
though these degradations were significantly worse than the matched conditions. In fact,
both advanced front ends met the goals set forth in the ALV evaluation — a 25%
improvement in performance over the baseline system.

The performance of the MFA front end for Training Set 1 was significantly better
than the QIO front end performance on all 14 test conditions. Training Set 1 consists of
clean utterances recorded on a Sennheiser microphone while the 14 test conditions are
representative of all noise and microphone conditions. Hence, training on Training Set 1
and decoding on 14 test conditions represents highly mismatched evaluation conditions.
The overall performance on these highly mismatched conditions is a good measure of

front end robustness.
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However, on Training Set 2, the MFA front end was significantly better only for
Test Sets 5 and 14. Training Set 2 is representative of all noise conditions and includes
microphone mismatches. While training on Training Set 2, the models learned these noise
and microphone conditions under a maximum likelihood framework and hence, the
performance of both advanced front ends was comparable.

Due to microphone mismatch, both advanced front ends degraded significantly.
However, this degradation is less severe than the MFCC-based baseline system. The
baseline system did not employ any channel normalization technique.

The presence of additive noise resulted in a significant degradation in performance
for both the QIO and MFA front ends. This trend is similar to the trend observed on the

baseline MFCC front end though the degradations were less severe.

Analysis of Parameter Tuning

It has been shown that the overall relative ranking of the two front ends was not
influenced by the tuning process. The average performance of the MFA front end without
tuning is better than QIO by 9.6% relative. Front end-specific tuning resulted in an
increase in the relative performance gap between the two front ends from 9.6% to 15.8%.
While the average performance of the MFA front end remained relatively constant (34.7%
to 34.1%), the average performance of the QIO front end dropped by 5.5% relative (38.4%
to 40.5%). One possible reason for this drop can be attributed to overfitting of the system
parameters on the specific database (e.g., matched conditions using Training Set 1 and

short devtest set 1) employed in the tuning process.
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6.2. Future Work

A major limitation in this work was the lack of access to a modular source code
implementation of each of these front ends. These front ends contain many techniques that
individually or collectively improve performance. The contribution of each of these
algorithms to the overall improvement in performance can be calibrated by benchmarking
these algorithms in isolation. In this way, a more detailed understanding of the efficacy of
these approaches can be established.

Due to CPU limitations, recognition system parameter tuning was performed only
on one condition: training on Training Set 1 and testing on short devtest set 1. It might be
argued that because the tuning conditions are different than the actual test conditions, an
improvement in the performance of the advanced front ends can be obtained by tuning on
the mismatched conditions that have ample samples of the noise and microphone type.
This conjecture can be tested with appropriate additional experimentation.

Finally, the improvements in these algorithms needs to be verified with a
recognition system that utilizes more state of the art features, such as speaker and channel
normalization [61,87,88], speaker and channel adaptation [31,88,103], and discriminative

training [104,105,106].
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