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The United States Forest Service (USFS) is developing software systems to
evaluate forest resources with respect to qualities such as scenic beauty and vegetation
structure. Such evaluations usually involve a large amount of human labor. In this thesis, |
will discuss the design and implementation of a digital image segmentation system, and
how to apply it to analyze forest images so that automated forest resource evaluation can
be achieved. The first major contribution of the thesis is the evaluation of various feature
design schemes for segmenting forest images. The other major contribution of this thesis
is the development of a pattern recognition-based image segmentation algorithm. The best
system performance was a 61.4% block classification error rate, achieved by combining
color histograms with entropy. This performance is better than that obtained by an
“intelligent” guess based on prior knowledge about the categories under study, which is

68.0%.
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CHAPTER |

INTRODUCTION
An analog image can be described by a two-dimensional funcfiox Y) , Where
(X, ¥) denotes the spatial coordinate afidX, ¥) gives a measurement value according

to the coordinate. Analog images need to be digitized before they can be analyzed by a
computer. The digitization consists of two steps. First, an analog image is sampled evenly
in the spatial domain, with each sample represented by a picture element, or a pixel. Then,
the measurement value of each pixel is quantized, converting the image into a digital
format. As powerful computational resources have become significantly less expensive,
the field of digital image processing has been evolving rapidly. In this thesis, | will discuss

the design and implementation of a digital image segmentation system for forest image

analysis.

1.1. Image Segmentation

To analyze the content of an image, one needs to first locate and isolate objects in
it. This process, which is referred to as segmentation, is the first step in low-level
vision [1]. Segmentation is a process of partitioning an image into some disjoint
(non-overlapping) regions such that each region is homogeneous and no adjacent regions

can be merged without violation of homogeneity [1]. Here, a region means a connected set



of pixels, that is, a set in which all pixels are adjacent. An example of a segmented image
is shown in Figure 1.

A formal way to describe this image segmentation process is shown as follows: if
F is the set of all pixels andP(X) is a uniformity (homogeneity) predicate defined on

X, which stands for a group of connected pixels, then the image segmentation is a

partitioning of the sefF  into several connected subsets (or reg@ns)i = 1, n) , such
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Figure 1. An example of a forest image which was manually segmented into various re-
gions such as “grass” (green color) and “tree” (brown color). In this thesis, six
categories of segments were defined for a forest image: tree, foliage, bush,
grass, background sky, and sky. See Chapter V for detalils.
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n
that [] S=F with §n S =0, i #j , and the uniformity predicate satisfies
i=1

P(S) = true for all regions andP(§ U S;) = false whefy is adjacentSp

1.2. Techniques for Image Segmentation

There are many segmentation techniques available in the literature [2]. None of
these techniques are suitable for all types of images. However, most of the segmentation
algorithms can be easily adapted to a variety of applications. Generally, the algorithms are
based on such approaches as histogram thresholding [3], edge detection [3], and
relaxation [4]. Here, | will give a brief introduction to the most popular techniques used

for image segmentation.

Gray Level Thresholding

Thresholding is one of the oldest and simplest techniques for gray-level image
segmentation. The basic idea is to assign pixels with a gray level falling between two
thresholds to the same region. For the simplest case, if an image consists of regions with
different gray level ranges (i.e., the regions are distinct), then the histogram of the pixel
gray levels would show peaks and valleys, with each range between valleys corresponding
to a certain region. In this case, if the gray levels at the valleys of the histogram are taken
as thresholds, the image can be segmented into different regions. Here, the thresholding
can be either bilevel (two regions with only one threshold) or of multilevel (multiple

regions with several thresholds).
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The key to thresholding techniques is the selection of threshold values. This is not
a trivial job and various algorithms have been proposed. Ridler and Calvard proposed an
iterative thresholding scheme which was based on Bayes’ discrimination rule [5]. Ostu
maximized a measure of class separability [6]. To overcome the possible drawbacks
resulting from considering only the histogram information, Weszka and Rosenfeld
developed a “busyness” measure which utilized spatial information, such as the
co-occurrence of adjacent pixels in an image, to determine a set of thresholds [7]. Chanda
also suggested an average contrast measure on the basis of the co-occurrence matrix [8].
On many occasions, when an image is noisy or the illumination is not good, fixed-value
thresholding schemes are not capable of segmenting the image reliably. Adaptive
thresholding methods such as the one proposed by Nakagawa and Rosenfeld [9] were

developed to deal with such problems.

Iterative Pixel Classification

Approaches of this type can be subdivided into three classes: relaxation
approaches, Markov random field-based (or MRF-based) approaches, and neural
network-based approaches. Relaxation is an iterative algorithm in which the classification
of each pixel can be done in parallel. Decisions made at neighboring pixels in the current
iteration are then combined to make a decision in the next iteration. There are two types of
relaxation approaches: probabilistic and fuzzy. In probabilistic relaxation, it is assumed
that class assignments of pixels are interdependent. Therefore, when a pixel is classified,

the category information of its neighboring pixels is also taken into account. The fuzzy



relaxation classification approach will be discussed later. This approach improved the
probabilistic relaxation method by utilizing the fuzzy set theory.

MRF-based approaches use a spatial interaction model such as a Markov Random
Field (MRF) or a Gibbs Random Field (GRF). Typical examples include the one proposed
by Geman [10] which consists of a hierarchical stochastic model for the original image
and a restoration algorithm for computing the maximum a posterior estimate of the
original scene given a degraded realization. Another good example is the two-dimensional
Bayes smoothing algorithm by Derin [11], which computes the optimum Bayes estimate
for a scene value at each pixel. In the latter scheme, a scene is modeled as a special type of
MRF, that is, the Markov Mesh Random Field which is characterized by causal transition
distributions.

Neural networks are massively connected networks of elementary processors. The
architecture and dynamics of such networks attempt to resemble information processing in
biological neurons. Systems based on neural networks are likely to be robust with respect
to random noise and failure of processors because of their massive connection
architecture. Moreover, they are capable of generating outputs in real time due to the
parallel processing mechanism. A large number of neural network-based image
segmentation approaches have been developed in recent years. For example, Blanz and
Gish used a three-layer feed forward network for segmentation [12]; Babaguchi developed
a multilayer network trained with backpropagation for thresholding an image [13]; and

Cortes proposed a neural network to detect potential edges in different orientations [14].



Segmentation Of Color Images

Color is a very important perceptual phenomenon related to human response to
different wavelengths in the visible electromagnetic spectrum. There are various color
models available for describing a color image. The most popular color models include the
Red-Green-Blue (RGB) model, the Hue-Intensity-Saturation (HIS) model, and the
Cyan-Magenta-Yellow-Black (CMYK) model.

Some segmentation algorithms attempt to exploit color using the models
mentioned above. For example, Ohta et al. [15] attempted to find a set of effective color

features by systematic experiments in region segmentation. They claimed that the

following three color features, namelyy = (R+ G+ B)/3 |, = (R-B)/2  and

I3 = (2G-R-B)/4, constitute the most effective set of features.

Another class of techniques for color image segmentation utilize spectral analysis.
These algorithms usually require prior knowledge of the colors of objects. In cases where
such prior information is not available, clustering techniques are used. An example typical
of this approach is the two-stage color image segmentation which combines thresholding

with the Fuzzy C-Means (FCM) method [16].

Edge Detection
Segmentation can also be obtained through detection of edges, defined as narrow
regions where there is an abrupt change in gray level intensity. Edges are local features

that are computed using pixels in the immediate proximity of the region under
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consideration. Generally, edge detection algorithms can be classified into two categories:
sequential and parallel. For sequential techniques, the decision whether a pixel is an edge
pixel or not is dependent on the detection results at some previously examined pixels.
Therefore, the performance of a sequential edge detection method is dependent on the
choice of an appropriate starting point and on how the results of previous points influence
the selection and result of the next point.

For parallel methods the decision is made based on the point under consideration
and its neighboring pixels. For these parallel algorithms usually there are different types of
differential operators involved, such as the Roberts gradient [1], the Sobel gradient [1], the
Prewitt gradient [1] and the Laplacian operator [4]. These operators are able to detect
changes in the gray level of a given image.

A good edge detector should be a filter with the following two features. First, it
should be a differential operator, taking either a first or second spatial derivative of images.
Second, it should be capable of being tuned to act at any desired scale, so that both blurry

edges and sharply focused fine details can be detected.

Methods Based On Fuzzy Set Theory

Zadeh introduced the concept of fuzzy sets in which imprecise knowledge can be
used to define an event. The relevance of fuzzy set theory to pattern recognition problems
has been adequately addressed in the literature [17][18]. In general, fuzzy set theory may
be incorporated to handle uncertainties resulting from deficiencies in various stages of a
pattern recognition system. In particular, fuzzy image processing and recognition is under

rapid development. The reason for the increasing interest in fuzzy image processing
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mainly lies in the realization that many of the basic concepts in image analysis, such as
that of an edge or a boundary, are ambiguous in nature and cannot be defined precisely.
Fuzzy set theory appears to be a good approach to deal with such uncertainty issues
involved in image processing and recognition.

Image segmentation algorithms that exploit fuzzy set theory can be divided into
three categories: thresholding, clustering and edge detection. Each of these classes are
similar to their non-fuzzy counterparts, with the only difference being that key parameters

(such as thresholds) are determined with uncertainty taken into consideration.

1.3. Applications to Forest Image Analysis

Image segmentation is essential to many image analysis applications. In this thesis,
| will study how to apply image segmentation to analyze forest images so that automated
forest resource evaluation can be achieved.

The United States Forest Service (USFS) is developing software systems to
evaluate forest resources with respect to qualities such as scenic beauty and vegetations
structure. Such evaluations usually involve a large amount of human labor and are very
tedious. However, with the assistance of digital image analysis and pattern recognition
techniques, one will be capable of extracting features and creating statistical models which
represent scenic beauty and vegetation structure, thus making the evaluation process
automatic.

Reliable analysis of forest images would be straightforward if typical forest
structures (objects) could be isolated from an image. In this manner, one may quantify

various qualities of an image with respect to each category, and then further analyze the



structures for other aspects in which people are interested. This task requires an automatic
image segmentation system.

Initial interest in forestry imaging focused on the development of an automatic
algorithm to estimate the scenic beauty rating of forest images [19]. Federal and regional
agencies have stressed the need for aesthetic evaluation to plan timber harvests in national
forests and to assess the impact of public incentive programs for forest management.
Scenic beauty estimation (SBE) is a quantitative measure of an individual’s preference for
the visual attributes of an image. Traditional methods used for SBE include the Public
Preference Model [20] and the Descriptive Inventories [21], which involve a large amount
of human labor. Thus the initial goal of this project was to extract relevant features from

forest images using signal processing techniques for automatic scenic beauty prediction.

AN AT

n K

CSoftware Analysis )

% i LSBE HSBE
i

Figure 2. A diagram demonstrating how digital image processing techniques can be used
for forestry resources analysis and management.
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To assess progress on this task, an extensive database [22] had been developed in
conjunction with the USFS. The images included in this database were drawn from a study
spanning four years in the Ouachita-Ozark National Forests in Arkansas, USA.
Photographs taken under controlled conditions were digitized using an extremely high
guality scanning process and converted into computer readable data. The database consists
of 637 images, which were taken over two different sessions (1990-91 and 1994-95) and
sampled over all the seasons of the year at a number of different angles. Subjective scenic
beauty ratings are available for each of the images in the database. Later, an additional
1147 images had been added, bringing the total number of images to 1784. This
well-developed database is large enough to provide sufficient data for algorithm training
and testing. It is indispensable for the evaluation of system performance.

The scenic beauty of an image is highly dependent on the complexity of that
image. Complexity is defined as the degree of variation in the visual qualities of an
image [21]. Algorithms had been developed to extract diverse features from the forest
image database as measures of image complexity. These features include color histograms
with the RGB color model, density of long lines and short lines, the sharpness, the
standard deviation of pixel intensities, etc. The features were combined into a variety of
feature sets and SBE-based image classification was achieved with them. Regression
analysis was also applied to relate the extracted features to the scenic beauty. Examined
feature combinations include individual colors (red, green, and blue), colors combined
with the density of long and short lines, and colors combined with information theoretic

measures such as entropy [19].



11

An image analysis system had been developed which classifies images into three
categories (low, medium, and high) according to their scenic beauty qualities. A system
using color, long lines, and entropy [19] yielded the lowest overall classification error
rate — 38.5%. This combination of features also had a high correlation with the reference
SBEs — 0.59. Most of the errors were observed to be in the regions of overlap between
images rated as having medium to low scenic beauty and medium to high scenic beauty.
This observation suggests that the SBE value as determined by human perception is
somewhat imprecise and needs a more fundamental understanding and calibration. The
results also indicate that color and density of the trees play a major role in estimating the
scenic beauty of forest images.

My evaluation of image segmentation approaches has been carried out using the
above-mentioned research as a testbed. | have augmented the system with a capability to
detect and quantify key structures within the image, such as trees, sky, and bushes. |
believe that developing an understanding of the composition of the scene will be crucial to

improving the ability to analyze images.

1.4. Contribution of the Thesis

The major contributions of this thesis can be summarized as follows. First, |
investigated optimization of several feature extraction schemes. Second, | designed
features based on the colors yellow and brown, features based on the discrete cosine
transform, and explored a feature design based on a Gabor filter bank. These feature

extraction schemes were evaluated and their effectiveness in analyzing forest scenery was
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verified. Third, | developed an image segmentation algorithm based on block classification
using principal component analysis (PCA). A system built on this algorithm achieved an
error rate of 61.4% for block classification, using the combination of color histograms and
entropy as the feature set. Finally, | investigated possible impact of the segmentation
system on the scenic beauty estimation application. A reduction of SBE classification

errors for some categories of segments was observed.

1.5. Structure of the Thesis

The thesis is structured as follows. In chapter I, | discuss feature extraction
schemes. In chapter Ill, | will introduce algorithms to classify image segments using a
pattern recognition paradigm. Chapter IV contains software design and implementation
issues. | will present the experimental results and the corresponding analysis in chapter V.
In chapter VI, | will discuss the impact of this image segmentation system on scenic
beauty estimation. Finally, in chapter VII, | present conclusions and discuss promising

future directions.



CHAPTER Il

FEATURE EXTRACTION

To identify a specific target, one always needs features characteristic of that object.
In a pattern recognition problem, such features are represented by a multi-dimensional
vector called a “feature vector.” Obviously, the separability of feature vectors representing
different objects is crucial to achieving a low error rate in pattern recognition. Previously, a
variety of features had already been developed for image classification based on their
ability to predict scenic beauty. In this work, | developed additional features better suited

for image segmentation.

2.1. Baseline Features

In previous work [19], a variety of features had been developed for SBE
classification. These features include color histograms, density of lines, entropy, standard
deviation, sharpness, fractal dimension and compression ratio. The SBE classification
results [19] proved that these features were representative of characteristics of forest

images. Therefore, they are still used in the image segmentation system.

13
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Color Histograms

Color is the most visually striking feature of any image and it has a significant
bearing on the scenic beauty of an image. For forest image analysis, histograms of color
intensities were generated and used as features.

Images in the database use the Portable Pixel Map (PPM) format [23], which
assumes the Red-Green-Blue (RGB) color model. The PPM format represents each pixel
using 24 bits — one 8 bit byte for each color. Therefore, the minimum intensity value of
each color is 0 and the maximum value is 255. To compute the histogram of a color, this
range is evenly divided into 10 bins (to generate a reasonably-sized feature vector), with
the center value of the first bin being 0 and the center value of the tenth bin being 255.
Then distribution of the intensity values is computed with regard to these bins. This
computation generates histograms for the three primary colors, respectively. For each
histogram, there are 10 feature values, each of which stands for the count of pixels whose
intensity value for that specific color falls into the given bin. Sample color histograms

extracted from typical forest images are shown in Figure 3.

Line Features

The density of long lines (representative of trees) in an image is a good indication
of the density of trees in the image. This density property is not only important in forest
resources management (e.g., decision on cutting trees for lumber use), but also a suitable
measure of visual penetration, which partly determines the scenic beauty quality of an

image. Edge and line detectors were used to locate these line features.
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The Canny algorithm [24] was chosen for edge detection because it achieves a
minimum localization error with an error rate comparable to other algorithms such as
Sobel [1] edge detection and Roberts [1] edge detection algorithms. A block diagram for
the Canny edge detector is shown in Figure 4.

To detect lines, the output of the edge detector is postprocessed and edge lengths
are compared with a threshold parameter [25]. For an edge to be a line, its length must be
above the line threshold. The distinction between short bushes and tall trees is made by
assigning another threshold, i.e., the “long line threshold.” A detected line whose length
falls below the long line threshold is a short line. Since only those vertical lines, which
represent tree stems, shrubs and grasses, are of interest in this application, lines in the
horizontal direction are not detected. The percentage values of long lines and short lines to

the total number of detected lines are used as line features.

A typical LSBE image A typical HSBE image
24
20+
K%
% 16¢ ©
o X
Y= o
° .12¢ 5
= )
g 08 r S
3] 3
£ W :
005 100 100
Color Amplitudes Color Amplitudes

Figure 3. Sample color histograms extracted from typical forest images. The plot on the
left is from a Low Scenic Beauty Estimate (LSBE) image, and the one on the
right is from a High Scenic Beauty Estimate (HSBE) image.
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Sharpness
Sharpness is used to represent the local variation of pixel intensities. It is computed
as a frequency-weighted sum of the magnitudes of difference in pixel intensities of an

image. Mathematically, it is defined as

1 1

Sharpnessz Z z | & mr-x(m—in—j)| x fD . Q)

n l=-1j=-1
Here,i, ] 0 and is the cumulative frequency of the bin in the intensity histogram.

The histogram of the difference in pixel intensities gives a measure of amplitude

variations in an image and hence a measure of the sharpness of the image. This sharpness

Gaussian Gradient
Mask Norm

| d/dy

Non-Maximal
Image Input <— Suppression

Edge Detected Output
-

Figure 4. The block diagram for the Canny edge detection algorithm.
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is computed for each of the three primary colors in the image. Two example images with

significantly different sharpness values are shown in Figure 5.

Standard Deviation
While sharpness is a measure of local variation of pixel intensities, standard
deviation is a measure of the global or overall variation of pixel intensities in an image.

The standard deviation is computed as

(2)

Here x; is the intensity value of a pixel in a primary color channel &nd is the mean

intensity of that primary color in the image. The standard deviation values for each of the

Sharpness = 352.29, SBE =-122.31 Sharpness = 102.91, SBE = 84.63

Figure 5. Example images with different sharpness features. Note that the SBE is a signed
real number. The greater the value is, the better the scenic beauty quality is.
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three primary colors are computed individually and summed to obtain the total standard
deviation.

Example images with different standard deviation values from the database are
shown in Figure 6. Typically an image which is bright due to penetrating sunlight has a
higher standard deviation. On the other hand, an image which has less sunlight penetration

usually has a lower standard deviation.

Entropy
Entropy is a measure of randomness in an image. It is represented mathematically

as

Entropy = —Z i Xlogp(X) . (3)
X

HereX is the serial number of a bin within a color histogram ) is the probability

for a pixel intensity value to fall into that bin. As described earlier, the dynamic range of

intensity values for each color is divided into 10 bins. For each bin, the pixel intensity

Standard Deviation = 33.47, SBE = -4.65tandard Deviation = 2.40, SBE = 54.07

Figure 6. Example images with different standard deviation values.
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distribution is calculated. Then entropy is computed according to the above equation. The
total entropy is computed as the sum of the three entropy values for the primary colors.

Example images demonstrating a variety of entropy values are shown in Figure 7.
Typically, an image with more randomness has a lower scenic beauty quality. This is

demonstrated in the scatter plot shown in Figure 8.

Compression Ratio

The compression ratio of an image is another measure of the complexity of the
image. Image compression is a technique which seeks to replace original pixel-related
information with more compact mathematical representations. The compression ratio is
the ratio of the original image size to the compressed image size. Images with high
complexity are less susceptible to compression, hence are associated with a low
compression ratio. Here, compression ratio of an image is computed with JPEG
coding [26], which is a widely used lossy compression technique. Sample images with

high and low compression ratios are shown in Figure 9.

Fractal Dimensions
Fractal geometry is used to describe, model and analyze the complex forms of
nature and fractal dimension is a measure of the texture of an image. A Triangular Prism

Surface [27] approach was used to compute the fractal dimension, which is illustrated

graphically in Figure 10. First, a square regidhBCD  is chosen and divided into four
triangles with the center pixeP  as the common vertex for all the four triangles. The

distancer is variable, with a minimum value being 3 pixels. The sum of the areas of all
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Entropy = 22.57, SBE =-122.31  Entropy = 15.77, SBE = -47.20

Figure 7. Example images with different entropy values.

100

Subjective SBE
o
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-200 : ' '
14 16 18 20 22 24
Entropy

Figure 8. A scatter plot of entropy vs. SBE. The blue line was generated by a linear re-
gression on the data.
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Compression ratio = 7.77, SBE = -122.3XCompression ratio = 3.81, SBE = 84.63

Figure 9. Example images with high and low compression ratios.

=

i

Figure 10. The triangular prism surface approach.
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the triangles is computed. This procedure is repeated for each pixel in the image and the

total sum of areas is acquired. Subsequently, different values of  are used for this area

computation and an area-distance plot is made in log scale, as shown in Figure 11. The

slope of the line is denoted asS . Then the fractal dimension is related to as

D = 2-s. For color images, fractal dimensions for each color are computed
separately.
Images with higher fractal dimensions are considered to be more complex than
images with lower fractal dimensions. Sample images with high and low fractal

dimensions are shown in Figure 12.

2.2. Development of New Color Features
Colors have an important effect on human perception of the scenic beauty of an
image. Rudis and others [28] noted that blue was significantly associated with the degree
of recent cutting. In [29] and [30] the following rules have been demonstrated:
* the color green is most likely to appear in a summer scene, yellow in fall, but
blue and brown have the highest chance to show in winter.
* in non-winter seasons, the presence of green and yellow colors enhances the
scenic beauty of a forest scene, while blue and brown do the opposite.
From these results, it is evident that brown and yellow are also key color features in
evaluating the scenic beauty quality of an image. Moreover, brown distinguishes tree
stems from other forest scenes, and yellow helps to identify leaves and grasses in a forest

image taken in the fall. Therefore, it is necessary to add the brown and yellow features into
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Figure 11. The area-distance plot. Note both the distance and the area are in log scale.

Figure 12. Example images with high and low fractal dimensions.
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the color measurement scheme and evaluate their effectiveness in analyzing forest images
for various purposes.

The histograms for the brown and yellow colors were computed as feature vectors,
as they were for red, green and blue, previously. To calculate the intensity of brown and
yellow for a given pixel, one takes advantage of the theory of additive color synthesis [31],
which makes it possible to create any color by mixing the three primary colors, red, green,
and blue, in various proportions.

Particularly, the color brown is generated by mixing one part blue, one part green,
and four parts red. Similarly, yellow can be obtained by mixing equal parts of red and

green. A normalized version of the mixing formulae were implemented as:

brown = éxblue+%><green+gxred (4)
_1 1
yellow = éxred+§><green (5)

Here red, green and blue stand for the corresponding intensity values of the given pixel.

2.3. Development of DCT-based Frequency Features

So far, none of the features discussed presents spectral information of forest
images. Given the fact that most forest structures display remarkable variations in the
spatial domain, and that the patterns of those variations change with each specific kind of
structure, | believe that there should exist some frequency features helpful for
distinguishing between those structures. Therefore, | investigated widely-applied
frequency domain analysis techniques such as the Discrete Cosine Transform (DCT) [26]

and the Gabor filter bank [32].
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DCT Analysis

The DCT is a widely used frequency analysis method in image
processing [33][34][35]. It has many advantages over other transform techniques. For
example, no complex computation is involved in the DCT; fast DCT implementations are
available; and most importantly, energy is packed efficiently into a small number of DCT

coefficients [26].

A two-dimensional forward DCT of amx n  data block is defined as
4C(u)C(v) (2] + 1)u (2k+ v (6
F(u,v) = Z Z £(j, k)cos[ "] O{—zn "] 6)
Here the constants are computed as

] 0
W =
C(w) = [
0
0

(BN i3|H

otherwise

On the other hand, the inverse 2-D DCT (IDCT) is defined as

n-1n-1

(k)= 3 T CUCHF, v)cos[(zj 1)“"]cos[(2k;nl)""} @

u=0v=0

Here C(w) is calculated the same way as it is in the forward DCT.

To better understand the idea of DCT analysis, a forward DCT was first computed
on the forest image data. One typical region was chosen from the image database for each
of the six categories under study, i.e., tree, foliage, bush, grass, background sky and

sky (see Chapter V for definitions). Then the DCT coefficients were generated for the
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selected data with the block size ranging from 8 to 128. There appeared to be a unique
pattern of the coefficients’ amplitude distribution for each kind of structure. To illustrate
this more intuitively, all the original data and the outcome DCT coefficients were plotted
in MATLAB. Some example plots are shown in Figure 13 and 14. The plots shown in
Figure 13 describe amplitude distributions of the DCT coefficients calculated on a typical
tree region and a foliage region with the image block size set to 64 x 64, while the plots in
Figure 14 show the DCT coefficients computed on a foliage region with the block size set
to 8 x 8 and 32 x 32, respectively.

From these plots, it is noted that the DCT coefficients’ amplitude distribution
varies significantly between the structures. This variation may indicate a potential for
DCT coefficients to distinguish between the forest structures. Another observation is that
the block size for the DCT computation has a noticeable impact on the pattern of the
amplitude distribution. The reason for this sensitivity to the block size may be that small
sizes are not sufficient for the data to contain enough texture information, resulting in
patterns inconsistent with those generated on larger blocks. Also, an interesting
phenomenon can be observed that whatever the block size is, the energy tends to be
packed into the lower frequency components by the transformation. Therefore, the lower
frequency components are much more important than the higher components, since they
collect the majority of the energy. Based on these observations, | believe that if a suitable
block size is chosen and the lower DCT coefficients are used to generate features, | would

be able to achieve good segmentation performance.
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DCT-based Feature Design

| designed a few features based on what had been observed in the DCT analysis.
The basic idea behind the design is: first compute DCT coefficients on an image block,
then filter them in the frequency domain. After that choose the lower frequency
components as the feature vector. To be more specific, | designed the baseline scheme in
the following way: perform a DCT on the green pixels, average every four of them for the
filtering stage, then choose the first 16 filtered outputs to create the feature vector.

With this scheme, a feature vector is built from the first 64 DCT coefficients. This

choice is reasonable since it has already been verified that the energy is packed into the

block size: 64 ¥ 64, region: tree DCT size: B4 » B4, region: tree
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Figure 13. The amplitude distribution plots of DCT coefficients computed on some typical
forest structures (trees on the top; foliage on the bottom). Note the left column
plots are for the original data, and the right ones are for the DCT coefficients.
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lower frequency components, and for those typical regions, the first 64 DCT coefficients
contain the majority of the energy. If all DCT coefficients are included in the feature
computation, there would be problems with large DCT block sizes. For example,
computing a DCT on a 64 x 64 block and averaging every four of the DCT coefficients to
generate a feature vector produces a feature vector with a dimension o#64x=61024.

This is too large to be practical for most applications and would result in an unnecessarily

large amount of computations in the overall system.

block size: 8 % 8, region: foliage DCT size: & & 8, redion: foliage
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Figure 14. The amplitude distribution plots of DCT coefficients computed on a typical fo-
liage region with the block size set to 8 x 8 and 32 x 32, respectively.



29

2.4. Gabor Filter Bank-based Features

Another frequency analysis technique | investigated was Gabor filters. This
filtering technique was justified based on a physiological study of the human vision
system [32]. An unsupervised texture image segmentation algorithm based on this
technique was developed by Jain and Farrokhnia and proved very effective in
classification of a small number of texture categories [32]. First, | duplicated experiments
described in the original paper and verified the performance of this algorithm. Next, |
applied this algorithm to images representing different forest structures of interest in the
study. | analyzed the results and identified problems with this feature design for the

forestry application.

Gabor Filters
Gabor filters are important in visual image analysis. The impulse response of an
even-symmetric Gabor filter is given by:
2 2

Uil [
h(x y) = expg—é{—x—z + 1—2} %F:OS(ZTEUOX). (8)

o, 0,

Here, u, is the frequency of a sinusoidal plane wave alongxhe axis (or the
o° orientation), o, is the space constant of the Gaussian envelope alorg the axis, and

gy is the other space constant along the axis. To obtain a Gabor filter with an arbitrary

orientation, one needs to rotate the y coordinate system accordingly.

The Fourier domain representation of (8) is given by

2 2
0 1[(u=up)” V|0 0 1[(u+uy)” v 1]0

H(u,v) = Aexpg—é[—zo+—2 O+ Aexpg—é —20+—2 0 (9)
0 o, o, |0 U o 0

\ u o-V
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= %T[OX 0, = 1o, , anda = 2mno,o,, . This equation is also referred to as a

2y y
modulation transfer functioMTF) since it specifies the amount by which the filter
modifies each frequency component of the input image.

Gabor filters are able to keep an optimal balance between both the resolution in the
spatial domain and that in the frequency domain [32]. This is a significant property for the
texture segmentation problem, where high resolution in the spatial domain is necessary for
locating texture boundaries, and high resolution in the frequency domain is desirable for

distinguishing between different kinds of textures. The usefulness of Gabor filters in

texture segmentation has been demonstrated by the research work described in [32].

Gabor Feature Design
The Gabor features were extracted on the basis of the design described in [32].

First, a bank of Gabor filters are convolved with an input texture image. For these Gabor

o

filters, the orientatior® is set to be 4,5° 9,00 , arl@5 , respectively, and the
following values are used for the radial frequengy 142 2J2 42 , ..., and

(NC/4)J§. Here N, is the number of columns of the input image. This set of Gabor
filters are sufficient for detecting textures with either high or low frequency components,
of any arbitrary orientation.

Second, the filtered outputs, denotedrgéx, y) , are transformed nonlinearly

using the equation:

1_e—20(t
Y(t) = tanh(at) = - ot (20)
e
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The curve for this function is shown in Figure 15. From the curve, one can see that the

function actually represents a rapidly saturating, threshold-like transformation. The
constant in the equation, , determines how fast the function saturates.
After the nonlinear transformation, feature images are generated by averaging over

windowed regions centered at each pixel in the transformed images. The feature

computation for a filtered imagg(x, y)  is given as
_ 1
g% y) = = % W(r(a b)) (11)
M™(a b D W,,

HereWXy isanM x M window centered at the position(&f y) . Actually, the nonlinear

transformation is incorporated into this equation.

In equation (11), the features are calculated with rectangular windows. To keep a
balance between both a reliable measurement of texture features and an accurate
localization of region boundaries, a Gaussian window, instead of the rectangular one, has

been adopted in Jain's algorithm. Therefore, equation (11) is modified to:
1
e(xy) = = % g(a-x b=y)|W(r(a b)|. (12)
M™(a b D W,,

Here,

9(x y) (13)

I
()
pas
3
1
+
<
OoO

The constanto in (13) is proportional to the average size of the intensity

variations in the image, which is denotedBs . Thavis; 0.5T , wiere N./ug

The scale was empirically determined to®® . The window &fze is supposed to be
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positively proportional to the value o , and the optimal scale also needs to be
determined empirically.

When feature computation is performed for all filtered images, feature values of
the same position are assembled into a feature vector. This feature vector is then used for

classifying the pixel at that position. Evaluation details about this feature design are

described in Chapter V.
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Figure 15. The nonlinear transformation used in the Gabor filter approach.



CHAPTER IlI

ALGORITHMS

The core of the block-level classification scheme for the image segmentation
system is a well-established statistical pattern recognition algorithm known as Principal
Component Analysis (PCA) [36]. Fundamentals of PCA as well as the details of the

algorithm design are described in this chapter.

3.1. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical normalization technique. It is
probably the most straightforward transformation that can be used with a linear
classifier [36]. PCA seeks a projection that represents a set of data with the least square

error.
Suppose one has a setdflimensional sampled; X, ,.X, , of which the

sample mean il  and the covariance matrixtis . One may represent a vector in the
sample space as
d
X:H+Zaitéi. (14)
i=1

The corresponding squared-error criterion function is

33
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d 2

[ U
P+ S &y [éig— Ry

fr2 (15)

n
J:Z
k=1

As shown in [36], to minimize the criterion function, the vectdts €, &4,
must be the eigenvectors associated with the largest eigenvalues of a scatter gatrix

where

S= 5 (%R x-M = (-1 = . (16)
k=1

Given that S is real and symmetric, the eigenvectdrs &, &y.,  are orthogonal.
Therefore, they consist of a set of basis vectors for representing the space formed by the
sample vectors. If the eigenvectors are combined to form a transformation matrix with

each vector as one of its column vectors, then a linear transformation is obtained:

y=d'x, (17)

which transforms a vector into the specific sample space.

3.2. Class-specific PCA

To apply principal component analysis to a practical pattern recognition problem,
one may choose to do a class-specific PCA. Suppose one needs to distinguish between

categories (classes). First of all, PCA is applied to each class respectively. That is, a group
of training data (feature vectors) is collected for each class, then mean vectors and
covariance matrices are computed within each class. This process (also known as

supervised learning) builds up statistical models for all the classes.
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To determine the category a given feature vector belongs to, the feature vector is
linearly transformed, as shown in equation (17), into feature spaces corresponding to each
category, and is classified by using a nearest-neighbor rule [37]. For the nearest-neighbor
estimation, Euclidean distance is used, which can be computed directly using the

following equation,

P’(®) = x-p) = (x-p) - (18)

Here x is the vector to be classifieqf ark are the mean vector and covariance

matrix of a certain class.
Obviously, the choice of the training data set is vital. To be specific, the amount of
the training data should be sufficient, and the chosen data should be typical, that is, they

should be capable of representing the nature of the associated categories.

3.3. Block-level Classification

The objective of this thesis is to build up an image segmentation system, which is
capable of segmenting a given forest scene into its various constituents. To simplify the
problem, six categories of forest structures were defined. These categories are trees,
bushes, grasses, foliage, sky, and background sky. They are sufficient to represent typical
forest scenes dealt with in this application. The definitions of these categories will be
given in Chapter V, where the data preparation and experimentation will be described.

To implement such a segmentation system, | proposed a block-level classification
scheme. According to this scheme, an image is divided evenly into small blocks. Theniitis

processed block by block. For each block, a pattern recognition algorithm is applied to
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classify the block into one of the predefined categories. After all blocks have been
classified, a segmentation of the image is obtained, in which each segment is assigned to a
category. | used class-specific principal component analysis for block classification, which
had been successfully employed in the previous image classification systems [19].

The block-level classification scheme is simple and efficient with regard to the
forestry application. Classifying groups of pixels is much more efficient than repeating the
process for each pixel, reducing the computational complexity significantly.

On the other hand, classification on the basis of blocks also results in some
disadvantages. The most significant one is that the segmentation would not be as accurate
as those accomplished by pixel-based algorithms. Errors occur at the borders between
adjacent regions belonging to different categories. However, such errors are dependent on
the block size which is being used, and hence are somewhat under control.

Another issue related to the block classification scheme is windowing. For each
block (or frame), the feature vector is computed on a larger area obtained by applying a
square window to the frame. If necessary, such as at image boundaries, zero-padding is
used in the windowing. Different window sizes create different amounts of overlap
between adjacent frames [38]. An optimal windowing scheme must be determined

empirically.



CHAPTER IV

SOFTWARE DESIGN AND IMPLEMENTATION

So far, | have discussed feature extraction schemes and pattern recognition
algorithms that have been developed for image segmentation. In this chapter, | will
describe the design and implementation of the system, and expose important
implementation details. The system was implemented/@++ on a UNIX platform. The

structure of the entire software package is illustrated in Figure 16.

4.1. Class Design
Several classes were designed to handle different issues involved in segmenting an
image. Among them, the most important ones &reage_analysismage_segmentation

Ppm Polygon andimage_eval.

Image_analysis

This class computes various features on a specific region separated from an image.
The region may belong to one of the six predefined categories, i.e., tree, foliage, grass,
bush, sky, and background sky (definitions of these categories will be given in Chapter V).
To be compatible with the previous SBE classification capabilities, feature computation

can also be done on an entire image.

37
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Image_analysis
Segment_image

Figure 16. The structure of the software package.
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For this class, some protected data members were defined. These include both
general data representing information of parameter files, model files, what features to
calculate, what windowing scheme to use, etc., and data specific to each feature extraction
algorithm.

Public methods can be roughly grouped into the following categories: loading and
writing methods, processing methods, and debugging methods. Loading and writing
methods deal with the reading of parameter files and the writing of model or result files.
Processing methods handle all the computation issues involved in training and testing, and
hence are the most important. Debugging methods are used for debugging purposes.

All the algorithmic details for feature computation are hidden from the users in the
private methods. These methods are grouped according to each kind of feature

computation, and constitute the majority of the source code for this class.

Image_segmentation

This class segments an image into the six prescribed categories using the
block-based segmentation algorithm described in Chapter Ill. It presents a programming
interface for executing image segmentation. Details of the processing are handled by the
Image_analysislass.

Protected data includes the desired processing mode (training or testing), the frame
size, the window size, a pointer to the associdtedge_analysi®bject, etc. Public
methods include an initiation method, some loading and writing methods, and all the

necessary processing methods. As | mentioned earlier, to apply windowing schemes, one
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needs to deal with padding windows. Zero padding is used for this application. The related

methods are declared as private methods ditlage segmentatioriass.

Ppm

This class handles lower-level manipulation of portable pixel images (PPM). PPM
is a common file format for digital images. In tRpmclass, some protected data members
were designed to represent the unique information required for a PPM image, such as a
magic number which identifies the associated image as a PPM image, width and height of
the image, and the maximum color level of the image.

Important methods of thepmclass are open and close methods, which handle the
opening and closing of a PPM image, read and write methods, which read or write either
the header information or the image data, assign methods, which set the format for an
image, and comparison methods, which differentiate two PPM images. All these methods

are public.

Polygon

To segment images using the block-level classification algorithm, training data
needs to be prepared. This data was obtained by manually segmenting typical images from
the database. Manual segmentation data was stored in data files using a format that
consisted of the coordinates of the vertices of each polygon segmentBolygenclass
was designed to deal with this reference segmentation data. It reads the coordinate data for

the polygons from data files and determines whether a given point is inside a polygon.
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Image_eval

This class was designed for the evaluation of the system performance in terms of
error classification rate. An error evaluation component complements the design of the
image segmentation system.

The relationship between all major classes is shown in Figure 17. As one can see,

thelmage_analysislass plays a key role in the system.

4.2. Utility Design

The classes are the core of the overall system. To perform a segmentation, one also
needs some command line tools which pass all necessary parameters prescribed by the
user to these classes and make the segmentation a reality. The following utilities were
designed as the interface between the user and the sységment_imagesrror_eval

andlabeler.

Segment_image
This utility performs segmentation of an image. It operates either in a training

mode or in a testing mode. In the training mode, model files about all prescribed

Image_analysis

Image_segmentatio

Figure 17. Relationship between the major classes.
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categories are built. In the testing mode, a given image is segmented into regions
belonging to various categories. The flow chart in Figure 18 demonstrates how these

utilities work.

Error_eval

This utility evaluates the performance of a segmentation in terms of an error
classification rate at the block level. To do the error evaluation, the block classification
results are compared with the associated reference segmentation data, which was obtained
previously by manual segmentation of the same image. Blocks which are incorrectly
classified are counted, and the ratio of the number of classification errors to the total
number of blocks being classified is computed as the error rate. The flow chart for this

program is shown in Figure 19.

Labeler
This utility is designed specifically for manual segmentation. It was developed in

Tcl/Tk More detailed information about this tool will be presented in the next chapter.
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CHAPTER V

EXPERIMENTATION

| designed a variety of experiments to evaluate the segmentation system. These
experiments are discussed in this chapter. First, | will describe the image database on
which these experiments were carried out. Data preparation played an important role in
these experiments. Next, | will introduce experiments designed to evaluate feature
extraction algorithms. Finally, | will discuss experiments aimed at evaluating the overall

system performance.

5.1. Image Database
Previously, an extensive database had been developed in conjunction with the

United States Forest Service (USFS) to support the development of algorithms that will

| Training

Statistical
Models

Raw Manual Feature
Images Transcriptior ™ Extraction

|

Test | Test Feature
| Image Extraction
|

Figure 20. A block diagram of the overall system.
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automate scenic beauty evaluation of forest images. The images included in this database
were drawn from a study [39] spanning four years, which was carried out in the
Ouachita-Ozark National Forests in Arkansas, USA. Photographs taken under controlled
conditions had been digitized with an extremely high quality scanning process, and
converted into Portable Pixel Map (PPM) format. A unique feature of the database is that
each image was assigned a scenic beauty rating obtained by subjective assessment
involving human subjects.

There are a total of 637 images in the database. These images are grouped into
three categories [22] according to the associated subjective scenic beauty ratings. The
three categories are: Low Scenic Beauty Estimate (LSBE), Medium Scenic Beauty
Estimate (MSBE) and High Scenic Beauty Estimate (HSBE). The corresponding scenic
beauty rating is distributed as shown in Figure 21. More details about the design and

development of this database are available in a separate document [22].
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Figure 21. The distribution of the subjective scenic beauty rating across the database.
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5.2. Manual Transcription

According to the system design, one needs transcribed training data to build
statistical models. For this purpose, the digital images were segmented into different
polygon regions, which were labeled with appropriate category names. A software tool,
named Image Object Labeler (IOL), was developed to facilitate this task.

The IOL tool was rapidly prototyped ifcl/Tk an interpreted script language
useful for graphical user interface design. It was designed to allow a user to select a certain
type of object, and to draw a closed polygon around the region defining that object. Each
image can be labeled multiple times. A list of images is traversed using a scrolling dialog
box. This allows the user to iterate on a set of images until all segmentations are
consistent. An example of a labeled image is shown in Figure 22.

For now, six categories have been defined for the image transcription. These
categories are necessary for describing a forestry scene. The definitions of these categories
are given in Table 1. The transcription results are saved as ASCII data files. A data file
begins with the name of the associated image file, followed by an object name, then the
coordinates of all vertices of the polygon used to mark this object. There can be multiple
instances of any object in a file, and the order of the objects is arbitrary (each object is
written in the order it was created). The format of the data file is shown in Figure 23. With
the tool introduced above, all 637 images in the USFS database were manually

transcribed. These transcriptions established the basis of the image segmentation system.
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Figure 22. An example image labeled by using the manual segmentation tool.

Table 1. The six categories used in manual transcription of the forest images.

Category Description
tree a woody perennial plant having a single, usually elongated,
main stem, generally with few or no branches on its lower part
foliage a cluster of leaves, flowers, and branches
bush a low densely branched shrub or a close thicket of shrubs
suggesting a single plant
grass grass or land covered with growing grass, or other green-col-
ored ground cover
sky a region typically containing sky and few obstructions such as
trees; strictly limited to the top of the image
background sky a region with sky in the background and other objects in the
foreground, but still clearly identified as sky
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5.3. Experiments with DCT-based Features

As explained in Chapter Il, | designed several new feature vectors for the image
segmentation system. Since the feature extraction scheme based on discrete cosine
transform involved several parameters, | executed a series of experiments to optimize the
parameters.

The evaluation experiments were run on a pilot data set. The training set is shown
in Table 2. Note that different images were chosen to train different models. The reason
for this choice was to make the training process more efficient. Since the six categories of
structures are distributed unevenly across the database, if the same training set had been
used for all the models, the training set would have had to be increased to a much larger
size to guarantee a sufficient amount of training data (image blocks) for each model. The
test data set consisted of 5 random images with a total of 1406 64 x 64 image blocks.

As a first step, | evaluated the effects of the windowing scheme on the baseline
design discussed in Chapter II. The results indicate that system performance is sensitive to

the windowing parameters. As one can see from Table 3, when the frame and window

fisip/d00/usfs_imaging/data/phase_01/cd_0012/img0002.ppm
Class tree

954 32

954 386

1106 30
Class foliage
186 32

Figure 23. An example of the output file format used by the transcription tool to store man-
ual transcribed data. A simple ASCII file format is used here.
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sizes were set to be 64 x 64 and 96 x 96 respectively, the system performed best on green
pixels. Next, | investigated the performance with different color features, i.e., | computed
DCT coefficients on the red, green and blue pixel components respectively. For these
evaluations, the frame size was set to 64 x 64, and the window size was 96 x 96. As shown
in Table 4, generally the error rates with all three colors were comparable. This similarity
is reasonable because DCT coefficients are supposed to describe the spatial variation, or
the texture pattern an image block displays. These texture characteristics should not vary
remarkably for different color components.

In the schemes discussed so far, | chose the frequency filter size to be 4. However,
that filter parameter may not necessarily be the optimal choice. Therefore, | tested a
smaller filter size of 2. In this scenario, all other conditions for feature generation were
kept the same as the baseline design. The windowing parameters also remained
unchanged, that is, | used 64 x 64 frames and 96 x 96 windows. It is observed in Table 5
that the system with a larger filter worked slightly better. However, the difference in the

error performance was not significant.

Table 2. The training data set for DCT-based feature evaluation.

Structure Number Of Images Number Of Blocks Block Size
tree 5 523 64 x 64
foliage 6 632 64 x 64
bush 5 520 64 x 64
grass 6 523 64 x 64
background sky 10 675 64 x 64
sky 10 61 64 x 64




Table 3. Performance for a variety of windowing schemes.
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Experiment No. Frame Size Wwindow Size Percer;z?: Error
1 32x 32 32x 32 726
2 32x32 64 x 64 67.6
3 64 x 64 64 x 64 67.9
4 64 x 64 96 x 96 66.6
5 64 x 64 128 x 128 67.6

Table 4. Performance across different color components.

Experiment No.

Color Component

Percentage Error Rate

1 red 65.7
2 green 66.6
3 blue 67.3

Table 5. Performance as a function of the frequency filter sizes.

Experiment No. Filter Size Percentage Error Rate
1 4 66.6
2 2 69.2
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Finally, | evaluated the impact of the number of DCT coefficients. The results are
shown in Table 6. | used the first 64 and 128 coefficients to generate feature vectors
respectively. For the first experiment, | had a 16-dimensional feature vector, while for the
second experiment, | used a 32-dimensional vector. The results verified the idea that using
more DCT coefficients is not necessarily better — with 128 DCT coefficients, the system
performance was 5% worse than that of the system with the features based on only 64

coefficients.

5.4. Experiments with Gabor Features

To evaluate Gabor filter-based feature design, | selected several typical forest
structures from the database, and carried out pair-wise discrimination experiments on
these regions. Some example images and segmentations are shown in Figures 24 and 25.
In general, with these Gabor features, discrimination between structures was good. Most
misclassification errors occurred in shaded areas — textures there were difficult to
distinguish because of poor lighting conditions. It is interesting to note that in the
experiment with the “bgsky-bush” pair, although the error rate was 22.0%, the segmenter

was able to figure out the exact contour of the background sky area. The surrounding

Table 6. The performance evaluation results with different amounts of DCT coefficients
involved in the feature computation.

Amount Of DCT Coefficients

Experiment No. Involved

Percentage Error Rate

1 64 66.6

2 128 72.5
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branches and leaves in the transcribed background sky region look more like the bushes on
the right half of the image, resulting in their classification as bushes.

On the other hand, the computational requirements for the algorithm are
comparatively high. With this algorithm, computing feature vectors for all pixels within a
128 x 128 image block took around 120 minutes on a 333 MHz processor with
512 Mbytes of memory. In this application, the dimension of an image is 1536 x 1024.

Consequently, if one computes the Gabor features for each pixel, computation on only one

Figure 24. An example segmentation generated by applying the Gabor feature design to
typical forest structures. The image consists of two categories. The left halfis a
typical “foliage” block, and the right half is a “bush” block. In the segmentation
image, the black region stands for hypotheses for the “foliage” category, while
the grey color is used for “bush.” The pixel classification error rate was 7.3%.
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image would be approximately 192 hours. Hence, | investigated ways to speed up the
algorithm without sacrificing performance.

Since the system is actually doing block-level classification, only one feature
vector is needed for an image block. As observed in the previous exploration, the Gabor
feature values computed for pixels of the same category did not vary dramatically. Hence
it would be feasible to compute a feature vector for an image block by averaging over a
small amount of neighboring pixels. In the experiments, it was assumed that a feature

vector computed at the central pixel of an image block represented all characteristics

Figure 25. Another example segmentation with the Gabor feature design. The left half im-
age is a typical “bgsky” (background sky) block, and the right half is a “bush”
block. In the segmentation image, the black region stands for hypotheses for the
“bgsky” category, while the grey color is used for “bush.” The pixel classifica-
tion error rate was 22.0%.
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necessary to distinguish this block from blocks of other categories. With this assumption,
the feature vector for a block center was used as the vector for the whole block. Hence the
feature computation time for one 128 x 128 block was reduced from 120 minutes to
12 minutes. In accordance with this improved feature design, to run a training job on
1000 image blocks with a size of 128 x 128, the required computation time is

approximately 200 hours or 8.3 days.

5.5. Evaluating the Performance of the System

The performance of the image segmentation system was evaluated with three
different feature vectors on set 1 of the USFS Pre-Phase 01 data, which consists of
478 training images and 159 test images formatted as 1536 x 1024 PPM images [22]. The
three feature sets were chosen:

* blue + brown: These are the histograms for colors blue and brown. Blue is an
important color for classification of sky and background sky, while brown
distinguishes tree stems from other specified categories.

* blue + brown + sl: Here, “sI” stands for the density of short lines of an image.

Short lines are characteristic of bushes and grasses in a forest scene.

* rgb + ent: Here, “rgb” denotes the histograms for red, green and blue. “Ent”
denotes entropy. “Rgb” combines the three primary colors together. It
describes to some extent general luminance information, as well as the lighting
condition in the forest. Entropy is a measure of the randomness of an image.

For the experiments described below, the frame size was set to 64 x 64, which

presented an appropriate sampling rate of the original images sized at 1536 x 1024. The
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window size was set to be 128 x 128, resulting in a 50% overlap between neighboring
windows.

The evaluation results are shown in Table 7 and the associated confusion matrices
are given in Tables 8 to 10. Also, some example segmentations are shown in Figure 26. A
confusion matrix is interpreted as follows. Numbers in the first column show how tree

blocks were classified by the software. As an example, the matrix in Table 8 shows

[2619 122 855 985 697 4155 in the first column, which means out of a total of 5327
tree blocks, only 2619 blocks were classified correctly. Others were classified to incorrect
categories (122 blocks to foliage, 855 blocks to bush, and so on). The other columns are

organized for the remaining five categories in the same manner.

5.6. Analysis

The best performance of the segmentation system was a 61.4% block classification
error rate, obtained by combining color histograms (“rgb”) with entropy as the feature set.
Although the error rate was comparatively high, the blocks were generally classified in a
reasonable manner — with sky and background sky in the top, grass at the bottom, etc., as
shown in Figure 26. This is a promising trend toward a successful system.

| explored further to see what were the major causes for the classification errors. |
examined the confusion matrices from the above experiments and noticed that a
significant portion of the errors occurred within the foliage blocks. With the best system,
of which “rgb + entropy” was used as the feature set, the respective error rates for each

category are summarized in Table 11.



Table 7. Evaluation results for the block-level image segmentation system.
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Percentage Error

Feature Sets Frame Size Window Size Rate
blue + brown 64 x 64 128 x 128 70.8
blue + brown + sl 64 x 64 128 x 128 70.2
rgb + ent 64 x 64 128 x 128 61.4

Table 8. The confusion matrix with the feature set as “blue + brown.” The corresponding

error rate was 70.8%.

Category tree foliage bush grass bgsky sky
tree 2619 5100 2567 3332 179 0
foliage 122 1788 528 384 35 0
bush 855 5024 4595 3096 1 0
grass 985 1962 2818 3001 14 0
bgsky 697 3299 508 420 1464 1
sky 49 77 167 140 266 9

Table 9. The confusion matrix with the feature set as “blue + brown + short lines.” The
corresponding error rate was 70.2%.

Category tree foliage bush grass bgsky sky
tree 2437 4913 2381 2978 182 0
foliage 170 1952 575 457 40 0
bush 822 4796 4428 2971 3 0
grass 1156 2315 3167 3441 14 0
bgsky 695 3201 475 388 1464 1
sky 47 73 157 138 256 9
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Obviously, a better foliage classifier would be a key to improving the system. To
this end, | studied the foliage classifier from a statistical viewpoint. In the PCA system,
distances between a test feature vector and all the reference vectors were computed. A
block was assigned to the label associated with the minimum distance. | computed the
distribution of the distances, or scores, for the foliage classifier in terms of false-alarms
and accuracy. The distribution of the scores are shown in Figures 27 and 28. From these
plots, it is clear that the foliage classifiers used in these experiments were not capable of
discriminating foliage blocks from non-foliage blocks. This explains the majority of errors
which occurred. Further, | studied all other features not used in the experiments with
regard to the foliage classification in the same manner and obtained similar results.

It is interesting to compare the performance of the segmentation system to a
system which makes intelligent guesses based on prior knowledge about the categories
under study. According to Bayes’ decision rule [36], we can minimize the overall errors by
weighting our estimate of the probability of each class by the prior probabilities of each
class. In this application, the prior probabilities of the categories being studied are
unknown. However, one can estimate these probabilities using a frequency of occurrence
computed over the training set [36]. For the data set used in the evaluation experiments,
these frequencies are shown in Table 12. We can construct a simple system that always
guesses the most probable class. In this case, the system will always classify an image
block as “foliage” since this class has the highest frequency of occurrence: 32.0%.

Obviously, the classification error rate of this system is 68.0%. The best

performance of the segmentation system (61.4% classification error) is better than this
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baseline guessing system. With further improvement of the foliage classifier, the
segmentation system is expected to yield much more reliable results. Such improvements

will eventually make the segmentation system suitable for practical use.
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Table 10.The confusion matrix with the feature set as “rgb + entropy.” The corresponding
error rate was 61.4%.

Category tree foliage bush grass bgsky sky
tree 2807 4494 1717 2454 181 0
foliage 260 2402 609 259 98 0
bush 911 6412 6252 2578 16 0
grass 831 1479 2208 4888 7 0
bgsky 504 2450 391 169 1437 1
sky 14 13 6 25 220 9

Table 11. Statistics of classification errors for the experiment which used “rgb + entropy”
as the feature set and yielded the error rate of 61.4%.

Category tree foliage bush grass bgsky sky
Block Total 5327 17250 11183 10373 1959 10
Errors 2520 14848 4931 5485 522 1

Error Rate (%) 47.3 86.1 44.1 52.9 26.6 10.0

Table 12. Computed frequencies of occurrence for all six categories under study. Note the
total number of blocks is 136513.

Category tree foliage bush grass bgsky sky

Number of Occurrence 23526 43714 37647 24040 7450 136

Frequency of Occurrence 17.2% 32.0% 27.6% 17.6% 5.5% 0.1%
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Figure 26. Example segmentations produced by the software on some typical forest imag-
es. Images on the left are the original ones with manual transcriptions added.
For both manual transcriptions and automatic segmentations, different colors
are used to distinguish between categories. The mapping relationship is:
brown - tree, red - foliage, yellow - bush, green - grass, dark blue - sky, and
light blue - background sky. Note most segmentations for sky and background
sky were generated accurately.
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feature set: blue + brown + short lines, frame size: 64 = B4, window size: 128 = 128
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CHAPTER VI

IMPACT ON THE SBE PROBLEM

As discussed in the previous chapters, the image segmentation system was
developed in an attempt to facilitate automated evaluation of forest resources. An
important aspect of this task is scenic beauty estimation of forest scenes, which is referred
to as the SBE problem. The previous SBE software produced good results on scenic
beauty quality-based classification [19], and | attempted to assess the impact a good image

segmentation system could have on this application.

6.1. Cheating Experiments

As a first step, | designed some “cheating experiments” to facilitate the
investigation. For these experiments, it is assumed that image segments have already been
accurately generated. This assumption is easy to satisfy given that the manual
transcriptions of all images in the database are available. Then images are classified into
different SBE categories (HSBE, MSBE, and LSBE) on the basis of feature vectors
computed on a specific kind of segment.

As an example, suppose an SBE classification of “grass” segments only is
performed using “rgb” (histograms of red, green and blue) as the feature set. First of all,

PCA models need to be trained on the specified segments. To do this, all pixels of a
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training image which fall into grass segments are located by checking the manual
transcription. Then the “rgb” histograms for the image are computed only on these “grass
pixels.” With feature data extracted in the same manner for all training images, the trained
statistical models are obtained. Similarly, when a given image is tested, only the feature
vector for “grass pixels” of the image is computed.

| carried out such experiments with several combinations of features. Again, the
experiments were based on data set 1 of USFS Pre-Phase 01 images. The feature sets used

were “rgb + entropy,” “rgb + entropy + long lines,” and “blue + brown.” As discussed
earlier in Chapter V, “rgb” histograms may describe the lighting condition in a forest, and
“entropy” quantifies the randomness of an image. Both are very important in scenic beauty
estimation. | also included in the experiments the feature of “long lines,” which would

help to identify tree segments. The error rates and confusion matrices are shown in

Tables 13 to 15.

6.2. Analysis

Overall, SBE classification on a particular type of image, such as background sky,
produced worse results than doing the classification on an entire image. This is clearly
revealed by the error rates in Table 13. This comparison indicated that the feature sets |
tested were not doing as good a job of discrimination. However, there are some interesting
observations with the confusion matrices.

As shown in Table 14 and 15, when “blue + brown” was used as the feature set,
classification of segments transcribed as background sky (bgsky) decreased errors for

HSBE image classification by half. According to research publications on scenic beauty
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estimation [21], an HSBE forest image usually features little visual penetration through
the foreground foliage and twigs. Since blue is a characteristic color for sky, by examining
this feature on the “background sky” segments, | was able to do much better in separating
HSBE images from other categories. Similarly, with the same settings, classification errors
for LSBE images decreased by one-third on the segments labeled as trees. Such a
reduction in errors for individual classes was also found for the other conditions presented
in Table 13. These observations demonstrate a likelihood that one could do a much better
job in characterizing images with regard to their scenic beauty quality if the analysis
focuses on a certain type of segments, rather than the image as a whole. However, further

investigation is necessary to verify this hypothesis.



67

Table 13. Results of the cheating experiments in terms of percentage error rate. Note the
last column gives the classification error rate with the previous SBE system,
which performs classification on an entire image, not a specific category of

segments.
Features Tree Foliage Bush Grass Bgsky Entire Image
rgb + ent 47.8 46.5 52.8 47.2 55.3 39.6
rgb + ent + i 48.4 49.1 51.6 46.5 57.2 42.1
blue + brown 45.9 45.3 54.7 42.1 56.6 314

Table 14. Example confusion matrices. The left matrix is for the SBE classification on
background sky segments with “blue + brown” as the feature set. The right
matrix was generated from the corresponding experiment on entire images.
Note the errors for the HSBE image classification decreased by half.

Automatic LSBE | MSBE | HSBE Automatic LSBE | MSBE | HSBE
LSBE 5 12 0 LSBE 2 2 0
MSBE 19 45 9 MSBE 24 97 18
HSBE 4 46 19 HSBE 2 4 10

Table 15. Another example. The left matrix is for the SBE classification on tree segments
with “blue + brown” as the feature set. The right matrix is for the corresponding
experiment on entire images. The errors for the LSBE image classification
decreased by one-third.

Automatic LSBE | MSBE | HSBE Automatic LSBE | MSBE | HSBE
LSBE 9 27 2 LSBE 2 2 0
MSBE 16 66 15 MSBE 24 97 18

HSBE 3 10 11 HSBE 2 4 10




CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Image segmentation is essential to analyzing forest images for automated forest
resource evaluation. The success of an image segmentation system relies on appropriate
designs of feature extraction schemes and pattern recognition algorithms. In this chapter, |
will conclude the thesis with a discussion of my major results on these designs and

suggestions for future work.

7.1. Conclusions

The first major contribution of the thesis is the evaluation of various feature design
schemes for segmenting forest images. Color histograms, entropy, and density of lines,
which are important in evaluating the scenic beauty quality of forest images, are still very
useful in segmenting the images. The combination of color histograms (“rgb”) with
entropy produced 61.4% block classification error rate, which was the best segmentation
performance achieved with the system. This performance is better than guessing based on
prior knowledge, which yielded an error rate of 68%. The discrete cosine transform (DCT)
is an efficient technique for representing images in the spatial frequency domain. With a
feature design based on filtering DCT coefficients computed from green pixels, | obtained

a 66.6% block classification error rate, which was comparable to the performance
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generated with features such as color histograms and entropy. There was no significant
difference between DCT features computed with different colors in terms of the error rate.

Gabor filters are also a very promising technique for image segmentation. The
Gabor filter bank-based feature extraction approach yielded an error rate of 7.3% in a
pair-wise discrimination task. The computational inefficiency of this approach precludes
evaluation on a large-scale task. However, this level of performance is very encouraging
compared to other conventional techniques.

The other major contribution of this thesis is the development of a pattern
recognition-based image segmentation algorithm. | presented an algorithm that divides an
image evenly into small blocks, and then classifies each block into one of the six
prescribed categories (namely, tree, bush, grass, foliage, background sky and sky) using
class-specific principal component analysis. This algorithm is simple and efficient with
regard to the forestry application. It significantly reduced the computational complexity at
the expense of sacrificing the accuracy of block classification at borders between regions
of different categories.

| evaluated this image segmentation system in terms of error rate using a standard
pattern recognition approach to classification. As mentioned above, the best performance
was achieved by combining color histograms (“rgb”) with entropy, resulting in a 61.4%
block classification error rate. | analyzed the classification errors and determined that the
classifier for foliage blocks caused the majority of the errors.

A by-product of this work was a large database of manually segmented images. Six

categories of image segments typical of a forest scene were defined. A transcription tool
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was developed to facilitate the manual work, and all 1784 images in the database were
transcribed. This database will be a useful tool for supporting future research on these
problems, and complements other extensive resources available for this data [22].

Finally, I investigated the impact an image segmentation system could have on the
scenic beauty estimation problem. With carefully designed “cheating experiments,” |
determined that SBE classification errors decreased on some segments, but overall
performance was lacking. This fact indicated that one might be able to characterize the
scenic beauty quality of an image more accurately by analyzing different categories of

segments separately, rather than mixing them together.

7.2. Future Work

First, the feature design based on the DCT coefficients needs to be improved.
There are still parameters, such as the frequency filter size, and the number of
DCT coefficients involved in the computation, which need to be optimized. Moreover, to
combine the DCT coefficients more effectively, one will have to understand thoroughly
the relationship between the physics of the visual system and the information present in
the discrete cosine transform representation.

The Gabor filter bank-based features generated very encouraging results in the
pair-wise discrimination experiments. To further evaluate their effectiveness in the
segmentation task, it is necessary to improve the computational efficiency of this
approach. Once this barrier is overcome, one will be able to explore the feature design

within the PCA segmentation system.
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Lighting conditions are a very important factor in scenic beauty evaluation [21].
People tend to consider a bright forest scene to be of low scenic beauty. However, most
popular feature extraction approaches, such as those presented in this work, do not do a
good job of representing this information. The contrast [40] of an image helps to describe
the lighting condition, hence is worthy of investigation.

Another unique aspect of natural images is the strong correlations between
neighboring pixels [41] since nearby regions in a natural scene usually have similar
intensities and colors. Syntactic constraints [42] can be imposed on an image that model
these correlations. This is part of a class of techniques known as Bayesian belief
networks [36]. With Bayesian belief networks, dependencies between variables involved
in a system are represented graphically using a network structure and Bayes rule is used to
calculate probabilities. Incorporation of such techniques into the segmentation system is
expected to enhance the system’s performance significantly.

Finally, decision tree based approaches to block classification [36] are also worth
exploring. Decision trees have the potential for developing extremely powerful
context-sensitive statistical models through the integration of many diverse knowledge
sources. They are suitable for tasks where there is large overlap in the absolute feature
space, or discrimination amongst classes in the feature space requires nonlinear decision
surfaces. This overlap can often be reduced by integrating other knowledge sources.
However, a large engineering effort is often required to determine the best architecture for
such systems. Identification of good knowledge sources and the most appropriate way to

integrate this knowledge often requires extensive training databases and significant
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amounts of experimentation. Nevertheless, such approaches can often produce impressive

performance under the proper conditions.
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