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The United States Forest Service (USFS) is developing software systems to

evaluate forest resources with respect to qualities such as scenic beauty and vegetation

structure. Such evaluations usually involve a large amount of human labor. In this thesis, I

will discuss the design and implementation of a digital image segmentation system, and

how to apply it to analyze forest images so that automated forest resource evaluation can

be achieved. The first major contribution of the thesis is the evaluation of various feature

design schemes for segmenting forest images. The other major contribution of this thesis

is the development of a pattern recognition-based image segmentation algorithm. The best

system performance was a 61.4% block classification error rate, achieved by combining

color histograms with entropy. This performance is better than that obtained by an

“intelligent” guess based on prior knowledge about the categories under study, which is

68.0%.
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CHAPTER I

INTRODUCTION

An analog image can be described by a two-dimensional function , wh

denotes the spatial coordinate and gives a measurement value acco

to the coordinate. Analog images need to be digitized before they can be analyzed

computer. The digitization consists of two steps. First, an analog image is sampled e

in the spatial domain, with each sample represented by a picture element, or a pixel.

the measurement value of each pixel is quantized, converting the image into a d

format. As powerful computational resources have become significantly less expen

the field of digital image processing has been evolving rapidly. In this thesis, I will disc

the design and implementation of a digital image segmentation system for forest im

analysis.

1.1. Image Segmentation

To analyze the content of an image, one needs to first locate and isolate obje

it. This process, which is referred to as segmentation, is the first step in low-l

vision [1]. Segmentation is a process of partitioning an image into some disj

(non-overlapping) regions such that each region is homogeneous and no adjacent r

can be merged without violation of homogeneity [1]. Here, a region means a connecte

f x y,( )

x y,( ) f x y,( )
1



2

age

s: if

on

is a

such
of pixels, that is, a set in which all pixels are adjacent. An example of a segmented im

is shown in Figure 1.

A formal way to describe this image segmentation process is shown as follow

is the set of all pixels and is a uniformity (homogeneity) predicate defined

, which stands for a group of connected pixels, then the image segmentation

partitioning of the set into several connected subsets (or regions) , ,

F P X( )

X

F Si i 1 n,=( )
s re-
six
ush,
Figure 1. An example of a forest image which was manually segmented into variou
gions such as “grass” (green color) and “tree” (brown color). In this thesis,
categories of segments were defined for a forest image: tree, foliage, b
grass, background sky, and sky. See Chapter V for details.
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1.2. Techniques for Image Segmentation

There are many segmentation techniques available in the literature [2]. Non

these techniques are suitable for all types of images. However, most of the segmen

algorithms can be easily adapted to a variety of applications. Generally, the algorithm

based on such approaches as histogram thresholding [3], edge detection [3]

relaxation [4]. Here, I will give a brief introduction to the most popular techniques u

for image segmentation.

Gray Level Thresholding

Thresholding is one of the oldest and simplest techniques for gray-level im

segmentation. The basic idea is to assign pixels with a gray level falling between

thresholds to the same region. For the simplest case, if an image consists of region

different gray level ranges (i.e., the regions are distinct), then the histogram of the

gray levels would show peaks and valleys, with each range between valleys correspo

to a certain region. In this case, if the gray levels at the valleys of the histogram are

as thresholds, the image can be segmented into different regions. Here, the thresh

can be either bilevel (two regions with only one threshold) or of multilevel (multip

regions with several thresholds).

Si F=
i 1=

n

∪ Si Sj∩ ∅ i j≠,=

P Si( ) true= P Si Sj∪( ) false= Si Sj
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The key to thresholding techniques is the selection of threshold values. This i

a trivial job and various algorithms have been proposed. Ridler and Calvard propos

iterative thresholding scheme which was based on Bayes’ discrimination rule [5].

maximized a measure of class separability [6]. To overcome the possible drawb

resulting from considering only the histogram information, Weszka and Rosen

developed a “busyness” measure which utilized spatial information, such as

co-occurrence of adjacent pixels in an image, to determine a set of thresholds [7]. Ch

also suggested an average contrast measure on the basis of the co-occurrence ma

On many occasions, when an image is noisy or the illumination is not good, fixed-v

thresholding schemes are not capable of segmenting the image reliably. Ada

thresholding methods such as the one proposed by Nakagawa and Rosenfeld [9

developed to deal with such problems.

Iterative Pixel Classification

Approaches of this type can be subdivided into three classes: relaxa

approaches, Markov random field-based (or MRF-based) approaches, and n

network-based approaches. Relaxation is an iterative algorithm in which the classific

of each pixel can be done in parallel. Decisions made at neighboring pixels in the cu

iteration are then combined to make a decision in the next iteration. There are two typ

relaxation approaches: probabilistic and fuzzy. In probabilistic relaxation, it is assu

that class assignments of pixels are interdependent. Therefore, when a pixel is clas

the category information of its neighboring pixels is also taken into account. The fu
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[14].
relaxation classification approach will be discussed later. This approach improve

probabilistic relaxation method by utilizing the fuzzy set theory.

MRF-based approaches use a spatial interaction model such as a Markov Ra

Field (MRF) or a Gibbs Random Field (GRF). Typical examples include the one prop

by Geman [10] which consists of a hierarchical stochastic model for the original im

and a restoration algorithm for computing the maximum a posterior estimate o

original scene given a degraded realization. Another good example is the two-dimens

Bayes smoothing algorithm by Derin [11], which computes the optimum Bayes estim

for a scene value at each pixel. In the latter scheme, a scene is modeled as a special

MRF, that is, the Markov Mesh Random Field which is characterized by causal trans

distributions.

Neural networks are massively connected networks of elementary processors

architecture and dynamics of such networks attempt to resemble information process

biological neurons. Systems based on neural networks are likely to be robust with re

to random noise and failure of processors because of their massive conne

architecture. Moreover, they are capable of generating outputs in real time due t

parallel processing mechanism. A large number of neural network-based im

segmentation approaches have been developed in recent years. For example, Bla

Gish used a three-layer feed forward network for segmentation [12]; Babaguchi deve

a multilayer network trained with backpropagation for thresholding an image [13];

Cortes proposed a neural network to detect potential edges in different orientations
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Segmentation Of Color Images

Color is a very important perceptual phenomenon related to human respon

different wavelengths in the visible electromagnetic spectrum. There are various

models available for describing a color image. The most popular color models includ

Red-Green-Blue (RGB) model, the Hue-Intensity-Saturation (HIS) model, and

Cyan-Magenta-Yellow-Black (CMYK) model.

Some segmentation algorithms attempt to exploit color using the mod

mentioned above. For example, Ohta et al. [15] attempted to find a set of effective

features by systematic experiments in region segmentation. They claimed tha

following three color features, namely , an

, constitute the most effective set of features.

Another class of techniques for color image segmentation utilize spectral ana

These algorithms usually require prior knowledge of the colors of objects. In cases w

such prior information is not available, clustering techniques are used. An example ty

of this approach is the two-stage color image segmentation which combines thresho

with the Fuzzy C-Means (FCM) method [16].

Edge Detection

Segmentation can also be obtained through detection of edges, defined as n

regions where there is an abrupt change in gray level intensity. Edges are local fea

that are computed using pixels in the immediate proximity of the region un

I 1 R G B+ +( ) 3⁄= I 2 R B–( ) 2⁄=

I 3 2G R– B–( ) 4⁄=
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consideration. Generally, edge detection algorithms can be classified into two categ

sequential and parallel. For sequential techniques, the decision whether a pixel is an

pixel or not is dependent on the detection results at some previously examined p

Therefore, the performance of a sequential edge detection method is dependent

choice of an appropriate starting point and on how the results of previous points influ

the selection and result of the next point.

For parallel methods the decision is made based on the point under conside

and its neighboring pixels. For these parallel algorithms usually there are different typ

differential operators involved, such as the Roberts gradient [1], the Sobel gradient [1

Prewitt gradient [1] and the Laplacian operator [4]. These operators are able to d

changes in the gray level of a given image.

A good edge detector should be a filter with the following two features. Firs

should be a differential operator, taking either a first or second spatial derivative of ima

Second, it should be capable of being tuned to act at any desired scale, so that both

edges and sharply focused fine details can be detected.

Methods Based On Fuzzy Set Theory

Zadeh introduced the concept of fuzzy sets in which imprecise knowledge ca

used to define an event. The relevance of fuzzy set theory to pattern recognition pro

has been adequately addressed in the literature [17][18]. In general, fuzzy set theor

be incorporated to handle uncertainties resulting from deficiencies in various stage

pattern recognition system. In particular, fuzzy image processing and recognition is u

rapid development. The reason for the increasing interest in fuzzy image proce
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mainly lies in the realization that many of the basic concepts in image analysis, su

that of an edge or a boundary, are ambiguous in nature and cannot be defined pre

Fuzzy set theory appears to be a good approach to deal with such uncertainty i

involved in image processing and recognition.

Image segmentation algorithms that exploit fuzzy set theory can be divided

three categories: thresholding, clustering and edge detection. Each of these class

similar to their non-fuzzy counterparts, with the only difference being that key parame

(such as thresholds) are determined with uncertainty taken into consideration.

1.3. Applications to Forest Image Analysis

Image segmentation is essential to many image analysis applications. In this t

I will study how to apply image segmentation to analyze forest images so that autom

forest resource evaluation can be achieved.

The United States Forest Service (USFS) is developing software system

evaluate forest resources with respect to qualities such as scenic beauty and vege

structure. Such evaluations usually involve a large amount of human labor and are

tedious. However, with the assistance of digital image analysis and pattern recogn

techniques, one will be capable of extracting features and creating statistical models

represent scenic beauty and vegetation structure, thus making the evaluation p

automatic.

Reliable analysis of forest images would be straightforward if typical for

structures (objects) could be isolated from an image. In this manner, one may qua

various qualities of an image with respect to each category, and then further analyz
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structures for other aspects in which people are interested. This task requires an aut

image segmentation system.

Initial interest in forestry imaging focused on the development of an autom

algorithm to estimate the scenic beauty rating of forest images [19]. Federal and reg

agencies have stressed the need for aesthetic evaluation to plan timber harvests in n

forests and to assess the impact of public incentive programs for forest manage

Scenic beauty estimation (SBE) is a quantitative measure of an individual’s preferenc

the visual attributes of an image. Traditional methods used for SBE include the P

Preference Model [20] and the Descriptive Inventories [21], which involve a large am

of human labor. Thus the initial goal of this project was to extract relevant features

forest images using signal processing techniques for automatic scenic beauty predic
Software Analysis

0

0

0

0

0

HSBELSBE

MSBE

used
Figure 2. A diagram demonstrating how digital image processing techniques can be
for forestry resources analysis and management.
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To assess progress on this task, an extensive database [22] had been develo

conjunction with the USFS. The images included in this database were drawn from a

spanning four years in the Ouachita-Ozark National Forests in Arkansas, U

Photographs taken under controlled conditions were digitized using an extremely

quality scanning process and converted into computer readable data. The database c

of 637 images, which were taken over two different sessions (1990-91 and 1994-95

sampled over all the seasons of the year at a number of different angles. Subjective

beauty ratings are available for each of the images in the database. Later, an add

1147 images had been added, bringing the total number of images to 1784.

well-developed database is large enough to provide sufficient data for algorithm tra

and testing. It is indispensable for the evaluation of system performance.

The scenic beauty of an image is highly dependent on the complexity of

image. Complexity is defined as the degree of variation in the visual qualities o

image [21]. Algorithms had been developed to extract diverse features from the f

image database as measures of image complexity. These features include color histo

with the RGB color model, density of long lines and short lines, the sharpness

standard deviation of pixel intensities, etc. The features were combined into a varie

feature sets and SBE-based image classification was achieved with them. Regre

analysis was also applied to relate the extracted features to the scenic beauty. Exa

feature combinations include individual colors (red, green, and blue), colors comb

with the density of long and short lines, and colors combined with information theor

measures such as entropy [19].
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An image analysis system had been developed which classifies images into

categories (low, medium, and high) according to their scenic beauty qualities. A sy

using color, long lines, and entropy [19] yielded the lowest overall classification e

rate — 38.5%. This combination of features also had a high correlation with the refer

SBEs — 0.59. Most of the errors were observed to be in the regions of overlap bet

images rated as having medium to low scenic beauty and medium to high scenic b

This observation suggests that the SBE value as determined by human percep

somewhat imprecise and needs a more fundamental understanding and calibratio

results also indicate that color and density of the trees play a major role in estimatin

scenic beauty of forest images.

My evaluation of image segmentation approaches has been carried out usin

above-mentioned research as a testbed. I have augmented the system with a capa

detect and quantify key structures within the image, such as trees, sky, and bus

believe that developing an understanding of the composition of the scene will be cruc

improving the ability to analyze images.

1.4. Contribution of the Thesis

The major contributions of this thesis can be summarized as follows. Fir

investigated optimization of several feature extraction schemes. Second, I des

features based on the colors yellow and brown, features based on the discrete

transform, and explored a feature design based on a Gabor filter bank. These fe

extraction schemes were evaluated and their effectiveness in analyzing forest scene
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verified. Third, I developed an image segmentation algorithm based on block classific

using principal component analysis (PCA). A system built on this algorithm achieve

error rate of 61.4% for block classification, using the combination of color histograms

entropy as the feature set. Finally, I investigated possible impact of the segment

system on the scenic beauty estimation application. A reduction of SBE classifica

errors for some categories of segments was observed.

1.5. Structure of the Thesis

The thesis is structured as follows. In chapter II, I discuss feature extrac

schemes. In chapter III, I will introduce algorithms to classify image segments usi

pattern recognition paradigm. Chapter IV contains software design and implement

issues. I will present the experimental results and the corresponding analysis in chap

In chapter VI, I will discuss the impact of this image segmentation system on sc

beauty estimation. Finally, in chapter VII, I present conclusions and discuss prom

future directions.
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CHAPTER II

FEATURE EXTRACTION

To identify a specific target, one always needs features characteristic of that o

In a pattern recognition problem, such features are represented by a multi-dimens

vector called a “feature vector.” Obviously, the separability of feature vectors represe

different objects is crucial to achieving a low error rate in pattern recognition. Previous

variety of features had already been developed for image classification based on

ability to predict scenic beauty. In this work, I developed additional features better s

for image segmentation.

2.1. Baseline Features

In previous work [19], a variety of features had been developed for S

classification. These features include color histograms, density of lines, entropy, sta

deviation, sharpness, fractal dimension and compression ratio. The SBE classific

results [19] proved that these features were representative of characteristics of

images. Therefore, they are still used in the image segmentation system.
13
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Color Histograms

Color is the most visually striking feature of any image and it has a signific

bearing on the scenic beauty of an image. For forest image analysis, histograms of

intensities were generated and used as features.

Images in the database use the Portable Pixel Map (PPM) format [23], w

assumes the Red-Green-Blue (RGB) color model. The PPM format represents each

using 24 bits — one 8 bit byte for each color. Therefore, the minimum intensity valu

each color is 0 and the maximum value is 255. To compute the histogram of a color

range is evenly divided into 10 bins (to generate a reasonably-sized feature vector)

the center value of the first bin being 0 and the center value of the tenth bin being

Then distribution of the intensity values is computed with regard to these bins.

computation generates histograms for the three primary colors, respectively. For

histogram, there are 10 feature values, each of which stands for the count of pixels w

intensity value for that specific color falls into the given bin. Sample color histogra

extracted from typical forest images are shown in Figure 3.

Line Features

The density of long lines (representative of trees) in an image is a good indica

of the density of trees in the image. This density property is not only important in fo

resources management (e.g., decision on cutting trees for lumber use), but also a s

measure of visual penetration, which partly determines the scenic beauty quality

image. Edge and line detectors were used to locate these line features.



15

ves a

h as

for

ngths

ust be

de by

ngth

ich

in the

nes to
The Canny algorithm [24] was chosen for edge detection because it achie

minimum localization error with an error rate comparable to other algorithms suc

Sobel [1] edge detection and Roberts [1] edge detection algorithms. A block diagram

the Canny edge detector is shown in Figure 4.

To detect lines, the output of the edge detector is postprocessed and edge le

are compared with a threshold parameter [25]. For an edge to be a line, its length m

above the line threshold. The distinction between short bushes and tall trees is ma

assigning another threshold, i.e., the “long line threshold.” A detected line whose le

falls below the long line threshold is a short line. Since only those vertical lines, wh

represent tree stems, shrubs and grasses, are of interest in this application, lines

horizontal direction are not detected. The percentage values of long lines and short li

the total number of detected lines are used as line features.
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Figure 3. Sample color histograms extracted from typical forest images. The plot o
left is from a Low Scenic Beauty Estimate (LSBE) image, and the one on
right is from a High Scenic Beauty Estimate (HSBE) image.
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Sharpness

Sharpness is used to represent the local variation of pixel intensities. It is comp

as a frequency-weighted sum of the magnitudes of difference in pixel intensities o

image. Mathematically, it is defined as

. (1)

Here,  and  is the cumulative frequency of the bin in the intensity histogram

The histogram of the difference in pixel intensities gives a measure of ampli

variations in an image and hence a measure of the sharpness of the image. This sha

Sharpness x m n( , ) x m i– n j–( , )– f×
j 1–=

1

∑
i 1–=

1

∑ 
 
 

m n,
∑=

i j, 0≠ f
Gaussian

Mask

d / dx

d / dy

Gradient
Norm

Non-Maximal
SuppressionImage Input

Edge Detected Output
Figure 4. The block diagram for the Canny edge detection algorithm.
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is computed for each of the three primary colors in the image. Two example images

significantly different sharpness values are shown in Figure 5.

Standard Deviation

While sharpness is a measure of local variation of pixel intensities, stand

deviation is a measure of the global or overall variation of pixel intensities in an im

The standard deviation is computed as

. (2)

Here is the intensity value of a pixel in a primary color channel and is the m

intensity of that primary color in the image. The standard deviation values for each o

STD

xi x–( )2

i

N

∑
N 1–

----------------------------=

xi x
Sharpness = 352.29, SBE = -122.31 Sharpness = 102.91, SBE = 84.63

igned
 is.
Figure 5. Example images with different sharpness features. Note that the SBE is a s
real number. The greater the value is, the better the scenic beauty quality



18

dard

e are

as a

tration

tically

ility

e of

sity
three primary colors are computed individually and summed to obtain the total stan

deviation.

Example images with different standard deviation values from the databas

shown in Figure 6. Typically an image which is bright due to penetrating sunlight h

higher standard deviation. On the other hand, an image which has less sunlight pene

usually has a lower standard deviation.

Entropy

Entropy is a measure of randomness in an image. It is represented mathema

as

. (3)

Here is the serial number of a bin within a color histogram and is the probab

for a pixel intensity value to fall into that bin. As described earlier, the dynamic rang

intensity values for each color is divided into 10 bins. For each bin, the pixel inten

Entropy p x( ) p x( )log
x

∑–=

x p x( )
Standard Deviation = 33.47, SBE = -4.61Standard Deviation = 2.40, SBE = 54.07
Figure 6. Example images with different standard deviation values.
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distribution is calculated. Then entropy is computed according to the above equation

total entropy is computed as the sum of the three entropy values for the primary co

Example images demonstrating a variety of entropy values are shown in Figu

Typically, an image with more randomness has a lower scenic beauty quality. Th

demonstrated in the scatter plot shown in Figure 8.

Compression Ratio

The compression ratio of an image is another measure of the complexity o

image. Image compression is a technique which seeks to replace original pixel-re

information with more compact mathematical representations. The compression ra

the ratio of the original image size to the compressed image size. Images with

complexity are less susceptible to compression, hence are associated with

compression ratio. Here, compression ratio of an image is computed with J

coding [26], which is a widely used lossy compression technique. Sample images

high and low compression ratios are shown in Figure 9.

Fractal Dimensions

Fractal geometry is used to describe, model and analyze the complex form

nature and fractal dimension is a measure of the texture of an image. A Triangular P

Surface [27] approach was used to compute the fractal dimension, which is illustr

graphically in Figure 10. First, a square region is chosen and divided into

triangles with the center pixel as the common vertex for all the four triangles.

distance is variable, with a minimum value being 3 pixels. The sum of the areas o

ABCD

P

r
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Entropy = 22.57, SBE = -122.31 Entropy = 15.77, SBE = -47.20
Figure 7. Example images with different entropy values.
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Figure 8. A scatter plot of entropy vs. SBE. The blue line was generated by a linea
gression on the data.
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Compression ratio = 7.77, SBE = -122.31Compression ratio = 3.81, SBE = 84.63
Figure 9. Example images with high and low compression ratios.
Figure 10. The triangular prism surface approach.
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the triangles is computed. This procedure is repeated for each pixel in the image an

total sum of areas is acquired. Subsequently, different values of are used for this

computation and an area-distance plot is made in log scale, as shown in Figure 11

slope of the line is denoted as . Then the fractal dimension is related to

. For color images, fractal dimensions for each color are compu

separately.

Images with higher fractal dimensions are considered to be more complex

images with lower fractal dimensions. Sample images with high and low fra

dimensions are shown in Figure 12.

2.2. Development of New Color Features

Colors have an important effect on human perception of the scenic beauty

image. Rudis and others [28] noted that blue was significantly associated with the d

of recent cutting. In [29] and [30] the following rules have been demonstrated:

• the color green is most likely to appear in a summer scene, yellow in fall, but

blue and brown have the highest chance to show in winter.

• in non-winter seasons, the presence of green and yellow colors enhances t

scenic beauty of a forest scene, while blue and brown do the opposite.

From these results, it is evident that brown and yellow are also key color feature

evaluating the scenic beauty quality of an image. Moreover, brown distinguishes

stems from other forest scenes, and yellow helps to identify leaves and grasses in a

image taken in the fall. Therefore, it is necessary to add the brown and yellow feature

r

s s

D 2 s–=
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Figure 11.  The area-distance plot. Note both the distance and the area are in log s
Fractal Dimension = 2.32, SBE = 31.20 Fractal Dimension = 0.14, SBE = -85.57
Figure 12. Example images with high and low fractal dimensions.
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the color measurement scheme and evaluate their effectiveness in analyzing forest i

for various purposes.

The histograms for the brown and yellow colors were computed as feature vec

as they were for red, green and blue, previously. To calculate the intensity of brown

yellow for a given pixel, one takes advantage of the theory of additive color synthesis

which makes it possible to create any color by mixing the three primary colors, red, g

and blue, in various proportions.

Particularly, the color brown is generated by mixing one part blue, one part gr

and four parts red. Similarly, yellow can be obtained by mixing equal parts of red

green. A normalized version of the mixing formulae were implemented as:

(4)

(5)

Here red, green and blue stand for the corresponding intensity values of the given p

2.3. Development of DCT-based Frequency Features

So far, none of the features discussed presents spectral information of f

images. Given the fact that most forest structures display remarkable variations i

spatial domain, and that the patterns of those variations change with each specific k

structure, I believe that there should exist some frequency features helpfu

distinguishing between those structures. Therefore, I investigated widely-app

frequency domain analysis techniques such as the Discrete Cosine Transform (DCT

and the Gabor filter bank [32].

brown
1
6
--- blue× 1

6
--- green× 4

6
--- red×+ +=

yellow
1
2
--- red× 1

2
--- green×+=
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DCT Analysis

The DCT is a wide ly used f requency ana lys is method in ima

processing [33][34][35]. It has many advantages over other transform techniques

example, no complex computation is involved in the DCT; fast DCT implementations

available; and most importantly, energy is packed efficiently into a small number of D

coefficients [26].

A two-dimensional forward DCT of an  data block is defined as

. (6)

Here the constants are computed as

.

On the other hand, the inverse 2-D DCT (IDCT) is defined as

. (7)

Here  is calculated the same way as it is in the forward DCT.

To better understand the idea of DCT analysis, a forward DCT was first comp

on the forest image data. One typical region was chosen from the image database fo

of the six categories under study, i.e., tree, foliage, bush, grass, background sk

sky (see Chapter V for definitions). Then the DCT coefficients were generated fo

n n×

F u v,( ) 4C u( )C v( )
n

2
---------------------------- f j k,( ) 2 j 1+( )uπ

2n
--------------------------- 2k 1+( )vπ

2n
---------------------------coscos

k 0=

n 1–

∑
j 0=

n 1–

∑=

C w( )
1

2
------- w 0=

1 otherwise





=

f j k,( ) C u( )C v( )F u v,( ) 2 j 1+( )uπ
2n

--------------------------- 2k 1+( )vπ
2n

---------------------------coscos
v 0=

n 1–

∑
u 0=

n 1–

∑=

C w( )
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selected data with the block size ranging from 8 to 128. There appeared to be a u

pattern of the coefficients’ amplitude distribution for each kind of structure. To illustr

this more intuitively, all the original data and the outcome DCT coefficients were plo

in MATLAB. Some example plots are shown in Figure 13 and 14. The plots show

Figure 13 describe amplitude distributions of the DCT coefficients calculated on a ty

tree region and a foliage region with the image block size set to 64 x 64, while the plo

Figure 14 show the DCT coefficients computed on a foliage region with the block siz

to 8 x 8 and 32 x 32, respectively.

From these plots, it is noted that the DCT coefficients’ amplitude distribut

varies significantly between the structures. This variation may indicate a potentia

DCT coefficients to distinguish between the forest structures. Another observation is

the block size for the DCT computation has a noticeable impact on the pattern o

amplitude distribution. The reason for this sensitivity to the block size may be that s

sizes are not sufficient for the data to contain enough texture information, resultin

patterns inconsistent with those generated on larger blocks. Also, an intere

phenomenon can be observed that whatever the block size is, the energy tends

packed into the lower frequency components by the transformation. Therefore, the

frequency components are much more important than the higher components, sinc

collect the majority of the energy. Based on these observations, I believe that if a su

block size is chosen and the lower DCT coefficients are used to generate features, I

be able to achieve good segmentation performance.
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Figure 13. The amplitude distribution plots of DCT coefficients computed on some typ
forest structures (trees on the top; foliage on the bottom). Note the left col
plots are for the original data, and the right ones are for the DCT coefficie
DCT-based Feature Design

I designed a few features based on what had been observed in the DCT ana

The basic idea behind the design is: first compute DCT coefficients on an image b

then filter them in the frequency domain. After that choose the lower freque

components as the feature vector. To be more specific, I designed the baseline sch

the following way: perform a DCT on the green pixels, average every four of them for

filtering stage, then choose the first 16 filtered outputs to create the feature vector.

With this scheme, a feature vector is built from the first 64 DCT coefficients. T

choice is reasonable since it has already been verified that the energy is packed in
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Figure 14. The amplitude distribution plots of DCT coefficients computed on a typica
liage region with the block size set to 8 x 8 and 32 x 32, respectively.
lower frequency components, and for those typical regions, the first 64 DCT coeffici

contain the majority of the energy. If all DCT coefficients are included in the feat

computation, there would be problems with large DCT block sizes. For exam

computing a DCT on a 64 x 64 block and averaging every four of the DCT coefficien

generate a feature vector produces a feature vector with a dimension of 64 x 64 / 4 =1024.

This is too large to be practical for most applications and would result in an unnecess

large amount of computations in the overall system.
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2.4. Gabor Filter Bank-based Features

Another frequency analysis technique I investigated was Gabor filters. T

filtering technique was justified based on a physiological study of the human vis

system [32]. An unsupervised texture image segmentation algorithm based on

technique was developed by Jain and Farrokhnia and proved very effectiv

classification of a small number of texture categories [32]. First, I duplicated experim

described in the original paper and verified the performance of this algorithm. Ne

applied this algorithm to images representing different forest structures of interest i

study. I analyzed the results and identified problems with this feature design fo

forestry application.

Gabor Filters

Gabor filters are important in visual image analysis. The impulse response o

even-symmetric Gabor filter is given by:

. (8)

Here, is the frequency of a sinusoidal plane wave along the axis (or

orientation), is the space constant of the Gaussian envelope along the axi

is the other space constant along the axis. To obtain a Gabor filter with an arbi

orientation, one needs to rotate the coordinate system accordingly.

The Fourier domain representation of (8) is given by

. (9)

h x y,( ) 1
2
--- x

2
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2

-------- y
2
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2

--------+–
 
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 
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Here , , and . This equation is also referred to as

modulation transfer function(MTF) since it specifies the amount by which the filte

modifies each frequency component of the input image.

Gabor filters are able to keep an optimal balance between both the resolution

spatial domain and that in the frequency domain [32]. This is a significant property fo

texture segmentation problem, where high resolution in the spatial domain is necessa

locating texture boundaries, and high resolution in the frequency domain is desirab

distinguishing between different kinds of textures. The usefulness of Gabor filter

texture segmentation has been demonstrated by the research work described in [32

Gabor Feature Design

The Gabor features were extracted on the basis of the design described in

First, a bank of Gabor filters are convolved with an input texture image. For these G

filters, the orientation is set to be , , , and , respectively, and t

following values are used for the radial frequency : , , , ..., an

. Here is the number of columns of the input image. This set of Ga

filters are sufficient for detecting textures with either high or low frequency compone

of any arbitrary orientation.

Second, the filtered outputs, denoted as , are transformed nonline

using the equation:

. (10)
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The curve for this function is shown in Figure 15. From the curve, one can see tha

function actually represents a rapidly saturating, threshold-like transformation.

constant in the equation, , determines how fast the function saturates.

After the nonlinear transformation, feature images are generated by averaging

windowed regions centered at each pixel in the transformed images. The fe

computation for a filtered image  is given as

. (11)

Here is an window centered at the position of . Actually, the nonline

transformation is incorporated into this equation.

In equation (11), the features are calculated with rectangular windows. To ke

balance between both a reliable measurement of texture features and an ac

localization of region boundaries, a Gaussian window, instead of the rectangular on

been adopted in Jain's algorithm. Therefore, equation (11) is modified to:

. (12)

Here,

. (13)

The constant in (13) is proportional to the average size of the intens

variations in the image, which is denoted as . That is, , where

The scale was empirically determined to be . The window size is supposed
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positively proportional to the value of , and the optimal scale also needs to

determined empirically.

When feature computation is performed for all filtered images, feature value

the same position are assembled into a feature vector. This feature vector is then us

classifying the pixel at that position. Evaluation details about this feature design

described in Chapter V.
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Figure 15. The nonlinear transformation used in the Gabor filter approach.
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CHAPTER III

ALGORITHMS

The core of the block-level classification scheme for the image segmenta

system is a well-established statistical pattern recognition algorithm known as Prin

Component Analysis (PCA) [36]. Fundamentals of PCA as well as the details of

algorithm design are described in this chapter.

3.1. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical normalization technique.

probably the most straightforward transformation that can be used with a lin

classifier [36]. PCA seeks a projection that represents a set of data with the least s

error.

Suppose one has a set ofd-dimensional samples , ,..., , of which th

sample mean is and the covariance matrix is . One may represent a vector

sample space as

. (14)

The corresponding squared-error criterion function is

x1 x2 xn

µ Σ

x µ ai ei⋅
i 1=

d

∑+=
33
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. (15)

As shown in [36], to minimize the criterion function, the vectors , ,...,

must be the eigenvectors associated with the largest eigenvalues of a scatter matr

where

. (16)

Given that is real and symmetric, the eigenvectors , , ..., are orthogo

Therefore, they consist of a set of basis vectors for representing the space formed

sample vectors. If the eigenvectors are combined to form a transformation matrix

each vector as one of its column vectors, then a linear transformation is obtained:

, (17)

which transforms a vector into the specific sample space.

3.2. Class-specific PCA

To apply principal component analysis to a practical pattern recognition prob

one may choose to do a class-specific PCA. Suppose one needs to distinguish betwe

categories (classes). First of all, PCA is applied to each class respectively. That is, a

of training data (feature vectors) is collected for each class, then mean vector

covariance matrices are computed within each class. This process (also know

supervised learning) builds up statistical models for all the classes.

J µ aki ei⋅
i 1=

d

∑+
 
 
 

xk–
2

k 1=

n

∑=

e1 e2 ed

S

S xk µ–( ) xk µ–( )t⋅
k 1=

n

∑ n 1–( ) Σ⋅= =

S e1 e2 ed

Φ

y ΦT
x=

n
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To determine the category a given feature vector belongs to, the feature vec

linearly transformed, as shown in equation (17), into feature spaces corresponding to

category, and is classified by using a nearest-neighbor rule [37]. For the nearest-nei

estimation, Euclidean distance is used, which can be computed directly usin

following equation,

. (18)

Here is the vector to be classified, and are the mean vector and covari

matrix of a certain class.

Obviously, the choice of the training data set is vital. To be specific, the amoun

the training data should be sufficient, and the chosen data should be typical, that is

should be capable of representing the nature of the associated categories.

3.3. Block-level Classification

The objective of this thesis is to build up an image segmentation system, whi

capable of segmenting a given forest scene into its various constituents. To simplif

problem, six categories of forest structures were defined. These categories are

bushes, grasses, foliage, sky, and background sky. They are sufficient to represent

forest scenes dealt with in this application. The definitions of these categories wi

given in Chapter V, where the data preparation and experimentation will be describe

To implement such a segmentation system, I proposed a block-level classific

scheme. According to this scheme, an image is divided evenly into small blocks. The

processed block by block. For each block, a pattern recognition algorithm is applie

d
2

x( ) x µ–( )TΣ 1–
x µ–( )=

x µ Σ
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classify the block into one of the predefined categories. After all blocks have b

classified, a segmentation of the image is obtained, in which each segment is assign

category. I used class-specific principal component analysis for block classification, w

had been successfully employed in the previous image classification systems [19].

The block-level classification scheme is simple and efficient with regard to

forestry application. Classifying groups of pixels is much more efficient than repeating

process for each pixel, reducing the computational complexity significantly.

On the other hand, classification on the basis of blocks also results in s

disadvantages. The most significant one is that the segmentation would not be as ac

as those accomplished by pixel-based algorithms. Errors occur at the borders be

adjacent regions belonging to different categories. However, such errors are depend

the block size which is being used, and hence are somewhat under control.

Another issue related to the block classification scheme is windowing. For e

block (or frame), the feature vector is computed on a larger area obtained by apply

square window to the frame. If necessary, such as at image boundaries, zero-pad

used in the windowing. Different window sizes create different amounts of ove

between adjacent frames [38]. An optimal windowing scheme must be determ

empirically.
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CHAPTER IV

SOFTWARE DESIGN AND IMPLEMENTATION

So far, I have discussed feature extraction schemes and pattern recogn

algorithms that have been developed for image segmentation. In this chapter,

describe the design and implementation of the system, and expose impo

implementation details. The system was implemented inC/C++ on a UNIX platform. The

structure of the entire software package is illustrated in Figure 16.

4.1. Class Design

Several classes were designed to handle different issues involved in segment

image. Among them, the most important ones are:Image_analysis, Image_segmentation,

Ppm, Polygon, andImage_eval.

Image_analysis

This class computes various features on a specific region separated from an i

The region may belong to one of the six predefined categories, i.e., tree, foliage, g

bush, sky, and background sky (definitions of these categories will be given in Chapte

To be compatible with the previous SBE classification capabilities, feature computa

can also be done on an entire image.
37
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USFS

bin exp

data

doc

lib

include

utilityclass

Image_segmentation

Image_analysis

Ppm

Polygon

Image_eval

Segment_image

Error_eval
Figure 16. The structure of the software package.
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For this class, some protected data members were defined. These include

general data representing information of parameter files, model files, what featur

calculate, what windowing scheme to use, etc., and data specific to each feature extr

algorithm.

Public methods can be roughly grouped into the following categories: loading

writing methods, processing methods, and debugging methods. Loading and w

methods deal with the reading of parameter files and the writing of model or result f

Processing methods handle all the computation issues involved in training and testin

hence are the most important. Debugging methods are used for debugging purpose

All the algorithmic details for feature computation are hidden from the users in

private methods. These methods are grouped according to each kind of fe

computation, and constitute the majority of the source code for this class.

Image_segmentation

This class segments an image into the six prescribed categories usin

block-based segmentation algorithm described in Chapter III. It presents a program

interface for executing image segmentation. Details of the processing are handled

Image_analysis class.

Protected data includes the desired processing mode (training or testing), the

size, the window size, a pointer to the associatedImage_analysisobject, etc. Public

methods include an initiation method, some loading and writing methods, and al

necessary processing methods. As I mentioned earlier, to apply windowing scheme
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needs to deal with padding windows. Zero padding is used for this application. The re

methods are declared as private methods of theImage_segmentation class.

Ppm

This class handles lower-level manipulation of portable pixel images (PPM). P

is a common file format for digital images. In thePpmclass, some protected data membe

were designed to represent the unique information required for a PPM image, suc

magic number which identifies the associated image as a PPM image, width and hei

the image, and the maximum color level of the image.

Important methods of thePpmclass are open and close methods, which handle

opening and closing of a PPM image, read and write methods, which read or write e

the header information or the image data, assign methods, which set the format f

image, and comparison methods, which differentiate two PPM images. All these me

are public.

Polygon

To segment images using the block-level classification algorithm, training d

needs to be prepared. This data was obtained by manually segmenting typical image

the database. Manual segmentation data was stored in data files using a forma

consisted of the coordinates of the vertices of each polygon segments. ThePolygonclass

was designed to deal with this reference segmentation data. It reads the coordinate d

the polygons from data files and determines whether a given point is inside a polygo
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Image_eval

This class was designed for the evaluation of the system performance in term

error classification rate. An error evaluation component complements the design o

image segmentation system.

The relationship between all major classes is shown in Figure 17. As one can

theImage_analysis class plays a key role in the system.

4.2. Utility Design

The classes are the core of the overall system. To perform a segmentation, on

needs some command line tools which pass all necessary parameters prescribed

user to these classes and make the segmentation a reality. The following utilities

designed as the interface between the user and the system:segment_image, error_eval,

andlabeler.

Segment_image

This utility performs segmentation of an image. It operates either in a train

mode or in a testing mode. In the training mode, model files about all prescri
Image_analysis

Image_segmentation

Ppm

Polygon
Figure 17. Relationship between the major classes.
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categories are built. In the testing mode, a given image is segmented into reg

belonging to various categories. The flow chart in Figure 18 demonstrates how t

utilities work.

Error_eval

This utility evaluates the performance of a segmentation in terms of an e

classification rate at the block level. To do the error evaluation, the block classifica

results are compared with the associated reference segmentation data, which was o

previously by manual segmentation of the same image. Blocks which are incorr

classified are counted, and the ratio of the number of classification errors to the

number of blocks being classified is computed as the error rate. The flow chart for

program is shown in Figure 19.

Labeler

This utility is designed specifically for manual segmentation. It was develope

Tcl/Tk. More detailed information about this tool will be presented in the next chapte
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start

parse command line

initialization

load model files

processed all files?

Y

N

acquire an image file

acquire reference data

processing
(training/testing)
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N

Y

write model files

end
Figure 18. The flow chart for the shell program of thesegment_image utility.
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parse command line

load segmentation results

finished evaluation?

Y

N

load reference data

compare

error statistics

output statistical data

end
Figure 19. The flow chart for the shell program of theerror_eval utility.
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CHAPTER V

EXPERIMENTATION

I designed a variety of experiments to evaluate the segmentation system. T

experiments are discussed in this chapter. First, I will describe the image databa

which these experiments were carried out. Data preparation played an important r

these experiments. Next, I will introduce experiments designed to evaluate fea

extraction algorithms. Finally, I will discuss experiments aimed at evaluating the ov

system performance.

5.1. Image Database

Previously, an extensive database had been developed in conjunction wit

United States Forest Service (USFS) to support the development of algorithms tha
Raw
Images

Manual
Transcription

Feature
Extraction

Statistical

Models

Test
Image

Feature
Extraction Comparison

Segmented
Image

Training

Test
Figure 20. A block diagram of the overall system.
45



46

tabase

the

rolled

and

that

sment

d into

. The

auty

enic

and
automate scenic beauty evaluation of forest images. The images included in this da

were drawn from a study [39] spanning four years, which was carried out in

Ouachita-Ozark National Forests in Arkansas, USA. Photographs taken under cont

conditions had been digitized with an extremely high quality scanning process,

converted into Portable Pixel Map (PPM) format. A unique feature of the database is

each image was assigned a scenic beauty rating obtained by subjective asses

involving human subjects.

There are a total of 637 images in the database. These images are groupe

three categories [22] according to the associated subjective scenic beauty ratings

three categories are: Low Scenic Beauty Estimate (LSBE), Medium Scenic Be

Estimate (MSBE) and High Scenic Beauty Estimate (HSBE). The corresponding sc

beauty rating is distributed as shown in Figure 21. More details about the design

development of this database are available in a separate document [22].
e.
Figure 21. The distribution of the subjective scenic beauty rating across the databas
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5.2. Manual Transcription

According to the system design, one needs transcribed training data to b

statistical models. For this purpose, the digital images were segmented into diff

polygon regions, which were labeled with appropriate category names. A software

named Image Object Labeler (IOL), was developed to facilitate this task.

The IOL tool was rapidly prototyped inTcl/Tk, an interpreted script languag

useful for graphical user interface design. It was designed to allow a user to select a c

type of object, and to draw a closed polygon around the region defining that object.

image can be labeled multiple times. A list of images is traversed using a scrolling d

box. This allows the user to iterate on a set of images until all segmentations

consistent. An example of a labeled image is shown in Figure 22.

For now, six categories have been defined for the image transcription. T

categories are necessary for describing a forestry scene. The definitions of these cat

are given in Table 1. The transcription results are saved as ASCII data files. A dat

begins with the name of the associated image file, followed by an object name, the

coordinates of all vertices of the polygon used to mark this object. There can be mu

instances of any object in a file, and the order of the objects is arbitrary (each obje

written in the order it was created). The format of the data file is shown in Figure 23. W

the tool introduced above, all 637 images in the USFS database were man

transcribed. These transcriptions established the basis of the image segmentation s
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Table 1. The six categories used in manual transcription of the forest images.
Figure 22. An example image labeled by using the manual segmentation tool.
Category Description

tree a woody perennial plant having a single, usually elongated,
main stem, generally with few or no branches on its lower part

foliage a cluster of leaves, flowers, and branches

bush a low densely branched shrub or a close thicket of shrubs
suggesting a single plant

grass grass or land covered with growing grass, or other green-col-
ored ground cover

sky a region typically containing sky and few obstructions such as
trees; strictly limited to the top of the image

background sky a region with sky in the background and other objects in the
foreground, but still clearly identified as sky
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5.3. Experiments with DCT-based Features

As explained in Chapter II, I designed several new feature vectors for the im

segmentation system. Since the feature extraction scheme based on discrete

transform involved several parameters, I executed a series of experiments to optimi

parameters.

The evaluation experiments were run on a pilot data set. The training set is sh

in Table 2. Note that different images were chosen to train different models. The re

for this choice was to make the training process more efficient. Since the six categor

structures are distributed unevenly across the database, if the same training set ha

used for all the models, the training set would have had to be increased to a much

size to guarantee a sufficient amount of training data (image blocks) for each model

test data set consisted of 5 random images with a total of 1406 64 x 64 image block

As a first step, I evaluated the effects of the windowing scheme on the bas

design discussed in Chapter II. The results indicate that system performance is sens

the windowing parameters. As one can see from Table 3, when the frame and win
/isip/d00/usfs_imaging/data/phase_01/cd_0012/img0002.ppm
Class tree
954  32
954  386
...
1106  30
Class foliage
186  32
...

an-
Figure 23. An example of the output file format used by the transcription tool to store m
ual transcribed data. A simple ASCII file format is used here.
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sizes were set to be 64 x 64 and 96 x 96 respectively, the system performed best on

pixels. Next, I investigated the performance with different color features, i.e., I comp

DCT coefficients on the red, green and blue pixel components respectively. For t

evaluations, the frame size was set to 64 x 64, and the window size was 96 x 96. As s

in Table 4, generally the error rates with all three colors were comparable. This simil

is reasonable because DCT coefficients are supposed to describe the spatial varia

the texture pattern an image block displays. These texture characteristics should no

remarkably for different color components.

In the schemes discussed so far, I chose the frequency filter size to be 4. How

that filter parameter may not necessarily be the optimal choice. Therefore, I tes

smaller filter size of 2. In this scenario, all other conditions for feature generation w

kept the same as the baseline design. The windowing parameters also rem

unchanged, that is, I used 64 x 64 frames and 96 x 96 windows. It is observed in Ta

that the system with a larger filter worked slightly better. However, the difference in

error performance was not significant.
Table 2. The training data set for DCT-based feature evaluation.
Structure Number Of Images Number Of Blocks Block Size

tree 5 523 64 x 64

foliage 6 632 64 x 64

bush 5 520 64 x 64

grass 6 523 64 x 64

background sky 10 675 64 x 64

sky 10 61 64 x 64
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Table 3. Performance for a variety of windowing schemes.
Experiment No. Frame Size Window Size
Percentage Error

Rate

1 32 x 32 32 x 32 72.6

2 32 x 32 64 x 64 67.6

3 64 x 64 64 x 64 67.9

4 64 x 64 96 x 96 66.6

5 64 x 64 128 x 128 67.6
Table 4. Performance across different color components.
Experiment No. Color Component Percentage Error Rate

1 red 65.7

2 green 66.6

3 blue 67.3
Table 5. Performance as a function of the frequency filter sizes.
Experiment No. Filter Size Percentage Error Rate

1 4 66.6

2 2 69.2
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Finally, I evaluated the impact of the number of DCT coefficients. The results

shown in Table 6. I used the first 64 and 128 coefficients to generate feature ve

respectively. For the first experiment, I had a 16-dimensional feature vector, while fo

second experiment, I used a 32-dimensional vector. The results verified the idea that

more DCT coefficients is not necessarily better — with 128 DCT coefficients, the sys

performance was 5% worse than that of the system with the features based on on

coefficients.

5.4. Experiments with Gabor Features

To evaluate Gabor filter-based feature design, I selected several typical fo

structures from the database, and carried out pair-wise discrimination experimen

these regions. Some example images and segmentations are shown in Figures 24

In general, with these Gabor features, discrimination between structures was good.

misclassification errors occurred in shaded areas — textures there were difficu

distinguish because of poor lighting conditions. It is interesting to note that in

experiment with the “bgsky-bush” pair, although the error rate was 22.0%, the segm

was able to figure out the exact contour of the background sky area. The surroun
nts
Table 6. The performance evaluation results with different amounts of DCT coefficie
involved in the feature computation.
Experiment No.
Amount Of DCT Coefficients

Involved
Percentage Error Rate

1 64 66.6

2 128 72.5
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Figure 24. An example segmentation generated by applying the Gabor feature des
typical forest structures. The image consists of two categories. The left hal
typical “foliage” block, and the right half is a “bush” block. In the segmentati
image, the black region stands for hypotheses for the “foliage” category, w
the grey color is used for “bush.” The pixel classification error rate was 7.3
branches and leaves in the transcribed background sky region look more like the bus

the right half of the image, resulting in their classification as bushes.

On the other hand, the computational requirements for the algorithm

comparatively high. With this algorithm, computing feature vectors for all pixels withi

128 x 128 image block took around 120 minutes on a 333 MHz processor w

512 Mbytes of memory. In this application, the dimension of an image is 1536 x 10

Consequently, if one computes the Gabor features for each pixel, computation on on
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Figure 25. Another example segmentation with the Gabor feature design. The left ha
age is a typical “bgsky” (background sky) block, and the right half is a “bus
block. In the segmentation image, the black region stands for hypotheses fo
“bgsky” category, while the grey color is used for “bush.” The pixel classific
tion error rate was 22.0%.
image would be approximately 192 hours. Hence, I investigated ways to speed u

algorithm without sacrificing performance.

Since the system is actually doing block-level classification, only one feat

vector is needed for an image block. As observed in the previous exploration, the G

feature values computed for pixels of the same category did not vary dramatically. H

it would be feasible to compute a feature vector for an image block by averaging o

small amount of neighboring pixels. In the experiments, it was assumed that a fe

vector computed at the central pixel of an image block represented all character
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necessary to distinguish this block from blocks of other categories. With this assump

the feature vector for a block center was used as the vector for the whole block. Hen

feature computation time for one 128 x 128 block was reduced from 120 minute

12 minutes. In accordance with this improved feature design, to run a training jo

1000 image blocks with a size of 128 x 128, the required computation tim

approximately 200 hours or 8.3 days.

5.5. Evaluating the Performance of the System

The performance of the image segmentation system was evaluated with

different feature vectors on set 1 of the USFS Pre-Phase 01 data, which consi

478 training images and 159 test images formatted as 1536 x 1024 PPM images [22

three feature sets were chosen:

• blue + brown: These are the histograms for colors blue and brown. Blue is an

important color for classification of sky and background sky, while brown

distinguishes tree stems from other specified categories.

• blue + brown + sl: Here, “sl” stands for the density of short lines of an image.

Short lines are characteristic of bushes and grasses in a forest scene.

• rgb + ent: Here, “rgb” denotes the histograms for red, green and blue. “Ent”

denotes entropy. “Rgb” combines the three primary colors together. It

describes to some extent general luminance information, as well as the lightin

condition in the forest. Entropy is a measure of the randomness of an image.

For the experiments described below, the frame size was set to 64 x 64, w

presented an appropriate sampling rate of the original images sized at 1536 x 1024
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window size was set to be 128 x 128, resulting in a 50% overlap between neighb

windows.

The evaluation results are shown in Table 7 and the associated confusion ma

are given in Tables 8 to 10. Also, some example segmentations are shown in Figure

confusion matrix is interpreted as follows. Numbers in the first column show how

blocks were classified by the software. As an example, the matrix in Table 8 sh

in the first column, which means out of a total of 532

tree blocks, only 2619 blocks were classified correctly. Others were classified to inco

categories (122 blocks to foliage, 855 blocks to bush, and so on). The other column

organized for the remaining five categories in the same manner.

5.6. Analysis

The best performance of the segmentation system was a 61.4% block classific

error rate, obtained by combining color histograms (“rgb”) with entropy as the feature

Although the error rate was comparatively high, the blocks were generally classified

reasonable manner — with sky and background sky in the top, grass at the bottom, e

shown in Figure 26. This is a promising trend toward a successful system.

I explored further to see what were the major causes for the classification err

examined the confusion matrices from the above experiments and noticed t

significant portion of the errors occurred within the foliage blocks. With the best sys

of which “rgb + entropy” was used as the feature set, the respective error rates for

category are summarized in Table 11.

2619 122 855 985 697 49, , , , ,[ ]T
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Table 7. Evaluation results for the block-level image segmentation system.
Feature Sets Frame Size Window Size
Percentage Error

Rate

blue + brown 64 x 64 128 x 128 70.8

blue + brown + sl 64 x 64 128 x 128 70.2

rgb + ent 64 x 64 128 x 128 61.4

ing
Table 8. The confusion matrix with the feature set as “blue + brown.” The correspond
error rate was 70.8%.
Category tree foliage bush grass bgsky sky

tree 2619 5100 2567 3332 179 0

foliage 122 1788 528 384 35 0

bush 855 5024 4595 3096 1 0

grass 985 1962 2818 3001 14 0

bgsky 697 3299 508 420 1464 1

sky 49 77 167 140 266 9

he
Table 9. The confusion matrix with the feature set as “blue + brown + short lines.” T
corresponding error rate was 70.2%.
Category tree foliage bush grass bgsky sky

tree 2437 4913 2381 2978 182 0

foliage 170 1952 575 457 40 0

bush 822 4796 4428 2971 3 0

grass 1156 2315 3167 3441 14 0

bgsky 695 3201 475 388 1464 1

sky 47 73 157 138 256 9
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Obviously, a better foliage classifier would be a key to improving the system

this end, I studied the foliage classifier from a statistical viewpoint. In the PCA syst

distances between a test feature vector and all the reference vectors were compu

block was assigned to the label associated with the minimum distance. I compute

distribution of the distances, or scores, for the foliage classifier in terms of false-ala

and accuracy. The distribution of the scores are shown in Figures 27 and 28. From

plots, it is clear that the foliage classifiers used in these experiments were not capa

discriminating foliage blocks from non-foliage blocks. This explains the majority of err

which occurred. Further, I studied all other features not used in the experiments

regard to the foliage classification in the same manner and obtained similar results.

It is interesting to compare the performance of the segmentation system

system which makes intelligent guesses based on prior knowledge about the cate

under study. According to Bayes’ decision rule [36], we can minimize the overall error

weighting our estimate of the probability of each class by the prior probabilities of e

class. In this application, the prior probabilities of the categories being studied

unknown. However, one can estimate these probabilities using a frequency of occur

computed over the training set [36]. For the data set used in the evaluation experim

these frequencies are shown in Table 12. We can construct a simple system that a

guesses the most probable class. In this case, the system will always classify an

block as “foliage” since this class has the highest frequency of occurrence: 32.0%.

Obviously, the classification error rate of this system is 68.0%. The b

performance of the segmentation system (61.4% classification error) is better tha
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baseline guessing system. With further improvement of the foliage classifier,

segmentation system is expected to yield much more reliable results. Such improve

will eventually make the segmentation system suitable for practical use.
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Table 10.The confusion matrix with the feature set as “rgb + entropy.” The correspon
error rate was 61.4%.
Category tree foliage bush grass bgsky sky

tree 2807 4494 1717 2454 181 0

foliage 260 2402 609 259 98 0

bush 911 6412 6252 2578 16 0

grass 831 1479 2208 4888 7 0

bgsky 504 2450 391 169 1437 1

sky 14 13 6 25 220 9

py”
Table 11. Statistics of classification errors for the experiment which used “rgb + entro
as the feature set and yielded the error rate of 61.4%.
te the

Category tree foliage bush grass bgsky sky

Block Total 5327 17250 11183 10373 1959 10

Errors 2520 14848 4931 5485 522 1

Error Rate (%) 47.3 86.1 44.1 52.9 26.6 10.0
Table 12. Computed frequencies of occurrence for all six categories under study. No
total number of blocks is 136513.
Category tree foliage bush grass bgsky sky

Number of Occurrence 23526 43714 37647 24040 7450 136

Frequency of Occurrence 17.2% 32.0% 27.6% 17.6% 5.5% 0.1%
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Figure 26. Example segmentations produced by the software on some typical forest
es. Images on the left are the original ones with manual transcriptions ad
For both manual transcriptions and automatic segmentations, different c
are used to distinguish between categories. The mapping relationshi
brown - tree, red - foliage, yellow - bush, green - grass, dark blue - sky,
light blue - background sky. Note most segmentations for sky and backgro
sky were generated accurately.
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Figure 27. Distribution plot of scores (distances) generated by the foliage block clas
of the image segmentation system. The conditions for this experiment are l
in the title of the plot.
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Figure 28. Score distribution plots for the other two experiments.



was

. An

ferred

cenic

image

the

y been

nual

d into

tors

ly is

f all,

of a
CHAPTER VI

IMPACT ON THE SBE PROBLEM

As discussed in the previous chapters, the image segmentation system

developed in an attempt to facilitate automated evaluation of forest resources

important aspect of this task is scenic beauty estimation of forest scenes, which is re

to as the SBE problem. The previous SBE software produced good results on s

beauty quality-based classification [19], and I attempted to assess the impact a good

segmentation system could have on this application.

6.1. Cheating Experiments

As a first step, I designed some “cheating experiments” to facilitate

investigation. For these experiments, it is assumed that image segments have alread

accurately generated. This assumption is easy to satisfy given that the ma

transcriptions of all images in the database are available. Then images are classifie

different SBE categories (HSBE, MSBE, and LSBE) on the basis of feature vec

computed on a specific kind of segment.

As an example, suppose an SBE classification of “grass” segments on

performed using “rgb” (histograms of red, green and blue) as the feature set. First o

PCA models need to be trained on the specified segments. To do this, all pixels
64
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training image which fall into grass segments are located by checking the ma

transcription. Then the “rgb” histograms for the image are computed only on these “g

pixels.” With feature data extracted in the same manner for all training images, the tra

statistical models are obtained. Similarly, when a given image is tested, only the fe

vector for “grass pixels” of the image is computed.

I carried out such experiments with several combinations of features. Again

experiments were based on data set 1 of USFS Pre-Phase 01 images. The feature s

were “rgb + entropy,” “rgb + entropy + long lines,” and “blue + brown.” As discuss

earlier in Chapter V, “rgb” histograms may describe the lighting condition in a forest,

“entropy” quantifies the randomness of an image. Both are very important in scenic b

estimation. I also included in the experiments the feature of “long lines,” which wo

help to identify tree segments. The error rates and confusion matrices are sho

Tables 13 to 15.

6.2. Analysis

Overall, SBE classification on a particular type of image, such as background

produced worse results than doing the classification on an entire image. This is cl

revealed by the error rates in Table 13. This comparison indicated that the feature

tested were not doing as good a job of discrimination. However, there are some intere

observations with the confusion matrices.

As shown in Table 14 and 15, when “blue + brown” was used as the feature

classification of segments transcribed as background sky (bgsky) decreased erro

HSBE image classification by half. According to research publications on scenic be
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estimation [21], an HSBE forest image usually features little visual penetration thro

the foreground foliage and twigs. Since blue is a characteristic color for sky, by exam

this feature on the “background sky” segments, I was able to do much better in sepa

HSBE images from other categories. Similarly, with the same settings, classification e

for LSBE images decreased by one-third on the segments labeled as trees. S

reduction in errors for individual classes was also found for the other conditions prese

in Table 13. These observations demonstrate a likelihood that one could do a much

job in characterizing images with regard to their scenic beauty quality if the anal

focuses on a certain type of segments, rather than the image as a whole. However,

investigation is necessary to verify this hypothesis.
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Table 13. Results of the cheating experiments in terms of percentage error rate. No
last column gives the classification error rate with the previous SBE syste
which performs classification on an entire image, not a specific category o
segments.
Features Tree Foliage Bush Grass Bgsky Entire Image

rgb + ent 47.8 46.5 52.8 47.2 55.3 39.6

rgb + ent + ll 48.4 49.1 51.6 46.5 57.2 42.1

blue + brown 45.9 45.3 54.7 42.1 56.6 31.4

on
t
s.
Table 14. Example confusion matrices. The left matrix is for the SBE classification 
background sky segments with “blue + brown” as the feature set. The righ
matrix was generated from the corresponding experiment on entire image
Note the errors for the HSBE image classification decreased by half.
Automatic LSBE MSBE HSBE

LSBE 5 12 0

MSBE 19 45 9

HSBE 4 46 19

Automatic LSBE MSBE HSBE

LSBE 2 2 0

MSBE 24 97 18

HSBE 2 4 10

ents
ing
Table 15. Another example. The left matrix is for the SBE classification on tree segm
with “blue + brown” as the feature set. The right matrix is for the correspond
experiment on entire images. The errors for the LSBE image classification
decreased by one-third.
Automatic LSBE MSBE HSBE

LSBE 2 2 0

MSBE 24 97 18

HSBE 2 4 10

Automatic LSBE MSBE HSBE

LSBE 9 27 2

MSBE 16 66 15

HSBE 3 10 11
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Image segmentation is essential to analyzing forest images for automated f

resource evaluation. The success of an image segmentation system relies on appr

designs of feature extraction schemes and pattern recognition algorithms. In this cha

will conclude the thesis with a discussion of my major results on these designs

suggestions for future work.

7.1. Conclusions

The first major contribution of the thesis is the evaluation of various feature de

schemes for segmenting forest images. Color histograms, entropy, and density of

which are important in evaluating the scenic beauty quality of forest images, are still

useful in segmenting the images. The combination of color histograms (“rgb”) w

entropy produced 61.4% block classification error rate, which was the best segmen

performance achieved with the system. This performance is better than guessing ba

prior knowledge, which yielded an error rate of 68%. The discrete cosine transform (D

is an efficient technique for representing images in the spatial frequency domain. W

feature design based on filtering DCT coefficients computed from green pixels, I obta

a 66.6% block classification error rate, which was comparable to the performa
68
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generated with features such as color histograms and entropy. There was no sign

difference between DCT features computed with different colors in terms of the error

Gabor filters are also a very promising technique for image segmentation.

Gabor filter bank-based feature extraction approach yielded an error rate of 7.3%

pair-wise discrimination task. The computational inefficiency of this approach preclu

evaluation on a large-scale task. However, this level of performance is very encour

compared to other conventional techniques.

The other major contribution of this thesis is the development of a patt

recognition-based image segmentation algorithm. I presented an algorithm that divid

image evenly into small blocks, and then classifies each block into one of the

prescribed categories (namely, tree, bush, grass, foliage, background sky and sky)

class-specific principal component analysis. This algorithm is simple and efficient

regard to the forestry application. It significantly reduced the computational complexi

the expense of sacrificing the accuracy of block classification at borders between re

of different categories.

I evaluated this image segmentation system in terms of error rate using a sta

pattern recognition approach to classification. As mentioned above, the best perform

was achieved by combining color histograms (“rgb”) with entropy, resulting in a 61.

block classification error rate. I analyzed the classification errors and determined tha

classifier for foliage blocks caused the majority of the errors.

A by-product of this work was a large database of manually segmented images

categories of image segments typical of a forest scene were defined. A transcriptio
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was developed to facilitate the manual work, and all 1784 images in the database

transcribed. This database will be a useful tool for supporting future research on t

problems, and complements other extensive resources available for this data [22].

Finally, I investigated the impact an image segmentation system could have o

scenic beauty estimation problem. With carefully designed “cheating experimen

determined that SBE classification errors decreased on some segments, but o

performance was lacking. This fact indicated that one might be able to characteriz

scenic beauty quality of an image more accurately by analyzing different categori

segments separately, rather than mixing them together.

7.2. Future Work

First, the feature design based on the DCT coefficients needs to be impro

There are still parameters, such as the frequency filter size, and the numb

DCT coefficients involved in the computation, which need to be optimized. Moreove

combine the DCT coefficients more effectively, one will have to understand thorou

the relationship between the physics of the visual system and the information pres

the discrete cosine transform representation.

The Gabor filter bank-based features generated very encouraging results

pair-wise discrimination experiments. To further evaluate their effectiveness in

segmentation task, it is necessary to improve the computational efficiency of

approach. Once this barrier is overcome, one will be able to explore the feature d

within the PCA segmentation system.
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Lighting conditions are a very important factor in scenic beauty evaluation [2

People tend to consider a bright forest scene to be of low scenic beauty. However,

popular feature extraction approaches, such as those presented in this work, do no

good job of representing this information. The contrast [40] of an image helps to des

the lighting condition, hence is worthy of investigation.

Another unique aspect of natural images is the strong correlations betw

neighboring pixels [41] since nearby regions in a natural scene usually have sim

intensities and colors. Syntactic constraints [42] can be imposed on an image that m

these correlations. This is part of a class of techniques known as Bayesian b

networks [36]. With Bayesian belief networks, dependencies between variables invo

in a system are represented graphically using a network structure and Bayes rule is u

calculate probabilities. Incorporation of such techniques into the segmentation syst

expected to enhance the system’s performance significantly.

Finally, decision tree based approaches to block classification [36] are also w

exploring. Decision trees have the potential for developing extremely powe

context-sensitive statistical models through the integration of many diverse knowl

sources. They are suitable for tasks where there is large overlap in the absolute f

space, or discrimination amongst classes in the feature space requires nonlinear de

surfaces. This overlap can often be reduced by integrating other knowledge sou

However, a large engineering effort is often required to determine the best architectu

such systems. Identification of good knowledge sources and the most appropriate w

integrate this knowledge often requires extensive training databases and signi
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amounts of experimentation. Nevertheless, such approaches can often produce imp

performance under the proper conditions.
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