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Abstract: Background
Assistive automatic seizure detection can empower human annotators to shorten
patient monitoring data review times. We present a proof-of-concept for a seizure
detection system that is sensitive, automated, patient-specific, and tunable to maximise
sensitivity while minimising human annotation times. The system uses custom data
preparation methods, deep learning analytics and electroencephalography (EEG) data.
Methods
Scalp EEG data of 365 patients containing 171,745s ictal and 2,185,864s interictal
samples obtained from clinical monitoring systems were analysed as part of a
crowdsourced artificial intelligence (AI) challenge. Participants were tasked to develop
an ictal/interictal classifier with high sensitivity and low false alarm rates. We built a
challenge platform that prevented participants from downloading or directly accessing
the data while allowing crowdsourced model development.
Findings
The automatic detection system achieved tunable sensitivities between 75.00% and
91.60% allowing to reduce the amount of raw EEG data to be reviewed by a human
annotator by factors between 142x, and 22x respectively. The algorithm enables
instantaneous reviewer-managed optimisation of the balance between sensitivity and
the amount of raw EEG data to be reviewed.
Interpretation
This study demonstrates the utility of deep learning for patient-specific seizure
detection in EEG data. Furthermore, deep learning in combination with a human
reviewer can provide the basis for an assistive data labelling system lowering the time
of manual review while maintaining human expert annotation performance.
Funding
IBM employed all IBM Research authors. Temple University employed all Temple
University Hospital authors. The Icahn School of Medicine at Mount Sinai employed
Eren Ahsen. The corresponding authors Stefan Harrer and Gustavo Stolovitzky
declare that they had full access to all the data in the study and that they had final
responsibility for the decision to submit for publication.
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Abstract 

Background  

Assistive automatic seizure detection can empower human annotators to 

shorten patient monitoring data review times. We present a proof-of-concept 

for a seizure detection system that is sensitive, automated, patient-specific, and 

tunable to maximise sensitivity while minimizing human annotation times. The 

system uses custom data preparation methods, deep learning analytics and 

electroencephalography (EEG) data.  

Methods  

Scalp EEG data of 365 patients containing 171,745s ictal and 2,185,864s 

interictal samples obtained from clinical monitoring systems were analyzed as 

part of a crowdsourced artificial intelligence (AI) challenge. Participants were 

tasked to develop an ictal/interictal classifier with high sensitivity and low false 

alarm rates. We built a challenge platform that prevented participants from 

downloading or directly accessing the data while allowing crowdsourced model 

development.  
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Findings 

The automatic detection system achieved tunable sensitivities between 

75.00% and 91.60% allowing a reduction in the amount of raw EEG data to be 

reviewed by a human annotator by factors between 142x, and 22x respectively. 

The algorithm enables instantaneous reviewer-managed optimization of the 

balance between sensitivity and the amount of raw EEG data to be reviewed. 

Interpretation  

This study demonstrates the utility of deep learning for patient-specific seizure 

detection in EEG data. Furthermore, deep learning in combination with a 

human reviewer can provide the basis for an assistive data labelling system 

lowering the time of manual review while maintaining human expert annotation 

performance. 
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they had final responsibility for the decision to submit for publication. 
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Research in Context 

Epilepsy is a highly individualized neurological condition with disease expressions changing 
over time. It thus cannot be diagnosed, treated and managed in a uniform and equally efficient 
way across patients. The ability to monitor patients individually and continuously and to log 
seizure episodes in disease diaries is key to gaining a patient-specific understanding of the 
disease. This can empower doctors to optimize and adjust medication response and 
pharmaceutical companies to design more efficient clinical trials. Until recently such disease 
diaries were created manually making data review a highly cost- and time-intensive process 
and rendering records inaccurate when populated by patients through self-reporting outside 
the clinic. New deep learning-based techniques allow automatic detection of seizures in brain 
activity data monitored by electroencephalography (EEG) sensors. Harnessing the power of 
crowdsourced artificial intelligence algorithm development and one of the largest EEG 
datasets in existence we have demonstrated an automatic seizure detection model which can 
assist human reviewers in substantially reducing the amount of raw EEG data to be annotated 
manually. Our system uses deep learning technology and custom data preparation techniques 
to automatically learn patient-specific seizure signatures. It then filters seizure segments out 
of raw EEG data for verification by an expert neurologist. Our system can be tuned by the 
human reviewer to achieve detection sensitivities in excess of 90% or raw data reduction 
factors of up to 142x. 
 
 



1) Introduction 

This decade has seen an ever-growing number of scientific fields benefitting from the 
advances in machine learning technology and tooling. More recently, this trend reached the 
medical domain [1], with applications ranging from cancer diagnosis [2][3], prediction of acute 
kidney injury [4], detection of diabetic retinopathy [5], mining of electronic health records [6] to 
brain-machine-interfaces [7][8]. While Kaggle has pioneered the crowd-sourcing of machine 
learning challenges to incentivize data scientists from around the world to advance algorithm 
and model design, the increasing complexity of healthcare domain problems demands 
interdisciplinary teams with expertise in data science, the problem domain, and competent 
software engineers with access to large compute resources. Teams or people who meet these 
criteria are few and far between leading to a small pool of possible participants and a loss of 
experts dedicating their time to solving important problems. Participation is even further 
restricted in the context of any challenge run on confidential use cases or with sensitive data. 

In order to protect such sensitive and proprietary data while at the same time enabling a 
crowdsourced challenge, we have recently introduced a challenge ecosystem that utilizes the 
so-called model-to-data paradigm [9][10]. This approach allows the solver community to 
submit their models to the platform which will then autonomously organize model training and 
testing in a secure cloud environment and provide feedback on model performance to 
participants. Solvers can then use the model performance to improve their algorithms. In this 
scheme, the participants cannot download or directly access the challenge data at any point 
but have the full suite of crowdsourced challenge tools at their disposal. This challenge 
platform opens the door to running crowdsourced challenges and to enabling broad public 
benchmarking against proprietary or sensitive datasets which cannot be made publicly 
available [11].  Using this platform, we recently designed and ran the Deep Learning Epilepsy 
Detection Challenge to crowdsource the development of an automated labelling system for 
brain recordings, aiming to advance epilepsy research.  

Epilepsy is a neurological disease that affects over 1% of the world population [12]. Patients 
suffer from sudden and unexpected seizures which impact their physical health and mental 
wellbeing [13]. Being a highly individualized condition, its expression changes from patient to 
patient. Even a specific patient’s pathology can vary over time. This makes adequate 
diagnosis, treatment, and disease management extremely challenging: one third of all 
epilepsy patients suffer from refractory epilepsy. Two-thirds of patients respond to medication 
in some way at some point in their journey, but oftentimes the little understood evolving nature 
of the disease leads to fading or transient therapeutic control [12].  

The most common method of tackling this challenge is to monitor patients continuously and 
log disease episodes of relevance in disease diaries [14]. These longitudinal data repositories 
can then be used to investigate and adjust the effect of medication in quasi-real-time, and to 
study the correlation between treatment regimens and disease progression.  While this data-
driven approach to treatment management and in-situ care optimization is seen as key to 
fundamentally changing the success of treatment and efficiency of clinical trials [15]. Until 
recently, real-world implementations of disease diaries have been entirely manual and thus 
highly inefficient. Manually created disease diaries are only approximately 50% accurate [16]. 
This is not rooted in sloppy reporting techniques. It is the individualized and incapacitating 
nature of the disease itself that leaves patients unable to recognize, remember, or keep track 
of their own seizures. That makes it impossible for untrained observers to recognize and 
describe seizure episodes in clinically actionable ways [15]. In order to overcome this 
challenge and to leverage a plethora of wearable and mobile sensing platforms, the field has 
turned to exploring the use of machine learning techniques for the development of automatic 
patient monitoring systems [17].  

Amongst a broad spectrum of sensor modalities ranging from video cameras to smart watches 
[18], the electroencephalogram (EEG), which uses scalp electrodes, is considered to be the 
gold standard for seizure monitoring [13]. However, while EEG monitoring systems have 



evolved from relying on intracranial implanted electrodes to use of non-invasive wearable 
devices, automatic annotation of EEG data remains a challenging machine learning problem. 
Primary reasons for this include low signal to noise ratio, movement artefacts, poor electrical 
conduction and nonlinearly distorted crosstalk between spatially adjacent sensors. Disease-
specific intricacies such as the highly individualized profiles of seizure patterns make 
generalizability of detection models across patients challenging. As a result, in today’s clinical 
practice, EEGs are still interpreted manually, or ‘read’ by trained neurologists. The associated 
time and cost burdens are substantial and account for approximately 5% of the total hospital 
charges for epilepsy patients admitted to ICUs in the US [13]. Furthermore, doctors 
responsible for this highly repetitive and time-consuming process find themselves caught 
between the equally undesirable options of either having to limit the time they can devote to 
attend to their patients [19], reducing the duration of monitoring sessions or reducing the 
amount of data to be manually reviewed [13].  

A variety of machine learning-based automatic EEG annotation systems have been proposed 
[13][20] to reduce this burden. Some have been deployed and tested in clinical scenarios 
[21][22]. Clinical acceptance of this technology has been slow [23]. The lack of commonly 
adopted performance metrics to evaluate performance and compare to human expert 
reviewers [24] has inhibited broad adoption of these systems in critical care settings. 
Generalisability of performance across datasets collected at different institutions has been 
problematic also [13]. 

Using one of the world’s largest EEG datasets, the TUH Seizure Corpus [25][26], the Deep 
Learning Epilepsy Detection Challenge tasked participants to develop deep learning models 
for automatic annotation of epileptic seizure signals in raw EEG data with maximum sensitivity 
and minimum false alarm rates. Using the Time-Aligned Event Scoring (TAES) metric, an 
evaluation framework custom-designed to score high-resolution automatic EEG annotation 
algorithms [24], we assessed the potential of these annotation models for use by clinical 
neurologists as assistive labelling systems for raw EEG monitoring data. 

In the following sections we describe the architecture and functionality of our custom-
developed crowdsourcing challenge platform, with a special focus on its model-to-data 
feature, the design and execution of the Deep Learning Epilepsy Detection Challenge, as well 
as the scientific outcomes and validation results of the best performing participant models.  

 
 
2) Methods 

With a goal to run a challenge that mobilizes the largest possible pool of participants globally 
across IBM, we designed a crowdsourced challenge called the Deep Learning Epilepsy 
Detection Challenge. Participants were asked to develop an automatic labelling system to 
reduce the time a clinician would need to diagnose patients with epilepsy. Labelled data for 
the challenge were generously provided by Temple University Hospital (TUH) [22][26]. We 
partitioned this data to create training, validation and blind test sets which participants could 
access only through our platform. 

To provide an experience with a low barrier of entry, and to demonstrate that following the 
model-to-data paradigm a crowdsourced challenge can run efficiently without participants ever 
having to directly access or download the challenge data, we designed a generalizable 
challenge platform based on the following principles: (1) eliminate the need of in-depth 
knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or 
epileptologist); (2) eliminate the need of more than basic programming knowledge (i.e. no 
participant should need to learn how to process fringe data formats and stream data 
efficiently), (3) eliminate the need for participants to provide their own computing resources, 
and (4) eliminate the need for participants to download or directly access the challenge data 
in any way. 



The platform guided participants through the entire process from sign-up to model submission, 
facilitated collaboration, and provided instant feedback to the participants through data 
visualization and intermediate online leaderboards. The competitive phase of the Deep 
Learning Epilepsy Detection Challenge ran for 6 months. Twenty-five teams, with a total 
number of 87 data scientists and software engineers from 14 global IBM 
locations participated. Seven teams submitted final solutions five of which were valid final 
submissions as per the challenge rules.  

 

Study Design 

The Deep Learning Epilepsy Detection Challenge Platform 
 
The architecture of the platform that was designed and developed as well as data and model 
flow through it during the challenge are shown in Figure 1. The entire system consists of a 
number of interacting components:  

(1) A web portal serves as the entry point to challenge participation, providing challenge 
information, such as timelines and challenge rules, and scientific background information. The 
portal also facilitated the formation of teams and provided participants with an intermediate 
leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM 
Watson Studio [27] is the umbrella term for a number of services offered by IBM and 
accessible to participants. Upon creation of a user account through the web portal, an IBM 
Watson Studio account was automatically created for each participant that gave users 
access to the (3) IBM Data Science Experience (DSX) platform which hosted a user interface 
and starter kit and formed the main component for designing and testing models during the 
challenge. DSX allows for real-time collaboration on shared notebooks between team 
members. A starter kit in the form of Jupyter notebooks [28], supporting the popular deep 
learning libraries TensorFLow [29] and PyTorch [30], was provided to all teams to guide them 
through the challenge process. Upon instantiation, the starter kit loaded the necessary python 
libraries and custom functions for the invisible integration with (4) IBM Cloud Object Storage 
(COS) [31] and the analytics engine (5) Watson Machine Learning (WML). In dedicated 
notebook cells, participants could develop custom pre-processing code (including custom 
montages), machine learning models, and post-processing algorithms. The starter kit provided 
instant feedback about participants' custom routines through data visualizations. Using the 
notebook only, teams were able to run their code on WML, making use of a compute cluster 
of IBM's resources. The starter kit also enabled submission of the final code to a data storage 
to which only the challenge team had access.  WML provided access to shared compute 
resources (GPUs). Code was bundled automatically into the starter kit and deployed on WML. 
WML in turn had access to shared storage from which it requested recorded data and to which 
it stored the participant's code and trained models.  The data for this challenge resided in 
COS. Note that using the starter kit, participants submitted their model code to the platform 
which autonomously organized model training and testing on the raw data and provided back 
model performance results to participants. The participants could then investigate this 
feedback in order to better design custom algorithms. This approach is called a model-to-data 
paradigm which unlike in Kaggle-style challenge scenarios keeps data shielded from the 
solver community while at the same time allowing a crowdsourced approach to model 
development. (6) Utility Functions were loaded into the starter kit at instantiation. This set of 
functions included code to pre-process data into a more common format, to optimize streaming 
through the use of the NutsFlow and NutsML libraries [32], and to provide seamless access 
to all services used. (7) Final code scoring after completion of the challenge was conducted 
in an automated way as soon as code was submitted through the starter kit. 



 

Figure 1: A block diagram of the high-level architecture of the custom-built challenge platform 
that depicts data and model flow during challenge operation. In this model-to-data paradigm 
challenge participants at no point download or access the data directly. Instead they create 
and submit models to the platform (green solid arrows) which automatically organises training 
and testing and then provides feedback on model performance to participants (orange dashed 
arrows). This is fundamentally different to conventional crowdsourced challenge setups. 

 

Data Sources and Preparation 

 
The TUH EEG Seizure Corpus v1.2.0 [22] which contains scalp EEG records of 315 patients 
with annotated seizure times was split into training and validation datasets for the challenge 
(Table 1). The validation dataset was used to determine team rankings on the intermediate 
leaderboard during the competitive phase (Figure S1). Another dataset containing annotated 
data from 50 patients following the same format as v1.2.0 was used as a blind held-out test 
dataset (Table 1) for final team rankings on the final leaderboard at the end of the challenge 
(Figure S1). After completion of the challenge this blind test dataset was merged with v1.2.0 
and made publicly available as version v1.2.1 of the TUH seizure corpus thus allowing 
reproducibility of and continuous benchmarking against the results published in this paper. 

The size of training, validation, and blind test sets are shown in Table 1. Training and validation 
datasets were composed to reflect a balanced demographic profile (49.5% of patients in the 
training dataset are male, 44% of patients in the validation dataset are male, further 
demographic distributions for the datasets are provided in [22]) Training and validation sets 
were used during the competitive phase of the challenge following the model-to-data paradigm 
described above. The blind, held-out test set was not accessible to participants’ models at any 
time during the challenge and was only used once by the challenge organising team to 
evaluate the submitted models during the scoring phase after the completion of the 
competitive phase (see supplemental information for challenge timeline). 

The TUH EEG Seizure Corpus consists of EEG sessions recorded according to the 10/20 
electrode configuration [33] and utilizing the European Data Format (EDF) [26]. We converted 
the recorded EEG signal into a set of montages, or differentials, of electrode signals based on 
guidelines proposed by the American Clinical Neurophysiology Society [34]. In this challenge, 



we used the transverse central parietal (TCP) montage system for accentuating spike activity 
which has been shown to improve performance in EEG classification tasks [35].  

 Training set Validation set Blind test set 

Patients 265 50 50 

EDF files 2032 1032 1022 

Seizure (secs) 76517 55764 39464 

Non-seizure (secs) 1119863 562331 503670 

Total (secs) 1196381 618096 543134 

Table 1: Number and types of samples in training, validation and blind test sets. Detailed 
demographic distributions are provided in [22]. 

 

Evaluation Procedure 

The evaluation of machine learning algorithms for seizure detection lacks standardization. 
Typically, two different types of methods are used: epoch-based and term-based. Epoch-
based methods compute a summary score decision per unit of time. Term-based methods 
score on an event basis and do not count individual frames.  

Both methods have disadvantages. While epoch-based scoring generally weighs duration of 
events more heavily, term-based methods are a permissive way of scoring and can result in 
artificially high sensitivities. In this challenge, we use a method called Time-Aligned Event 
Scoring (TAES) that utilizes concepts of both epoch-based and term-based methods. It 
considers percentage overlap between reference and hypothesis and weighs errors 
accordingly. The TAES metric is described in detail in [24]. Note that since TAES weighs both 
the number and duration of identified seizures, the sensitivity vs. false positive profile is not 
the same as for standard methods where sensitivity typically increases with an increasing false 
positive rate. In TAES the sensitivity is penalized at both low and high false positives. For low 
false alarms the sensitivity is low since enough seizures are not being discovered by the 
classifier. At high false alarm rates, since most samples are marked as seizures, although the 
total duration of identified seizures is high, the number of unique seizures identified is low and 
thus TAES again penalizes the sensitivity value. 

Evaluation Metric: The two qualities of an automatic seizure detection system should be high 
sensitivity and low false alarm rate. For the purpose of this challenge, we use the following 
metric to combine these two parameters into an evaluation metric E with E = (FA / S) - ɛ * S 
where FA is False Alarm per 24 Hours, S is Sensitivity, and ɛ is a positive constant. The best 
solution will have the smallest E. Note that E has two contributing terms. The first term FA/S 
ensures that systems with lower FA and higher S are preferred. The second term ensures that 
higher S solutions are preferred if for two systems the (FA/S) ratio is same. This formula 
constitutes the pre-defined objective function for measuring success and remained unchanged 
during the course of this challenge. 

Scoring: During the competitive phase of the challenge scoring happened instantaneously: 
Once a model had been trained, it was evaluated using a validation data set and the score 
was submitted, displayed and ranked against other participants’ models in the leaderboard 
section of the challenge portal. During the evaluation phase (i.e. after completion of the 
competitive phase) we gave participants a 2-week time window to submit their final trained 
model. We extracted the pre-processing model and post-processing code from each 



submission and ran these models on a held-out blind test dataset (to which participants had 
not had access to at any point during the challenge). This was the final submission evaluation 
similar to the “private leaderboard” in Kaggle. In Kaggle, this “private leaderboard” is also 
immediate since one submits only the predictions. For our challenge, we ran the participants’ 
final submitted code on the blind test dataset, which took 3 weeks to complete for all final 
submissions. The reason for deviating from conventional Kaggle-style protocol by submitting 
only predictions is that unlike Kaggle we keep raw data confidential and do not provide it to 
participants at any point. 
 

3) Results 

At the completion of the challenge, 7 teams submitted their final algorithms which were 
evaluated against the blind test set. Upon review of all final submissions, we found that 5 out 
of the 7 teams had made valid submissions as per the challenge rules. These 5 teams were 
named Ids_cpmp, Otameshi, AI4MH, Team SG, and EpiInsights. They were considered in the 
final evaluation stage. Several measures of performance obtained using the validation dataset 
(leaderboard) and the blind test set are provided in Figure 2: evaluation metric (E), sensitivity 
(S), false alarm rate (FA/24h) as well as a sensitivity vs. FA/24h plot for all 5 submissions. It 
can be seen that the performance of the 5 submissions is similar in both validation and test 
sets, indicating that there is no evidence of overfitting. 

 

 

Figure 2: All 5 valid final submissions were tested against validation and blind test sets. The 
plots show the results for (a) evaluation metric (E), (b) sensitivity (S), (c) false alarm rate 
(FA/24h and (d) sensitivity (S) plotted as a function of FA/24h.  

Any automatic seizure detection system, be it a retrospective assistive labelling system or a 
real-time alert system, needs to be at least as sensitive as a human observer for it to be 
clinically relevant. This sensitivity goal for an automated system is 75% [24][36]. For false 
alarm rates equal to or lower than those of human observers the detection system could 
replace monitoring clinicians. For false alarm rates higher than those of human observers the 
system is not suitable to replace them, but for low enough false alarm rates such a system 



can be used as data reduction tool which decreases the amount of raw EEG data a human 
annotator needs to review. While unassisted human annotators will review the entirety of all 
raw EEG data, use of an assistive labelling system allows review of only those EEG segments 
which the system detects: both, correctly in terms of true positives (actual ictal segments) and 
incorrectly in form of false positives (false alarms, actual non-ictal segments). We call the total 
amount of raw EEG data composed by all accumulated false positive segments the annotation 
overhead, and the total duration of raw EEG data defined by all true positives the annotation 
ground truth. In the following section we show that 4 out of the 5 automatic seizure detection 
systems developed in this challenge could be used to reduce the annotation overhead by up 
to several orders of magnitude thus substantially decreasing the labelling time burden for 
human annotators. 

At their lowest false alarm rate levels none of the 5 final submission models reached 75% 
detection sensitivity thus rendering the developed algorithms unsuitable as real-time alert 
systems (Fig. 2). However, as part of their final solution, team Otameshi and Ids_cpmp 
introduced an engineering step which added synthetic false alarms (details provided in 
supplemental information). This step included a hyperparameter which allowed for the tuning 
of sensitivity and FA rate. We removed this engineering step for producing the results shown 
in Figure 2 to be able to assess detection performance at the lowest achievable false alarm 
rates for all submissions. We then added the engineering step back into the final submissions 
of all 5 teams which allowed an increase in sensitivity to above the 75% level threshold for all 
submissions except for the one from team AI4MH which is therefore excluded from the 
following analyses (details provided in supplemental information). The total false alarm 
numbers per 24h obtained by each of these four submissions at 75% sensitivity are shown in 
Figure 4a and yield the shortest achievable annotation overheads for each automatic seizure 
detection system as depicted in Figure 3.  

 

Figure 3: In order to label 24h of EEG recordings an unassisted human annotator has to 
review all 24h of raw EEG data (top). Using the systems developed in this challenge, the 
amount of data needing review is the sum of the seizure ground truth (correctly detected true 
positive actual seizure segments) plus the annotation overhead (incorrectly detected false 
positive segments). All 4 automatic systems operate at 75% detection sensitivity. A 
conservative upper bound approximation for the total seizure ground truth duration in a 24h 
raw EEG data recording is ~0.2% [22] or ~3min. The best models achieve a minimum 
annotation overhead of 7min which therefore allows to reduce the total amount of raw EEG 
data to be reviewed by a human annotator from 24h down to 10min or less. Note that the 
duration of seizure ground truth may fluctuate across patients, i.e. a patient might experience 
longer or more frequent seizure episodes on certain days which impacts the total duration of 
raw EEG data to be reviewed for that day. The annotation overhead however remains 
unaffected and will stay at the levels shown in the figure for all patients at all times.  



Teams Otameshi, EpiInsights and Team SG all achieve minimum annotation overheads of 
7min. In good approximation it can be assumed that on average ~0.2% or ~3min of a 
continuous 24h-long raw EEG recording describe ictal segments while 98.8% or 1437min of 
the raw data are correlated with non-ictal episodes [22]. For unassisted human labelling of 
24h of raw EEG data this means that the seizure ground truth is 3min and the annotation 
overhead is 1437min. Using the automatic labelling systems reduces the annotation overhead 
to 7min thus reducing the amount of total raw EEG data that needs to be reviewed by a human 
expert from 24h to 10min.  

Note that we do not claim this time to be the time that it would take a human annotator to label 
the data. Actual human annotation times are determined by annotation procedures, review 
protocols as well as the degree of expertise and practice of the reviewers. Regardless of these 
factors the assistive detection systems described above reduce the overall amount of data 
that needs to be reviewed by up to two orders of magnitude with a maximum achievable 
reduction factor of 142x (Figure 4b) and thus lead to a substantial decrease of the time and 
cost burden for all human annotation scenarios. 

 

 

Figure 4: An engineering step introducing a hyperparameter which allowed a trade-off 
between sensitivity and FA rate was included in the submissions of teams Otameshi and 
Ids_comp. This engineering step was applied to all 5 final submissions 4 of which thereby 
reached sensitivities of 75% or higher. (a) shows false alarm rates at the 75% detection 
sensitivity mark for those 4 models. (b) shows the reduction factors of raw EEG data that has 
to be reviewed by human annotators for each system. Team EpiInsights achieves the highest 
reduction factor of 142x. 

Further investigating the effect of the engineering step introduced by teams Otameshi and 
Ids_cpmp, we found that as more false alarms are included the sensitivity reaches a maximum 
and then decreases again. This effect can be attributed to the impact of the TAES evaluation 
metric which penalizes both low and high false alarms as explained above. Figure 5 plots the 
path from 75% sensitivity to maximum achievable sensitivity against false alarm rates for all 4 
submissions. With increasing false alarm rates, the respective data reduction factors decrease 
(Figure 6). Exploiting this effect allows the development of a tunable assistive labelling system: 
annotation sensitivities beyond 90% can be achieved but come at the cost of lower data 
reduction factors, i.e. the price for higher labelling sensitivity is longer data review time. This 
tunability allows clinical experts to cater the quality of their annotation services to healthcare 
provider and insurer specific frameworks: depending on the amount of billable time for data 
review and the amount of data to be reviewed, a custom data reduction factor can be 
calculated that compresses the total raw data to the exact size that can be reviewed during 
the billable time while at the same time optimizing annotation sensitivity.  



Note that three systems (Otameshi, EpiInsights and Team SG) allow for maximum detection 
sensitivities of 90.63%, 91.60%, and 91.57% respectively (Figure 7a) with data reduction 
factors of 28, 24 and 22 respectively. This reduces 24h of raw data to a 51.4min-long raw data 
segment to be reviewed by the human annotator (Figure 7b). Note that seizure ground truths 
will fluctuate across patients and over time which in turn causes fluctuating EEG data reduction 
factors. Hence, the developed assistive labelling systems will have the strongest annotation 
time saving impact for situations in which seizures are rare (short seizure ground truth) and 
normal brain activity is prevalent (large annotation overhead). Table 2 provides a summary of 
the performance parameters for the final valid submissions of all teams. 

 

 

Table 2: Overview of performance parameters achieved by the final models against the blind 
held-out test dataset after applying the engineering step introduced by team Otameshi. The 
far-right column lists the minimum achievable net amount of false positive data segments 
(annotation overhead) which each model produces at 75% detection sensitivity and which 
need to be reviewed by human experts together with the correctly detected true positives 
(seizure ground truth) for AI-assisted manual EEG labelling. 

 

 

Figure 5: FAs per 24h plotted against detection sensitivity going from 75% sensitivity level to 
the maximum achievable sensitivity for each algorithm. The TAES metric causes the maximum 
achievable sensitivity for the model of team Ids_cpmp to stay below 80%. 



 

Figure 6: Reduction factors of raw EEG data to be reviewed by a human annotator vs. 
detection sensitivity going from 75% to maximum achievable sensitivity values for each 
system. The models from teams Otameshi, EpiInsights and Team SG achieve maximum 
detection sensitivities of 90.63%, 91.60%, and 91.57% respectively and two-order of 
magnitude data reduction factors.  

 

 

Figure 7: (a) Applying the engineering step introduced by teams Otameshi and Ids_cpmp 
raises the maximum detection sensitivities to 90.63%, 91.60% and 91.57% respectively. This 
comes at the cost of increased false alarm rates and decreased data reduction factors which 
are shown in (b). Note that even at maximum sensitivity level the lowest data reduction factor 
(22, Team SG) still allows to compress 24h of raw EEG data down to a ~1h-short segment of 
raw EEG data to be reviewed by a human annotator. 

Throughout various crowdsourcing challenges, it has been observed that aggregating 
predictions from multiple algorithms improves over the best individual algorithm [37][38], a 



technique known as ensemble learning in the ML literature. The success of ensembles 
depends on various factors including the diversity and performance of individual algorithms 
[39]. We constructed several ensembles such as majority vote and the recent SUMMA 
algorithm [39] to evaluate all valid final submissions and compared their performance with the 
individual submissions. However, none of the ensembles performed better than the best 
individual submission in the ensemble. We mainly attribute this to the number of algorithms 
used for ensemble learning (5 algorithms) and the lack of sufficient diversity between these 
algorithms which is partly due to the fact that all the teams used the same training data. 

 

4) Discussion 

In this section we discuss the two core aspects of this study: (i) the performance of the model-
to-data crowdsourcing AI platform, and (ii) the assistive automatic EEG annotation system 
which was produced as part of the crowdsourced Deep Learning Epilepsy Detection 
Challenge. 

Investments by enterprises, medical institutions and academic organizations operating in the 
healthcare and life sciences sector regularly result in the generation of datasets which carry 
substantial information content and therefore have substantial monetary and strategic value. 
These datasets are often large, unstructured, and noisy which makes them uniquely primed 
for analysis through artificial intelligence technology. However, the abundance of data is not 
matched by an equally strong supply of data science resources capable of developing and 
applying AI to drive insights from the data. Crowdsourcing the analysis of the data can solve 
this resourcing problem and at the same time accelerates speed, innovation and broad 
reproducibility of AI solutions, a benchmarking feature which the medical AI field is in dire need 
of [11].  

As data owners intend to protect the value of their data, they are not willing to share it with 
open communities of solvers, ruling out the use of conventional ‘Kaggle-style’ AI crowd-
sourcing ecosystems which make challenge data directly available to the solver community.  
In the absence of an alternative collaborative infrastructure, many such datasets remain 
proprietary and unavailable for crowdsourced analysis and public benchmarking. In an effort 
to circumvent the need to publicly share their data and still be able to use conventional crowd-
sourcing platforms, some data owners have resorted to using redacted data for enabling 
external crowd-sourced challenges [40] which generally compromises the quality of the model 
solutions. In other scenarios companies may use conventional crowd-sourcing platforms 
internally [41] but in these cases, they exclusively rely on internal data scientist resources 
which limits size and efficiency of the solver community substantially and inhibits transparency 
and external verifiability of results.  

Our model-to-data crowdsourcing challenge platform overcomes these limitations by allowing 
participants to publicly build, test, evaluate and validate AI models on proprietary data while 
at the same time avoiding the need to grant them access to the data itself. The novelty of our 
platform lies in the fact that all steps and resources required from learning about the scientific 
use case and challenge design to performing data pre-processing, AI model development, 
testing, optimisation, and submission are fully integrated in one coherent workflow, eliminating 
all infrastructural and procedural overhead that is not related to developing AI models. The 
most important platform capability is the IBM Watson Studio ecosystem which automatically 
provisions all compute resources through the IBM Watson Machine Learning service and all 
data management resources through the IBM Cloud Object Storage service. Watson Studio 
also leverages the Jupyter notebook framework which provides a ready-made AI coding 
infrastructure for data scientists.  

The platform enables collaboration between data scientists whilst keeping proprietary or 
sensitive data secure and protected. Our platform accomplishes this by employing a model-
to-data approach in which the challenge datasets are never directly accessed by the 



participants who instead create models compliant with the formatting of the data based on a 
small sample data provided by the data owners. They then submit their sample models to a 
repository, residing within a secure cloud environment which is inaccessible to participants.  
There, and shielded from participants, the submitted models are trained and evaluated on the 
hidden data. Model performance is determined based on a pre-defined evaluation metric and 
the results are handed back to the respective participants. Following this scheme, the model-
to-data challenge platform keeps the data shielded behind a firewall at all times while 
facilitating model ingestion into the model evaluator and extraction of model performances out 
of it. We have demonstrated and tested the first working instance of our model-to-data platform 
with the Deep Learning Epilepsy Detection Challenge. Further work will focus on platform 
upgrades through additional features for increased data safeguarding and HIPAA (Health 
Insurance Portability and Accountability Act) compliance. We plan to opensource the platform 
and run regular crowdsourced deep learning challenges. 

The annotation models developed as part of the Deep Learning Epilepsy Detection Challenge 
by teams Otameshi, EpiInsights, Ids_cpmp and Team SG are capable of automatically filtering 
ictal segments out of raw EEG data with sensitivities that are comparable to human experts. 
Reaching this sensitivity regimen comes at the cost of a higher false alarm rate which, since 
it is substantially higher than the number of true positive samples, requires human experts to 
manually review all samples which the models detects for final annotation. Using these AI 
models as assistive filtering tools allows human data reviewers to cut down the amount of raw 
data that needs to be reviewed by up to two orders of magnitude. Only the collaborative 
combination of an automatic AI model and a human expert decision maker allows 
improvement of the efficiency of the EEG review and labelling process. This is a common 
example of how AI technology enters the realm of real-world applications: AI does not replace 
the human expert but rather serves as an assistive tool that enables faster and more efficient 
decision making.  

Note that neither one of the four top performing models nor ensembling versions of the models 
outperform all others. For example, the model of team EpiInsights yields the highest overall 
achievable sensitivity of 91.60% and largest data reduction factor of 142x at 75% sensitivity 
but it is the model of team Ids_cpmp that produces the highest data reduction factor of 44x at 
maximum sensitivity. The tunability of the system is key to its deployment configuration: the 
choice of analytical models depends on the target sensitivity level of the overall review and 
the amount of time which the human reviewer is willing to invest in the final review step.  

It is also important to note that we do not derive a quantitative statement on how much time 
exactly human reviewers will save using the developed automatic detection models. Data 
review processes, protocols and routines differ across institutions as do the experience and 
labelling performance levels of human reviewers. Furthermore, seizure frequencies per 24h 
vary across patients and over the course of monitoring time windows, and the more ictal 
samples a 24h raw data segment contains, the less room for raw data compression there is. 
These factors all affect the impact of using the automatic filtering system on the net time 
savings of human reviewers. Therefore, for this study we chose the net amount of raw EEG 
data that has to be reviewed by human annotators as a common parameter to assess the 
workload reduction which our system offers. Future work will test the applicability and 
benchmark the performance and generalisability of our automatic detection system across a 
variety of real-world clinical settings. 

Besides integrating our models into clinical processes as assistive annotation tools of historic 
data, future work will also focus on further reducing false positive rates while maintaining the 
sensitivity levels reported in this study. If false positive rates can be reduced to human levels 
of 1FA/24h [36] then the model could be used as a real-time seizure alert system.  

There exists a plethora of metric frameworks for assessing the seizure detection performance 
of machine learning models which, although they often use similar terminology, do not allow 
direct performance comparison of the respective algorithms. An analysis of all popular 



performance metrics is beyond the scope of this paper and has been done elsewhere [24]. 
However, we provide a simple example to illustrate this point: in a first scenario a deep learning 
model is used to detect the occurrence of a seizure event which is defined by seizure onset 
and end times. In a second scenario a deep learning model is used to detect seizure durations 
in the very same dataset. Both scenarios will describe the employed algorithms as seizure 
detection models and might even use the same statistical parameters to report on their 
performance. However, in the first scenario the algorithm will only have to detect one single 
ictal data sample within a seizure segment to claim success. In the second scenario the 
success of the algorithm will depend on how many ictal samples it detects correctly within a 
seizure segment. Awareness of this context and the underlying use case is crucial for being 
able to meaningfully compare the performance of machine learning models and to choose an 
appropriate validation metric for an experiment in the first place.  

In this study we applied the Time-Aligned Event Scoring (TAES) metric which has been 
custom developed to assess the performance of detection algorithms in scenarios where both, 
detecting the number of events and their duration are equally important. Therefore, and in 
order to allow meaningful benchmarking, we stayed within the TAES framework whenever 
comparing the performance of models described in this study against state-of-the-art 
technology.  

Future work will focus on assessing the suitability of our assistive EEG annotation system in 
real-world clinical settings and on upgrading and open sourcing our model-to-data 
crowdsourcing AI challenge platform based on the insights we gained from running the Deep 
Learning Epilepsy Detection Challenge. 

 

Highlights:  

▪ We developed and tested a novel cloud-based platform for running crowdsourced 
artificial intelligence challenges. The platform uses a model-to-data technique to 
prevent the solver community from downloading or directly accessing the challenge 
data while at the same time offering a notebook framework for developing models and 
a suite of machine learning and data pre- and postprocessing tools. 

▪ Running the crowdsourced Deep Learning Epilepsy Detection Challenge in 
collaboration with Temple University, we enlisted a total of 87 scientists and software 
engineers from 14 research centres around the world to build deep learning models 
for automatically detecting seizures in the largest existing corpus of 
electroencephalography (EEG) data. The best performing models demonstrated the 
feasibility of an assistive EEG annotation tool that could reduce the amount of raw EEG 
data to be reviewed by human experts by a factor of 142x. 
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Figure and Table Legends:  

Figure 1: A block diagram of the high-level architecture of the custom-built challenge platform 
that depicts data and model flow during challenge operation. In this model-to-data paradigm 
challenge participants at no point download or access the data directly. Instead they create 
and submit models to the platform (green solid arrows) which automatically organises training 
and testing and then provides feedback on model performance to participants (orange dashed 
arrows). This is fundamentally different to conventional crowdsourced challenge setups. 

Figure 2: All 5 valid final submissions were tested against validation and blind test sets. The 
plots show the results for (a) evaluation metric (E), (b) sensitivity (S), (c) false alarm rate 
(FA/24h and (d) sensitivity (S) plotted as a function of FA/24h.  



Figure 3: In order to label 24h of EEG recordings an unassisted human annotator has to 
review all 24h of raw EEG data (top). Using the systems developed in this challenge, the 
amount of data needing review is the sum of the seizure ground truth (correctly detected true 
positive actual seizure segments) plus the annotation overhead (incorrectly detected false 
positive segments). All 4 automatic systems operate at 75% detection sensitivity. A 
conservative upper bound approximation for the total seizure ground truth duration in a 24h 
raw EEG data recording is ~0.2% [22] or ~3min. The best models achieve a minimum 
annotation overhead of 7min which therefore allows to reduce the total amount of raw EEG 
data to be reviewed by a human annotator from 24h down to 10min or less. Note that the 
duration of seizure ground truth may fluctuate across patients, i.e. a patient might experience 
longer or more frequent seizure episodes on certain days which impacts the total duration of 
raw EEG data to be reviewed for that day. The annotation overhead however remains 
unaffected and will stay at the levels shown in the figure for all patients at all times. 

Figure 4: An engineering step introducing a hyperparameter which allowed a trade-off 
between sensitivity and FA rate was included in the submissions of teams Otameshi and 
Ids_comp. This engineering step was applied to all 5 final submissions 4 of which thereby 
reached sensitivities of 75% or higher. (a) shows false alarm rates at the 75% detection 
sensitivity mark for those 4 models. (b) shows the reduction factors of raw EEG data that has 
to be reviewed by human annotators for each system. Team EpiInsights achieves the highest 
reduction factor of 142x. 

Figure 5: FAs per 24h plotted against detection sensitivity going from 75% sensitivity level to 
the maximum achievable sensitivity for each algorithm. The TAES metric causes the maximum 
achievable sensitivity for the model of team Ids_cpmp to stay below 80%. 

Figure 6: Reduction factors of raw EEG data to be reviewed by a human annotator vs. 
detection sensitivity going from 75% to maximum achievable sensitivity values for each 
system. The models from teams Otameshi, EpiInsights and Team SG achieve maximum 
detection sensitivities of 90.63%, 91.60%, and 91.57% respectively and two-order of 
magnitude data reduction factors. 

Figure 7: (a) Applying the engineering step introduced by teams Otameshi and Ids_cpmp 
raises the maximum detection sensitivities to 90.63%, 91.60% and 91.57% respectively. This 
comes at the cost of increased false alarm rates and decreased data reduction factors which 
are shown in (b). Note that even at maximum sensitivity level the lowest data reduction factor 
(22, Team SG) still allows to compress 24h of raw EEG data down to a ~1h-short segment of 
raw EEG data to be reviewed by a human annotator. 

Table 1: Number and types of samples in training, validation and blind test sets. Detailed 
demographic distributions are provided in [22]. 

Table 2: Overview of performance parameters achieved by the final models against the blind 
held-out test dataset after applying the engineering step introduced by team Otameshi. The 
far-right column lists the minimum achievable net amount of false positive data segments 
(annotation overhead) which each model produces at 75% detection sensitivity and which 
need to be reviewed by human experts together with the correctly detected true positives 
(seizure ground truth) for AI-assisted manual EEG labelling. 

 

 

 

 



 

Supplemental Information 

 

I) Challenge timeline: 

The IBM Deep Learning Epilepsy Detection Challenge was launched on September 12, 2018 
and ran for 24 weeks. A detailed challenge timeline is provided in Figure S1. 

 

 
Figure S1: Timeline for the IBM Deep Learning Epilepsy Detection Challenge from launch to 
completion. During the Competitive Phase participants submitted their models for evaluation 
on the validation data set. In the Evaluation Phase teams were first submitting their final 
models during the Submission Period. During the Scoring Period the challenge organizing 
team validated valid final submissions on the blind test set which had been shielded from 
participants at all times. Only model performance on the blind test set was used for final 
scoring.  
 
 

II) Procedure for selecting the challenge winner: 

At the completion of the challenge, 7 teams submitted valid final solutions as per the challenge 
rules. Teams were allowed to make multiple submissions during the final submission stage. 
To determine which team had won the challenge, we chose the single best submission per 
team out of all the submissions a team had made and evaluated the selected models 
independently on the blind test set. The model selection and evaluation processes are 
described here below: 

1. State-of-the-art performance of machine learning based automatic seizure detection 
models applied to the challenge dataset and using the same TAES evaluation metric 
stands at 40.29% sensitivity at a false alarm rate of 5.7 FA/24h [36]. While this false 
alarm rate is approaching that of human experts, the corresponding sensitivity level 
lacks any clinical relevance. 75% detection sensitivity constitutes the threshold for 
clinical applicability of an automatic seizure detection system [24]. Therefore, to be 
eligible for final ranking as per the challenge rules submitted models had to achieve at 



least 75% detection sensitivity on the blind test set. This was a hard requirement: 
submissions achieving lower than 75% sensitivity on the blind test set were not 
considered for final rankings regardless of their evaluation metric E scores. 

2. Models satisfying step 1 were then ranked by their evaluation metric E with the lowest 
E ranking highest.  
 

Table ST1 shows the performance results of all seven valid final submitted models on the blind 
test set.  
 

 

Table ST1: Performance results of all seven valid final submissions as validated on the blind 
test set. No team reached the 75% sensitivity threshold thus no challenge winner was 
declared. 

No team reached the required 75% sensitivity mark, and as a result no team was declared the 
official challenge winner. However, team Otameshi introduced an optional engineering step 
as part of their final submission (step 3.3 in the process flow chart below) which periodically 
added synthetic false alarms and included a hyperparameter for tuning sensitivity and false 
alarm rates. This feature allowed to demonstrate feasibility of a tunable annotation assistant 
with sensitivities beyond 75%. We further investigated the impact of the engineering step when 
applied to all valid final submissions and provide the results of this exploration in Figure S2 
and Figure S3 below. 

 

III) Process flow for the solution of team Otameshi: 

1. Pre-processing: 
 
1.1 While the original problem setting is to predict whether or not a given one second interval 
corresponds to an ictal or normal state in the raw EEG data, in this solution the label for a 
given one-sec interval at time T is predicted through an 4-sec segment of EEG data (T-3, T-
2, T-1, and T). 
 
1.2 To mitigate the imbalance of true and false labels, the true label data are increased using 
oversampling by a factor of 1.6667. 
 
1.3 While the EEG data was given in a form of 'FP1-F7;F7-T3;T3-T5;T5-O1;FP2-F8;F8-T4;T4-
T6;T6-O2;T3-C3;C3-CZ;CZ-C4;C4-T4;FP1-F3;F3-C3;C3-P3;P3-O1;FP2-F4;F4-C4;C4-
P4;P4-O2', where 20 electrode differentials are computed, in this solution more combinations 
of electrode differentials are computed to increase accuracy. 



 
1.4 Each 4-sec EEG data segment is divided into four 1-sec intervals, and Fast Fourier 
Transform is applied to each 1-sec data segment. 
 
2. Model: 
 
2.1 The solution uses a convolutional neural network (a combination of convolution, max 
pooling, and drop out) for each 2-sec interval of data both for raw EEG data and FFT outputs 
(note that the 4-sec interval data is divided into four 1-sec intervals during pre-processing). 
 
2.2 A dense network is used to combine the outputs of the neural networks. 
 
3. Post-processing: 
 
3.1 The output of the trained model is averaged.  The prediction value at time T is then 
calculated as an average in the time interval between T-14 and T+14. 
 
3.2 An ictal or normal label is assigned to each 1-sec time interval based on the average value 
calculated in step 3.11 by using a threshold value of 0.12. 
 
Optional Engineering Step 3.3 An artificial false ictal label is inserted every 170 seconds. 
 
3.4 Remove ictal intervals shorter than 30 seconds. 

 

Figure S2: Variation of insertion intervals of synthetic false alarms affect the detection 
sensitivity. As demonstrated here for the submission of team Otameshi, the performance of 
the model generalizes to the blind test set when the hyperparameter of the engineering step 
is tuned on the validation set. 

 



 

 

Figure S3: The engineering step introduced by team Otameshi generalizes across all seven 
final submissions of the other teams. (a) Insertion intervals of synthetic false alarms affect the 
detection sensitivity for all submissions following the same trend as shown for team Otameshi 
in Figure S2. (b) Insertion of synthetic false alarms impacts the number of total false alarms 
per 24h as well as the detection sensitivity. 
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Table2



results w/o artificially inserted labels

[7]

Scoring of best final submissions on blind test set 

Team Evaluation metric Sensitivity FA/24hours

Ids_cpmp 1.94 53.25 104.06

Team SG 3.21 65.40 211.08

AI4MH 3.51 14.68 51.54

LateStarters 3.51 45.79 161.31

Otameshi 3.70 57.45 215.83

AP 5.93 45.16 268.33

EpiInsights 7.14 55.64 398.24

TableST1


