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Background: Assistive automatic seizure detection can empower human annotators to shorten patient moni-
toring data review times. We present a proof-of-concept for a seizure detection system that is sensitive, auto-
mated, patient-specific, and tunable to maximise sensitivity while minimizing human annotation times. The
system uses custom data preparation methods, deep learning analytics and electroencephalography (EEG)
data.
Methods: Scalp EEG data of 365 patients containing 171,745 s ictal and 2,185,864 s interictal samples
obtained from clinical monitoring systems were analysed as part of a crowdsourced artificial intelligence (AI)
challenge. Participants were tasked to develop an ictal/interictal classifier with high sensitivity and low false
alarm rates. We built a challenge platform that prevented participants from downloading or directly access-
ing the data while allowing crowdsourced model development.
Findings: The automatic detection system achieved tunable sensitivities between 75.00% and 91.60% allowing
a reduction in the amount of raw EEG data to be reviewed by a human annotator by factors between 142x,
and 22x respectively. The algorithm enables instantaneous reviewer-managed optimization of the balance
between sensitivity and the amount of raw EEG data to be reviewed.
Interpretation: This study demonstrates the utility of deep learning for patient-specific seizure detection in
EEG data. Furthermore, deep learning in combination with a human reviewer can provide the basis for an
assistive data labelling system lowering the time of manual review while maintaining human expert annota-
tion performance.
Funding: IBM employed all IBM Research authors. Temple University employed all Temple University
authors. The Icahn School of Medicine at Mount Sinai employed Eren Ahsen. The corresponding authors
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1. Introduction

This decade has seen an ever-growing number of scientific fields
benefitting from the advances in machine learning technology and
tooling. More recently, this trend reached the medical domain [1],
with applications ranging from cancer diagnosis [2,3], prediction of
acute kidney injury [4], detection of diabetic retinopathy [5], mining
of electronic health records [6] to brain-machine-interfaces [7,8].
While Kaggle has pioneered the crowdsourcing of machine learning
challenges to incentivize data scientists from around the world to
advance algorithm and model design, the increasing complexity of
healthcare domain problems demands interdisciplinary teams with
expertise in data science, the problem domain, and competent soft-
ware engineers with access to large compute resources. Teams or
people who meet these criteria are few and far between, leading to a
small pool of possible participants and a loss of experts dedicating
their time to solving important problems. Participation is even fur-
ther restricted in the context of any challenge run on confidential use
cases or with sensitive data.
tion of artificial intelligence
edicine (2021), https://doi.o
In order to protect such sensitive and proprietary data, while at
the same time enabling a crowdsourced challenge, we have recently
introduced a challenge ecosystem that utilizes the so-called model-
to-data paradigm pioneered by the DREAM (Dialogue for Reverse
Engineering Assessments and Methods) Challenges [9,10]. This
approach allows the solver community to submit their models to the
platform which will then autonomously organize model training and
testing in a secure cloud environment and provide feedback on
model performance to participants. Solvers can then use the model
performance to improve their algorithms. In this scheme, the partici-
pants cannot download or directly access the challenge data at any
point but have the full suite of crowdsourced challenge tools at their
disposal. This challenge concept opens the door to running crowd-
sourced challenges and to enabling broad public benchmarking
against proprietary or sensitive datasets which cannot be made pub-
licly available [11]. Using this idea, we recently designed and ran the
Deep Learning Epilepsy Detection Challenge to crowdsource the
development of an automated labelling system for brain recordings,
aiming to advance epilepsy research.

Epilepsy is a neurological disease that affects over 1% of the world
population [12]. Patients suffer from sudden and unexpected seizures
which impact their physical health and mental wellbeing [13]. Being
a highly individualized condition, its expression changes from patient
to patient. Even a specific patient’s pathology can vary over time. This
makes adequate diagnosis, treatment, and disease management
extremely challenging: one third of all epilepsy patients suffer from
refractory epilepsy. Two-thirds of patients respond to medication in
some way at some point in their journey, but oftentimes the little
understood evolving nature of the disease leads to fading or transient
therapeutic control [12].

The most common method of tackling this challenge is to monitor
patients continuously and log disease episodes of relevance in disease
diaries [14]. These longitudinal data repositories can then be used to
investigate and adjust the effect of medication in quasi-real-time,
and to study the correlation between treatment regimens and disease
progression. While this data-driven approach to treatment manage-
ment and in-situ care optimization is seen as key to fundamentally
changing the success of treatment and efficiency of clinical trials [15]
until recently, real-world implementations of disease diaries have
been entirely manual and thus highly inefficient. Manually created
disease diaries are only approximately 50% accurate [16]. This is not
rooted in sloppy reporting techniques. It is the individualized and
incapacitating nature of the disease itself that leaves patients unable
to recognize, remember, or keep track of their own seizures. That
makes it impossible for untrained observers to recognize and
describe seizure episodes in clinically actionable ways [15]. In order
to overcome this challenge, and to leverage a plethora of wearable
and mobile sensing platforms, the field has turned to exploring the
use of machine learning techniques for the development of automatic
patient monitoring systems [17].

Amongst a broad spectrum of sensor modalities ranging from
video cameras to smart watches [18], the electroencephalogram
(EEG), which uses scalp electrodes, is considered to be the gold stan-
dard for seizure monitoring in clinical as well as non-clinical environ-
ments [13]. However, while EEG monitoring systems have evolved
from relying on intracranial implanted electrodes to use of non-inva-
sive clinical and non-clinical wearable devices, automatic annotation
of EEG data remains a challenging machine learning problem. Pri-
mary reasons for this include low signal to noise ratio, movement
artefacts, poor electrical conduction and nonlinearly distorted
systems for assisting neurologists with fast and accurate annotations
rg/10.1016/j.ebiom.2021.103275
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crosstalk between spatially adjacent sensors. Disease-specific intrica-
cies such as the highly individualized profiles of seizure patterns
make generalizability of detection models across patients challeng-
ing. As a result, in today’s practice, EEGs are still interpreted manu-
ally, or ‘read’ by trained neurologists. The associated time and cost
burdens are substantial and account for approximately 5% of the total
hospital charges for epilepsy patients admitted to Intensive Care
Units (ICUs) in the US [13]. Furthermore, doctors responsible for this
highly repetitive and time-consuming process find themselves
caught between the equally undesirable options of either having to
limit the time they can devote to attend to their patients [19], reduc-
ing the duration of monitoring sessions or reducing the amount of
data to be manually reviewed [13].

A variety of machine learning (ML)-based automatic EEG annota-
tion systems have been proposed [13,20] to reduce this burden. Of
special interest are deep-learning models as they can learn to auto-
matically recognise different seizure patterns for individual patients
which allows to calibrate these detection algorithms to patient-spe-
cific disease expressions. Some have been deployed and tested in
clinical scenarios [21,22]. Clinical acceptance of this technology has
been slow [23]. The lack of commonly adopted performance metrics
to evaluate performance and compare to human expert reviewers
[24] has inhibited broad adoption of these systems in critical care set-
tings. Generalisability of performance across datasets collected at dif-
ferent institutions has been problematic also [13].

Using one of the world’s largest EEG datasets, the TUH Seizure
Corpus [25,26], the Deep Learning Epilepsy Detection Challenge
tasked participants to develop deep learning models for automatic
annotation of epileptic seizure signals in raw EEG data with maxi-
mum sensitivity and minimum false alarm rates. Using the Time-
Aligned Event Scoring (TAES) metric, an evaluation framework cus-
tom-designed to score high-resolution automatic EEG annotation
algorithms [24], we assessed the potential of these annotation mod-
els for use by clinical neurologists as assistive labelling systems for
raw EEG monitoring data.

In the following sections we describe the architecture and func-
tionality of our custom-developed crowdsourcing challenge platform,
with a special focus on its model-to-data feature, the design and exe-
cution of the Deep Learning Epilepsy Detection Challenge, as well as
the scientific outcomes and validation results of the best performing
participant models.

2. Methods

With a goal to run a challenge that mobilizes the largest possible
pool of participants globally across IBM, we designed a crowdsourced
challenge called the Deep Learning Epilepsy Detection Challenge. Par-
ticipants were asked to develop an automatic labelling system to
reduce the time a clinician would need to diagnose patients with epi-
lepsy. Labelled data for the challenge were provided by Temple Uni-
versity Hospital (TUH) [22,26]. We partitioned this data to create
training, validation and blind test sets which participants could work
with only through our platform.

To provide an experience with a low barrier of entry, and to dem-
onstrate that following the model-to-data paradigm a crowdsourced
challenge can run efficiently without participants ever having to
directly access or download the challenge data, we designed a gener-
alizable challenge platform based on the following principles: (1)
eliminate the need of in-depth knowledge of the specific domain. (i.e.
no participant should need to be a neuroscientist or epileptologist);
(2) eliminate the need of more than basic programming knowledge
(i.e. no participant should need to learn how to process fringe data
formats and stream data efficiently), (3) eliminate the need for partic-
ipants to provide their own computing resources, and (4) eliminate
the need for participants to download or directly access the challenge
data in any way.
Please cite this article as: S. Roy et al., Evaluation of artificial intelligence
of scalp electroencephalography data, EBioMedicine (2021), https://doi.o
The platform guided participants through the entire process from
sign-up to model submission, facilitated collaboration, and provided
instant feedback to the participants through data visualization and
intermediate online leaderboards. The competitive phase of the Deep
Learning Epilepsy Detection Challenge ran for 6 months. Twenty-five
teams, with a total number of 87 data scientists and software
engineers from 14 global IBM locations participated. Seven teams
submitted final solutions five of which were valid final submissions
as per the challenge rules.

2.1. Study design

2.1.1. The Deep Learning Epilepsy Detection Challenge platform
The architecture of the platform that was designed and developed

as well as data and model flow through it during the challenge are
shown in Fig. 1. The entire system consists of a number of interacting
components:

(1) A web portal serves as the entry point to challenge participa-
tion, providing challenge information, such as timelines and chal-
lenge rules, scientific background information and a description of
the data used for this challenge. The portal also facilitated the forma-
tion of teams and provided participants with an intermediate leader-
board of submitted results and a final leaderboard at the end of the
challenge. A screenshot of the starting page of the web portal can be
found in the supplemental information (Fig. S13). (2) IBM Watson
Studio [27] is the umbrella term for a number of services offered by
IBM and accessible to participants. Upon creation of a user account
through the web portal, an IBM Watson Studio account
was automatically created for each participant that gave users
access to the (3) IBM Data Science Experience (DSX) platform which
hosted a user interface and starter kit and formed the main compo-
nent for designing and testing models during the challenge. DSX
allows for real-time collaboration on shared notebooks between
team members. A starter kit in the form of Jupyter notebooks [28],
supporting the popular deep learning libraries TensorFLow [29] and
PyTorch [30], was provided to all teams to guide them through the
challenge process. Upon instantiation, the starter kit loaded the nec-
essary python libraries and custom functions for the invisible integra-
tion with (4) IBM Cloud Object Storage (COS) [31] and the analytics
engine (5) Watson Machine Learning (WML). In dedicated notebook
cells, participants could develop custom pre-processing code (includ-
ing custom montages), machine learning models, and post-process-
ing algorithms. The starter kit provided instant feedback about
participants' custom routines through data visualizations. Using the
notebook only, teams were able to run their code on WML, making
use of a compute cluster of IBM's resources. The starter kit also
enabled submission of the final code to a data storage to which only
the challenge team had access. WML provided access to shared com-
pute resources (Graphics Processing Units, GPUs). Code was bundled
automatically into the starter kit and deployed onWML. WML in turn
had access to shared storage from which it requested recorded data
and to which it stored the participant's code and trained models. The
data for this challenge resided in COS. Note that using the starter kit,
participants submitted their model code to the platform which
autonomously organized model training and validation on the raw
data and provided back model performance results to participants.
The participants could then investigate this feedback in order to bet-
ter design custom algorithms. This approach is called a model-to-
data paradigm which unlike in Kaggle-style challenge scenarios
keeps data shielded from the solver community while at the same
time allowing a crowdsourced approach to model development. (6)
Utility Functions were loaded into the starter kit at instantiation. This
set of functions included code to pre- and post-process data into a
more common format while preserving all seizure related informa-
tion, to optimize streaming through the use of the NutsFlow and
NutsML libraries [32], and to provide seamless access to all services
systems for assisting neurologists with fast and accurate annotations
rg/10.1016/j.ebiom.2021.103275
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Table 1
Number and types of samples in training, validation and blind test sets.
Detailed demographic distributions are provided in [22].

Training set Validation set Blind test set

Patients 265 50 50
EDF files 2032 1032 1022
Seizure [s] 76,517 55,764 39,464
Non-seizure [s] 1,119,863 562,331 503,670
Total [s] 1,196,381 618,096 543,134

Fig. 1. A block diagram of the high-level architecture of the custom-built challenge platform that depicts data and model flow during challenge operation. In this model-to-data par-
adigm challenge participants at no point download or access the data directly. Instead they create and submit models to the platform (green solid arrows) which automatically
organises training and testing and then provides feedback on model performance to participants (orange dashed arrows). This is fundamentally different to conventional crowd-
sourced challenge setups. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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used. (7) Final code scoring after completion of the challenge was
conducted in an automated way as soon as code was submitted
through the starter kit.

2.1.2. Data sources and preparation
All data used in this study is available as open source data at the

web site: https://www.isip.piconepress.com/projects/tuh_eeg/html/
downloads.shtml. This data was collected at Temple University Hos-
pital, a research and teaching hospital. The study has been conducted
under the approval of the Temple University Institutional Review
Board (IRB) under IRB No. 20,774, which supports the release of data
once it has been properly anonymized. The IRB has been in existence
since 2012 and has been renewed on an annual basis (currently
through 2021). Patients consent to the use of their data for research
and teaching through a written consent as part of their admission
record at Temple Hospital. The data has been carefully anonymized
before being released from Temple Hospital so that a patient’s iden-
tity cannot be reconstructed from the data. Files mapping the anony-
mized data to identifiable data are maintained with Temple
Hospital’s Health Insurance Portability and Accountability Act
(HIPAA)-protected network and never leave the hospital. The study
has been conducted in compliance with this ethical approval.

The TUH EEG Seizure Corpus v1.2.0 [22] which contains scalp EEG
records of 315 patients with annotated seizure times was split into
training and validation datasets for the challenge (Table 1). The data-
set is composed of 822 monitoring sessions with 280 sessions con-
taining a total of 2012 seizures. Annotation protocols including
explanations of data collection and split processes are provided on
the TUH Open Source EEG Resources platform [25]. The validation
dataset was used to determine team rankings on the intermediate
leaderboard during the competitive phase (Fig. S1, supplemental
information). Another dataset containing annotated data from 50
patients following the same format as v1.2.0 was used as a blind
held-out test dataset (Table 1) for final team rankings on the final
leaderboard at the end of the challenge (Fig. S1, supplemental infor-
mation). After completion of the challenge this blind test dataset was
merged with v1.2.0 and made publicly available as version v1.2.1 of
Please cite this article as: S. Roy et al., Evaluation of artificial intelligence
of scalp electroencephalography data, EBioMedicine (2021), https://doi.o
the TUH seizure corpus thus allowing reproducibility of and continu-
ous benchmarking against the results published in this paper.

The size of training, validation, and blind test sets are shown in
Table 1. Training and validation datasets were composed to reflect a
balanced demographic profile (49.5% of patients in the training data-
set are male, 44% of patients in the validation dataset are male, fur-
ther demographic distributions for the datasets are provided in [22]).
Training and validation sets were used during the competitive phase
of the challenge following the model-to-data paradigm described
above not allowing participants any direct access to or downloading
of any of the data. The blind, held-out test set was not accessible to
participants’ models at any time during the challenge and was only
used once by the challenge organising team to evaluate the submit-
ted models during the scoring phase after the completion of the com-
petitive phase (see Fig. S1 supplemental information for challenge
timeline).

The TUH EEG Seizure Corpus consists of EEG sessions recorded
according to the 10/20 electrode configuration [33] and utilizing the
European Data Format (EDF) [26]. We converted the recorded EEG
signal into a set of montages, or differentials, of electrode signals
based on guidelines proposed by the American Clinical Neurophysiol-
ogy Society [34]. In this challenge, we used the transverse central
parietal (TCP) montage system for accentuating spike activity which
has been shown to improve performance in EEG classification tasks
[35].
systems for assisting neurologists with fast and accurate annotations
rg/10.1016/j.ebiom.2021.103275
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2.1.3. Evaluation procedure
The evaluation of machine learning algorithms for seizure detec-

tion lacks standardization. Typically, two different types of methods
are used: epoch-based and term-based. Epoch-based methods com-
pute a summary score decision per unit of time. Term-based methods
score on an event basis and do not count individual frames.

Both methods have disadvantages. While epoch-based scoring
generally weighs duration of events more heavily, term-based meth-
ods are a permissive way of scoring and can result in artificially high
sensitivities. In this challenge, we use a method called Time-Aligned
Event Scoring (TAES) that utilizes concepts of both epoch-based and
term-based methods. It considers percentage overlap between refer-
ence and hypothesis and weighs errors accordingly. The TAES metric
is described in detail in [24]. Note that since TAES weighs both the
number and duration of identified seizures, the sensitivity vs. false
positive profile is not the same as for standard methods where sensi-
tivity typically increases with an increasing false positive rate. In
TAES the sensitivity is penalized at both low and high false positives.
For low false alarms the sensitivity is low since enough seizures are
not being discovered by the classifier. At high false alarm rates, since
most samples are marked as seizures, although the total duration of
identified seizures is high, the number of unique seizures identified is
low and thus TAES again penalizes the sensitivity value.

Evaluation Metric: The two qualities of an automatic seizure detec-
tion system should be high sensitivity and low false alarm rate. For
the purpose of this challenge, we use the following metric to combine
these two parameters into an evaluation metric Ewith E = (FA / S) - ɛ *
S where FA is False Alarm per 24 h, S is Sensitivity, and ɛ is a positive
constant. The best solution will have the smallest E. Note that E has
two contributing terms. The first term FA/S ensures that systems with
lower FA and higher S are preferred. The second term ensures that
higher S solutions are preferred if for two systems the (FA/S) ratio is
same. This formula constitutes the pre-defined objective function for
measuring success and remained unchanged during the course of
this challenge.

Scoring: During the competitive phase of the challenge scoring
happened instantaneously: Once a model had been trained, it was
evaluated using a validation data set and the score was submitted,
Fig. 2. All 5 valid final submissions were tested against validation and blind test sets. The pl
(FA/24 h and (d) sensitivity (S) plotted as a function of FA/24 h.

Please cite this article as: S. Roy et al., Evaluation of artificial intelligence
of scalp electroencephalography data, EBioMedicine (2021), https://doi.o
displayed and ranked against other participants’ models in the lead-
erboard section of the challenge portal. During the evaluation phase
(i.e. after completion of the competitive phase) we gave participants
a 2-week time window to submit their final trained model. We
extracted the pre-processing model and post-processing code from
each submission and ran these models on a held-out blind test data-
set (to which participants had not had access to at any point during
the challenge). This was the final submission evaluation similar to
the “private leaderboard” in Kaggle. In Kaggle, this “private leader-
board” is also immediate since one submits only the predictions. For
our challenge, we ran the participants’ final submitted code on the
blind test dataset, which took 3 weeks to complete for all final sub-
missions. The reason for deviating from conventional Kaggle-style
protocol by submitting only predictions is that unlike Kaggle we keep
raw data confidential and do not provide it to participants at any
point.

2.1.4. Role of funding source
The funders had no role in the design and conduct of the study;

collection, management, analysis, and interpretation of the data;
preparation, review, or approval of the manuscript; and decision to
submit the manuscript for publication.

3. Results

At the completion of the challenge, 7 teams submitted their
final algorithms which were evaluated against the blind test set.
Upon review of all final submissions, we found that 5 out of the
7 teams had made valid submissions as per the challenge rules.
These 5 teams were named Ids_cpmp, Otameshi, AI4MH, Team
SG, and EpiInsights. They were considered in the final evaluation
stage. Several measures of performance obtained using the valida-
tion dataset (leaderboard) and the blind test set are provided in
Fig. 2: evaluation metric (E), sensitivity (S), false alarm rate (FA/
24 h) as well as a sensitivity vs. FA/24 h plot for all 5 submis-
sions. It can be seen that the performance of the 5 submissions is
similar in both validation and test sets, indicating that there is no
evidence of overfitting.
ots show the results for (a) evaluation metric (E), (b) sensitivity (S), (c) false alarm rate

systems for assisting neurologists with fast and accurate annotations
rg/10.1016/j.ebiom.2021.103275
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Fig. 3. In order to label 24 h of EEG recordings an unassisted human annotator has to review all 24 h of raw EEG data (top). Using the systems developed in this challenge, the
amount of data needing review is the sum of the seizure ground truth (correctly detected true positive actual seizure segments) plus the annotation overhead (incorrectly detected
false positive segments). All 4 automatic systems operate at 75% detection sensitivity. A conservative upper bound approximation for the total seizure ground truth duration in a
24 h raw EEG data recording is ~0.2% [22] or ~3 min. The best models achieve a minimum annotation overhead of 7 min which therefore allows to reduce the total amount of raw
EEG data to be reviewed by a human annotator from 24 h down to 10 min or less. Note that the duration of seizure ground truth may fluctuate across patients, i.e. a patient might
experience longer or more frequent seizure episodes on certain days which impacts the total duration of raw EEG data to be reviewed for that day. The annotation overhead how-
ever remains unaffected and will stay at the levels shown in the figure for all patients at all times.

ARTICLE IN PRESS
JID: EBIOM [m5G;March 18, 2021;12:57]

6 S. Roy et al. / EBioMedicine 00 (2021) 103275
Any automatic seizure detection system, be it a retrospective
assistive labelling system or a real-time alert system, needs to be at
least as sensitive as a human observer for it to be clinically relevant.
This sensitivity goal for an automated system is 75% [24,36]. For false
alarm rates equal to or lower than those of human observers the
detection system could replace monitoring clinicians. For false alarm
rates higher than those of human observers the system is not suitable
to replace them, but for low enough false alarm rates such a system
can be used as data reduction tool which decreases the amount of
raw EEG data a human annotator needs to review. While unassisted
human annotators will review the entirety of all raw EEG data, use of
an assistive labelling system allows review of only those EEG seg-
ments which the system detects: both, correctly in terms of true posi-
tives (actual ictal segments) and incorrectly in form of false positives
(false alarms, actual non-ictal segments). We call the total amount of
raw EEG data composed by all accumulated false positive segments
the annotation overhead, and the total duration of raw EEG data
defined by all true positives the annotation ground truth. In the fol-
lowing section we show that 4 out of the 5 automatic seizure detec-
tion systems developed in this challenge could be used to reduce the
annotation overhead by up to several orders of magnitude thus sub-
stantially decreasing the labelling time burden for human annotators.

At their lowest false alarm rate levels none of the 5 final submis-
sion models reached 75% detection sensitivity thus rendering the
developed algorithms unsuitable as real-time alert systems (Fig. 2
(b)). However, as part of their final solution, team Otameshi and
Ids_cpmp introduced an engineering post-processing step which
added synthetic false alarms (details provided in supplemental infor-
mation). This step introduced a hyperparameter which allowed for
the tuning of sensitivity and FA rate of the developed models. We
removed this engineering step for producing the results shown in
Fig. 2 to be able to assess detection performance at the lowest achiev-
able false alarm rates for all submissions. We then added the engi-
neering step back into the final submissions of all 5 teams which
allowed an increase in sensitivity to above the 75% level threshold for
all submissions except for the one from team AI4MH which is there-
fore excluded from the following analyses (detailed reproducible
individual descriptions of all solutions including neural network
architectures, hyperparameter selection procedures, training and
scoring methods, data pre- and post-processing techniques and
visual solution flow charts are provided in section III of the supple-
mental information). The total false alarm numbers per 24 h obtained
by each of these four submissions at 75% sensitivity are shown in
Please cite this article as: S. Roy et al., Evaluation of artificial intelligence
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Fig. 4a and yield the shortest achievable annotation overheads for
each automatic seizure detection system as depicted in Fig. 3.

Teams Otameshi, EpiInsights and Team SG all achieve minimum
annotation overheads of 7 min. In good approximation it can be
assumed that on average ~0.2% or ~3 min of a continuous 24h-long
raw EEG recording describe ictal segments while 98.8% or 1437 min
of the raw data are correlated with non-ictal episodes [22]. For unas-
sisted human labelling of 24 h of raw EEG data this means that the
seizure ground truth is 3 min and the annotation overhead is
1437 min. Using the automatic labelling systems reduces the annota-
tion overhead to 7 min thus reducing the amount of total raw EEG
data that needs to be reviewed by a human expert from 24 h to
10 min.

Note that we do not claim this time to be the time that it would
take a human annotator to label the data. Actual human annotation
times are determined by annotation procedures, review protocols as
well as the degree of expertise and practice of the reviewers. Regard-
less of these factors the assistive detection systems described above
reduce the overall amount of data that needs to be reviewed by up to
two orders of magnitude with a maximum achievable reduction fac-
tor of 142x (Fig. 4b) and thus lead to a substantial decrease of the
time and cost burden for all human annotation scenarios.

Further investigating the effect of the engineering step introduced
by teams Otameshi and Ids_cpmp, we found that as more false alarms
are included the sensitivity reaches a maximum and then decreases
again. This effect can be attributed to the impact of the TAES evalua-
tion metric which penalizes both low and high false alarms as
explained above. Fig. 5 plots the path from 75% sensitivity to maxi-
mum achievable sensitivity against false alarm rates for all 4 submis-
sions. With increasing false alarm rates, the respective data reduction
factors decrease (Fig. 6). Exploiting this effect allows the develop-
ment of a tunable assistive labelling system: annotation sensitivities
beyond 90% can be achieved but come at the cost of lower data reduc-
tion factors, i.e. the price for higher labelling sensitivity is longer data
review time. This tunability allows clinical experts to cater the quality
of their annotation services to healthcare provider and insurer spe-
cific frameworks: depending on the amount of billable time for data
review and the amount of data to be reviewed, a custom data reduc-
tion factor can be calculated that compresses the total raw data to
the exact size that can be reviewed during the billable time while at
the same time optimizing annotation sensitivity.

Note that three systems (Otameshi, EpiInsights and Team SG)
allow for maximum detection sensitivities of 90.63%, 91.60%, and
systems for assisting neurologists with fast and accurate annotations
rg/10.1016/j.ebiom.2021.103275

https://doi.org/10.1016/j.ebiom.2021.103275


Fig. 4. An engineering step introducing a hyperparameter which allowed a trade-off between sensitivity and FA rate was included in the submissions of teams Otameshi and Ids_-
comp. This engineering step was applied to all 5 final submissions 4 of which thereby reached sensitivities of 75% or higher. (a) shows false alarm rates at the 75% detection sensitiv-
ity mark for those 4 models. (b) shows the reduction factors of raw EEG data that has to be reviewed by human annotators for each system. Team EpiInsights achieves the highest
reduction factor of 142x.
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91.57%, respectively (Fig. 7a) with data reduction factors of 28, 24 and
22 respectively. This reduces 24 h of raw data to a 51.4min-long raw
data segment to be reviewed by the human annotator (Fig. 7b). Note
that seizure ground truths will fluctuate across patients and over
time which in turn causes fluctuating EEG data reduction factors.
Hence, the developed assistive labelling systems will have the stron-
gest annotation time saving impact for situations in which seizures
are rare (short seizure ground truth) and normal brain activity is
prevalent (large annotation overhead). Table 2 provides a summary
of the performance parameters for the final valid submissions of all
teams.

Throughout various crowdsourcing challenges, it has been
observed that aggregating predictions from multiple algorithms
improves over the best individual algorithm [37,38], a technique
known as ensemble learning in the ML literature. The success of
ensembles depends on various factors including the diversity and
performance of individual algorithms [39]. We constructed several
ensembles such as majority vote and the recent SUMMA algorithm
[39] to evaluate all valid final submissions and compared their per-
formance with the individual submissions. However, none of the
ensembles performed better than the best individual submission in
Fig. 5. FAs per 24 h plotted against detection sensitivity going from 75% sensitivity
level to the maximum achievable sensitivity for each algorithm. The TAES metric
causes the maximum achievable sensitivity for the model of team Ids_cpmp to stay
below 80%.

Please cite this article as: S. Roy et al., Evaluation of artificial intelligence
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the ensemble. We mainly attribute this to the number of algorithms
used for ensemble learning (5 algorithms) and the lack of sufficient
diversity between these algorithms which is partly due to the fact
that all the teams used the same training data.

4. Discussion

We developed and tested a novel cloud-based platform for run-
ning crowdsourced artificial intelligence challenges. The platform
uses a model-to-data technique to prevent the solver community
from downloading or directly accessing the challenge data while at
the same time offering a notebook framework for developing models
and a suite of machine learning and data pre- and post-processing
tools.

Running the crowdsourced Deep Learning Epilepsy Detection
Challenge in collaboration with Temple University, we enlisted a total
of 87 scientists and software engineers from 14 research centres
around the world to build deep learning models for automatically
Fig. 6. Reduction factors of raw EEG data to be reviewed by a human annotator vs.
detection sensitivity going from 75% to maximum achievable sensitivity values for
each system. The models from teams Otameshi, EpiInsights and Team SG achieve max-
imum detection sensitivities of 90.63%, 91.60%, and 91.57%, respectively and two-order
of magnitude data reduction factors.

systems for assisting neurologists with fast and accurate annotations
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Fig. 7. (a) Applying the engineering step introduced by teams Otameshi and Ids_cpmp raises the maximum detection sensitivities to 90.63%, 91.60% and 91.57%, respectively. This
comes at the cost of increased false alarm rates and decreased data reduction factors which are shown in (b). Note that even at maximum sensitivity level the lowest data reduction
factor (22, Team SG) still allows to compress 24 h of raw EEG data down to a ~1h-short segment of raw EEG data to be reviewed by a human annotator.
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detecting seizures in the largest existing corpus of electroencepha-
lography (EEG) data. The best performing models demonstrated the
feasibility of an assistive EEG annotation tool that could reduce the
amount of raw EEG data to be reviewed by human experts by a factor
of 142x thus promising to substantially decrease the time and cost
burden to keep digital disease diaries.

In this section we discuss the two core aspects of this study: (i) the
performance of the model-to-data crowdsourcing AI platform, and
(ii) the assistive automatic EEG annotation system which was pro-
duced as part of the crowdsourced Deep Learning Epilepsy Detection
Challenge.

Investments by enterprises, medical institutions and academic
organizations operating in the healthcare and life sciences sector reg-
ularly result in the generation of datasets which carry substantial
information content and therefore have substantial monetary and
strategic value. These datasets are often large, unstructured, and
noisy which makes them uniquely primed for analysis through artifi-
cial intelligence technology. However, the abundance of data is not
matched by an equally strong supply of data science resources capa-
ble of developing and applying AI to drive insights from the data.
Crowdsourcing the analysis of the data can solve this resourcing
problem and at the same time accelerates speed, innovation and
broad reproducibility of AI solutions, a benchmarking feature which
the medical AI field is in dire need of [11].

As data owners intend to protect the value of their data, they are
not willing to share it with open communities of solvers, ruling out
the use of conventional ‘Kaggle-style’ AI crowdsourcing ecosystems
which make challenge data directly available to the solver commu-
nity. In the absence of an alternative collaborative infrastructure,
many such datasets remain proprietary and unavailable for crowd-
sourced analysis and public benchmarking. In an effort to circumvent
the need to publicly share their data and still be able to use conven-
tional crowdsourcing platforms, some data owners have resorted to
Table 2
Overview of performance parameters achieved by the final models against the blind held
The far-right column lists the minimum achievable net amount of false positive data segm
and which need to be reviewed by human experts together with the correctly detected tru

False Alarms/24 h at 75%
Sensitivity

Raw EEG time reduction
at 75% Sensitivity [factor
X]

Maximum Sensitivity
[%]

Otameshi 428.616 141.961 90.6307
EpiInsights 426.979 142.344 91.6025
Ids_cpmp 1029.96 71.4071 78.9233
Team SG 463.454 134.275 91.5703
AI4MH NaN NaN 34.4671
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using redacted data for enabling external crowdsourced challenges
[40] which generally compromises the quality of the model solutions.
In other scenarios companies may use conventional crowdsourcing
platforms internally [41] but in these cases, they exclusively rely on
internal data scientist resources which limits size and efficiency of
the solver community substantially and inhibits transparency and
external verifiability of results.

Our model-to-data crowdsourcing challenge platform overcomes
these limitations by allowing participants to publicly build, test, eval-
uate and validate AI models on proprietary data while at the same
time avoiding the need to grant them access to the data itself. The
novelty of our platform lies in the fact that all steps and resources
required from learning about the scientific use case and challenge
design to performing data pre-processing, AI model development,
testing, optimisation, and submission are fully integrated in one
coherent workflow, eliminating all infrastructural and procedural
overhead that is not related to developing AI models. The most
important platform capability is the IBM Watson Studio ecosystem
which automatically provisions all compute resources through the
IBM Watson Machine Learning service and all data management
resources through the IBM Cloud Object Storage service. Watson Stu-
dio also leverages the Jupyter notebook framework which provides a
ready-made AI coding infrastructure for data scientists. This layer of
automated operational management which allows challenge partici-
pants to exclusively focus on model development and relieves them
of any other operational tasks is a key advantage and novelty of our
platform over conventional Kaggle-style platforms.

The platform enables collaboration between data scientists whilst
keeping proprietary or sensitive data secure and protected. Our plat-
form accomplishes this by employing a model-to-data approach in
which the challenge datasets are never directly accessed by the par-
ticipants who instead create models compliant with the formatting
of the data based on a small sample data provided by the data
-out test dataset after applying the engineering step introduced by team Otameshi.
ents (annotation overhead) which each model produces at 75% detection sensitivity
e positives (seizure ground truth) for AI-assisted manual EEG labelling.

False Alarms/24 h at
maximum Sensitivity

Raw EEG time reduction
at maximum Sensitivity
[factor X]

Minutes of raw EEG data
to review per 24 h
recording [min]

2850.63 28.509 7.1436
3295.46 24.86 7.11631
1742.09 44.951 17.1661
3657.69 22.5135 7.72423
228.027 211.751 NaN

systems for assisting neurologists with fast and accurate annotations
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owners. They then submit their sample models to a repository, resid-
ing within a secure cloud environment which is inaccessible to par-
ticipants. There, and shielded from participants, the submitted
models are trained and evaluated on the hidden data. Model perfor-
mance is determined based on a pre-defined evaluation metric and
the results are handed back to the respective participants. Following
this scheme, the model-to-data challenge platform keeps the data
shielded behind a firewall at all times while facilitating model inges-
tion into the model evaluator and extraction of model performances
out of it. We have demonstrated and tested the first working instance
of our model-to-data platform with the Deep Learning Epilepsy
Detection Challenge. Further work will focus on platform upgrades
through additional features for increased data safeguarding and
HIPAA compliance. We plan to opensource the platform and run reg-
ular crowdsourced deep learning challenges.

The annotation models developed as part of the Deep Learning
Epilepsy Detection Challenge by teams Otameshi, EpiInsights,
Ids_cpmp and Team SG are capable of automatically filtering ictal
segments out of raw EEG data with sensitivities that are comparable
to human experts. Reaching this sensitivity regimen comes at the
cost of a higher false alarm rate which, since it is substantially higher
than the number of true positive samples, requires human experts to
manually review all samples which the models detects for final anno-
tation. Using these AI models as assistive filtering tools allows human
data reviewers to cut down the amount of raw data that needs to be
reviewed by up to two orders of magnitude. Only the collaborative
combination of an automatic AI model and a human expert decision
maker allows improvement of the efficiency of the EEG review and
labelling process. This is a common example of how AI technology
enters the realm of real-world applications: AI does not replace the
human expert but rather serves as an assistive tool that enables faster
and more efficient decision making.

Note that neither one of the four top performing models nor
ensembling versions of the models outperform all others. For exam-
ple, the model of team EpiInsights yields the highest overall achiev-
able sensitivity of 91.60% and largest data reduction factor of 142x at
75% sensitivity but it is the model of team Ids_cpmp that produces
the highest data reduction factor of 44x at maximum sensitivity. The
tunability of the system is key to its deployment configuration: the
choice of analytical models depends on the target sensitivity level of
the overall review and the amount of time which the human
reviewer is willing to invest in the final review step.

It is also important to note that we do not derive a quantitative
statement on how much time exactly human reviewers will save
using the developed automatic detection models. Data review pro-
cesses, protocols and routines differ across institutions as do the
experience and labelling performance levels of human reviewers.
Furthermore, seizure frequencies per 24 h vary across patients and
over the course of monitoring time windows, and the more ictal sam-
ples a 24 h raw data segment contains, the less room for raw data
compression there is. These factors all affect the impact of using the
automatic filtering system on the net time savings of human
reviewers. Therefore, for this study we chose the net amount of raw
EEG data that has to be reviewed by human annotators as a common
parameter to assess the workload reduction which our system offers.
Future work will test the applicability and benchmark the perfor-
mance and generalisability of our automatic detection system across
a variety of real-world clinical settings.

Besides integrating our models into clinical processes as assistive
annotation tools of historic data, future work will also focus on fur-
ther reducing false positive rates while maintaining the sensitivity
levels reported in this study. If false positive rates can be reduced to
human levels of 1FA/24 h [36] then the model could be used as a
real-time seizure alert system.

There exists a plethora of metric frameworks for assessing the sei-
zure detection performance of machine learning models which,
Please cite this article as: S. Roy et al., Evaluation of artificial intelligence
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although they often use similar terminology, do not allow direct per-
formance comparison of the respective algorithms. An analysis of all
popular performance metrics is beyond the scope of this paper and
has been done elsewhere [24] (pre-print). However, we provide a
simple example to illustrate this point: in a first scenario a deep
learning model is used to detect the occurrence of a seizure event
which is defined by seizure onset and end times. In a second scenario
a deep learning model is used to detect seizure durations in the very
same dataset. Both scenarios will describe the employed algorithms
as seizure detection models and might even use the same statistical
parameters to report on their performance. However, in the first sce-
nario the algorithm will only have to detect one single ictal data sam-
ple within a seizure segment to claim success. In the second scenario
the success of the algorithm will depend on how many ictal samples
it detects correctly within a seizure segment. Awareness of this con-
text and the underlying use case is crucial for being able to meaning-
fully compare the performance of machine learning models and to
choose an appropriate validation metric for an experiment in the first
place.

In this study we applied the Time-Aligned Event Scoring
(TAES) metric which has been custom developed to assess the
performance of detection algorithms in scenarios where both,
detecting the number of events and their duration are equally
important. Therefore, and in order to allow meaningful bench-
marking, we stayed within the TAES framework whenever com-
paring the performance of models described in this study against
state-of-the-art technology.

Several Kaggle or Kaggle-style AI challenges on detecting [42] and
forecasting [43] epileptic seizures using EEG data have been held in
the past. While these challenges also followed the crowdsourcing
approach, they differ substantially from the challenge we report on
in this paper with respect to management and type of challenge data
as well as the obtained performances of winning models. To facilitate
AI model development and data processing experiments the chal-
lenge organizers made all challenge data directly available to partici-
pants for both challenges. For the Kaggle challenge, combined
intracranial EEG datasets from humans and dogs were used as chal-
lenge data whereas we used exclusively non-invasive human scalp
EEG data in our challenge. The Kaggle-style Neureka challenge
employed a scalp EEG dataset and the TAES scoring metric but tasked
participants to develop AI models for forecasting seizures (i.e. unlike
detection, predicting them before they occur) and to at the same
time minimize the number of EEG channels. The winning model
showed a human-level FA rate of 1.44/24 h but also a sensitivity of
12.37% which prevents the model from being suitable for real-life
clinical applications [44].

Future work will focus on assessing the suitability of our assistive
EEG annotation system in real-world clinical settings and on upgrad-
ing and open sourcing our model-to-data crowdsourcing AI challenge
platform based on the insights we gained from running the Deep
Learning Epilepsy Detection Challenge.
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