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 Abstract— Nonparametric Bayesian models use a Bayesian 

framework to learn model complexity automatically from the 

data, eliminating the need for a complex model selection process. 

A Hierarchical Dirichlet Process Hidden Markov Model 

(HDPHMM) is the nonparametric Bayesian equivalent of a 

hidden Markov model (HMM), but is restricted to an ergodic 

topology that uses a Dirichlet Process Model to achieve a mixture 

distribution-like model. For applications involving ordered 

sequences (e.g., speech recognition), it is desirable to impose a 

left-to-right structure on the model. In this paper, we introduce a 

model based on HDPHMM that: (1) shares data points between 

states, (2) models non-ergodic structures, and (3) models non-

emitting states. The first point is particularly important because 

Gaussian mixture models, which support such sharing, have been 

very effective at modeling modalities in a signal (e.g., speaker 

variability). Further, sharing data points allows models to be 

estimated more accurately, an important consideration for 

applications such as speech recognition in which some mixture 

components occur infrequently. We demonstrate that this new 

model produces a 20% relative reduction in error rate for 

phoneme classification and an 18% relative reduction on a 

speech recognition task on the TIMIT Corpus compared to a 

baseline system consisting of a parametric HMM. 

Index Terms— nonparametric Bayesian models; hierarchical 

Dirichlet processes; hidden Markov models; speech recognition  

I. INTRODUCTION 

IDDEN Markov models (HMMs) [1] are one of the most 

successful models for application involves ordered 

sequences (e.g. speech) and have been applied to a wide range 

of applications including speech recognition. HMMs, often 

referred to as doubly stochastic models, are parameterized 

both in their structure (e.g. number of states) and emission 

distributions (e.g. Gaussian mixtures). Model selection 

methods such as the Bayesian Information Criterion (BIC) [2] 

are traditionally used to optimize the number of states and 

mixture components. However, these methods are 

computationally expensive and there is no consensus on an 

optimum criterion for selection [2]. 

Beal et al. [3] proposed a nonparametric Bayesian HMM 

 
 

with a countably infinite number of states. This model is 

known as an infinite HMM (iHMM) because it has an infinite 

number of hidden states. Teh et al. [4], [5] proposed an 

alternate formulation, a Hierarchical Dirichlet Process Hidden 

Markov Model (HDPHMM), based on a hierarchical Dirichlet 

process (HDP) prior. HDPHMM is an ergodic model – a 

transition from an emitting state to all other states is allowed. 

However, in many pattern recognition applications involving 

temporal structure, such as speech processing, a left-to-right 

topology is required [6]. 

For example, in continuous speech recognition applications 

we model speech units (e.g. phonemes), which evolve in a 

sequential manner, using HMMs. Since we are dealing with an 

ordered sequence (e.g. a word is an ordered sequence of 

phonemes), a left-to-right model is preferred [7]. The 

segmentation of speech data into these units is not known in 

advance and therefore the training process must be able to 

connect these smaller models together into a larger HMM that 

models the entire utterance. This task can easily be achieved 

using left-to-right HMMs (LR-HMM) and by utilizing special 

non-emitting states [8]. Further, these non-emitting states can 

be used to model finite-length sequences [6]. In the 

HDPHMM formulation, these problems are not addressed.  

An HDPHMM, as well as a parametric HMM, models each 

emission distribution by data points mapped to that state. For 

example, it is common to use a Gaussian mixture model 

(GMM) to model the emission distributions. However, in an 

HDPHMM, the mixture components of these GMMs are not 

shared or reused. Sharing of such parameters is a critical part 

of most state of the art pattern recognition systems. We have 

introduced a model, which we refer to as Doubly Hierarchical 

Dirichlet Process Hidden Markov Model (DHDPHMM) [9], 

with two parallel hierarchies that enables sharing of data 

among states. In this paper, we introduce a general method to 

add non-emitting states to both HDPHMM and DHDPHMM. 

We also develop a framework to learn non-ergodic structures 

from the data and present comprehensive experimental results. 

We present a far more comprehensive derivation of 

DHDPHMM compared to [9]. An open source implementation 

of our DHDPHMM and HDPHMM algorithms is available 

at [10]. 

This paper is organized as follows. In Section II, we provide 

background on nonparametric Bayesian modeling and 

formally introduce HDPHMM. In Sections III and IV, we 

describe DHDPHMM and its extensions for non-ergodic 

modeling and estimation of non-emitting states. In Section V, 
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we present results on three tasks: a pilot study using simulated 

data, a phoneme classification task and a speech recognition 

task. 

II.   BACKGROUND 

Nonparametric Bayesian models (NPBM) have become 

increasingly popular in recent years because of their ability to 

balance model accuracy with generalization. Machine learning 

algorithms often have trouble dealing with previously unseen 

data or data sets in which the training and evaluation 

conditions are mismatched. As a result, models with a large 

degree of freedom (e.g. complexity) often don’t generalize 

well to new datasets. Adjusting complexity to match the needs 

of the data is an important requirement for good 

generalization. 

A.   Nonparametric Bayesian Models 

A Dirichlet process (DP) [11] is a discrete distribution that 

consists of a countably infinite number of probability masses. 

DP defines a distribution over discrete distributions with 

infinite support. A DP, denoted DP(α,G0), is defined as [12]: 
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where G0 represents the base distribution [11], 
kθδ is the unit 

impulse function at θk, βk are weights sampled according to 

(2) [12], and α  is a concentration parameter that represents 

the degree of concentration around the mean (α  is inversely 

proportional to the variance). The impulse functions, 
kθδ , are 

often referred to as atoms.  

In this representation β can be interpreted as a random 

probability measure over positive integers. The βk sampled by 

this process, denoted by β ~ GEM(α), are constructed using a 

stick-breaking process [4]. Starting with a stick of length one, 

we break each stick at ʋ1 and assign the length to β1. Then we 

recursively break the remaining part of the stick and assign the 

corresponding lengths to βk.  

One of the main applications of a DP is to define a 

nonparametric prior distribution for the components of a 

mixture model. The resulting model is referred to as a 

Dirichlet Process Mixture (DPM) model and is defined as [4]: 
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In this model, the observations, xi, are sampled from an 

indexed family of distributions, F. If F is assumed to be 

Gaussian then the result is an infinite Gaussian mixture model, 

which is the nonparametric counterpart of a GMM [13].  

An HDP extends a DPM to problems involving mixture 

modeling of grouped data [4] in which we desire to share 

components of these mixture models across groups. An HDP 

is defined as: 
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where H provides a prior distribution for the factor θji, γ 

governs the variability of G0 around H and α controls the 

variability of Gj around G0. H, γ and α are hyperparameters of 

the HDP. We use a DP to define a mixture model for each 

group and use a global DP, DP(γ,H), as the common base 

distribution for all DPs. 

B.   Hierarchical Dirichlet Process Hidden Markov Model 

Hidden Markov models are a class of doubly stochastic 

processes in which discrete state sequences are modeled as a 

Markov chain [1]. If we denote the state at time t by zt, the 

Markovian structure can be represented by 
1

1
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, 

where 
1tz

π
−

 is the multinomial distribution that represents a 

transition from state t-1 to state t. Observations are 

conditionally independent and are denoted by ( )| ~
t

t t z
x z F θ . 

In a typical parametric HMM, the number of states is fixed so 

that a matrix of dimension N states by N transitions per state is 

used to represent the transition probabilities.  

An HDPHMM is an extension of an HMM in which the 

number of states can be infinite. At each state zt we can 

transition to an infinite number of states so the transition 

distribution should be drawn from a DP. However, in an 

HDPHMM, to obtain a chain process, we want reachable 

states from one state to be shared among all states so these 

DPs should be linked together. In an HDPHMM each state 

corresponds to a group and therefore, unlike HDP in which an 

association of data to groups is assumed to be known a priori, 

we are interested in inferring this association. 

A major problem with original formulation of an 

HDPHMM [4] is state persistence. HDPHMM has a tendency 

to make many redundant states and switch rapidly amongst 

them. Fox et al. [5] extended the definition of HDPHMM to 

HMMs with state persistence by introducing a sticky 

parameter κ:  
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The state, mixture component and observations are 

represented by zt, st and xt respectively. The indices j and k are 

indices of the states and mixture components respectively. The 

base distribution, β, can be interpreted as the expected value of 

state transition distributions. The transition distribution for 

state j is a DP denoted by πj with a concentration parameter α. 

Another DP, ψj, with a concentration parameter ϭ, is used to 

model an infinite mixture model for each state zj. The 

distribution H is the prior for the parameters θkj.  

A block sampler for HDPHMM with a multimodal emission 

distribution has been introduced [5] that jointly samples the 

state sequence z1:T given the observations, model parameters 

and transition distribution πj.  A variant of the forward-

backward procedure is utilized that allows us to exploit the 

Markovian structure of an HMM to improve the convergence 

speed of the inference algorithm. However this algorithm 

requires an approximation of the theoretically infinite number 

of distributions with a “degree L weak limit” that truncates a 

DP to a Dirichlet distribution with L dimensions [14]:  

( ) ,..., .LGEM Dir
L L

α α
α

 
 
 

 �  (6) 

It should be noted that this result is different from a classical 

parametric Bayesian HMM since the truncated HDP priors 

induce a shared sparse subset of the L possible states [5]. 

III.   DHDPHMM  

We can extend the model in (5) to address the problem of 

sharable mixture components. Equation (5) defines a model 

with a multimodal distribution at each state. In an HDPHMM 

formulation these distributions are modeled using DPM: 
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Equation (7)  demonstrates that when the state assignment, zt, 

for data point xt is known (or sampled previously), the mixture 

components can be sampled from a multinomial distribution 

with DP priors. Equation (5) also shows that each emission 

distribution is modeled independently of other distributions. It 

has been shown previously [16] that sharing data points, if 

done properly, can improve the accuracy of the model. 

As we have discussed in Section II, HDP is the extension of 

a DPM to mixture modeling of grouped data. If the state 

assignment, zt, is assumed to be known (or estimated) then an 

HDPHMM divides the data points into multiple groups. 

Therefore, we should be able to use the same principle and 

model the emission distributions with another HDP. The 

resulting model will have two parallel hierarchies and hence is 

referred to as a Doubly Hierarchical Dirichlet Process Hidden 

Markov Model (DHDPHMM). Applying (4) we can write: 
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where ξ  is the DP used as the base distribution for HDP and τ 

and ϭ are hyperparameters. By substituting (8) in (5) we can 

obtain a generative model for DHDPHMM:  
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DHDPHMM pools the data points while HDPHMM divides 

data points between different states. If we don’t have enough 

data points for a particular state or mixture component, then 

the distribution parameters (e.g. the mean and covariance) will 

be estimated poorly. For example, in speech recognition 

systems we usually use features with a dimensionality of 39 

which translates to 39+(39x40)/2+1=820 free parameters per 

Gaussian mixture component (assuming a full covariance). In 

an HDPHMM, with no sharing of parameters, we can easily 

end up with an intractable number of parameters. 

It should be noted that an earlier version of the generative 

model described in (9) was first introduced in [9] as part of an 

experimental study. In this paper, we provide theoretical 

justifications for the model and present more detailed 

experimental results supporting the efficacy of the model. 

A.   Inference Algorithm for DHDPHMM 

 An inference algorithm is required to learn the model 

parameters from the data. One solution to this problem is the 

block sampler [5] discussed in the previous section. Using the 

“degree L weak limit” approximation to DP in (6) for HDP 

emissions of (8) we can write the following equations 

(replacing L' with L): 

| ~ ,...,Dir
L L

σ σ
ξ σ

 
 
 ′ ′

 (10) 

( )1 .| , ~ ,...,j LDirψ ξ τ τξ τξ ′  (11) 

Following a similar approach in [5] we write the posterior 

distributions for these equations as: 
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where M'jk is the number of clusters in state j with mixture 

component k; 
k

M ′
i

 is total number of clusters that contain 

mixture component k. The number of observations in state j 

that are assigned to component k is denoted by 
jkn′ . The 

posterior distribution for τ, the hyperparameter in (12), is: 
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where r and s are auxiliary variables used to facilitate the 

inference for τ (following the same approach as in [5]) and a 

and b are hyperparameters over a Gamma distribution.   

The first derivation of the modified block sampler has been 

presented in [9]. However, that algorithm did not include 

sampling of hyperparameters and its implementation did not 

utilize DHDPHMM properties to reduce the computational 

cost. Further in this new implementation, in addition to the 

block sampler, we used the Expectation-Maximization (EM) 

algorithm after performing the inference using a block 

sampler. This allows us to reduce the number of iterations 

required for the block sampler.  

The main motivation behind DHDPHMM is the ability to 

share mixture components and therefore data points between 

different states. When using the modified block sampler 

algorithm, we only deal with L' Gaussian distributions. 

HDPHMM requires estimation of LxL' Gaussians. Since as 

much as 95% of the inference time is spent calculating the 

likelihood of the data for Gaussian distributions, a reduction 

from LxL' to L' reduces the computational time considerably. 

Unlike EM forward-backward computations do not dominate 

the computation time. 

We have utilized parallel programming facilities (e.g. 

openMP) for the implementation of both algorithms, which 

makes this process feasible for moderate size datasets. 

Figure 1 provides a comparison of both algorithms for 

different values of L and L' for phoneme /zh/. DHDPHMM’s 

computational complexity is relatively flat as the maximum 

bound on the number of states increases while the inference 

cost for HDPHMM grows much faster. For example, for 

L'=200, computation time for HDPHMM grows 16.6 times 

when L increases from 5 to 200 while the computation time 

for DHDPHMM only increases 2.4 times. 

IV.   DHDPHMM WITH A NON-ERGODIC STRUCTURE 

A non-ergodic structure for DHDPHMM can be achieved 

by modifying the transition distributions. These modifications 

can also be applied to HDPHMM using a similar approach. It 

should be noted that in [9] we introduced only the left-to-right 

structure with a loop transition. In the following section 

several other essential structures are introduced.  

A.   Left-to-Right DHDPHMM  

The transition probability from state j has infinite support 

and can be written as:  

| , ~ ( , ) .
j

j
DP

αβ κδ
π α β α κ

α κ

+
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We observe that a transition distribution has no topological 

restrictions and therefore (5) and (9) define ergodic HMMs. In 

order to obtain a left-to-right (LR) topology we need to force 

the base distribution of the Dirichlet distribution in (17) to 

only contain atoms to the right of the current state. This means 

β should be modified so that the probability of transiting to 

states left of the current state (i.e. states previously visited) 

becomes zero. For state j we define Vj={Vji}: 

0,

1,
ji

i j
V

i j

<
= 

≥
 (18) 

 
Fig. 1.  DHDPHMM improves scalability relative to HDPHMM. L represents the upper bound for the number of states and L' represents the 

upper bound for the maximum number of mixture components per state. 
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where i is the index for all following states. We can then 

modify β by multiplying it with Vj: 

.
j

j

i ji

i

V

V

β
β

β
′ =
∑
i

 (19) 

In the block sampler algorithm, we have: 
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where njk are the number of transitions from state j to k. From 

(20) we can see that multiplying β with Vj biases πj toward a 

left-to-right structure but there is still a positive probability to 

transit to the states left of j (asymptotically this probability 

tends to zero but for relatively small number of iterations, 

depending on implementation we might get non-zero values). 

If we leave πj as in (20) the resulting model would be an LR 

model with possible loops. Models with an LR structure and 

possible loops will be denoted as LR-L. 

In order to obtain an LR model with no loops, we have to 

multiply njk with Vj : 

( )1 1 1,..., ,..., ,  

  1,..., ,

j j j j jj jj jj jL jL jL
Dir V n V n V n

j L

π αβ αβ κ αβ′ ′ ′+ + + +
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∼
 (21) 

Vj and β' are calculated from (18) and (19) respectively. This 

model always finds transitions to the right of state j and is 

referred to as an LR model. 

Sometimes it is useful to have LR models that allow 

restricted loops to the first state. For example, when dealing 

with long sequences, a sequence might have a local left to 

right structure but needs a reset at some point in time. To 

modify β to obtain an LR model with a loop to the first state 

(LR-LF) we can write: 

0, 0
,

1, , 0
ji

i j
V

i j i

< <
= 

≥ =
 (22) 

where β' is calculated from (19) and πj is sampled from (21). 

The LR models described above allow skip transitions to 

learn parallel paths corresponding to different modalities in the 

training data. Sometimes more restrictions on the structure 

might be required. One such example is a strictly left to right 

structure (LR-S): 

0, 1
.

1, 1
ji

i j
V

i j

≠ +
= 

= +
 (23) 

B.   Initial and Final Non-Emitting States 

In many applications, such as speech recognition, an LR-

HMM begins from and ends with a non-emitting state. These 

states are required to model the beginning and end of finite 

duration sequences. More importantly, in many applications 

like speech recognition, we need to generate composite 

HMMs [8] that present a larger segment of the observations 

(e.g. for example in speech recognition an HMM models a 

phoneme while a composite HMM models a whole utterance). 

Without non-emitting initial and final states, building a 

composite HMM would be much more difficult. Therefore, 

virtually all HMM implementations for speech recognition 

applications, including HTK [8] and Kaldi [15], support 

modeling of initial and final non-emitting states. Adding a 

non-emitting initial state is straightforward: the probability of 

transition into the initial state is 1 and the probability 

distribution of a transition from this state is equal to πinit, 

which is the initial probability distribution for an HMM 

without non-emitting states. However, adding a final non-

emitting state is more complicated. In the following sections 

we will discuss two approaches that solve this problem. 

1)   Maximum Likelihood Estimation 

Consider state zi depicted in Fig. 2. The outgoing 

probabilities for any state can be classified into three 

categories: (1) a self-transition (P1), (2) a transition to all other 

states (P2), and (3) a transition to a final non-emitting state 

(P3). These probabilities must sum to 1: P1+P2+P3=1. 

Suppose that we obtain P2 from the inference algorithm. We 

will need to reestimate P1 and P3 from the data. This problem 

is, in fact, equivalent to the problem of tossing a coin until we 

obtain the first tails. Each head is equal to a self-transition and 

the first tail triggers a transition to the final state. This can be 

modeled using a geometric distribution [17]: 

( )
1

( ) 1 .
k

P x k ρ ρ
−

= = −   (24) 

Equation (24) shows the probability of K-1 heads before the 

first tail. In this equation 1-ρ is the probability of heads 

(success). We also have: 

31

2 2

1 , .
1 1

PP

P P
ρ ρ= − =  

− −
 (25) 

Suppose we have a total of N examples but for a subset of 

these, Mi, the state zi is the last state of the model (SM). It can 

be shown [17] that the maximum likelihood estimation is 

obtained by: 

M

i

i

j

j S

M

k
ρ

∈

=
∑

�
 (26) 

where ki are the number of self-transitions for state i. Notice 

that if zi is never the last state, then Mi = 0 and P3 = 0. 

2)   Bayesian Estimation 

Another approach to estimate transitions to a final non-

emitting state, ρi , is to use a Bayesian framework. Since a beta 

distribution is the conjugate distribution for a geometric 

distribution, we can use a beta distribution [19] with 

hyperparameters (a,b) as the prior and obtain a posterior as:  

( )~ , 1
M

i i j

j S

Beta a M b kρ
∈

 
+ + − 

 
∑         (27) 

 
Fig. 2.  Outgoing probabilities for state zi 
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where Mi is the number of times which state zi was the last 

state and SM is the set of all such last states. Hyperparameters 

(a,b) can also be estimated using a Gibbs sampler if 

required [20]. If we use (27) to estimate ρi we need to modify 

(20) to impose the constraint that the sum of the transition 

probabilities add to 1. This is a relatively simple modification 

based on the stick-breaking interpretation of a DP in (2). This 

modification is equal to assigning ρi to the first break of the 

stick and then breaking the remaining 1-ρi portion as before. 

C.   An Integrated Model 

The final definition for DHDPHMM with a non-ergodic 

structure is given by:   
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Vi should be replaced with the appropriate definition from the 

previous section based on the desired type of structure. For 

example, for an LR model, Vi should be sampled from (18). 

Note that by setting Vi to 1 we obtain the ergodic DHDPHMM 

in (9). A comparison of models is shown in Fig. 3. 

The model described in (28) [9] did not incorporate 

modeling of non-emitting states as discussed above. If we 

choose to use a maximum likelihood approach for estimating 

the non-emitting states, then no change to this model is 

required (e.g. we can estimate these non-emitting states after 

estimating other parameters). However, if we choose to use 

the Bayesian approach then we have to replace the sampling 

of πj in (28) with: 
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where MSB() is a modified stick-breaking process. Equations 

(1) and (2) show the basic stick-breaking algorithm – start 

with a stick of length 1 and then break the stick consecutively 

to obtain the weights in (2). The locations of atoms, 

represented by δ in (2), are sampled independently from 

another distribution – G0. In MSB(), we start from a stick of 

length (1-ρj) and sample the atoms from a discrete distribution 

that represents the transition probabilities: 
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where vi are sequences of independent variables drawn from a 

Beta distribution and wi are stick weights. χi is the location of 

the atom that represents a transition to another state. χi 

determines which state we will transit to while wi determines 

what is the probability to transit to this state.  

By substituting (29) and (30) in (28) we can obtain a 

generative model that incorporates Bayesian modeling of the 

non-emitting states: 
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where we have replaced DP with the modified stick-breaking 

process described above. Most of the results discussed above, 

including the inference algorithm, hold for this model as well.  
Fig. 3.  Comparison of an (a) ergodic HDPHMM[5] and (b) DHDPHMM. 
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V.   EXPERIMENTS 

In this section we provide some experimental results which 

compare DHDPHMM with HDPHMM, HMM and several 

other state of the art models.  

A.   HMM-Generated Data 

To demonstrate the basic efficacy of the model, we 

generated data from a 4-state left to right HMM. The emission 

distribution for each state is a GMM with a maximum of three 

components, each consisting of a two-dimensional normal 

distribution. Three synthetic data sequences totaling 1,900 

observations were generated for training. Three configurations 

have been studied: (1) an ergodic HDPHMM, (2) an LR 

HDPHMM and (3) an LR DHDPHMM. A Normal-inverse-

Wishart distribution (NIW) prior is used for the mean and 

covariance. The truncation levels are set to 10 for both the 

number of states and the number of mixture components.  

Figure 4-a shows the average likelihood for different 

models for held-out data by averaging five independent 

chains. Figure 4-b compares the trained model to the reference 

structure. The LR DHDPHMM discovers the correct structure 

while the ergodic HDPHMM finds a more simplified HMM. 

The LR DHDPHMM constrains the search space to left to 

right topologies while HDPHMM has a less constrained 

search space. 

Further, we can see that DHDPHMM has a higher overall 

likelihood. While LR HDPHMM can find a structure close to 

the correct one, its likelihood is slightly lower than the ergodic 

HDPHMM. This happens because LR HDPHMM needs to 

estimate more parameters and for a small amount of training 

data its accuracy is lower than HDPHMM. However, LR 

DHDPHMM produces a 15% (relative) improvement in 

likelihoods compared to the ergodic model. 

This simple experiment suggests that sharing data points, 

especially for non-ergodic structures, could be important. LR 

HDPHMM finds more Gaussian components relative to an 

ergodic model but each Gaussian can potentially be estimated 

using fewer data points. By sharing mixture components, 

LR DHDPHMM implements a form of regularization that 

prevents the model from over-fitting.  In the next section we 

examine the relative importance of each of these features in 

more detail. Also notice all non-parametric models perform 

better than a parametric HMM trained using EM. 

B.   Phoneme Classification on the TIMIT Corpus 

The TIMIT Corpus [21] is one of the most cited evaluation 

data sets used to compare new speech recognition algorithms. 

The data is segmented manually into phonemes and therefore 

is a natural choice to evaluate phoneme classification 

algorithms. TIMIT contains 630 speakers from eight main 

dialects of American English. There are a total of 6,300 

utterances where 3,990 are used in the training set and 192 

utterances are used for the “core” evaluation subset (another 

400 used as development set). We followed the standard 

practice of building models for 48 phonemes and then map 

them into 39 phonemes [22]. A standard 39-dimensional 

MFCC feature vector was used (12 Mel-frequency Cepstral 

Coefficients plus energy and their first and second derivatives) 

to convert speech data into feature streams. Cepstral mean 

subtraction [8] was also used.  

For TIMIT classification and recognition experiments, we 

have used 10 chains. However, even using only one chain is 

often sufficient. The number of iterations for each chain is set 

to 400 iterations where we have thrown away the first 200 

iterations and used the next 200 iterations to obtain the 

expected value for the parameters. For both HDPHMM and 

DHDPHMM the upper bounds for maximum number of states 

and unique Gaussians per model (not per state) are set to 200. 

After learning the structure of the model and estimating its 

posterior distribution, we have used a few iterations of EM 

(using HTK [8]). This allows a relatively small number of 

expensive block sampler iterations to be used.  

To reduce the number of required iterations for the block 

sampler, we have used a small subset of the training data to 

determine a good range of values for hyperparameters and 

then for each chain we have initialized the chains with values 

in this range.  We have used nonconjugate priors for the 

Gaussians and placed a normal prior on the mean and an 

 
Fig. 4.  Comparison of (a) log-likelihoods of the models, and (b) the corresponding model structures. 
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inverse-Wishart distribution prior on the covariance. 

Parameters of these priors (e.g. mean and covariance) are 

computed empirically using the training data. For the inverse-

Wishart distribution, the degrees of freedom can change 

between 100 to 1000 (250 works best for most models). For 

the concentration parameters we have placed Gamma priors 

with values from (10,1) to (3,0.1). Finally, we have placed a 

Beta distribution with parameters (10,1) for the self-transition 

parameter. It should also be noted that for classification 

experiments we have used a MAP decoder (e.g. multiplying 

the likelihood by the prior probability of each class estimated 

on the training set). 

1)   A Comparison to HDPHMM 

In Table I we compare the performance of DHDPHMM to 

HDPHMM. We provide error rates for both the development 

and core subsets. In this table we have compared HDPHMM 

and DHDPHMM models with ergodic and LR structures. It 

can be seen that the ergodic DHDPHMM is slightly better than 

an ergodic HDPHMM. LR HDPHMM is much better than an 

ergodic HDPHMM. However, when we also allow sharing of 

mixture components in LR DHDPHMM we obtain the best 

results (more than 4% absolute improvement). This happens 

because LR models tend to discover more Gaussians (4,628 

for LR HDPHMM vs. 1,850 for ergodic HDPHMM) which 

means some of the Gaussians will only have a few 

observations associated with them. 

One way to regulate this is to allow some of the Gaussians 

to be shared among states. Our LR DHDPHMM model 

explicitly supports this. LR DHDPHMM reduces the number 

of unique Gaussians to 3,888 and also shows significant 

improvement relative to LR HDPHMM. This is an important 

property that validates the basic philosophy of the NPBM and 

also follows Occam's Razor [22]. From the table we can see 

that an ergodic DHDPHMM finds a lower number of unique 

Gaussians relative to LR DHDPHMM. This is due to the fact 

that an ergodic model is usually more compact and it reuses 

states while the LR model creates new parallel paths. A strictly 

LR topology is significantly worse than the others because 

instead of discovering parallel paths it is constrained to learn 

one long path.   

Figure 5 shows the structures for phonemes /aa/ and /sh/ 

discovered by our model. It is clear that the model structure 

evolves with amount of data points, validating another 

characteristic of the NPBM. It is also important to note that 

the structure learned for each phoneme is unique and reflects 

underlying differences between phonemes. Finally, note that 

the proposed model learns multiple parallel left-to-right paths. 

This is shown in Fig. 5-b where S1-S2, S1-S3 and S1-S4 depict 

three parallel models.  

2) A Comparison to Other Representative Systems 

Table II shows a full comparison between DHDPHMM and 

both baseline and state of the art systems. The first three rows 

of this table show three-state LR HMMs trained using 

maximum likelihood (ML) estimation. HMM with 40 

Gaussians per state performs better than the other two and has 

an error rate of 26.1% on the core subset. 

Our LR DHDPHMM model has an error rate of 21.4% on 

the same subset of data (a 20% relative improvement). It 

should be noted that the number of Gaussians used by this 

HMM system is 5,760 (set a priori) while our LR DHDPHMM 

uses only 3,888 Gaussians. Also note that an HMM with 27 

components per state (3,888 total Gaussians) produces an error 

 
Fig. 5.  An automatically derived model structure for a left-to-right 

DHDPHMM model (without the first and last non-emitting states) for (a) 

/aa/ with 175 examples (b) /aa/ with 2,256 examples (c) /sh/ with 100 

examples and (d) /sh/ with 1,317 examples. 

 

TABLE I 

COMPARISON OF LR DHDPHMM WITH HDPHMM 

Model 
Dev Set 

(% Error) 

Core Set 

(% Error) 

No. 

Gauss. 

Ergodic HDPHMM 24.3% 25.6% 1,850 

LR HDPHMM  23.5% 24.4% 4,628 

Ergodic DHDPHMM 24.0% 25.4% 2,704 

LR-S DHDPHMM 39.0% 38.4% 2,550 

LR DHDPHMM 20.5% 21.4% 3,888 

 

TABLE II 

COMPARISON OF PHONEME CLASSIFICATION PERFORMANCE 

Model Disc. 
Dev Set 

(% Err) 

Core Set 

(% Err) 

HMM (10 Gauss.) No 28.4% 28.7% 

HMM (27 Gauss.)  No 25.4% 26.4% 

HMM (40 Gauss.) No 25.0% 26.1% 

HMM/MMI (20 Gauss.) [22] Yes 23.2% 24.6% 

HCRF/SGD [22] Yes 20.3% 21.7% 

Large Margin GMMs [24] Yes – 21.1% 

GMMs/Full Cov. [24] No – 26.0% 

SVM [25] Yes – 22.4% 

Data-driven HMM [26] No – 21.4% 

LR DHDPHMM No 20.5% 21.4% 
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rate of 26.4% on the core set. Figure 6 shows the error rate vs. 

the amount of training data for both HMM and DHDPHMM 

systems. As we can see DHDPHMM is always better than the 

HMM model. For example, when trained only using 40% of 

the data, DHDPHMM performs better than an HMM using the 

entire data set. Also it is evident that HMM performance does 

not improve significantly when we train it with more than 

60% of the data (error rates for 60% and 100% are very close) 

while DHDPHMM improves with more data. 

Figure 7 shows the number of Gaussians discovered by 

DHDPHMM versus the amount of data. The model evolves 

into a more complex model as it is exposed to more data. This 

growth in complexity is not linear (e.g. number of Gaussians 

grows 33% when the amount of data increases 5 times) which 

is consistent with the DP prior constraints. If we want to 

change this behavior, we would have to use a different prior. 

The fourth row of Table II shows the error rate for an HMM 

trained using a discriminative objective function (e.g. MMI). 

We can see discriminative training reduces the error rate. 

However, the model still produces a larger error rate relative to 

the generatively trained DHDPHMM. This suggests that we 

can further improve DHDPHMM if we use discriminative 

training techniques. Several other state of the art systems are 

shown that have error rates comparable to our model. Data-

driven HMMs [26], unlike DHDPHMM, model the context 

implicitly. We expect to obtain better results if we also use 

context dependent (CD) models instead of context 

independent (CI) models.  

C.   Supervised Phoneme Recognition 

Speech recognition systems usually use a semi-supervised 

method to train acoustic models. By semi-supervised we refer 

to the fact that the exact boundaries between phonemes are not 

given. The transcription only consists of a sequence of phones 

in an utterance. It has been shown that this semi-supervised 

method actually works better than a completely supervised 

method [26]. However, in this section we use a completely 

supervised method to evaluate DHDPHMM models for a 

phoneme recognition task. As in the previous section 

DHDPHMMs are trained generatively and are trained without 

context information.  

In the phoneme recognition problem, unlike phoneme 

classification, the boundaries between subsequent phonemes 

are not known (during the recognition phase) and should be 

estimated along with the phoneme labels. During recognition 

we have to decide if a given frame belongs to the current 

group of phonemes under consideration or we have to initiate 

a new phoneme hypothesis. This decision is made by 

considering both the likelihood measurements and the 

language model probabilities. All systems compared in this 

section use bigram language models. However, the training 

procedure and optimization of each language model is 

different and has some effect on the reported error rates. 

In the following we define % Error as follows [8]: 

%
S D I

Error
N

+ +
=  (32) 

where N is the total number of labels in the reference 

transcriptions, S is the number of substitution errors, D is the 

number of deletion errors and I is the number of insertion 

errors.  

Table III presents results for several state of the art models. 

As we can see, systems can be divided into two groups based 

on their training method (discriminative or not) and context 

modeling. The first two rows of this table show two similar 

 
Fig. 6.  Error rate vs. amount of training data for LR DHDPHMM and LR HMM. 

TABLE III 

COMPARISON OF PHONEME RECOGNITION PERFORMANCE 

Model Discr. Context % Err Subset 

CI-HMM [27] No No 35.9% TID7 

CD-HMM 1[27] No Yes 26.2% TID7 

CD-HMM 2[28] No Yes 30.9% Core 

CD-HMM 3[16] No Yes 27.7% Core 

HMM MMI 1 [29] Yes No 32.5% Rand. 

HMM MMI 2/Full Cov. [29] Yes No 30.3% Rand. 

Heter. Class. [30] Yes Yes 24.4% Core 

Data-driven HMM [26] N/A Yes 26.4% Core 

Large Marg. GMM [24] Yes No 30.1% Core 

CRF [31] Yes No 29.9% All 

Tandem HMM [31] Yes Yes 30.6% All 

CNN/CRF [32] Yes No 29.9% Core 

LR DHDPHMM No No 29.7% Core 

LR DHDPHMM No No 28.6% Dev 

LR DHDPHMM No No 29.2% All 
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HMM based systems with and without contextual information. 

We can see the error rate drops from 35.9% to 26.2% when we 

use a system with context modeling. We can also see 

DHDPHMM works much better than a comparable CI HMM 

model (the error rate drops from 35.9% for HMM to 28.6% for 

DHDPHMM).  

The third and fourth rows show two context-dependent 

HMM models. DHDPHMM performs slightly better than the 

CD model in row three (CD HMM 2) but slightly worse than 

the CD model of row four (CD HMM 3). We expect to obtain 

much better results if we use CD models. Our model also 

performs better than a discriminatively trained CI HMM. By 

comparing DHDPHMM with other systems presented in Table 

III we can see DHDPHMM is among the best models for CI 

systems but is not as good as state of the art CD models. 

VI.   CONCLUSION 

In this paper we introduced a DHDPHMM that is an 

extension of HDPHMM which incorporates a parallel 

hierarchy to share data between states. We have also 

introduced methods to model non-ergodic structures. We 

demonstrated through experimentation that LR DHDPHMM 

outperforms both HDPHMM and its parametric HMM 

counterparts. We have also shown that despite the fact that 

DHDPHMM is trained generatively its performance is 

comparable to discriminatively trained models. Further, 

DHDPHMM provides the best performance among CI models. 

Future research will focus on incorporating semi-supervised 

training and context modeling. We have also shown that 

complexity grows very slowly with the data size because of 

the DP properties (only 33% more Gaussians were used after 

increasing the size of the data five times). Therefore, it makes 

sense to explore other types of prior distributions to 

investigate how it can affect the estimated complexity and 

overall performance. Another possible direction is to replace 

HDP emissions with more general hierarchical structures such 

as a Dependent Dirichlet Process [33] or an Analysis of 

Density (AnDe) model [34]. It has been shown that the AnDe 

model is the appropriate model for problems involving sharing 

among multiple sets of density estimators [4], [22]. 
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