International Journal of Speech Technology	17
[bookmark: _Ref221815704][bookmark: _Ref221815737][bookmark: _Ref221815790]A NONLINEAR AUTOREGRESSIVE MODEL
FOR SPEAKER VERFICATION1
Sundararajan Srinivasan2, Tao Ma3, , Georgios Lazarou4 and Joseph Picone5
Abstract— Gaussian Mixture Modeling (GMM) has been the most popular approach in speaker verification for over two decades. The inefficiencies of this model for signals such as speech are well documented and include an inability to model temporal dependencies that result from nonlinearities in the speech signal. The resulting models are often complex and overdetermined, which leads to a lack of generalization and overtraining. In this paper, we present a nonlinear mixture autoregressive model (MixAR) that attempts to directly model nonlinearities in the trajectories of the speech features. We apply this model to the problem of speaker verification. Experiments with synthetic data as well as with standard speech databases, including TIMIT, NTIMIT, and NIST-2001, demonstrate that MixAR, using only half the number of parameters and only static features, can achieve a lower equal error rate when compared to GMMs, particularly in the presence of noise. Performance as a function of the duration of both the training and evaluation utterances is also analyzed.
[bookmark: PointTmp]Keywords— Gaussian mixture models, mixture autoregressive model, nonlinear statistical models, speaker verification
Manuscript submitted February 1, 2013.
1. This material is based upon work supported by the National Science Foundation under Grant No. IIS-0414450. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
2. S. Srinivasan is with Nuance Communications Inc., 1198 East Arques Avenue Sunnyvale, CA 94085, USA (phone: 408-992-6243; email: sundararajan.srinivasan@gmail.com).
3. T. Ma is with Siri at Apple Inc., 2 Infinite Loop, mailstop 302-4APP, Cupertino, California 95014, USA (phone: 408-643-5909; email: tma@apple.com).
4. G. Lazarou is with The New York City Transit Authority, 30-74 38th Street, Apt 1A, Astoria, New York, New York, USA 11103 (phone: (662) 617-2064; email: glaz@ieee.org).
5. J. Picone is with the Department of Electrical and Computer Engineering at Temple University, 1947 North 12th Street, Philadelphia, Pennsylvania 19027 USA (phone: 215-204-4841; fax: 215-204-5960; email: joseph.picone@isip.piconepress.com).
Introduction
The goal in speaker verification is to accept or reject the identity claim made by a speaker. This is widely used in a variety of applications ranging from secured access and surveillance to multimodal verification. A challenge for statistical modeling in speaker verification is to accurately and efficiently represent the probability distribution of speaker features so that even similar sounding speakers can be distinguished. The majority of speaker recognition systems today utilize Gaussian Mixture Models (GMMs) either entirely or as part of a hybrid model (Beigi, 2011).
There are two well-known drawbacks of the GMM model. The first involves statistical independence – there are obviously dependencies between absolute, static, and acceleration feature coefficients. Constructing a GMM from standard features decorrelated using only a diagonal covariance matrix does not adequately model these dependencies. Use of full covariance matrices results in models with an extremely large number of parameters and creates parameter estimation problems. Performance improvements with such techniques have been minimal, and often increase the system’s sensitivity to mismatched channel conditions. A major overarching goal in our work is to improve performance when training and evaluation conditions are mismatched, and the evaluation data contains previously unseen noise and channel conditions.
The second more serious drawback, which is the focus of this work, is the implicit assumption of linearity in the MFCC dynamics. The derivatives of the cepstral features are only a linear approximation of the actual dynamics of the static features. However, a survey of studies on the subject shows that the speech signal contains significant nonlinear information, and using only derivative features to represent speech MFCC dynamics with GMM modeling is tantamount to discarding any nonlinear information present in the signal (May, 2008; Kokkinos & Maragos, 2005).
An obvious solution to this problem is to add features that can represent the nonlinear dynamic information. However, adding nonlinear invariants as features has not improved the robustness of speech and speaker recognition technologies in harsh or mismatched environments. The reasons for these failures include (1) it is difficult to estimate invariants reliably from speech, resulting in parameter estimation algorithms that need to be extensively tuned; (2) these estimation algorithms typically require an acoustic event to have a long duration (Petry et al., 2002), and this gravely undermines the applicability of invariant features for a short-term stationary signal like speech; and (3) invariants only quantify the degree of nonlinearity and do not characterize the nature of the dynamics completely.
The primary goal of this work is to approach the information representation problem at the acoustic modeling level using a nonlinear mixture autoregressive model (MixAR) (Zeevi et al., 2000), thereby accounting for the nonlinear dynamics of speech in the base model and minimizing the dimensionality of the feature space. This model is shown in Previous work on mixture autoregressive modeling for speech has been in the context of hidden Markov models for speech recognition (Juang & Rabiner, 1985). A more recent investigation of AR-HMMs (Ephraim & Roberts, 2005) used a switching autoregressive process to capture signal correlations during state transitions. Results on speech recognition showed that at best the model was only comparable to an MFCC-based HMM using a GMM observation model. Another model considered speech features as a GMM white noise process filtered through an autoregressive signal for speaker identification (Ayadi, 2008).
A more sophisticated model (Wong & Li, 2000) considers a mixture of autoregressive filters (MAR) for the observation model. Our earlier work (Srinivasan et al., 2008) considered this model for phone classification. MixAR is a generalization of MAR, where the mixture weights are allowed to be time‑varying and data-dependent. In this work, we apply the MixAR model to feature vectors in a speaker recognition task, and demonstrate improved performance over the more limited MAR model.
The rest of the paper is organized as follows: Section II formally defines the MixAR model, explains some of the relevant properties of this model and discusses the parameter estimation problem. Results of experiments using synthetic data are included in Section III and speaker verification experiments with real speech data are presented in Section IV. Experiments documenting variation in performance with the duration of training and evaluation utterances are also discussed in Section IV. Finally, in Section VVI we present our conclusions and discuss future directions for this research.

[bookmark: _Ref221815713]The MIXAR MODEL
A mixture autoregressive process (MixAR) of order p with m components, X={x[n]}, is defined as (Zeevi et al., 2000):

	

where εi is a zero-mean Gaussian random process with a variance of , “w.p.” denotes “with probability” and the gating weights, Wi sum to 1. The linear prediction coefficients, {ai}, represent the dynamic model, where ai,0 are the component means, while wi and gi are called gating coefficients. It is apparent that an m-mixture MixAR process is the weighted sum of m Gaussian autoregressive processes, with the time-dependent weights depending on previous data and the gating coefficients.
One insightful way of viewing this model is as a process in which each data sample at any one point in time is generated from one of the component AR mixture processes chosen randomly according to its weight Wi, as depicted in Figure 1. One property of MixAR that is of particular relevance here is the ability of MixAR to model nonlinear time series (Zeevi et al., 2000; Wong & Li, 2000). Though the individual component AR processes are linear, the probabilistic mixing of these AR processes constitutes a nonlinear model. Even when the mixture weights are fixed, the model reduces to MAR, which is still nonlinear. The addition of a gating system layer for weight generation increases the flexibility of the model even further, allowing us to model distributions as a function of past data.
Several other properties of MixAR, including a mathematically rigorous proof of the asymptotic performance of a MixAR model for stochastic processes are derived in (Zeevi et al., 2000). The same work also discusses the problem of parameter estimation; however some practical implementation issues remain and we discuss them in the next. Note that in the original formulation, both the gate and prediction orders were constrained to be equal. In this paper, we restrict ourselves to MixAR models of order one to avoid difficulties during parameter estimation. We used the ISIP public domain speech recognition software (Huang & Picone, 2002) to implement the MixAR model as well as integrate it into an existing speaker verification system.
Estimation of the Prediction and Variance Parameters
Similar to the well-known training procedure for GMM, maximum likelihood estimates for MixAR prediction and variance parameters can be calculated using the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). Given an order, p, the parameter set for each of the m components of a MAR model consists of p+1 predictor coefficients (including the mean), the error variance, and mixing weight:

 	
To estimate these parameters, we first need an initial guess for these parameters and then we iterate with EM to successively refine the estimates.
An initialization strategy that we found to work reasonably well was to first train a GMM with the same number of mixtures and then set each component of the MixAR to have the same mean, variance, and weight as the GMM model. We initialize the predictor coefficients and the data-dependency gating coefficients, {Ai}, to zero. These initial parameters can be then refined recursively using an E-step (Zeevi et al., 2000; Wong & Li, 2000):

 	
where

 	
represents the probability that a sample was generated from component l at time instant n.
The corresponding M-step is given by:

 	

 		

 	

 	

	
Estimation of the Gating Coefficients
A complication arises with respect to the estimation of gating coefficients for MixAR. There is no closed-form solution for these, and hence a Newton gradient-ascent approach must be used:

 	

	
where Q denotes the log-likelihood of the MixAR model for the training data, and β and Δ are design parameters to be chosen empirically. The expression for computing Q is:

 	
Due to this complication in the updates for the gate coefficients, the training procedure outlined above is not in the realm of strict EM algorithm but falls under a class of algorithms known as generalized EM algorithms (GEM) (McLachlan et al., 2008). For both EM and GEM algorithms, the E- step is similar. However, while an EM algorithm actually maximizes the expectation during each M-step, a GEM algorithm only guarantees that parameters that the model likelihood for the data is increased but does not guarantee that it is maximized at each M-step. This has the potential to increase the number of iterations required for training compared to a pure EM algorithm.
In a process analogous to the choice of an adaptation constant in adaptive filter theory, we can postulate that quick and smooth convergence of the GEM algorithm can be achieved by starting with a relatively high value for β and then reducing this value with successive iterations. In our experiments, we found that fixing Δ = 0.01 and running 10 iterations each with β = 0.9, β = 0.5, and β = 0.2 in succession provided a reasonably smooth and quick convergence. However, such convergence is not guaranteed in general and this poses a generalization problem for wider application of this model.
Fortunately, we can do better than guessing an appropriate value for β. We can use the secant method for root-finding and maximization (Dennis & Schnabel, 1996). The iterative formula for finding the maximum using Newton’s method is:

 	
In the secant method, the double derivative in the denominator is estimated numerically using the secant at the point. We estimate the scaling factor β as the inverse of double derivative of the log-likelihood w.r.t. the gate parameters:

 	
During implementation, this scheme amounts to finding for each gate coefficient wl, the value of Q at three different points, Q(wl), Q(wl +Δ), Q(wl - Δ), and then using the following update equation:

 	
Similarly, the update equation for gate coefficients gl is:

 	
Using this method, we obtain reasonable convergence as shown in Figure 1. We have used three GEM iterations in the experiments described in the following sections.
[bookmark: _Ref221815742]Synthetic Data Experiments
Two-Way Classification of Synthetic Speech-Like Data
In this section we describe a set of pilot experiments designed to validate the basic properties of the MixAR model. We first selected two speakers from the 2001 NIST SRE Corpus (Greenberg & Martin, 2009) and generated standard MFCC features using only 12 static features. A 3-state HMM and a MixAR model, both with 4 Gaussian mixture components per state, were trained for each speaker. For each class (e.g., a speaker), two speech-like signals of 40,000 vectors were generated from these models – a linear speech-like signal (X1) was synthesized from the HMM model, and a nonlinear speech-like signal (X2) was generated from the MixAR model. To simulate a range of signals with varying degrees of nonlinearity, the two signals were mixed with a mixing coefficient α:

 	
The first 20,000 vectors from each Xα were used as a training set while the remaining vectors were split into 200 segments of 100 vectors each for evaluation.
The results of the classification experiments with this data are shown in Table 1. Since the data contains nonlinearities, we compared MixAR using static features to a GMM using static features plus first derivatives (static+∆). (Performance for GMMs with static features was significantly worse.) We also allocated 8 mixture components for the GMM system since its feature vectors had additional components. The MixAR system had only 4 mixture components. Overall, the MixAR system had approximately 50% fewer parameters than the GMM system. We can see that when the amount of nonlinearity is insignificant, GMM performs as well as MixAR. However, as the amount of nonlinearity in the signal increases, MixAR performs significantly better. These results validated the basic model and provided motivation to do further testing on more realistic data.
Speaker Verification With Synthetic Data
Since our goal is to study speaker verification, we next used the development database from the 1-speaker detection task of the 2001 NIST SRE Corpus (Greenberg & Martin, 2009). Though the use of development database is not standard practice in most published baselines, and hence, makes it difficult to compare our results with other published results, it is small enough to allow us to quickly generate results using only modest computing power and yet large enough to provide a reliable estimate of the performance. All 60 speakers in the training set were used. Each training utterance was about 2 minutes long. Static (13 MFCCs), delta (26 MFCCs) and delta-delta (39 MFCCs) features were extracted.
Two types of clean data were synthesized. For the first type, a 10-state HMM with 4-Gaussians per state was trained for each utterance. For the second type, a 32-mixture MixAR model of prediction order 1 was trained for each utterance. For each of the models trained, new training data of about 30,000 frames per speaker and evaluation data of 20 utterances with about 200 frames for each utterance per speaker were generated according to that model.
Similarly, two types of noisy data were generated. First, the clean training utterances from the development data were corrupted with car noise to achieve an SNR of 5 dB. This approach followed a methodology previously used to generate the Aurora database (Parihar et al., 2004). The remaining steps to yield the two types of noisy data were the same as those for the clean case. The goal of creating data in this way was to simulate 4 different test conditions: clean+linear, clean+nonlinear, noisy+linear and noisy+nonlinear.
Using the synthesized training data, both GMMs and prediction order-1 MixAR models were trained for each speaker under each condition. Then the corresponding synthesized evaluation data were used for evaluating speaker verification performance. For the clean case, there was little difference in performance between GMM and MixAR. For noisy evaluation data at 5 dB SNR, there was not much variation in performance between GMM and MixAR for HMM-generated data.
However, for the data generated from the nonlinear MixAR model and with the addition of noise, the MixAR model showed a significant improvement in performance using far fewer parameters. This is evident from the DET plot shown in Figure 3. These results provide support to the hypothesis that when there are significant nonlinearities in the signal, using this information makes the nonlinear model much more robust in the presence of noise.
[bookmark: _Ref221815805]Speaker Verification Experiments
In order
Speaker Verification Experiments
Evaluation Using NIST-2001 Development Database
We applied the MixAR model to the 1-speaker detection task in the 2001 NIST SRE Corpus Error! Reference source not found. . Only the development database was used (refer to Section III B for further comments about this choice). All 60 speakers were used for training and all 78 utterances were used for evaluation. Each training utterance was about 2 minutes long, while the test utterances were of varying length not exceeding 60 seconds. Static (13 MFCCs), velocity (13 ∆-MFCCs), and acceleration (13 ∆∆-MFCCs) features were extracted.
First performance is evaluated with and without delta features and energy for a fixed number of mixtures. The results are tabulated in Table II. For GMM, substantial improvement is obtained using the delta features and marginal improvements were obtained using delta-delta features. For MixAR, the use of any delta features provides no measurable improvements. This clearly indicates that MixAR can extract all necessary information from only the static features.
MixAR and GMM performance was then evaluated as a function of the number mixtures. The detection error trade-off (DET) curves are shown in Fig. 4. The EER results are shown in Table II. Also indicated in parenthesis is the number of parameters for each case. From this table it is clear that MixAR can achieve about the same performance using almost 2x fewer parameters than GMM. This reduction in the number of parameters points to the efficiency of MixAR in capturing the dynamic information.
Moreover, even when considering the best case scenario for GMM with a large number of parameters (8 mixtures with static as well as velocity and acceleration coefficients), there is a 10.6% relative reduction in EER with MixAR. These results appear to strongly indicate that there is nonlinear evolution information in speech features that the GMM model cannot capture using linear derivatives alone and that MixAR can effectively employ this information for achieving better speaker recognition.
Evaluation using TIMIT database under Noisy Conditions
To evaluate the robustness of MixAR compared to GMM on unseen noise conditions, several noise conditions were simulated with the TIMIT database Error! Reference source not found. by adding synthesized noise from three different noise sources: white, car, and babble. Three SNR levels were used: 10, 5 and 0 dB (in addition to the clean set). The core test partition of the database containing 168 speakers was used. The three types of noise sources were chosen to represent commonly occurring types of noise.
The matrix of experimental results is shown in Table IV. From this table, it is clear that while unseen noise conditions degrades performance for both models, MixAR performs relatively better than GMM and also uses 2.5 times fewer parameters. The DET curves shown for the different noise conditions in Fig. 5 also support the conclusion that MixAR performs better than GMM.
Studying Channel Variation Effects using TIMIT-NTIMIT Databases
Channel variation is another problem that degrades the performance of speech processing systems. NTIMIT is a database that was created by transmitting TIMIT utterances over different telephone channels Error! Reference source not found.. We studied speaker verification performance on NTIMIT using the core test set of 168 speakers by splitting the data for each speaker into 8 utterances for training and the remaining 2 utterances for evaluation. The DET performance curves for the 8-mixture MixAR using only static MFCCs (with 480 parameters) and for the 16-mixture GMM (with 1168 parameters) using both static and delta features is shown in Fig. 6. The corresponding EERs are shown in Table V. From this it is clear that MixAR using 2.5 times fewer parameters achieves the same or higher level of performance as a GMM.
Effect of Training Data Duration on Speaker Verification Performance
Even if MixAR could do better under the conditions we have tested so far, it is possible that MixAR requires more training data than GMM for reliable parameter estimation. This could be a particular concern considering that MixAR attempts to learn nonlinear dynamic information, and nonlinear dynamics are notoriously difficult to characterize from short lengths of data. For example, it is known that estimates of Lyapunov exponents can be unreliable when the length of data is short Error! Reference source not found.. One particular concern with insufficient training data is the problem of over-fitting. It is therefore necessary to study performance as a function of the amount of training data.
Towards this end, we conducted experiments with varying training utterance durations keeping the evaluation utterance duration a constant. Utterances corresponding to five durations – 120, 90, 60, 30 and 15s - were extracted from training data for each of the 60 speakers from the training part of NIST 2001 development database. All evaluation data for the 78 speakers with durations ranging mostly between 20 and 40 s were used. NIST-2001 database is particularly suited here because the training data is clean and the evaluation data is corrupted by different kinds of noise. This means that models that are over-trained will perform especially poor on the evaluation utterances.
Number of mixtures for MixAR model was fixed to 8. The number of mixtures for GMM was also fixed at 8 to alleviate the problem of over-fitting. The results of the experiment are reported in Table VI. From the table, it is clear that MixAR suffers less from over-fitting than a comparable GMM.
There is a 43.9% increase in EER for GMM when the training utterance duration reduces from about 120s to 15 s. On the other hand, the corresponding increase in EER for MixAR is only 26.56%. Thus, this experiment leads us to conclude that MixAR can handle shorter training data durations better than GMM.
Effect of Evaluation Data Duration on Speaker Verification Performance
It is reasonable to expect that increasing evaluation utterance durations improves speaker verification performance at least up to an extent. For short evaluation utterances, the speaker identity becomes more ambiguous. Thus, it is vital to evaluate the performance of models as a function of evaluation utterance durations.
For this purpose, evaluation utterances of five different durations – about 30, 15, 10, 5, and 3 s – were extracted from each of the 78 test utterances in NIST-2001 development database. All training data from all 60 speakers were used. The results of this experiment are reported in Table VII. From this table, it is clear that performance mostly degrades as evaluation duration is reduced.
For GMM, there is an increase in EER of 31.2% as the evaluation duration reduces from about 30s to 3s. The corresponding reduction for MixAR is 33.3%. Thus MixAR appears to get slightly more sensitive than GMM as the evaluation data duration is reduced. This indicates that for very short utterances, GMM outperforms MixAR.
[bookmark: _Ref221816193]Summary
In In this work, we applied a nonlinear mixture autoregressive model (MixAR) to several speaker verification tasks. Our experiments with synthetic as well as real speech data show that MixAR model outperforms GMM especially under unseen noisy conditions. Moreover, in all cases we tested, MixAR did not require delta features and used 2.5x fewer parameters to achieve comparable or better performance as that of GMM. The dynamic modeling capability of MixAR is effective at capturing and exploiting speech dynamics better than GMM. However, experiments point to a lower limit for evaluation utterance duration below which GMM outperforms MixAR.
This work has only begun to explore the potential of nonlinear MixAR model to speaker verification. Much work remains to be done to elevate MixAR model as a standard tool in speech processing systems. While we have compared and demonstrated the superiority of MixAR to a standard GMM model, most modern systems incorporate more advanced adapted GMM Error! Reference source not found. or discriminative model approaches Error! Reference source not found.. Before an unbiased comparison can be made to these systems, a framework for adapting MixAR models (similar to the adapted GMM approach) is required. Our future work will focus on deriving an adaptation procedure for MixAR model and then compare it to adapted GMM and discriminative approaches. Another important focus will be to apply the MixAR model also to large vocabulary speech recognition. We believe that MixAR model has much potential in speech processing.

[bookmark: _Ref221815912]ReferenceS
Digalakis, V., Rohlicek, J., & Ostendorf, M. (1993). ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition. IEEE Transactions on Speech and Audio Processing, 1(4), 431–442.
Frankel, J., & King, S. (2007). Speech Recognition Using Linear Dynamic Models. IEEE Transactions on Speech and Audio Processing, 15(1), 246–256.
Frankel, J. (2003). Linear Dynamic Models for Automatic Speech Recognition. University of Edinburgh. Retrieved from http://homepages.inf.ed.ac.uk/joe/pubs/2003/Frankel_thesis2003.pdf.
Ganapathiraju, A., Hamaker, J., & Picone, J. (2004). Applications of Support Vector Machines to Speech Recognition. IEEE Transactions on Signal Processing, 52(8), 2348–2355.
Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallet, D., Dahlgren, N., & Zue, V. (1993). TIMIT Acoustic-Phonetic Continuous Speech Corpus. The Linguistic Data Consortium Catalog. Philadelphia, Pennsylvania, USA: The Linguistic Data Consortium. ISBN:1-58563-019-5.
Liang, F. (2003). An Effective Bayesian Neural Network Classifier with a Comparison Study to Support Vector Machine. Neural Computation, 15(8), 1959–1989. doi:10.1162/08997660360675107
Parihar, N., Picone, J., Pearce, D., & Hirsch, H.-G. (2004). Performance Analysis of the Aurora Large Vocabulary Baseline System. Proceedings of the European Signal Processing Conference (pp. 553–556). Vienna, Austria.
Tsontzos, G., Diakoloukas, V., Koniaris, C., & Digalakis, V. (2007). Estimation of General Identifiable Linear Dynamic Models with an Application in Speech Recognition. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Vol. 4, pp. IV–453–IV–456). doi:10.1109/ICASSP.2007.366947
Wöllmer, M., Klebert, N., & Schuller, B. (2011). Switching Linear Dynamic Models for Recognition of Emotionally Colored and Noisy Speech. Sprachkommunikation 2010 (ITG-FB 225) (pp. 1–4). Bochum, Deutschland: Springer.
LIST OF FIGURES
Error! Reference source not found.
Error! Reference source not found.Error! Reference source not found.
Error! Reference source not found.Error! Reference source not found.
Error! Reference source not found.
Error! Reference source not found.
Figures
(a)
[image:]
(b)
[image:]

[bookmark: _Ref221842839]Figure 1. An overview of the (a) GMM and (b) MixAR approaches. The MixAR model is a weighted sum of Gaussian autoregressive models with time-dependent weights.
.

Figure 2. Performance of (Generalized) EM using the secant method as a function of the number of iterations for an 8-mixture MixAR model is shown (speaker 4516 from the NIST-2001 database).

[bookmark: _GoBack][image:]
[bookmark: _Ref221867995]Figure 3. DET curves are shown for a simulated speaker verification task. MixAR performance in the presence of noise exceeds GMM performance.

[bookmark: _Ref249381824][image:]

Fig. 4: Speaker verification DET curves with NIST-2001 development database.

 a)
 b)[image:]
 c)[image:]
 [image:]
[bookmark: Figure16]Fig. 5: DET curves for GMM and MixAR models on noisy TIMIT test with additive a) white b) babble and c) car noise at different SNRs

[image:]
[bookmark: Figure19]Fig. 6: DET curves for GMM and MixAR models on TIMIT and NTIMIT databases.

LIST OF TABLES
Error! Reference source not found.
Tables
α
GMM (8 mix.) Static+∆
MixAR (4-mix.)
Static
0.00
1.50 (288)
1.50 (240)
0.25
3.25 (576)
3.50 (240)
0.50
10.25 (576)
6.25 (240)
0.75
24.75 (576)
9.75 (240)
1.00
26.75 (576)
13.75 (240)
[bookmark: _Ref221862776]Table 1. A comparison of classification error rates is shown for a GMM system using static+delta features and a MixAR system operating only on the static features is shown on synthetic data. The number of parameters for each system is shown in parentheses. The GMM system, which uses static and delta features, performs significantly worse than the MixAR system as the nonlinearity in the data increases.

Table II
Speaker recognition EER with NIST for MixAR and GMM with different feature combinations
Features
GMM 16-mix.
MixAR 8-mix.
Static(12)
22.1
19.1
Static+E(13)
33.1
41.1
Static+Δ(24)
20.6
20.4
Static+Δ+ΔΔ(36)
20.5
20.5

Table III
[bookmark: Table7] Speaker recognition EER with NIST for MixAR and GMM as a function of #mix. (the numbers of parameters are shown in parentheses
#mixs
GMM
Static∆+∆∆+.
MixAR
Static Only
2
23.1(216)
24.1(120)
4
21.7(432)
19.2(240)
8
20.5(864)
19.1(480)
16
20.5(1728)
19.2(960)

TABLE IV
Speaker Verification Performance (EER) for different noise conditions

GMM* (1168)
SNR (dB)
Car Noise
White Noise
Babble Noise

Clean
2.4

10 dB
19.7
48.7
40.6

5 dB
31.2
50.0
44.7

0 dB
39.3
49.8
48.2

MixAR (480)
Clean
1.8

10 dB
13.7
47.0
36.9

5 dB
23.2
47.6
42.8

0dB
33.9
48.5
47.6
* Number of parameters in each case is in parenthesis.

Table V:
Speaker Verification Performance EER with TIMIT and NTIMIT
Database
GMM (1728)
Static+∆+∆∆ MFCCs
MixAR (480)
Static MFCCs Only
TIMIT
2.4
1.8
NTIMIT
21.0
20.9

[bookmark: _Ref249383643]Table VI
Speaker Verification Performance (EER) as a function of training data duration. Evaluation utterance durations varied mostly between 20-40s.

GMM
(864)
Training Utterance Duration
EER

120*
20.5

90
20.4

60
20.4

30
24.4

15
29.5

MixAR
(480)
120*
19.2

90
21.5

60
21.8

30
21.8

15
24.3
*Training data varied around 120s.

Table VII
: Speaker Verification Performance (EER) as a function of evaluation data duration. Training utterance durations varied mostly around 120s.

GMM
(864)
Evaluation Utterance Duration
EER

30*
20.5

15
21.8

10
21.5

5
24.4

3
26.9

MixAR
(480)
30*
19.2

15
23.4

10
23.1

5
25.6

3
25.6
*Evaluation data varied between 20-40s.

8

	
image1.emf

x[n]=

a1,0+ a1,ix[n−i]+ε1[n]i = 1

p
∑ w.p. W1(x[n−1])

a2,0+ a2,ix[n−i]+ε2[n]i = 1

p
∑ w.p. W2(x[n−1])



am,0+ am,ix[n−i]+εm[n]i = 1

p
∑ w.p. Wm(x[n−1])

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

x

[

n

]

=

a

1,0

+

a

1,

i

x

[

n

-

i

]

+e

1

[

n

]

i

=

1

p

å w

.

p

.

W

1

(

x

[

n

-

1])

a

2,0

+

a

2,

i

x

[

n

-

i

]

+e

2

[

n

]

i

=

1

p

å w

.

p

.

W

2

(

x

[

n

-

1])



a

m

,0

+

a

m

,

i

x

[

n

-

i

]

+e

m

[

n

]

i

=

1

p

å w

.

p

.

W

m

(

x

[

n

-

1])

ì

í

ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

oleObject1.bin

image2.emf

σ j
2

s

j

2

oleObject2.bin

image3.emf

θl = {al,0, al,1,…, al, p,σ l ,wl ,gl}, l = 1, 2, ..., m.

q

l

={a

l

,0

,a

l

,1

,…,a

l

,

p

,s

l

,w

l

,g

l

}, l=1, 2, ..., m.

oleObject3.bin

image4.emf

γ l[n]=
Wl pl (x[n] |θ)

Wk pk (x[n] |θ)k = 1

m
∑

g

l

[

n

]

=

W

l

p

l

(

x

[

n

]|

q

)

W

k

p

k

(

x

[

n

]|

q

)

k

=

1

m

å

oleObject4.bin

image5.emf

pl (x[n] |θ)∝ 1
σ l

e

−1
2σ l

(x[n]− al,0 − al,i x[n − i]i = 1

m
∑)2

 .

p

l

(

x

[

n

]|

q

)

µ

1

s

l

e

-

1

2

s

l

(

x

[

n

]

-

a

l

,0

-

a

l

,

i

x

[

n

-

i

]

i

=

1

m

å

)

2

 .

oleObject5.bin

image6.emf

Âl = Rl
−1rl

ˆ

A

l

=

R

l

-

1

r

l

oleObject6.bin

image7.emf

σ̂ l
2 =

γ l[n] x[n]− âl,0 − âl,i x[n − i]i = 1

m
∑

⎛

⎝
⎜

⎞

⎠
⎟

2

n = p +1

N
∑

γ l[n]n = p +1

N
∑

ˆs

l

2

=

g

l

[

n

]

x

[

n

]

-

ˆa

l

,0

-

ˆa

l

,

i

x

[

n

-

i

]

i

=

1

m

å

æ

è

ç

ö

ø

÷

2

n

=

p

+

1

N

å

g

l

[

n

]

n

=

p

+

1

N

å

oleObject7.bin

image8.emf

Rl = γ l[n]Xn −1Xn −1
T

n = p +1

N
∑

R

l

= g

l

[

n

]

X

n

-

1

X

n

-

1

T

n

=

p

+

1

N

å

oleObject8.bin

image9.emf

rl = γ l[n]Xn−1 x[n]
n=p+1

N

∑

r

l

= g

l

[

n

]

X

n-

1

x

[

n

]

n=p+

1

N

å

oleObject9.bin

image10.emf

Xn −1 =

1
x[n −1]
x[n − 2]


x[n − p]

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

.

X

n

-

1

=

1

x

[

n

-

1]

x

[

n

-

2]



x

[

n

-

p

]

é

ë

ê

ê

ê

ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

.

oleObject10.bin

image11.emf

ŵl = wl + β
ΔQ
Δwl

ˆw

l

=

w

l

+b

DQ

D

w

l

oleObject11.bin

image12.emf

ĝl = gl + β
ΔQ
Δgl

 ,

ˆg

l

=

g

l

+b

DQ

D

g

l

 ,

oleObject12.bin

image13.emf

Q(θ) = γ l[n] log(Wl[n])
l=1

m

∑
n=1

N

∑ + γ l[n] log(pl (x[n] |θ)
l=1

m

∑
n=1

N

∑ .

Q

(

q

)

= g

l

[

n

]log(

W

l

[

n

])

l=

1

m

å

n=

1

N

å

+ g

l

[

n

]log(

p

l

(

x

[

n

]|

q

)

l=

1

m

å

n=

1

N

å

 .

oleObject13.bin

image14.emf

x̂ = x + f ' (x) f '' (x) .

ˆx

=

x

+

f'

(

x

)

f''

(

x

) .

oleObject14.bin

image15.emf

β = 1/ Δ2Q Δ2wl()

b=

1/

D2

Q

D2

w

l

()

oleObject15.bin

image16.emf

ŵl = wl +
Q(wl + Δ)−Q(wl + Δ)

Q(wl + Δ)+Q(wl − Δ)− 2Q(wl)
 .

ˆw

l

=

w

l

+

Q(w

l

+D)-Q(w

l

+D)

Q

(

w

l

+D

)

+

Q

(

w

l

-D

)

-

2

Q

(

w

l

)

 .

oleObject16.bin

image17.emf

ĝl = gl +
Q(gl + Δ)−Q(gl + Δ)

Q(gl + Δ)+Q(gl − Δ)− 2Q(gl)
 .

ˆg

l

=

g

l

+

Q(g

l

+D)-Q(g

l

+D)

Q

(

g

l

+D

)

+

Q

(

g

l

-D

)

-

2

Q

(

g

l

)

 .

oleObject17.bin

image18.emf

Xα = (1−α)X1 +αX2

X

a

=(1-a)X

1

+aX

2

oleObject18.bin

image19.emf

image20.emf

1/A 1 (z)

1/A 2 (z)

image190.emf

image200.emf

1/A 1 (z)

1/A 2 (z)

image21.jpeg
=

MikaR ()EM comergence

a4

a2

‘ H
number o terations

0

2

10

image22.jpeg
=

MikaR ()EM comergence

a4

a2

‘ H
number o terations

0

2

10

image22.png
ity (n %)

Miss probal

40

20

10

Speaker Detection Performance

o = GMM-18 detta
N[MixaR-a

5 10 20 40
False Alam probability (in %)

image23.emf
 10 20 40

 20

 40

False Alarm probability (in %)

Miss probability (in %)

Speaker Detection Performance

MixAR #mix=4,static features

GMM #mix=16 static+deltas

image24.emf
 10 20 40

 20

 40

False Alarm probability (in %)

Miss probability (in %)

Speaker Detection Performance

MixAR #mix=4,static features

GMM #mix=16 static+deltas

image25.emf
 40 60

 40

 60

False Alarm probability (in %)

Miss probability (in %)

Speaker Detection Performance

MixAR8 white 10 dB

MixAR8 white 5 dB

GMM16 white 5 dB

GMM16 white 10 dB

image26.emf
 10 20 40 60

 10

 20

 40

 60

False Alarm probability (in %)

Miss probability (in %)

Speaker Detection Performance

MixAR8, babble 10 dB

MixAR8, babble 5 dB

MixAR 8, babble 0dB

GMM16, babble 0 dB

GMM16, babble 5 dB

GMM16, babble 10 dB

image27.emf
 0.1 0.2 0.5 1 2 5 10 20 40 60

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

 60

False Alarm probability (in %)

Miss probability (in %)

Speaker Detection Performance for Additive Car Noise

MixAR8, car 0dB

MixAR8, car 5dB

MixAR8, car 10dB

GMM16, car 10 dB

GMM16, car 5 dB

GMM16, car 0 dB

image250.emf
 40 60

 40

 60

False Alarm probability (in %)

Miss probability (in %)

Speaker Detection Performance

MixAR8 white 10 dB

MixAR8 white 5 dB

GMM16 white 5 dB

GMM16 white 10 dB

image260.emf
 10 20 40 60

 10

 20

 40

 60

False Alarm probability (in %)

Miss probability (in %)

Speaker Detection Performance

MixAR8, babble 10 dB

MixAR8, babble 5 dB

MixAR 8, babble 0dB

GMM16, babble 0 dB

GMM16, babble 5 dB

GMM16, babble 10 dB

image270.emf
 0.1 0.2 0.5 1 2 5 10 20 40 60

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

 60

False Alarm probability (in %)

Miss probability (in %)

Speaker Detection Performance for Additive Car Noise

MixAR8, car 0dB

MixAR8, car 5dB

MixAR8, car 10dB

GMM16, car 10 dB

GMM16, car 5 dB

GMM16, car 0 dB

image28.emf
 1 2 5 10 20 40

 1

 2

 5

 10

 20

 40

False Alarm probability (in %)

Miss probability (in %)

Speaker Detection Performance

MixAR with TIMIT

MixAR with NTIMIT

GMM with TIMIT

GMM with NTIMIT

image280.emf
 1 2 5 10 20 40

 1

 2

 5

 10

 20

 40

False Alarm probability (in %)

Miss probability (in %)

Speaker Detection Performance

MixAR with TIMIT

MixAR with NTIMIT

GMM with TIMIT

GMM with NTIMIT

