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I. INTRODUCTION 

The goal in speaker verification is to accept or reject an identity claim made by a speaker. This 

biometric is widely used in a variety of applications ranging from secured access and surveillance to 

multimodal verification. A challenge for statistical modeling in speaker verification is to accurately and 

efficiently represent the probability distribution of speaker features so that even similar sounding speakers 

can be distinguished. The majority of speaker recognition and verification systems today utilize Gaussian 

Mixture Models (GMMs) either entirely or as part of a hybrid model (Beigi, 2011). 

There are two well-known drawbacks of the GMM model. The first involves statistical 

independence – there are obviously dependencies in the temporal evolution of both the static features and 

the derivatives of these features. Constructing a GMM from standard features decorrelated using only a 

diagonal covariance matrix does not adequately model these dependencies. Use of full covariance 

matrices results in models with an extremely large number of parameters and creates parameter estimation 

problems. Performance improvements with full covariance approaches (or constrained versions of these 

large matrices) have been minimal, and often increase the system’s sensitivity to mismatched channel 

conditions. A major overarching goal in our work is to improve performance when the training and 

evaluation conditions are mismatched, and the evaluation data contains previously unseen noise and 

channel conditions. 

The second more serious drawback, which is the focus of this work, is the implicit assumption of 

linearity in the feature vector dynamics. The derivatives of the cepstral features, commonly used in 

speech processing as part of the MFCC feature vector representation (Chen & Bilmes, 2007) are only a 

linear approximation of the actual dynamics of the static features. However, a survey of studies on the 

subject shows that the speech signal contains significant nonlinear information, and using only derivative 

features to represent speech dynamics with GMM modeling is tantamount to discarding any nonlinear 

information present in the signal (May, 2008; Kokkinos & Maragos, 2005). 

An obvious solution to this problem is to add features that can represent the nonlinear dynamic 

information. However, adding nonlinear invariants as features has not improved the robustness of 
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recognition and verification technologies in harsh or mismatched environments. The reasons for these 

failures include (1) it is difficult to estimate invariants reliably from speech, resulting in parameter 

estimation algorithms that need to be extensively tuned; (2) these estimation algorithms typically require 

an acoustic event to have a long duration (Petry et al., 2002), and this gravely undermines the 

applicability of invariant features for a short-term stationary signal like speech; and (3) invariants only 

quantify the degree of nonlinearity and do not characterize the nature of the dynamics completely. 

The primary goal of this work is to approach the information representation problem at the acoustic 

modeling level using a nonlinear mixture autoregressive model (MixAR) (Zeevi et al., 2000), thereby 

accounting for the nonlinear dynamics of speech in the base model and minimizing the dimensionality of 

the feature space. This model is shown in Figure 1. Previous work on mixture autoregressive modeling 

for speech has been in the context of hidden Markov models for speech recognition (Juang & Rabiner, 

1985). A more recent investigation of AR-HMMs (Ephraim & Roberts, 2005) used a switching 

autoregressive process to capture signal correlations during state transitions. Another model considered 

speech features as a GMM white noise process filtered through an autoregressive signal for speaker 

identification (Ayadi, 2008). Results on speech recognition showed that at best these models were only 

comparable to an MFCC-based HMM using a GMM observation model. 

A more sophisticated model (Wong & Li, 2000) considers a mixture of autoregressive filters (MAR) 

for the observation model. Our earlier work (Srinivasan et al., 2008) considered this model for phone 

classification. MixAR is a generalization of MAR, where the mixture weights are allowed to be 

time-varying and data-dependent. In this work, we apply the MixAR model to feature vectors in a speaker 

verification task, and demonstrate improved performance over the more limited MAR model. 

The rest of the paper is organized as follows: Section II formally defines the MixAR model, explains 

some of the relevant properties of this model and discusses the parameter estimation problem. Results of 

experiments using synthetic data are included in Section III and speaker verification experiments with real 

speech data are presented in Section IV. Experiments documenting variation in performance with the 

duration of training and evaluation utterances are also discussed in Section IV. Finally, in Section VVI we 
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present our conclusions and discuss future directions for this research. 

II. THE MIXAR MODEL 

A mixture autoregressive process (MixAR) of order p
 
with m components, X={x[n]}, is defined 

as (Zeevi et al., 2000): 
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where εi is a zero-mean Gaussian random process with a variance of s j

2
, “w.p.” denotes “with 

probability” and the gating weights, Wi, sum to 1. The linear prediction coefficients, {ai}, represent the 

dynamic model, where ai,0 are the component means, while wi and gi are called gating coefficients. It is 

apparent that an m-mixture MixAR process is the weighted sum of m Gaussian autoregressive processes, 

with the time-dependent weights depending on previous data and the gating coefficients. 

One insightful way of viewing this model is as a process in which each data sample at any one point 

in time is generated from one of the component AR mixture processes chosen randomly according to its 

weight Wi, as depicted in Figure 1. One property of MixAR that is of particular relevance here is the 

ability of MixAR to model nonlinear time series (Zeevi et al., 2000; Wong & Li, 2000). Though the 

individual component AR processes are linear, the probabilistic mixing of these AR processes constitutes 

a nonlinear model. Even when the mixture weights are fixed, the model reduces to MAR, which is still 

nonlinear. The addition of a gating system layer for weight generation increases the flexibility of the 

model even further, allowing us to model distributions as a function of past data. 

Several other properties of MixAR, including a mathematically rigorous proof of the asymptotic 

performance of a MixAR model for stochastic processes, are derived in (Zeevi et al., 2000). Note that in 

the original formulation, both the gate and prediction orders were constrained to be equal. There are some 
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practical implementation issues regarding parameter estimation for this model, and these are discussed 

next. In this paper, we restrict ourselves to MixAR models of order one to avoid some difficulties with 

parameter estimation. 

A. Estimation of the Prediction and Variance Parameters 

Similar to the well-known training procedure for GMM, maximum likelihood estimates for MixAR 

prediction and variance parameters can be calculated using the Expectation-Maximization (EM) 

algorithm (Dempster et al., 1977). Given an order, p, the parameter set for each of the m components of a 

MAR model consists of p+1 predictor coefficients (including the mean), the error variance, and mixing 

weight, and is denoted as: 
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To estimate these parameters, we first need an initial guess for these parameters and then we iterate with 

EM to successively refine the estimates. 

An initialization strategy that we found to work reasonably well was to first train a GMM with the 

same number of mixtures and then set each component of the MixAR model to have the same mean, 

variance and weight as the GMM model. We initialize the predictor coefficients and the data-dependency 

gating coefficients, {Ai}, to zero. These initial parameters can be then refined recursively using an E-step 

(Zeevi et al., 2000; Wong & Li, 2000): 
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represents the probability that a sample was generated from component l at time instant n. 

The corresponding M-step is given by: 
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Â
l

= R
l
-1r
l
  (5) 

ŝ
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B. Estimation of the Gating Coefficients 

A complication arises with respect to the estimation of gating coefficients for MixAR. There is no 

closed-form solution for these, and hence a Newton gradient-ascent approach must be used: 

ŵ
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ĝ
l

= g
l

+ b
DQ

Dg
l

 ,  (11)
 

where Q denotes the log-likelihood of the MixAR model for the training data, and β and Δ are design 

parameters to be chosen empirically. The expression for computing Q is: 
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Due to this complication in the updates for the gate coefficients, the training procedure outlined above is 

not in the realm of strict EM algorithm but falls under a class of algorithms known as generalized EM 

algorithms (GEM) (McLachlan et al., 2008). For both EM and GEM algorithms, the E-step is similar. 

However, while an EM algorithm actually maximizes the expectation during each M-step, a GEM 

algorithm only guarantees that parameters that the model likelihood for the data is increased but does not 

guarantee that it is maximized at each M-step. This has the potential to increase the number of iterations 
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required for training compared to a pure EM algorithm. 

In a process analogous to the choice of an adaptation constant in adaptive filter theory, we can 

postulate that quick and smooth convergence of the GEM algorithm can be achieved by starting with a 

relatively high value for β and then reducing this value with successive iterations. In our experiments, we 

found that fixing Δ = 0.01 and running 10 iterations each with β = 0.9, β = 0.5, and β = 0.2 in succession 

provided a reasonably smooth and quick convergence. However, such convergence is not guaranteed in 

general and this poses a generalization problem for wider application of this model. 

Fortunately, we can do better than guessing an appropriate value for β. We can use the secant method 

for root-finding and maximization (Dennis & Schnabel, 1996). The iterative formula for finding the 

maximum using Newton’s method is: 

x̂ = x + f '(x) f ''(x) .  (13) 

In the secant method, the double derivative in the denominator is estimated numerically using the secant 

at the point. We estimate the scaling factor β as the inverse of double derivative of the log-likelihood with 

respect to the gate parameters: 

b =1/ D2Q D2wl( ). (14) 

During implementation, this scheme amounts to finding the value of Q at three different points (Q(wl), 

Q(wl +Δ), Q(wl - Δ))  for each gate coefficient wl and then using the following update equation: 
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Similarly, the update equation for gate coefficients gl is: 
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Using this method, we obtain reasonable convergence as shown in Figure 2. We have used three GEM 

iterations in the experiments described in the following sections.                                       

III. SYNTHETIC DATA EXPERIMENTS 

In the experiments described in the next two sections, we used the ISIP public domain speech 
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recognition software (Huang & Picone, 2002) to implement the MixAR model as well as integrate it into 

an existing speaker verification system. 

A. Two-Way Classification of Synthetic Speech-Like Data 

In this section we describe a set of pilot experiments designed to validate the basic properties of the 

MixAR model. We first selected two speakers from the 2001 NIST SRE Corpus (Greenberg & Martin, 

2009) and generated the static features corresponding to a standard MFCC feature vector (12 mel-ceptral 

coefficients). A 3-state HMM and a MixAR model, both with 4 Gaussian mixture components per state, 

were trained for each speaker. For each class (e.g., a speaker), two speech-like signals of 40,000 vectors 

were generated from these models – a linear speech-like signal (X1) was synthesized from the HMM 

model, and a nonlinear speech-like signal (X2) was generated from the MixAR model. To simulate a 

range of signals with varying degrees of nonlinearity, the two signals were mixed with a mixing 

coefficient α: 

X
a

= (1-a )X
1

+aX
2

 .  (17) 

The first 20,000 vectors from each Xα were used as a training set while the remaining vectors were split 

into 200 segments of 100 vectors each for evaluation.  

The results of the classification experiments with this data are shown in Table 1. Since the data 

contains nonlinearities, we compared MixAR using static features to a GMM using static features plus 

first derivatives (static+∆). Performance for GMMs with only static features was significantly worse 

except for the case of a purely linear signal (α = 0). We also allocated 8 mixture components for the 

GMM system since its feature vectors had additional components. The MixAR system had only 4 mixture 

components. Overall, the MixAR system had approximately 50% fewer parameters than the GMM 

system. We can see that when the amount of nonlinearity is insignificant, GMM performs as well as 

MixAR. However, as the amount of nonlinearity in the signal increases, MixAR performs significantly 

better. These results validated the basic model and provided motivation to do further testing on more 

realistic data. 
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B. Speaker Verification With Synthetic Data 

Since our goal is to study speaker verification, we next used the development database from the 

1-speaker detection task of the 2001 NIST SRE Corpus (Greenberg & Martin, 2009). Though the use of 

development database is not standard practice in most published baselines, it is small enough to allow us 

to quickly generate results using only modest computing power and yet large enough to provide a reliable 

estimate of the performance. All 60 speakers in the training set were used. Each training utterance was 

about 2 minutes long. Static (12 MFCCs + energy), delta (26 MFCCs) and delta-delta (39 MFCCs) 

features were extracted. 

Two types of clean data were synthesized. For the first type, a 10-state HMM with 4-Gaussians per 

state was trained for each utterance. For the second type, a 32-mixture MixAR model of prediction 

order 1 was trained for each utterance. For each of the models trained, new training data of about 30,000 

frames per speaker and evaluation data of 20 utterances with about 200 frames for each utterance per 

speaker were generated according to that model. 

Similarly, two types of noisy data were generated. First, the clean training utterances from the 

development data were corrupted with car noise to achieve an SNR of 5 dB. This approach followed a 

methodology previously used to generate the Aurora database (Parihar et al., 2004). The remaining steps 

to yield the two types of noisy data were the same as those for the clean case. The goal of creating data in 

this way was to simulate 4 different test conditions: clean+linear, clean+nonlinear, noisy+linear and 

noisy+nonlinear. 

Using the synthetic training data, both GMMs and prediction order-1 MixAR models were trained for 

each speaker under each condition. Next, the corresponding synthesized evaluation data were used for 

evaluating speaker verification performance. For the clean case, there was little difference in performance 

between GMM and MixAR. For noisy evaluation data at 5 dB SNR, there was not much variation in 

performance between GMM and MixAR for HMM-generated data.  

However, for the data generated from the nonlinear MixAR model and with the addition of noise, the 

MixAR model showed a significant improvement in performance using far fewer parameters. This is 
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evident from the DET plot shown in Figure 3. These results provide support to the hypothesis that when 

there are significant nonlinearities in the signal, using this information makes the nonlinear model much 

more robust in the presence of noise. 

IV. SPEAKER VERIFICATION EXPERIMENTS 

A. Evaluation Using the NIST-2001 Development Database 

We applied the MixAR model to the 1-speaker detection task in the 2001 NIST SRE Corpus. All 60 

speakers in the development set were used for training and all 78 utterances were used for evaluation. 

Each training utterance was about 2 minutes long, while the durations of the test utterances varied but did 

not exceed 60 seconds. A standard 39-dimensional MFCC feature vector was used. 

Performance was evaluated with and without delta features and energy for a fixed number of 

mixtures. The results are tabulated in Table 2. For GMM, a substantial improvement is obtained using the 

delta features and marginal improvements were obtained using delta-delta features. For MixAR, the use 

of any delta features provided no measurable improvements. This clearly indicates that MixAR can 

extract all necessary information from only the static features.  

MixAR and GMM performance was then evaluated as a function of the number mixtures. The 

detection error trade-off (DET) curves are shown in Figure 4. The EER results are shown in Table 3. Also 

indicated in parenthesis is the number of parameters for each case. From this table it is clear that MixAR 

can achieve about the same performance using 2x fewer parameters than GMM. This reduction in the 

number of parameters points to the efficiency of MixAR in capturing the dynamic information. 

Moreover, even when considering the best-case scenario for GMM with a large number of parameters 

(8 mixtures with static as well as delta and delta-delta coefficients), there is a 10.6% relative reduction in 

EER with MixAR. These results appear to strongly indicate that there is nonlinear evolution information 

in speech features that the GMM model cannot capture using linear derivatives alone and that MixAR can 

effectively employ this information for achieving better speaker verification. 

B. Evaluation on Unseen Noise Conditions 

To evaluate the robustness of MixAR compared to GMM on unseen noise conditions, several noise 
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conditions were simulated with the TIMIT database (Garofolo et al., 1993) by adding synthesized noise 

from three different noise sources: white, car, and babble. Three SNR levels were used: 10, 5 and 0 dB (in 

addition to the clean set). The core test partition of the database containing 168 speakers was used. The 

three types of noise sources were chosen to represent commonly occurring types of noise. 

The matrix of experimental results is shown in Table 4. From this table, it is clear that while unseen 

noise conditions degrades performance for both models, MixAR performs relatively better than GMM 

and also uses 2.5x fewer parameters. The DET curves shown for the different noise conditions in Figure 5 

also support the conclusion that MixAR performs better than GMM. 

A related problem to unseen noise conditions is variation in acoustic channel. NTIMIT is a database 

that was created by transmitting TIMIT utterances over different analog telephone channels (Jankowski et 

al., 1990). We studied speaker verification performance on NTIMIT by splitting the data for each speaker 

into 8 utterances for training and the remaining 2 utterances for evaluation. The DET performance curves 

for the 8-mixture MixAR using only static MFCCs (with 480 parameters) and for the 16-mixture GMM 

(with 1168 parameters) using both static and delta features are shown in Figure 6. The corresponding 

EERs are shown in Table 5. From this analysis it is clear that MixAR using 2.5x fewer parameters 

achieves the same or a higher level of performance as a GMM. 

C. Effect of Utterance Duration on Speaker Verification Performance 

Even if MixAR could do better under the conditions we have tested so far, it is possible that MixAR 

requires more training data than GMM for reliable parameter estimation. This could be a particular 

concern considering that MixAR attempts to learn nonlinear dynamic information, and nonlinear 

dynamics are notoriously difficult to characterize from short lengths of data. For example, it is known that 

estimates of Lyapunov exponents can be unreliable when the length of data is short (Banbrook et al., 

1997). One particular concern with insufficient training data is the problem of overfitting. It is therefore 

necessary to study performance as a function of the amount of training data. 

Towards this end, we conducted experiments with varying training utterance durations keeping the 

evaluation utterance duration a constant. Utterances corresponding to five durations – 120, 90, 60, 30 and 
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15s – were extracted from training data for each of the 60 speakers from the training part of the NIST 

2001 development database. All evaluation data for the 78 speakers with durations ranging mostly 

between 20 and 40s were used. The NIST-2001 database is particularly suited here because the training 

data is clean and the evaluation data is corrupted by different kinds of noise. This means that models that 

are overtrained will perform poorly on the evaluation utterances.  

The number of mixtures for MixAR was fixed at 8. The number of mixtures for GMM was also fixed 

at 8 to alleviate the problem of overfitting. The results of the experiment are reported in Table 6. There is 

a 43.9% increase in EER for GMM when the training utterance duration is reduced from 120s to 15s. On 

the other hand, the corresponding increase in EER for MixAR is only 26.56%. Thus, MixAR does not 

necessarily require longer training utterance durations than GMM. Utterance duration is an important 

practical constraint on voice biometrics. 

It is also well known that increasing the evaluation utterance duration improves speaker verification 

performance. We tested this hypothesis by examining evaluation utterances of five different durations –

 30, 15, 10, 5, and 3s. These were extracted from each of the 78 test utterances in the NIST-2001 

development database. All training data from all 60 speakers were used. The results of this experiment are 

reported in Table 7. For GMM, there is an increase in EER of 31.2% as the evaluation utterance duration 

reduces from 30s to 3s. The corresponding reduction for MixAR is 33.3%. Hence, both systems are 

equally sensitive to the duration of the evaluation data. 

V. SUMMARY 

In this work, we have applied a nonlinear mixture autoregressive model (MixAR) to several speaker 

verification tasks. Our experiments with synthetic as well as real speech data show that the MixAR model 

outperforms GMM under several noise conditions, particularly the case where the type of noise in the 

evaluation data was not observed in the training database. Equally important, MixAR did not require delta 

features and used 2.5x fewer parameters to achieve comparable or better performance as that of GMM. 

The dynamic modeling capability of MixAR is effective at capturing and exploiting speech dynamics 

better than GMM. 
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This work is part of our ongoing interest in exploiting nonlinear statistical models in speech 

recognition. It has only begun to explore the potential of the nonlinear MixAR model in speaker 

verification. Most modern systems incorporate more advanced adapted GMMs (Reynolds & Campbell, 

2008) or discriminative model approaches (Li & Kinnunen, 2010). Before an unbiased comparison can be 

made to these systems, a framework for integrating these approaches into MixAR model must be 

developed. We also plan to apply the MixAR model to large vocabulary speech recognition tasks. 
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VII. LIST OF FIGURES 

Figure 1. An overview of the (a) GMM and (b) MixAR approaches. The MixAR model is a weighted sum 

of Gaussian autoregressive models with time-dependent weights. 

Figure 2. Performance of (Generalized) EM using the secant method as a function of the number of 

iterations for an 8-mixture MixAR model is shown (speaker 4516 from the NIST-2001 database). 

Figure 3. DET curves are shown for a simulated speaker verification task. MixAR performance in the 

presence of noise exceeds GMM performance. 

Figure 4. A DET curve is shown for a 1-speaker detection task based on the NIST-2001 development 

database. MixAR with 4 mixture components and only static features performs better than a GMM with 

16 mixture components and static+delta features. 

Figure 5. DET curves for GMM and MixAR models are shown for noisy TIMIT data with three types of 

additive noise: a) white, b) babble and c) car noise. A variety of SNRs are used. 

Figure 6. DET curves for GMM and MixAR models on TIMIT and NTIMIT are shown. MixAR 

performance exceeds GMM performance while using a fewer number of parameters. 
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Figure 1. An overview of the (a) GMM and (b) MixAR approaches. The MixAR model is a weighted 

sum of Gaussian autoregressive models with time-dependent weights. 
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Figure 2. Performance of (Generalized) EM using the secant method as a function of the number of 

iterations for an 8-mixture MixAR model is shown (speaker 4516 from the NIST-2001 database). 
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Figure 3. DET curves are shown for a simulated speaker verification task. MixAR performance in the 

presence of noise exceeds GMM performance. 
 

 

Figure 4. A DET curve is shown for a 1-speaker detection task based on the NIST-2001 development 

database. MixAR with 4 mixture components and only static features performs better than a GMM with 

16 mixture components and static+delta features. 
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Figure 5. DET curves for GMM and MixAR models are shown for noisy TIMIT data with three types of 

additive noise: a) white, b) babble and c) car noise. A variety of SNRs are used. 
 

 

(a)  

 

 

  40    60  

  40  

  60  

False Alarm probability (in %)

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)
Speaker Detection Performance

 

 
MixAR8 white 10 dB

MixAR8 white 5 dB

GMM16 white 5 dB

GMM16 white 10 dB

(b)  

 

  10    20    40    60  
  10  

  20  

  40  

  60  

False Alarm probability (in %)

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

Speaker Detection Performance

 

 

MixAR8, babble 10 dB

MixAR8, babble 5 dB

MixAR 8, babble 0dB

GMM16, babble 0 dB

GMM16, babble 5 dB

GMM16, babble 10 dB

(c)  

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



International Journal of Speech Technology 20  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. DET curves for GMM and MixAR models on TIMIT and NTIMIT are shown. MixAR 

performance exceeds GMM performance while using a fewer number of parameters. 
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IX. LIST OF TABLES 

Table 1. A comparison of classification error rates is shown for a GMM system using static+delta features 

and a MixAR system operating only on the static features is shown on synthetic data. The number of 

parameters for each system is shown in parentheses. The GMM system, which uses static and delta 

features, performs significantly worse than the MixAR system as the nonlinearity in the data increases. 

Table 2. Speaker verification EERs are shown for MixAR and GMM for a variety of feature vector 

combinations. MixAR does not need delta features since the model itself encodes temporal dynamics. 

Table 3. EERs are shown as a function of the number of mixtures. MixAR performs slightly better with 

almost half the number of parameters. 

Table 4. EERs are shown for a variety of noise conditions. 

Table 5. EERs are shown for TIMIT (clean data) and NTIMIT (noisy data). 

Table 6. Performance is analyzed as a function of the duration of the training data utterances. The 

evaluation utterance durations were held constant and varied between 20 and 40 seconds. 

Table 7. Performance is analyzed as a function of the duration of the evaluation data is shown. The 

training utterance duration was fixed and averaged around 120s. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



International Journal of Speech Technology 22  

   

X. TABLES 

 

 

α 
GMM (8 mix.) 

Static+∆ 

MixAR (4-mix.) 

Static 

0.00 1.50 (288) 1.50 (240) 

0.25 3.25 (576) 3.50 (240) 

0.50 10.25 (576) 6.25 (240) 

0.75 24.75 (576) 9.75 (240) 

1.00 26.75 (576) 13.75 (240) 

Table 1. A comparison of classification error rates is shown for a GMM system using static+delta 

features and a MixAR system operating only on the static features is shown on synthetic data. The 

number of parameters for each system is shown in parentheses. The GMM system, which uses static and 

delta features, performs significantly worse than the MixAR system as the nonlinearity in the data 

increases. 

 
 

Features 
GMM 

16-mix. 

MixAR 

8-mix. 

Static(12) 22.1 19.1 

Static+E(13) 33.1 41.1 

Static+Δ(24) 20.6 20.4 

Static+Δ+ΔΔ(36) 20.5 20.5 

Table 3. Speaker verification EERs are shown for MixAR and GMM for a variety of feature vector 

combinations. MixAR does not need delta features since the model itself encodes temporal dynamics. 
 

No. 

Mixtures 

GMM 

Static+∆+∆∆ 

MixAR 

Static Only 

2 23.1  (216) 24.1(120) 

4 21.7  (432) 19.2(240) 

8 20.5  (864) 19.1(480) 

16 20.5 (1728) 19.2(960) 

Table 2. EERs are shown as a function of the number of mixtures. MixAR performs slightly better with 

almost half the number of parameters. 
 

GMM 

(1168) 

SNR 

(dB) 

Clean Car 

Noise 

White 

Noise 

Babble 

Noise 

 2.4  

10 dB  19.7 48.7 40.6 

5 dB  31.2 50.0 44.7 

0 dB  39.3 49.8 48.2 

MixAR 

(480) 

 1.8  

10 dB  13.7 47.0 36.9 

5 dB  23.2 47.6 42.8 

0dB  33.9 48.5 47.6 

Table 4. EERs are shown for a variety of noise conditions. 
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Database 

GMM  

Static+∆+∆∆ 

(1728) 

MixAR  

Static Only 

(480) 

TIMIT 2.4 1.8 

NTIMIT 21.0 20.9 

Table 6. EERs are shown for TIMIT (clean data) and NTIMIT (noisy data). 
 

 Evaluation 

Utterance 

Duration 

EER 

GMM 

(864) 

30 20.5 

15 21.8 

10 21.5 

5 24.4 

3 26.9 

MixAR 

(480) 

30 19.2 

15 23.4 

10 23.1 

5 25.6 

3 25.6 

Table 7. Performance is analyzed as a function of the duration of the evaluation data is shown. The 

training utterance duration was fixed and averaged around 120s. 
 

 
Training 

Utterance 

Duration 

EER 

GMM 

(864) 

120 20.5 

90 20.4 

60 20.4 

30 24.4 

15 29.5 

MixAR 

(480) 

120 19.2 

90 21.5 

60 21.8 

30 21.8 

15 24.3 

Table 5. Performance is analyzed as a function of the duration of the training data utterances. The 

evaluation utterance durations were held constant and varied between 20 and 40 seconds. 
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Figure 1. An overview of the (a) GMM and (b) MixAR approaches. The MixAR model is a weighted sum 
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sum of Gaussian autoregressive models with time-dependent weights. 
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Figure 2. Performance of (Generalized) EM using the secant method as a function of the number of 

iterations for an 8-mixture MixAR model is shown (speaker 4516 from the NIST-2001 database). 
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Figure 3. DET curves are shown for a simulated speaker verification task. MixAR performance in the 

presence of noise exceeds GMM performance. 
 

 

Figure 4. A DET curve is shown for a 1-speaker detection task based on the NIST-2001 development 

database. MixAR with 4 mixture components and only static features performs better than a GMM with 

16 mixture components and static+delta features. 
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Figure 5. DET curves for GMM and MixAR models are shown for noisy TIMIT data with three types of 

additive noise: a) white, b) babble and c) car noise. A variety of SNRs are used. 
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Figure 6. DET curves for GMM and MixAR models on TIMIT and NTIMIT are shown. MixAR 

performance exceeds GMM performance while using a fewer number of parameters. 
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α 
GMM (8 mix.) 

Static+∆ 

MixAR (4-mix.) 

Static 

0.00 1.50 (288) 1.50 (240) 

0.25 3.25 (576) 3.50 (240) 

0.50 10.25 (576) 6.25 (240) 

0.75 24.75 (576) 9.75 (240) 

1.00 26.75 (576) 13.75 (240) 

Table 1. A comparison of classification error rates is shown for a GMM system using static+delta 

features and a MixAR system operating only on the static features is shown on synthetic data. The 

number of parameters for each system is shown in parentheses. The GMM system, which uses static and 

delta features, performs significantly worse than the MixAR system as the nonlinearity in the data 

increases. 

 
 

Features 
GMM 

16-mix. 

MixAR 

8-mix. 

Static(12) 22.1 19.1 

Static+E(13) 33.1 41.1 

Static+Δ(24) 20.6 20.4 

Static+Δ+ΔΔ(36) 20.5 20.5 

Table 3. Speaker verification EERs are shown for MixAR and GMM for a variety of feature vector 

combinations. MixAR does not need delta features since the model itself encodes temporal dynamics. 
 

No. 

Mixtures 

GMM 

Static+∆+∆∆ 

MixAR 

Static Only 

2 23.1  (216) 24.1(120) 

4 21.7  (432) 19.2(240) 

8 20.5  (864) 19.1(480) 

16 20.5 (1728) 19.2(960) 

Table 2. EERs are shown as a function of the number of mixtures. MixAR performs slightly better with 

almost half the number of parameters. 
 

GMM 

(1168) 

SNR 

(dB) 

Clean Car 

Noise 

White 

Noise 

Babble 

Noise 

 2.4  

10 dB  19.7 48.7 40.6 

5 dB  31.2 50.0 44.7 

0 dB  39.3 49.8 48.2 

MixAR 

(480) 

 1.8  

10 dB  13.7 47.0 36.9 

5 dB  23.2 47.6 42.8 

0dB  33.9 48.5 47.6 

Table 4. EERs are shown for a variety of noise conditions. 
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Database 

GMM  

Static+∆+∆∆ 

(1728) 

MixAR  

Static Only 

(480) 

TIMIT 2.4 1.8 

NTIMIT 21.0 20.9 

Table 6. EERs are shown for TIMIT (clean data) and NTIMIT (noisy data). 
 

 Evaluation 

Utterance 

Duration 

EER 

GMM 

(864) 

30 20.5 

15 21.8 

10 21.5 

5 24.4 

3 26.9 

MixAR 

(480) 

30 19.2 

15 23.4 

10 23.1 

5 25.6 

3 25.6 

Table 7. Performance is analyzed as a function of the duration of the evaluation data is shown. The 

training utterance duration was fixed and averaged around 120s. 
 

 
Training 

Utterance 

Duration 

EER 

GMM 

(864) 

120 20.5 

90 20.4 

60 20.4 

30 24.4 

15 29.5 

MixAR 

(480) 

120 19.2 

90 21.5 

60 21.8 

30 21.8 

15 24.3 

Table 5. Performance is analyzed as a function of the duration of the training data utterances. The 

evaluation utterance durations were held constant and varied between 20 and 40 seconds. 
 


