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Describing Network Traffic Using the Index of
Variability

Georgios Y. Lazarou, Julie Baca, Victor S. Frost and Joseph B. Evans

Abstract— Commonly used measures of traffic bursti-
ness do not capture the fluctuation of traffic variability
over the entire range of time scales. In this paper, we
present a measure of variability, called the Index of
Variability (Hv(τ)), that depicts the degree of variability
(burstiness) of a typical network traffic process at each
time scale and is analytically tractable for many traffic
models. As an illustration, we derive the closed-form
expressions of Hv(τ) for two traditional traffic models
and generate a variety of 2D and 3D Index of Variabil-
ity curves. These curves demonstrate that the Index of
Variability can help in determining the complexities of the
network traffic variability over the network performance
relevant time scales. We then introduce a practical method
for estimating the Index of Variability curve from a given
traffic trace. Using this method, we estimate the Index
of Variability curves for 12 long NLANR network traffic
traces. The results indicate that the variability of real
network traffic varies with time scales and that the Index of
Variability has the ability to discern qualitative differences
between traffic traces obtained from different networks.
Thus, the Index of Variability offers the potential to gain
insights into the dynamics of network traffic that existing
tools do not offer.

Index Terms— Network Traffic Burstiness, Measure of
Traffic Variability

I. INTRODUCTION

Many empirical studies have shown that Internet traffic
exhibits high variability1 [2], [3], [4], [5], i.e., traffic is
bursty (variable) over a wide range of time scales in
sharp contrast to the assumption that traffic burstiness
exists only at short time scales while traffic is smooth
at large time scales [4]. High variability in traffic has
been shown to have a significant impact on network
performance [4], [6]. The results from [6], [7], [8], [9]
show that knowledge of the traffic characteristics on
multiple time scales helps to improve the efficiency of
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1Fluctuation of traffic as a function of time.

traffic control mechanisms. More importantly, the design
and provision of quality-of-service-guarantees over the
Internet requires the understanding of traffic characteris-
tics, such as variability.

Since the publication of [4], the popular belief has
been that the high variability in traffic is due to the
long-range dependence(LRD) property of the traffic pro-
cesses. In general, a (weakly) stationary discrete-time
real-valued stochastic process Y = {Yn,n = 0,1,2, . . .}
with mean µ = E[Yn] and variance σ2 = E[(Yn −µ)2] <∞
is long-range dependent if ∑∞

k=1 r(k) = ∞, where r(k)
measures the correlation between samples of Y separated
by k units of time. If ∑∞

k=1 r(k) < ∞, then Y is said to
exhibit short-range dependence (SRD).

Many common traffic models with LRD are based on
self-similar processes. It is important to note however
that not all common traffic models with LRD are based
on self-similar processes. In traffic modeling, the term
self-similarity usually refers to the asymptotically second
order self-similar or mono-fractal processes [10]. The
definition of asymptotically second order self-similarity
is as follow [4]: assume that Y has an autocorrelation
function of the form r(k) ∼ k−βL(k) as k → ∞, where
0 < β< 1 and the function L is slowly varying at infinity,
i.e., limk→∞

L(kx)
L(k) = 1 ∀x > 0. For each m = 1,2,3, . . ., let

Y (m) = {Y (m)
n ,n = 1,2,3, . . .} denote a new aggregated

time series obtained by averaging the original series
Y over non-overlapping blocks of size m, replacing
each block by its sample mean. That is, for each m =
1,2,3, . . ., Y (m) is given by

Y (m)
n =

Ynm−m+1 + · · ·+Ynm

m
n ≥ 1. (1)

The new aggregated discrete-time stochastic process
Y (m) is also (weakly) stationary with an autocorrelation
function r(m)(k); then, Y is called asymptotically second
order self-similar with self-similar parameter H = 1− β

2
if for all k large enough, r(m)(k) → r(k) as m → ∞,
that is, Y is asymptotically second-order self-similar
if the corresponding aggregated processes Y (m) become
indistinguishable from Y at least with respect to their
autocorrelation functions. By definition, asymptotically
second order self-similarity implies LRD [10].
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The parameter H is called the Hurst parameter. For
general self-similar processes, it measures the degree
of “self-similarity”. For random processes suitable for
modeling network traffic, the Hurst parameter is basi-
cally a measure of the speed of decay of the tail of the
autocorrelation function. If 0.5 < H < 1, then the process
is LRD, and if 0 < H < 0.5, then it is SRD. If H = 0.5
then the process can be either SRD or LRD. However,
most processes relevant to traffic modeling with H = 0.5
are SRD, eg., Markov processes. Hence, H is widely
used to capture the intensity of long-range dependence
of a traffic process: the closer H is to 1 the more long-
range dependent the traffic is, and vice versa [10].

Several methods exist for estimating H from a traffic
trace. One of the most widely used is the Aggregated
Variance method: for successive values of m that are
equidistant on a log scale, the sample variance of Y (m)

is plotted versus m on a log-log plot [11][12]. By fitting
a least-square line to the points of the plot and then
calculating its slope, an estimate of the Hurst parameter
is obtained as Ĥ = 1− |slope|

2 .
Another very popular method is based on wavelets

[13]. Given a traffic trace Yn, the Hurst parameter can be
estimated as follows: for each scale j, the wavelet energy
µ j = 1

Nj
∑n j

k=1d2( j,k) is plotted versus j on a semi-log
plot (i.e., log2(µ j) vs. j). By fitting a least-square line to
the points of the curve region that looks linear and then
computing its slope α, H is estimated as Ĥ = α+1

2 .

A. Need for a New Measure of Variability

Commonly used measures of traffic burstiness, such
as the peak-to-mean ratio, the coefficient of variation of
interarrival times, the indices of dispersion for intervals
and counts, and the Hurst parameter, do not capture the
fluctuation of variability over different time scales.

It is claimed in [4] that the Hurst parameter is a good
measure of variability, and the higher the value of H ,
the burstier the traffic. The popular belief from early
studies [6], [14], [15], [16], [17], [18] on the impact
of LRD on network performance is that high values of
the Hurst parameter are associated with poor queueing
performance. However, later studies [8], [19] show ex-
amples in which larger values of H are associated with
better queueing performance compared to smaller values
of H . In addition, the results in [9] indicate that the
queueing performance depends mostly on the variability
over certain time scales rather than on the value of H .

Moreover, it is known [7] that different long-range
dependent processes with the same value of the Hurst
parameter can generate vastly different queueing behav-
ior. Clearly, the single value Hurst parameter does not
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Fig. 1. log2(µ j) versus scale j for the Auckland-IV traffic trace
20010301-310-0 (For information about the trace, see Section IV).

capture the fluctuation of the degree of traffic burstiness
across time scales, regardless of whether the traffic pro-
cess exhibits LRD or SRD. From the definition presented
in the previous section, the Hurst parameter is defined
asymptotically (i.e., for large time scales) and hence
conveys nothing about the variability of measured traffic
over small or medium time scales; unless the traffic is
exactly self-similar with known variances. Therefore, the
Hurst parameter is an incomplete descriptor of traffic
variability.

For many network traffic processes, the wavelet
energy-scale or variance-time plots usually do not tend
to straight lines, i.e., see Fig. 1. Usually many of these
processes have piecewise fractal behavior with varying
Hurst parameter over some small ranges of time scales
[20]. When a traffic process is described by a collection
of scaling exponents H(τ) is usually referred to as multi-
scaling [30]. If the moments of these processes behave
as power laws of the scales, they are usually referred to
as multi-fractal with multi-fractal scaling [21], [22]. In
the cases that the moments do not behave as power laws
of the scales, the Infinitely Divisible Cascades model can
be used to characterize network traffic processes.

Queueing performance greatly depends on traffic ir-
regularities at small time scales which are typically
attributed to the complex dynamics of data networks [7],
[23], [24]. Multifractal analysis based on the Legendre
spectrum is often used to study the multiscaling behavior
of traffic at small time scales [20], [25], [26], [27]. The
process of estimating the Legendre spectrum involves
higher order sample moments and negative values of
moments. It is known [28] that higher order sample
moments are not well-behaved and negative values of
moments tend to be erratic. In addition, the Legendre
spectrum is difficult to interpret [29]. The infinitely di-
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visible cascade analysis represents an improvement over
the multifractal analysis [30]. It relaxes the restrictive
assumption that moments behave as power-laws of scales
[22].

Hence, there is a need for an intuitively appealing,
conceptually simple, and mathematically rigorous mea-
sure which can capture the various scaling phenomena
that are observed in data networks on both small and
large scales [31]. In this paper, we present an alternative
measure of variability, called the Index of Variability
(Hv(τ)), that captures the degree of variability of a typical
network traffic process at each critical time scale [7], [9],
[23] and is analytically tractable for many traffic models.

The remainder of this paper is organized as follows:
Section II presents the definition of the Index of Variabil-
ity. Section III presents the derivation of the closed-form
expressions of Hv(τ) for two traditional traffic models. A
variety of 2D and 3D Index of Variability curves are also
presented for illustration. Section IV presents a practical
method for estimating the Index of Variability curve from
a given traffic trace and experimental results. The paper
concludes in Section V.

II. INDEX OF VARIABILITY FOR PACKET TRAFFIC

SEQUENCES

Let N(t) denote the number of events (packet arrivals)
of a stationary point process in the interval (0,t]. For
each fixed time interval τ > 0, an event count sequence
Y = {Yn(τ),τ > 0,n = 1,2, . . .} can be constructed from
each point process, where

Yn(τ) = N[nτ]−N[(n−1)τ] (2)

denotes the number of events that have occurred during
the nth time interval of duration τ. Clearly, Y is also
(weakly) stationary for all τ > 0. In this study, Y rep-
resents a network traffic trace where Yn(τ) denotes the
number of packets observed from an arbitrary point in
the network during the nth time interval of duration τ.
We refer to τ as the time scale of the traffic trace, and
it represents the length (i.e., 10ms, 1s, 10s, e.t.c.) of one
sample of Y .

The expected number of events that have occurred
during the interval (0,t] is always: E[N(t)] = t

E[X ] =
λt where E[X ] is the expected interarrival time and λ
is the mean event (packet) arrival rate. The index of
dispersion for counts (IDC) is defined as: IDC(t) ≡
Var[N(t)]
E[N(t)] = Var[N(t)]

λt . The IDC was defined such that it
provides some comparison with the Poisson process, for
which IDC(t) = 1 ∀t. Note that since the point process
is stationary, IDC has the same value over any interval
of length t; thus, t can be viewed as the time scale τ of

the traffic process Y defined in (2). Henceforth t will be
used to denote generality and τ to denote time scales,
i.e., the time length of each sample of the packet-count
sequence Y .

An important feature of IDC is that it is mathemati-
cally equivalent to the Aggregated Variance method for
estimating the Hurst parameter H of a self-similar pro-
cess. For a self-similar process, plotting log(IDC(mτ))
against log(m) results in an asymptotic straight line with
slope 2H−1. When Y is a long-range dependent process,
the slowly decaying variance property of LRD processes
[4] with parameter 0 < β < 1 is equivalent to an IDC
curve2 with an asymptotic straight line with slope 1−β,
implying 0 < slope < 1. When the IDC curve converges
to an asymptotic straight line with slope = 0 for some
τ < ∞, then this is suggestive of Y been a short-range
dependent process. Based on the above property of IDC,
we define the following new measure of variability:

Definition 1: For a general stationary traffic process
Y as defined by (2) whose IDC(τ) is continuous and
differentiable over (0,∞), we refer to:

Hv(τ) ≡
d(log(IDC(τ)))

d(log(τ)) +1

2
(3)

as the Index of Variability of Y for the time scale τ,
where d(log(IDC(τ)))

d(log(τ)) is the local slope of the IDC curve at
each τ when plotted in log-log coordinates.

Note that the index of variability is so defined in
order for an asymptotically or second-order self-similar
process Hv(τ)→ H ∈ (0.5,1) as τ→∞. If the process is
exactly self-similar, then Hv(τ) = H ∈ (0.5,1) for all τ>
0, that is, if log(IDC(τ)) is linear with respect to log(τ)),
then Hv(τ) reduces to H . The Index of Variability can
be viewed as the Hurst parameter defined at each time
scale.

In general3, the process Y exhibits significant vari-
ability for those time scales τ such that 0.5 < Hv(τ) <

1. When d(log(IDC(τ)))
d(log(τ)) → 1, then Hv(τ) → 1, implying

very high variability. A plot of Hv(τ) versus τ would
depict the behavior of the traffic process Y in terms
of variability (burstiness) at each time scale τ (=
10ms, 100ms, 1s, . . .).

Expanding the local slope of the IDC curve at each
time scale, we obtain:

d(log(IDC(τ)))
d(log(τ))

=
τ

IDC(τ)
d(IDC(τ))

dτ

=
τ

Var[N(τ)]
d(Var[N(τ)])

dτ
−1.(4)

2In log-log coordinates.
3The generality here is confined for those processes that are

suitable in modeling network packet traffic.



4

Using the above in (3), we obtain a more convenient
form of the Index of Variability:

Hv(τ) = 0.5τ

(
dVar[N(τ)]

dτ
Var[N(τ)]

)
(5)

=
1
2

{
1+ τ

(
d(IDC(τ))

dτ
IDC(τ)

)}
(6)

Suppose now Y is an aggregate sequence of packet
counts resulting from the superposition of M independent
packet-traffic sources, not necessarily identical. Then
N(t) = N1(t) + · · · + NM(t), where Ni(t) denotes the
number of packet arrivals in the interval (0,t] from the
ith traffic source. Assuming again stationarity, then:

IDC(t) = ∑M
i=1Var[Ni(t)]
∑M

i=1λit
=

M

∑
i=1

(
IDCi(t)
Λi

)
(7)

where λi is the mean packet arrival rate from the

ith source, and Λi = ∑M
j=1λ j

λi
. In addition, log(IDC(t))

log(t) =
log(∑M

i=1Var[Ni(t)])
log(t) − log(∑M

i=1λit)
log(t) , and upon taking the deriva-

tive with respect to log(t) the Index of Variability for the
aggregate traffic stream is computed to be:

Hv(τ) = 0.5τ

(
∑M

i=1
dVar[Ni(τ)]

dτ

∑M
i=1Var[Ni(τ)]

)

=
1
2

1+ τ

∑M
i=1

d(IDCi(τ))
dτ

(
1
Λi

)
∑M

i=1

(
IDCi(τ)

Λi

)
 . (8)

As can be observed from (8), the variances or the
indices of dispersion for counts of the M independent
point-processes completely characterize the variability
function of the aggregate packet-count sequence Y . If
limτ→∞ IDC(τ) = limτ→∞

(
∑M

i=1

(
IDCi(τ)

Λi

))
= c < ∞, then

limτ→∞Hv(τ) = 0.5. In the case that all M underlying
point processes of making up Y are also identical, then
(8) reduces to (6). If all M underlying point processes
are Poisson, then d(IDCi(τ))

dτ = 0 for all τ and i and hence
Hv(τ) = 0.5 for all τ. An interesting point is that the
Index of Variability estimates the difference between
the second and first Infinitely Divisible Cascade scaling
exponents.

III. ANALYSIS OF TRAFFIC MODELS IN TERMS OF

THE INDEX OF VARIABILITY

In this section, we derive the Index of Variability func-
tions for two traditional traffic models: two-state Markov
Modulated Poisson Process (MMPP) and renewal pro-
cess with hyperexponential interarrival time distributions
of order two (RPH2). Two-state MMPP models have

become popular for modeling the superposition of packet
voice streams [32].

The work in [33] shows that long-tail distributions can
be approximated by hyperexponentional distributions.
Thus, renewal processes with hyperexponential interar-
rival time distributions can be used for capturing the high
variability of traffic over any range of (short or long)
critical time scales. A major advantage of these models
is their relative ease of analytically obtaining queueing
performance predictions.

A. Two-state MMPP

Consider that the underlying point process of Y is an
MMPP with two-state Markov chain where the mean
sojourn times in state 1 and 2 are α−1 and β−1, re-
spectively. When the chain is in state i (i = 1,2) the
point process is Poisson with rate λi. Letting η =
α + β and υ = λ1β + λ2α, we have from [32] that
E[N(t)] = υt

η and IDC(t) = 1+ηA−A
(

1−e−ηt

t

)
, where

A = 2αβ(λ1−λ2)2

η3υ . Clearly the limt→∞ IDC(t) = 1 + ηA.
Upon taking the derivative of IDC(t), the Index of
Variability of Y can be obtained:

Hv(τ) = 0.5

{
1+

A [1− (1+ητ)e−ητ]
(1+ηA)τ−A(1− e−ητ)

}
.

1) Numerical Example: Assume α−1 = β−1 = 100
seconds, λ1 = 4 packets/second and λ2 to vary from
1 to 1000 packets/second. Fig. 2 shows the resulting
index of variability curves as a function of time scale (τ)
and state rates (λi). Notice that when λ2 = λ1, we have
a pure Poisson process, and therefore zero variability;
however, as the difference between λ1 and λ2 increases,
so does the Index of Variability. From Fig. 2 it can be
observed that the Index of Variability increases with λ2

up to its maximum value, and any further increase in λ2

does not have any affect on variability. It can be also
observed that the Index of Variability increases with τ
up to its maximum value and then decays exponentially.
In addition, notice for values of λ2 further from λ1, the
packet-count process Y has substantial variability over a
wide range of time scales that spans about 200 seconds.

B. RPH2

Assume here that the underlying point process of Y
is a stationary renewal process with interarrival times
hyperexponentially distributed. We call this model as the
hyperexponential model. A hyperexponential distribution
of order K, (= 1,2,3, . . .), is the weighted sum of K
exponential distributions:

FK(x) = Pr[X ≤ x] =
K

∑
i=1

wi(1− e−αix) (9)
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Fig. 2. Index of Variability for The Two-State MMPP: α−1 = β−1 =
100 Seconds, λ1 = 4 Packets/Second.

where wi > 0 are the weights satisfying ∑K
i=1 wi = 1, and

αi > 0 are the rates of the exponential distributions [34].
It is shown in [35] that if wi = wi and αi =

µ
ηi for 0 < w <

1, η> 1, and µ > 0, then the tail of the hyperexponential
distribution gets longer and longer with K. The major
advantages of the hyperexponential distributions over
heavy-tailed distributions, such as Pareto are two-fold:
their Laplace transform exists, therefore they can be
utilized in analytic models, and they have finite variance
for all K.

In this paper, we only consider the case of K = 2 (i.e.,
the RPH2 process). Letting a = α1 and b = α2, we get
the pdf of the interarrival times to be:

f2(x) = w1ae−ax +w2be−bx. (10)

The mean packet arrival rate is λ = ab
aw2+bw1

, and the
squared coefficient of variation of the interarrival times
is C 2(X) = 2

[
a2w2+b2w1
(aw2+bw1)2

]
− 1. Note that if a = b, then

λ = a = b and C 2(X) = 1 for all the values of w1

and w2, and hence it is a Poisson process. In addition,
limw2→0C 2(X)= 1 and limb→0C 2(X)= 2

w2
−1. As shown

in Fig. 3, for constant values of a and b, C 2(X) in-
creases exponentially up to its maximum value and then
decreases to one very abruptly. This indicates that the
hyperexponential distribution can be used to model the
interarrival times distribution of highly bursty traffic.
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Fig. 3. Squared Coefficient of Variation of the Interarrival Time
vs. w2 for the Case of Hyperexponential Distribution of Order Two:
a = 100, and b = 0.0001.

From [36] we have that

Var[N(t)] = 2λ
Z t

0
Φ(u)du+λt−λ2t2 (11)

where

Φ(t) = L−1 [Φ∗(s)] = L−1

[
f ∗2 (s)

s{1− f ∗2 (s)}
]
. (12)

Note that the symbol L−1 denotes the inverse Laplace
transform and

f ∗2 (s) = L [ f2(x)] = w1

(
a

s+a

)
+w2

(
b

s+b

)
is the Laplace transform of f2(x). Noting that:

ϕ(t) = L−1

[
f ∗2 (s)

1− f ∗2 (s)

]
= λ− [(aw1 +bw2)2 − (a2w1 +b2w2)]e−[aw2+bw1]t

aw2 +bw1
(13)

Φ(t) is obtained:

Φ(t) =
Z t

0
ϕ(u)du

= λt − [(aw1 +bw2)2 − (a2w1 +b2w2)]
(aw2 +bw1)2(

1− e−[aw2+bw1]t
)

. (14)

Performing the integration in (11) results:

Var[N(t)] =
2λ[(aw1 +bw2)2 − (a2w1 +b2w2)]

(aw2 +bw1)3(
1− e−[aw2+bw1]t

)
+λC 2(X)t, (15)
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TABLE I

VALUES OF MEAN PACKET RATE (λ) AND SQUARED

COEFFICIENT OF VARIATION OF INTERARRIVAL TIMES (C 2(X))
FOR THE NUMERICAL EXAMPLE OF THE CASE OF

HYPEREXPONENTIAL DISTRIBUTION OF ORDER TWO: a = 100.

λ (packets/sec) C2(X)
w2 b = 0.01 b = 0.0001 b = 0.01 b = 0.0001

10−3 9.1000 0.0999 1.6522x103 1.9950x103

10−4 50.0000 0.9901 5.0000x103 1.9605x104

10−5 90.9000 9.0909 1.6536x103 1.6529x105

10−6 99.0000 50.0000 197.0202 5.0000x105

10−7 99.9000 90.9091 20.9561 1.6529x105

10−8 99.9900 99.0099 2.9992 1.9607x104

10−9 99.9990 99.9001 1.2000 1.9970x103

10−10 99.9999 99.9900 1.0200 200.9596
10−11 100.0000 99.9990 1.0020 20.9996
10−12 100.0000 99.9999 1.0002 2.9999
10−13 100.0000 100.0000 1.0000 1.2001

and hence

d
dt

(Var[N(t)]) =
2λ[(aw1 +bw2)2 − (a2w1 +b2w2)]

(aw2 +bw1)2

e−[aw2+bw1]t +λC 2(X), (16)

and

IDC(t) =
2[(aw1 +bw2)2 − (a2w1 +b2w2)]

(aw2 +bw1)3(
1− e−[aw2+bw1]t

t

)
+C 2(X). (17)

Observe that limt→∞ IDC(t) = C 2(X), and if a = b then
[(aw1 +bw2)2− (a2w1 +b2w2)] = 0 and C 2(X) = 1 mak-
ing Var[N(t)] = λt and IDC(t) = 1, i.e., we get a Poisson
process. (15) or (17) can then be used in (5) or (6) to
obtain the Index of Variability. It is obvious to see that
limτ→∞Hv(τ) = 0.5.

Deriving the symbolic expression of Var[N(t)] for
K > 2 is a difficult problem, mainly due to the difficulty
in deriving φ(t), i.e., performing the following inverse
Laplace transform:

L−1

[
f ∗K(s)

1− f ∗K(s)

]
where f ∗K(s) is the Laplace transform of the the K-order
hyperexponential pdf of the interarrival times. However,
it becomes trivial when the model parameters (e.g., wi

and αi) are set to numerical values.
1) Numerical Example: Let a = 100. Table I lists

the values of the mean packet rate (λ) and the squared
coefficient of variation of the interarrival times (C 2(X))
for b = 0.01 and b = 0.0001 for different values of w2.
Note that w1 + w2 = 1. Fig. 4 shows the resulted Index
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of Variability curves for different values of w2, and thus
for different values of λ, and for b = 0.0001. Clearly,
the value of w2 has a direct inpact on the variability of
the resulting packet traffic. By observation, these curves
can be divided into two groups, the ones shown at the
left of Fig. 4 (group A) and the ones shown at the right
(group B).

In group A, the curves have approximately the same
increasing behaviors but their decreasing behaviors, al-
though having similar shapes, occur on different time
scales. As λ → a

2 (i.e., w2 → 10−6), the range of time
scales of high variability behavior and the maximum
value of variability increases. On the other hand, in
group B the curves have similar decreasing behaviors but
different increasing behaviors. In this case, the maximum
value of variability as well as the range of time scales
of substantial variability become smaller as λ→ a. If we
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Fig. 5. Normalized mean number of packets (E[N]) versus w2 for
various values of system load (ρ) assuming an RPH2/M/1 queueing
system. The normalization is in terms of the M/M/1 queueing
system.

let

τon = inf{range o f time scales o f substantial variability}
and

τoff = sup{range o f time scales o f substantial variability},
then we can say that the process behaves like Poisson
for all τ /∈ [τon,τoff].

As it can be observed in Fig. 4, the w2 = 10−6-curve
(left plot curve (iv) or right plot curve (i)) is the boundary
curve between the two groups. At this value of w2, λ= a

2 ,
the process attains the widest range of time scales (that
spans 7 order of magnitude) of high variability, and in
this range the index of variability reaches its maximum
value (maxHv = 0.9988). Interestingly, the maximum
value of C 2(X) occurs also at λ = a

2 . Note that this
widest range of time scales of high variability most likely
covers all time scales that impact network performance
evaluation [7].

Assuming an RPH2/M/1 queueing system4, we get
the mean number of packets in the queue to be E[N] =
ρ/(1−σ) where ρ= λ/µ is the load, µ the mean packet
service rate, and

σ =
(µ+a+b−

√
µ2 −2(a+b)µ+ 4ab

ρ +(a−b)2

2µ
.

Fig. 5 depicts the normalized5 E[N] as a function of
w2 and ρ (load). By studing these queueing performance

4RPH2/M/1 can be considered as special case of G/M/1 queue with
RPH2 as the arrival process. See [38] for details about the G/M/1
queue.

5Normalized E[N] = E[N]RPH2/M/1 / E[N]M/M/1.

curves, several interesting observations can be made: (1)
even at very low loads, the mean number of packets
in the queue (or the mean queueing delay) can get very
large (see the curve for ρ= 0.3); (2) as the load increases,
the normalized E[N] peak increases (as expected); (3)
as ρ→ 1, wpeak

2 → 10−6, (i.e., λ= a
2 ) where wpeak

2 is the
value of w2 where E[N] attains it maximum value; (4) as
w2 decreases, E[N] increases exponentially reaching its
maximum value and then decreases sharply to 1. Clearly,
for those values of w2 such that the normalized E[N]≈ 1,
the queueing system behaves like M/M/1.

In addition, by careful examination of Figures 4 and
5, it can be determined that the performance of the
RPH2/M/1 queue is correlated to the behavior of the In-
dex of Variability curve at early time scales. For example,
consider first the w2 = 10−5-Index-of-Variability-curve.
Although at τ≈ 104 the value of Hv has decreased close
to 0.5, E[N] is relatively high, as shown in Fig. 5, even at
a very low load. Next consider the w2 = 10−8-Index-of-
Variability-curve. The Index of Variability curve starts
from close to 0.5 at low values of τ and reaches its
maximum value around 100 seconds. Clearly, for τ < 1
seconds, Hv is relatively low. Although Hv attains high
variability at relatively high time scales for a wide range
of time scales, the normalized E[N] has values close to
1 for any load. It appears that high variability of the
arrival process beyond a certain time scale does not affect
the performance of the RPH2/M/1 queueing system, in
agreement with [7].

Figure 6 depicts 3D Index of Variability curves gen-
erated using the hyperexponential model with K = 2.
Clearly, both Figures 4 and 6 demonstrate that the
hyperexponential model can yield a variety of Index
of Variability curves. Hence, hyperexponential models
can be used to model a wide range of network traffic
types. Although hyperexponential models of order two
(i.e., K = 2) are capable of generating a variety of Index
of Variability curves, capturing the characteristics of
traffic with multimodal Index of Variability curves would
require using higher order (K > 2) hyperexponential
models.

IV. ESTIMATING Hv(τ) FROM TRAFFIC TRACES

The estimation of the Index of Variability curve
from a given traffic trace requires the estimation of
the first derivative of Var[N(τ)] from discrete samples
(Var[N(τi)], i = 1, · · · ,n). To do this, we must first find an
analytic function that best fits the discrete variance data.
This in turn requires the use of an interpolation method
such as polynomial-based interpolation, cubic spline and
smoothing spline [40]-[44].
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Since we use the sample variances as the estimates
of Var[N(τi)], i = 1, · · · ,n, we consider these estimates
of the variances to be noisy samples. The smoothing
spline interpolation methods are known to have optimal
properties for estimating continuous functions and their
derivatives from a finite number of noisy samples [41],
[43], [44]. Note that nonsmoothing interpolation methods
such as cubic spline have the characteristic that the
estimated curve passes through all the given points.
Hence, in case of noisy data, nonsmoothing interpolation
methods yield rough curves, and therefore erroneously
high first derivatives.

A. Smoothing Spline Interpolation Method

For a given data series (xi,yi), i = 1,2, · · · ,n, the
smooth function f (x) is the solution of the minimization
problem

1
n

n

∑
i=1

(yi − f (xi))2 +ξ
Z xn

x1

( f (k))2 du, (18)

where ξ is the smoothing parameter and f (k) is the kth

derivative of f . If k = 2, then f is a cubic smoothing
spline.

The first term in (18) is the residual sum of squares,
an indicator of the goodness-of-fit of the spline curve
to the data. In other words, it measures the degree of

fidelity of the smoothing spline function to the data.
The second term measures the roughness of the resulting
smoothing spline curve. The roughness of a function
can be characterized by its curvature. For example, if
a function is a straight line, then its second derivative
(and therefore, roughness) is zero, that is, the second
term is a penalty term measuring how close the function
is to a straight line.

The smoothing parameter ξ plays an important role. It
weights two aspects: smoothness and fit. Large values of
ξ give a smoother curve, while small values of ξ result
in a closer fit.

B. Steps for Estimating Hv(τ) from Traffic Traces

We now present a practical method for estimating the
Index of Variability from traffic traces. Assuming that
a given traffic trace is a realization of a second-order
ergodic point process whose variance curve is continuous
and differentiable. We can estimate Hv(τ) of the process
as follows:

• Using the Aggregated Variance method [11] esti-
mate the variance-time sequence: V̂ar[N(τi)], i =
1, · · · ,n.

• Using an appropriate smoothing spline implementa-
tion estimate the smoothing spline Ṽar[N(τ)] from
V̂ar[N(τi)], i = 1, · · · ,n.
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TABLE II

DATES AND DURATIONS OF THE NLANR NETWORK TRAFFIC

TRACES. D:H:M − > DAYS:HOURS:MINUTES

Trace Data Set Date Duration
Collected (D:H:M)

19991129-134258-0 Auckland-II 9/29/1999 1:14:29
19991129-134258-1 Auckland-II 9/29/1999 1:14:29
19991201-192548-0 Auckland-II 12/1/1999 1:0:2
20010220-226-0 Auckland-IV 2/20/2001 6:4:58
20010220-226-1 Auckland-IV 2/20/2001 6:4:58
20010301-0310-0 Auckland-IV 3/1/2001 9:14:49
20010301-0310-1 Auckland-IV 3/1/2001 9:14:49
20010609-0613-0 Auckland-VI 6/9/2001 4:6:0
20010609-0613-1 Auckland-VI 6/9/2001 4:6:0
20010609-0613-e0 Auckland-VI 6/9/2001 4:6:0
20010609-0613-e1 Auckland-VI 6/9/2001 4:6:0
20020519-525 Bell-Lab-I 5/19/2002 7:0:0

• Using (5) estimate the Index of Variability Ĥv(τ).
Prior to experimentation, the accuracy and robustness

of this procedure was validated by estimating and match-
ing the Index of Variability curves shown in Fig. 4 from
synthetically generated data using the hyperexponential
traffic model.

C. Experimental Results

Using the steps outlined in the previous section, we
estimated the Index of Variability curve (Hv(τ)) from
12 NLANR network traffic long traces [39]. The dates
at which each trace was collected and their durations
are listed in Table II. For more information about these
traffic traces, see [39]. Figures 7 and 8 show the es-
timated Index of Variability curves from the 12 long
packet traces.

We used Matlab’s spline toolbox to estimate all the
smoothing splines. Its smoothing spline implementation
is based on Reinsch’s approach [41], [42]. Based on the
input data, the algorithm computes the optimal smooth-
ing parameter ξ such that the penalized residual sum of
squares is less than a tolerance value ε> 0. In all cases
we used the default value of k (= 2) and ε = 0.0001.
Note that prior to estimating the Index of Variability
of these empirical traces, we did not perform any test
of differentiability. Rather we made the assumption that
their variance curves are differentiable.

V. DISCUSSION

As expected, the results displayed in Figures 7 and
8 show that the variability of real network traffic varies
with time scales. An interesting observation is that the
Index of Variability curves derived from the Auckland
traffic traces exhibit similar monomodal behavior, while

the Bell-Lab Index of Variability curve is multimodal.
Hence, hyperexponential models of order two can be
used to well approximate the Auckland traffic processes
(see Figures 4 and 6), but they are not appropriate to
be used to capture the characteristics of the Bell Lab
traffic. Hence, the Index of Variability can be used to
reveal significant differences between traffic traces.

We believe that the characteristics exhibited by the
Bell Lab traffic can be captured either by hyperexpo-
nential models of order higher than two or by mixpro-
cess models, that is the superposition of heterogeneous
traffic processes. As an illustration, consider that an
aggregated network traffic (packet) process is the re-
sult of the superposition of 10 renewal processes with
hyperexponential interarrival time distribution of order
two (RPH2), 20 two-state Markov Modulated Poisson
processes (MMPP), 16 packetized voice streams, and
40 packet streams generated by ON/OFF traffic sources
whose ON and OFF periods are both exponentially
distributed6. The resulting Index of Variability curve
for this mixprocess traffic model is shown in Fig. 9.
Note that the dash-line curve is the Hv curve for the
case of aggregating only 10 identical RPH2 processes.
Comparing the Index of Variability curves of Figures 7
and 9, it can be inferred that the Bell-Lab traffic can be
well modeled using such a mixprocess traffic model.

Evidently, the Index of Variability is a valuable tool
that can provide new insights and understanding of the
dynamics of network traffic. Hv curves can be used to
identify the characteristics of networks or applications
that generate the various types of traffic patterns. An Hv

curve can be regarded as a ”signature” of a particular net-
work or application. To further understand the difference
between the Auckland and Bell-Lab Index of Variability
curves, these two networks must be compared in terms
of their architecture, protocols employed at each layer,
physical links, applications, and other network specific
characteristics.

VI. CONCLUSION

Knowledge of the traffic characteristics on multiple
time scales can help to improve the efficiency of traffic
control mechanisms. In addition, the design and pro-
vision of quality-of-service-guarantees over the Internet
requires the understanding of traffic characteristics, such
as variability. This paper presented an alternative mea-
sure of traffic burstiness called the Index of Variability
(Hv(τ)), that describes the degree of variability of a
typical network traffic process at each critical time scale
and is analytically tractable for many traffic models.

6See [37] for more details.
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Analytical derivations of Hv(τ) were given for two
conventional traffic models. Several generated 2D and
3D Index of Variability curves predicate that the Index
of Variability can help in determining the complexities
of the network traffic variability over time scales that are
relevant to network performance.

This paper also presented a practical method for esti-
mating the Index of Variability curves from traffic traces.
Using this method, the Index of Variability curves for
12 NLANR network traffic long traces were estimated.
The results indicate that the variability of real network
traffic varies with time scales. In summary, the Index of
Variability offers the potential to gain insights into the
dynamics of network traffic that existing tools do not
offer. Future work involves developing methods of fitting
analytically obtained Index of Variability functions to
empirically obtained Index of Variability curves. To
accomplish this, nonlinear optimization techniques will
be utilized. In addition, studies to find relations that
associate Hv(τ) with Hölder exponent h(t) [22] and
queuing performance metrics such as packet loss rate
and delay will be performed.
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